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Abstract

We establish a new theoretical framework for learning under multi-class, instance-1

dependent label noise. At the heart of our framework is the concept of relative2

signal strength (RSS), which is a point-wise measure of noisiness. We use relative3

signal strength to establish matching upper and lower bounds for excess risk . Our4

theoretical findings reveal a surprising result: the extremely simple Noise Ignorant5

Empirical Risk Minimization (NI-ERM) principle, which conducts empirical risk6

minimization as if no label noise exists, is minimax optimal. Finally, we translate7

these theoretical insights into practice: by using NI-ERM to fit a linear classifier8

on top of a frozen foundation model, we achieve state-of-the-art performance on9

the CIFAR-N data challenge.10

1 Introduction11

The problem of classification with label noise can be stated in terms of variables (X,Y, Ỹ ), where12

X is the feature vector, Y ∈ {1, . . . ,K} is the true label associated to X , and Ỹ ∈ {1, . . . ,K} as13

a noisy version of Y . The learner has access to i.i.d. realizations of (X, Ỹ ), and the objective is to14

learn a classifier that optimizes the risk associated with (X,Y ).15

In recent years, there has been a surge of interest in the challenging setting of instance (i.e., feature)16

dependent label noise, in which Ỹ can depend on both Y and X . While several algorithms have been17

developed, there remains relatively little theory regarding algorithm performance and the fundamental18

limits of this learning paradigm.19

This work develops a theoretical framework for learning under multi-class, instance-dependent label20

noise. Our framework hinges on the concept of relative signal strength, which is a point-wise measure21

of “noisiness” in a label noise problem. Using relative signal strength, we establish matching upper22

and lower bounds for excess risk. We further identify distributional assumptions that ensure that the23

lower bound tends to zero as the sample size n grows, implying that consistent learning is possible.24

Suprisingly, our theoretical findings reveal that Noise Ignorant Empirical Risk Minimization (NI-25

ERM), which conducts empirical risk minimization as if no label noise exists, is minimax optimal. To26

translate this insight into practice, we use NI-ERM to fit a linear classifier on top of a self-supervised27

feature extractor, achieving state-of-the-art performance on the CIFAR-N data challenge.28

2 Literature review29

Theory and algorithms for classification with label noise are often based on different probabilistic30

models. These can be categorized depending on how Ỹ depends on Y and X . The simplest model is31

symmetric noise, where the distribution of Ỹ is independent of Y and X [Angluin and Laird, 1988].32

In this case, the probability that Ỹ = k is the same for all k ̸= Y , regardless of Y and X . In this33
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setting, it is easy to show that minimizing the noisy excess risk (associated to the 0/1 loss) implies34

minimizing the clean excess risk, a property known as immunity. When immunity holds, there is no35

need to modify the learning algorithm on account of noisy labels. In other words, the learner may be36

ignorant of the label noise and still learn consistently.37

A more general model is classification with label dependent noise, in which the distribution of Ỹ38

depends on Y , but not X . Many practical algorithms have been developed over the years, based39

on principles including data re-weighting [Liu and Tao, 2015], robust training [Han et al., 2018,40

Liu et al., 2020, Foret et al., 2021] and data cleaning [Brodley and Friedl, 1999, Northcutt et al.,41

2021]. Consistent learning algorithms still exist, such as those based on loss correction [Natarajan42

et al., 2013, Patrini et al., 2017, Van Rooyen and Williamson, 2018, Liu and Guo, 2020, Zhang et al.,43

2022]. However, the primary limitation of these methods is their reliance on the knowledge of noise44

transition probabilities, which are generally not identifiable [Zhang et al., 2021b].45

In the most general setting, that of instance dependent label noise, the distribution of Ỹ depends on46

both Y and X . While algorithms are emerging [Cheng et al., 2021, Zhu et al., 2021, Wang et al., 2022,47

Yang et al., 2023], the theoretical developments have primarily focused on the binary setting. Scott48

[2019] establishes immunity for a Neyman-Pearson-like performance criterion under a posterior drift49

model, discussed in more detail below. Cannings et al. [2020] establish an upper bound for excess50

risk under the strong assumption that the optimal classifiers for the clean and noisy distributions are51

the same. Closest to our work, Im and Grigas [2023] derive excess risk upper and lower bounds, and52

reach a similar conclusion, that noise-ignorant ERM attains the lower bound. Our results, based on53

the new concept of relative signal strength, provide a more refined analysis.54

Additional connections between our contributions and prior work are made throughout the paper.55

3 Problem statement and relative signal strength56

Notation. X denotes a feature space and Y = {1, 2, . . . ,K} a label space, with K ∈ N. The57

K-simplex is ∆K := {p ∈ RK : ∀i, pi ≥ 0,
∑

pi = 1}. A K ×K matrix is row stochastic if all58

of its rows are in ∆K . Denote the i-th element of a vector v as [v]i, and the (i, j)-th element of a59

matrix M as [M ]i,j .60

3.1 Learning from label noise61

In conventional multiclass classification, we observe training data (X1, Y1), . . . , (Xn, Yn) drawn62

i.i.d. from a joint distribution PXY . The marginal distribution of X is denoted by PX , and the class63

posterior probabilities PY |X=x are captured by a K-simplex-valued vector η : X → ∆K , where64

the j-th component of the vector is [η(x)]j = P (Y = j | X = x). A classifier f : X → Y maps an65

instance x to a class f(x) ∈ Y . Denote the risk of a classifier f with respect to distribution PXY as66

R(f) = E(X,Y )∼PXY

[
1{f(X )̸=Y }

]
. The Bayes optimal classifier for PXY is f∗(x) ∈ argmaxη(x).67

The Bayes risk, which is the minimum achievable risk, is then denoted as R∗ = R(f∗) = inff R(f).68

We consider the setting where, instead of the true class label Y , a noisy label Ỹ is observed.69

The training data (X1, Ỹ1), . . . , (Xn, Ỹn) can be viewed as an i.i.d. sample drawn from a “noisy”70

distribution PXỸ . We define PỸ |X=x, η̃, R̃ and f̃∗ analogously to the “clean” distribution PXY .71

We view (X,Y, Ỹ ) as a jointly distributed triple. Given (X,Y ) ∼ PXY , the distribution of the noisy72

label Ỹ is determined by the matrix-valued function E : X → {M ∈ RK×K : M is row stochastic},73

which is called the noise transition matrix, and whose (i, j)-th element is74

[E(x)]i,j = P
(
Ỹ = j | Y = i,X = x

)
.

Note that the noisy and clean class posteriors satisfy η̃(x) = E(x)⊤η(x), with ⊤ denoting transpose.75

The goal of learning from label noise is to find a classifier that is able to minimize the “clean test76

error,” that is, the risk R defined w.r.t. PXY , even though the learner’s access is limited to corrupted77

training data (Xi, Ỹi)
i.i.d.∼ PXỸ . In essence, label noise can be conceptualized as a type of domain78

adaptation problem, where PXY is the source domain, PXỸ is the target domain, and the source79
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and target are linked by “posterior drift”, which means that the source and target have the same80

X-marginal, but the “posteriors” (distribution of label given X) may change [Scott, 2019, Cai and81

Wei, 2021, Maity et al., 2023]. Thus, a label noise problem is captured by a triple (PX ,η, η̃).82

3.2 Relative signal strength83

To study label noise, we introduce the concept of relative signal strength (RSS). This is a pointwise84

measure of how much “signal” (certainty about the label) is contained in the noisy distribution relative85

to the clean distribution. Previous work [Cannings et al., 2020, Cai and Wei, 2021] has examined a86

related concept within the context of binary classification, under the restriction that clean and noisy87

Bayes classifiers are identical. Our definition incorporates multi-class classification and relaxes the88

requirement that the clean and noisy Bayes classifiers agree.89

Definition 1 (Relative Signal Strength) For any class probability vectors η, η̃, define the relative90

signal strength (RSS) at x ∈ X as91

M(x;η, η̃) = min
j∈Y

maxi[η̃(x)]i − [η̃(x)]j
maxi[η(x)]i − [η(x)]j

, (1)

where 0/0 := +∞. Furthermore, for κ ∈ [0,∞), denote the set of points whose RSS exceeds κ as92

Aκ(η, η̃) = {x ∈ X : M(x;η, η̃) > κ} .

M(x;η, η̃) is a point-wise measure of how much “signal” the noisy posterior contains about the93

clean posterior. To gain some intuition, first notice that if the noisy Bayes classifier predicts a different94

class than the clean Bayes classifier, the RSS is 0 by taking j = argmax η̃ (assuming for simplicity95

that the argmax is a singleton set). Now suppose the clean and noisy Bayes classifiers do make the96

same prediction at x, say i∗, and consider a fixed j. If97

[η̃(x)]i∗ − [η̃(x)]j
[η(x)]i∗ − [η(x)]j

is small, it means that the clean Bayes classifier is relatively certain that j is not the correct clean98

label, while the noisy Bayes classifier is less certain that j is not the correct noisy label. Taking the99

minimum over j gives the relative signal strength at x. As we formalize in the next section, a large100

RSS at x ensures that a small (pointwise) noisy excess risk at x implies a small (pointwise) clean101

excess risk. To gain more intuition, consider the following examples.102

Example 1 When η(x) = [0 1 0]⊤ and η̃(x) = [0.3 0.6 0.1]⊤,103

M(x;η, η̃) = min
j∈Y

maxi[η̃(x)]i − [η̃(x)]j
maxi[η(x)]i − [η(x)]j

=
[η̃(x)]2 − [η̃(x)]1
[η(x)]2 − [η(x)]1

=
0.6− 0.3

1− 0
= 0.3.

Here, the clean Bayes classifier is absolutely certain about its prediction, while the noisy Bayes104

classifier is much less certain.105

Example 2 When η(x) = [0 1 0]⊤ and η̃(x) = [0 0 1]⊤,106

M(x;η, η̃) = min
j∈Y

maxi[η̃(x)]i − [η̃(x)]j
maxi[η(x)]i − [η(x)]j

=
[η̃(x)]3 − [η̃(x)]3
[η(x)]2 − [η(x)]3

=
1− 1

1− 0
= 0.

The zero signal strength results from η̃ and η leading to different predictions.107

Example 3 (Comparison to KL divergence) When η(x) = [0.05 0.7 0.25]⊤, and η̃(1)(x) =108

[0.25 0.7 0.05]⊤, η̃(2)(x) = [0.1 0.6 0.3]⊤,109

1

DKL

(
η
∥∥ η̃(1)

) <
1

DKL

(
η
∥∥ η̃(2)

) while M
(
x;η, η̃(1)

)
> M

(
x;η, η̃(2)

)
.

Here, η̃(2) is “closer” to η in terms of KL divergence, but η̃(1) provides more information in terms of110

predicting the argmax of η. There is no conflict: KL divergence considers the similarity between111

two (whole) distributions, while the task of classification only focuses on predicting the argmax.112

This also illustrates why our notion of RSS is better suited for the label noise problem than other113

general-purpose distance measures between distributions.114
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A desirable learning scenario would be if Aκ(η, η̃) = X for some large κ, indicating that the signal115

strength is big across the entire space. Unfortunately, this ideal situation is generally not achievable.116

To understand this limitation, we begin by making a mild assumption about the label noise:117 ∣∣∣arg max η(x)
∣∣∣ ≤ ∣∣∣arg max η̃(x)

∣∣∣, almost surely (PX) (C)

where |·| denotes set cardinality, that is, that argmax η̃(x) contains at least as many entries as118

argmaxη. In other words, when there are ties for the clean Bayes prediction, the noisy Bayes119

prediction has at least as many ties. This assumption is reasonable because label noise typically120

introduces ambiguity by “confusing” the class probabilities, resulting in more ties.121

Proposition 1 If (C) holds, then A0(η, η̃) =
{
x ∈ X : arg max η̃(x) = arg max η(x)

}
.122

This proposition, which is proved in Appendix A.1.1, indicates that A0, the region with positive123

RSS, precisely corresponds to the area where the true and noisy Bayes classifiers agree. Accordingly,124

X \ A0, the zero signal region, is the region where Bayes decision rules differ. The “region of strong125

signal,” Aκ, is a subset of A0. Since the clean and noisy Bayes classifiers will typically disagree for126

at least some x, A0 ̸= X in general. We note that the (somewhat strong) assumption that A0 = X127

has been made in prior studies [Cannings et al., 2020, Cai and Wei, 2021].128

Posterior Drift Model Class. Now putting definitions together, we consider the posterior drift model129

Π defined over the triple (PX ,η, η̃). Let ϵ ∈ [0, 1], κ ∈ (0,+∞), and define130

Π(ϵ, κ) :=
{
(PX ,η, η̃) : PX

(
Aκ (η, η̃)

)
≥ 1− ϵ

}
.

This is a set of triples (label noise problems) such that Aκ, the region with RSS at least κ, covers at131

least 1 − ϵ of the probability mass. In the next section, we will demonstrate that the performance132

within Aκ can be guaranteed, whereas learning outside the region Aκ is provably challenging.133

4 Upper and lower bounds134

In this section, we establish both upper and lower bounds for excess risk under multi-class instance-135

dependent label noise.136

4.1 Minimax lower bound137

Our first theorem reveals a fundamental limit: no classifier trained using noisy data can surpass the138

constraints imposed by relative signal strength in a minimax sense. To state the theorem, we employ139

the following notation and terminology. Denote the noisy training data by Zn =
{
(Xi, Ỹi)

}n
i=1

i.i.d.∼140

PXỸ . A learning rule f̂ is an algorithm that takes Zn and outputs a classifier. The risk R(f̂) of a141

learning rule is a random variable, where the randomness is due to the draw Zn.142

Theorem 1 (Minimax Lower Bound) Let ϵ ∈ [0, 1], κ > 0. Then143

inf
f̂

sup
(PX ,η,η̃)∈Π(ϵ,κ)

EZn

[
R
(
f̂
)
−R(f∗)

]
≥ K − 1

K
ϵ+Ω

(
1

κ

√
1

n

)
,

where the inf is over all learning rules.144

Proof Sketch. The idea is to pick a jointly distributed triple (X,Y, Ỹ ) such that: Y is independent of145

Ỹ for x ∈ X \ Aκ and Y and Ỹ are supported on the same classes for x ∈ Aκ. Consider the two146

regions separately: the excess risk on X \ Aκ is no less than K−1
K ϵ, while the excess risk on Aκ147

decreases with sample size n, and the rate is affected by the RSS κ. See Appendix A.1.2.148

The proof offers insights into how label noise impacts the learning process: if the signal is low,149

learning is hopeless, and the learner incurs an irreducible error of (1 − 1/K)ϵ; in the high signal150

region, the signal strength κ determines the rate of convergence. These aspects determine fundamental151

limits that no classifier trained only on noisy data can overcome without additional assumptions.152
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4.2 Upper bound153

This subsection establishes an upper bound for NI-ERM, the empirical risk minimizer trained on154

noisy data. This result implies that NI-ERM is minimax optimal, a potentially surprising result given155

that NI-ERM is arguably the simplest approach one might consider.156

Theorem 2 (Excess Risk Upper Bound of NI-ERM) Let ϵ ∈ [0, 1], κ > 0. Consider any157

(PX ,η, η̃) ∈ Π(ϵ, κ), assume function class F has Natarajan dimension V , and the noisy Bayes158

classifier f̃∗ belongs to F . Let f̂ ∈ F be the ERM trained on Zn =
{
(Xi, Ỹi)

}n
i=1

. Then for159

n > 2V ,160

EZn

[
R
(
f̂
)
−R(f∗)

]
≤ ϵ+O

(
1

κ

√
V

n

)
.

Natarajan dimension is a multiclass analogue of VC dimension. The upper bound (Theorem 2)161

matches the lower bound (which remains unchanged under the setting of Theorem 2 – see Appendix162

A.1.2 for a refined statement) in terms of both the irreducible error and the rate of convergence. This163

result is surprising as it indicates that the simplest possible approach, which ignores the presence of164

noise, is optimal. No learning rule could perform significantly better in this minimax sense.165

5 Practical implication166

The modern practice of machine learning often involves training a deep neural network. In complex167

tasks involving noisy labels, the naïve NI-ERM is often outperformed by state-of-the-art methods by168

a significant extent [Li et al., 2020, Xiao et al., 2023]. This is consistent with the finding that directly169

training a large neural network on noisy data frequently leads to overfitting [Zhang et al., 2021a].170

Yet this is not grounds for abandoning NI-ERM altogether as a practical strategy. Instead of using171

NI-ERM for end-to-end training of a deep neural network, we instead propose the following simple,172

two-step procedure, termed ‘feature extraction + NI-ERM’.173

1. Perform feature extraction using any method (e.g., transfer learning or self-supervised learning)174

that does not require labels.175

2. Learn a simple classifier (e.g., a linear classifier) on top of these extracted features, using the176

noisily labelled data, in a noise-ignorant way.177

We acknowledge the that practical idea of ignoring label noise is not new [Ghosh and Lan, 2021],178

but the full power of this approach has not been previously recognized. For example, prior work179

that has suggested ignoring the label noise usually augments this approach with additional heuristics180

[Zheltonozhskii et al., 2022, Xue et al., 2022].181

Remarkably, this two-step approach attains extremely strong performance. We conducted experiments182

on the CIFAR image data under two scenarios: synthetic label flipping and realistic human label183

errors [Wei et al., 2022], as shown in Figure 1. We examine three different feature extractors: the184

DINOv2 foundation model [Oquab et al., 2023], ResNet-50 features extracted from training on185

ImageNet [He et al., 2016], and self-supervised ResNet-50 using contrastive loss [Chen et al., 2020].186

We also compared to a simple linear model trained on the raw pixel intensities, and a ResNet-50187

trained end-to-end. We observed that ResNet-50 exhibits a “tempered overfitting” behavior, consistent188

with previous findings [Zhang et al., 2021a, Mallinar et al., 2022]. The linear model demonstrates189

robustness to noise, but suffers from significant approximation error.190

Conversely, the FE+NI-ERM approach enjoys the best of both worlds. Regardless of how the feature191

extraction is carried out, the resulting models exhibit robustness to label noise, while the overall192

accuracy depends entirely on the quality of the extracted features. This is illustrated in Figure 1,193

where the flatness of the accuracy curves as noise increases indicates the robustness, and the intercept194

at zero label noise is a measure of the feature quality. Importantly, this property holds true even under195

realistic label noise of CIFAR-N [Wei et al., 2022]. In fact, we find that using the DINOv2 [Oquab196

et al., 2023] extracted features in our FE+NI-ERM approach yields state of the art results on the197

CIFAR-10N and CIFAR-100N benchmarks, across the noise levels, as shown in Table 1.198
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Figure 1: A linear model trained on features obtained from either transfer learning (pretrained
ResNet-50 on ImageNet [He et al., 2016] ), self-supervised learning (ResNet-50 trained on CIFAR-10
images with contrastive loss [Chen et al., 2020]), or a pretrained self-supervised foundation model
DINOv2 [Oquab et al., 2023] significantly boosts the performance of the original linear model. In
contrast, directly training a ResNet-50 leads to overfitting.

We reiterate that the only hyperparameters of our model are the hyperparameters of the linear classifier,199

which are tuned automatically using standard cross-validation on the noisy labels. This in contrast to200

the implementations of many methods on the CIFAR-N leaderboard (http://noisylabels.com/),201

where the hyperparameters are hard-coded. Altogether, this dominant performance, along with202

the simplicity of the approach and the lack of any untunable hyperparameters, suggest that the203

FE+NI-ERM is very powerful, and indicates a need for further investigation of its properties.204

Table 1: Performance comparison with CIFAR-N leaderboard (http://noisylabels.com/) in
terms of testing accuracy. “Aggre”, “Rand1”, . . . , “Noisy” denote various types of human label noise.
We compare with four methods that covers the top three performance for all noise categories: ProMix
[Xiao et al., 2023], ILL [Chen et al., 2023], PLS [Albert et al., 2023] and DivideMix [Li et al., 2020].
Our approach, a Noise Ignorant linear model trained on features extracted by the self-supervised
foundation model DINOv2 [Oquab et al., 2023] achieves new state-of-the-art results, highlighted in
bold. We employed Python’s sklearn logistic regression and cross-validation functions without data
augmentation; the results are deterministic and directly reproducible.

Leaderboard CIFAR-10N CIFAR-100N

Methods Aggre Rand1 Rand2 Rand3 Worst Noisy

ProMix 97.65 ± 0.19 97.39 ± 0.16 97.55 ± 0.12 97.52 ± 0.09 96.34 ± 0.23 73.79 ± 0.28
ILL 96.40 ± 0.03 96.06 ± 0.07 95.98 ± 0.12 96.10 ± 0.05 93.55 ± 0.14 68.07 ± 0.33
PLS 96.09 ± 0.09 95.86 ± 0.26 95.96 ± 0.16 96.10 ± 0.07 93.78 ± 0.30 73.25 ± 0.12

DivideMix 95.01 ± 0.71 95.16 ± 0.19 95.23 ± 0.07 95.21 ± 0.14 92.56 ± 0.42 71.13 ± 0.48

FE + NI-ERM 98.69 ± 0.00 98.80 ± 0.00 98.65 ± 0.00 98.67 ± 0.00 95.71 ± 0.00 83.17 ± 0.00

6 Conclusions205

This work presents a rigorous theory for learning under multi-class, instance-dependent label noise.206

We establish matching upper and lower bounds for excess risk . Our theory reveals the minimax207

optimality of Noise Ignorant Empirical Risk Minimizer (NI-ERM). To make this theory practical, we208

provide a simple modification leveraging a feature extractor with NI-ERM, demonstrating significant209

performance enhancements. A limitation of this work is that our methodology warrants more210

extensive experimental evaluation.211
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A Appendix / supplemental material315

A.1 Proofs316

A.1.1 Proof of Proposition 1317

Proposition Assume (C) holds. Then for κ ≥ 0,318

A0(η, η̃) =
{
x ∈ X : arg max η̃(x) = arg max η(x)

}
almost surely.

Proof. Notice that319

M(x;η, η̃) = 0 ⇐⇒ arg max η̃(x) ̸⊆ arg max η(x).

This is because M(x;η, η̃) = 0 when the numerator is zero and the denominator is non-zero, which320

happens when arg max η̃(x) ̸⊆ arg max η(x). An equivalent statement of this is321

M(x;η, η̃) > 0 ⇐⇒ arg max η̃(x) ⊆ arg max η(x).

Under assumption (C), the set argmax η̃(x) cannot be a proper subset of argmaxη(x), and therefore322

M(x;η, η̃) > 0 ⇐⇒ arg max η̃(x) = arg max η(x).

Thus,323

A0(η, η̃) =

{
x ∈ X : arg max η̃(x) = arg max η(x)

}
,

almost everywhere.324

A.1.2 Proof of Lower Bound: Theorem 1325

Now we provide a more formal statement of the minimax lower bound and its proof. We begin with326

the scenario where the noisy distribution PXỸ has zero Bayes risk as an introductory example. The327

proof for the general case follows a similar strategy but involves more complex bounding techniques.328

We recommend that interested readers first review the proof of the zero-error version to build a solid329

understanding before tackling the general case.330

Now consider a more restricted set of Π(ϵ, κ):331

Π(ϵ, κ, V, 0) :=
{
(PX ,η, η̃) : PX

(
Aκ (η, η̃)

)
≥ 1− ϵ, PX supported on V + 1 points, R̃∗ = 0

}
.

Theorem (Minimax Lower Bound: when R̃∗ = 0) Let ϵ ∈ [0, 1], κ > 0, V > 1. For any learning332

rule f̂ based upon Zn =
{
(Xi, Ỹi)

}n
i=1

, and n > max(V − 1, 2),333

sup
(PX ,η,η̃)∈Π(ϵ,κ)

EZn

[
R
(
f̂
)
−R(f∗)

]
≥ sup

(PX ,η,η̃)∈Π(ϵ,κ,V,0)

EZn

[
R
(
f̂
)
−R(f∗)

]
≥ K − 1

K
ϵ+

1

κ

(V − 1)(1− ϵ)

8en

Proof. Consider any V + 1 distinct points x0, x1, . . . , xV . Choose334

PX(x) =


ϵ x = x0

(1− ϵ) · 1
n x = x1, . . . , xV−1

(1− ϵ) ·
(
1− V−1

n

)
x = xV .

,
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where n > V − 1, and define the clean and noisy class posteriors by335

If x = x0, then η(x) = ej , η̃(x) = e1, j ∈ {1, 2, . . .K} (2)

If x = xt, 1 ≤ t ≤ V − 1, then η(x) =


1
2 + 1

2(κ+δ) · (−1)bt+1

1
2 − 1

2(κ+δ) · (−1)bt+1

0
...
0

 , η̃(x) = ebt , bt ∈ {1, 2}, δ > 0,

(3)

If x = xV , then η(x) =


1
2 + 1

2(κ+δ)
1
2 − 1

2(κ+δ)

0
...
0

 , η̃(x) = e1, (4)

where ei denotes the one-hot vector whose i-th element is one.336

The triple (PX ,η, η̃) is thus parameterized by j, b := [b1 b2 · · · bV−1]
⊤, and δ.337

This construction ensures (PX ,η, η̃) ∈ Π(ϵ, κ, V, 0). In particular,338

Aκ ⊇ {x1, x2, . . . , xV }, PX(Aκ) ≥ 1− ϵ,

X \ Aκ ⊆ {x0}, PX(X \ Aκ) ≤ ϵ,

and R̃∗ = 0 because η̃(x) is one-hot for all x.339

For classifier any f , by definition, its risk equals to340

R (f) = EX,Y

[
1f(X )̸=Y

]
= EXEY |X [1f(X )̸=Y ]

= EXEY |X [1− 1f(X)=Y ]

= EX

[
1− [η(X)]f(X)

]
=

∫
X

(
1− [η(x)]f(x)

)
dPX(x),

Under our construction of PX , R(f) can be decomposed into two parts341

R (f) =

∫
{x0}

(
1− [η(x)]f(x)

)
dPX(x)︸ ︷︷ ︸

:=R0(f)

+

∫
{x1,...,xV }

(
1− [η(x)]f(x)

)
dPX(x)︸ ︷︷ ︸

:=RV (f)

,

so does the excess risk342

R(f)−R(f∗) =
(
R0 (f)−R0(f

∗)
)
+
(
RV (f)−RV (f

∗)
)
.

Recall that in our construction, (PX ,η, η̃) is parameterized by j, b, and δ. Therefore343

sup
(PX ,η,η̃)∈Π(ϵ,κ,V,0)

EZn

[
R
(
f̂
)
−R(f∗)

]
≥ sup

j,b,δ
EZn

[
R
(
f̂
)
−R(f∗)

]
= sup

j,b,δ

{
EZn

[
R0

(
f̂
)
−R0(f

∗)
]

+ EZn

[
RV

(
f̂
)
−RV (f

∗)
]}

= sup
j

EZn

[
R0

(
f̂
)
−R0(f

∗)
]

+ sup
b,δ

EZn

[
RV

(
f̂
)
−RV (f

∗)
]
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where the last equality holds because region {x0} only depends on j, while region {x1, . . . , xV }344

only depends on b, δ.345

In the remaining part of the proof, we will examine346

sup
j

EZn

[
R0

(
f̂
)
−R0(f

∗)
]

(5)

and347

sup
b,δ

EZn

[
RV

(
f̂
)
−RV (f

∗)
]

(6)

separately.348

Let’s start with the first term (5), which acts over the “low signal strength” region {x0}. Since η is349

one-hot on {x0}, its Bayes risk over that is zero350

sup
j

EZn

[
R0

(
f̂
)
−R0(f

∗)
]
= sup

j
EZn

[
R0

(
f̂
)]

= sup
j

EZn

[∫
{x0}

1f̂(x)̸=jdPX(x)

]
.

To deal with supj , we use a technique called “the probabilistic method”: replace j with a random351

variable J ∼ Uniform{1, 2, . . . ,K}:352

sup
j

EZn

[∫
{x0}

1f̂(x)̸=jdPX

]
≥ EJ, Zn

[∫
{x0}

1f̂(x)̸=JdPX(x)

]

= EZn

[
EJ|Zn

[∫
{x0}

1f̂(x)̸=JdPX(x)

]]
.

Again, notice that J is an independent draw. Even if the point x0 is observed in Zn, the associated353

noisy label Ỹ = 1 does not give any information about the clean label Y = J . Thus354

EZn

[
EJ|Zn

[∫
{x0}

1f̂(x) ̸=JdPX(x)

]]
= EZn

[
EJ

[∫
{x0}

1f̂(x)̸=JdPX(x)

]]

= EZn

[∫
{x0}

EJ

[
1f̂(x)̸=J

]
dPX(x)

]

= EZn

[∫
{x0}

(
1− 1

K

)
dPX(x)

]

=

(
1− 1

K

)
ϵ.

Now we have the minimax lower bound for the first part (5):355

sup
j

EZn

[
R{x0}

(
f̂
)
−R{x0}(f

∗)
]
≥
(
1− 1

K

)
ϵ.

For the second part (6), which is over {x1, . . . , xV }, due to the relative signal strength condition, and356

from our explicit construction in Eqn. (3) and (4), the excess risk w.r.t. true and noisy distribution are357

related by358

RV (f)−RV (f
∗) =

∫
{x1,...,xV }

(
maxη(x)− [η(x)]f(x)

)
dPX(x)

=

∫
{x1,...,xV }

1

κ+ δ

(
max η̃(x)− [η̃(x)]f(x)

)
dPX(x) ∵ by construction of η, η̃

=
1

κ+ δ

(
R̃V (f)− R̃V (f̃

∗)
)
,
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where R̃V (f) :=
∫
{x1,...,xV }

(
1 − [η̃(x)]f(x)

)
dPX(x). Also note that f∗(x) = f̃∗(x) for x ∈359

{x1, . . . , xV }, which is a result of our construction of η, η̃.360

Then361

sup
b,δ

EZn

[
RV

(
f̂
)
−RV (f

∗)
]
= sup

b,δ
EZn

[
1

κ+ δ

(
R̃V (f)− R̃V (f̃

∗)
)]

.

This allows us to reduce the label noise problem into a standard learning problem: we have an iid362

sample Zn from PXỸ and consider the risk evaluated on the same distribution PXỸ . The remainder363

of the proof is similar to the proof of Theorem 14.1 in Devroye et al. [1996].364

Notice that by our construction, Ỹ is a deterministic function of X . To be specific, Ỹ = f̃∗(X),365

where366

f̃∗(x) =


1 x = x0,

bt x = xt, 1 ≤ t ≤ V − 1

1 x = xV

is the noisy Bayes classifier.367

We use the shorthand fb := f̃∗ to denote that the noisy Bayes classifier depends on b, we also write368

the learning rule f̂(x;Zn) := f̂(x) to indicate the dependence of the learning rule f̂ on the random369

sample Zn.370

Since the noisy Bayes risk is zero,371

sup
b,δ

EZn

[
1

κ+ δ

(
R̃V (f)− R̃V (f̃

∗)
)]

= sup
b,δ

1

κ+ δ
EZn

[
R̃V (f̂)

]
.

Again, use the probabilistic method, replace b with B ∼ Uniform{1, 2}V−1,372

sup
b,δ

1

κ+ δ
EZn

[
R̃V (f̂)

]
≥ sup

δ

1

κ+ δ
EB,Zn

[
R̃V (f̂)

]
= sup

δ

1

κ+ δ
EZn

[
EB|Zn

[∫
{x1,...,xV }

1f̂(x)̸=fB(x)dPX(x)

]]

Since we have B ∼ Uniform{1, 2}V−1 and also Z|B ∼ PXỸ , then by Bayes rule (or eye-balling),373

we get the posterior distribution of B|Zn, to be specific:374

∀x ∈ {x1, · · · , xV }, P (fB(x) = 1|Zn) =

{
1
2 x ̸= X1, . . . , x ̸= Xn, x ̸= xV

0 or 1 otherwise,

where we overload the notation P to denote conditional probability of B|Zn.375

Then the optimal decision rule for predicting B based on sample Zn is:376

f∗
B(x;Zn) :=


Ỹi x = Xi, i ∈ {1, 2, . . . , n}
1 x = xV

random guess from {1, 2} x ̸= X1, . . . , x ̸= Xn, x ̸= xV .

13



Therefore, roughly speaking, the error comes from the probability of X ∈ {x1, . . . , xV } not being377

one of observed Xi: for any f̂ ,378

EB,Zn

[
R̃V (f̂)

]
= EZn

[
EB|Zn

[∫
{x1,...,xV }

1f̂(x)̸=fB(x)dPX(x)

]]
≥ P (X ∈ {x1, . . . , xV }, f∗

B(X;Zn) ̸= fB(X)) ∵ error of f̂ > error of f∗
B

=

(
1− 1

2

)
P (X ̸= X1, . . . , X ̸= Xn, X ̸= xV , X ∈ {x1, . . . , xV })

=
1

2

V∑
t=1

P (X ̸= X1, . . . , X ̸= Xn, X ̸= xV , X = xt)

=
1

2

V∑
t=1

P (X1 ̸= xt, . . . , Xn ̸= xt, xV ̸= xt, X = xt) ∵ replace all X with xt

=
1

2

V−1∑
t=1

P (X1 ̸= xt, . . . , Xn ̸= xt, X = xt)

=
1

2

V−1∑
t=1

P (X1 ̸= xt, . . . , Xn ̸= xt|X = xt)P (X = xt)

=
1

2

V−1∑
t=1

(1− P (X = xt))
n P (X = xt)

=
1

2
(V − 1)

(
1− 1− ϵ

n

)n(
1− ϵ

n

)
=

(V − 1)(1− ϵ)

2n

(
1− 1− ϵ

n

)n

=
(V − 1)(1− ϵ)

2n

(
1− 1− ϵ

n

)1+ϵ(
1− 1− ϵ

n

)n−1−ϵ

≥ (V − 1)(1− ϵ)

2n

(
1− 1− ϵ

n

)1+ϵ

e−1+ϵ ∵

(
1− 1− ϵ

n

)n−1−ϵ

↓ e−1+ϵ

≥ (V − 1)(1− ϵ)

2n

(
1− 1

n

)2

e−1 ∵ ϵ ∈ [0, 1]

≥ (V − 1)(1− ϵ)

2n

e−1

4
=

(V − 1)(1− ϵ)

8en
. take n > 2

Now we get the minimax risk for the second part (6)379

sup
b,δ

EZn

[
RAκ

(
f̂
)
−RAκ

(f∗)
]
≥ sup

δ

1

κ+ δ

(V − 1)(1− ϵ)

8en

≥ 1

κ

(V − 1)(1− ϵ)

8en
let δ ↓ 0

Combine the two parts together, we get the final result, for n > max(V − 1, 2)380

sup
(PX ,η,η̃)∈Π(ϵ,κ,V,0)

EZn

[
R
(
f̂
)
−R(f∗)

]
≥ K − 1

K
ϵ+

1

κ

(V − 1)(1− ϵ)

8en
.

381
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As for the general version of the lower bound, now consider the set of triples:382

Π(ϵ, κ, V, L) :=
{
(PX ,η, η̃) :PX

(
Aκ (η, η̃)

)
≥ 1− ϵ,

PX supported on V + 1 points,
R̃Aκ

(
f̃∗
)

PX

(
Aκ (η, η̃)

) = L
}
,

where R̃C(f) =
∫
C

(
1− [η̃(x)]f(x)

)
dPX(x).383

Theorem (Minimax Lower Bound (General Version)) Let ϵ ∈ [0, 1], κ > 0, V > 1, L ∈ (0, 1/2).384

For any learning rule f̂ based upon Zn =
{
(Xi, Ỹi)

}n
i=1

, for n ≥ V−1
2L max

{
9, 1

(1−2L)2

}
385

sup
(PX ,η,η̃)∈Π(ϵ,κ)

EZn

[
R
(
f̂
)
−R(f∗)

]
≥ sup

(PX ,η,η̃)∈Π(ϵ,κ,V,L)

EZn

[
R
(
f̂
)
−R(f∗)

]
≥ K − 1

K
ϵ+

1− ϵ

κ

√
(V − 1)L

72n
e−8.

Proof.386

Consider any V + 1 distinct points x0, x1, . . . , xV . Choose387

PX(x) =


ϵ x = x0

(1− ϵ) · p x = x1, . . . , xV−1

(1− ϵ) · (1− (V − 1)p) x = xV .

This imposes the constraint (V − 1)p ≤ 1, which will be satisfied in the end. Notice the differ-388

ence compared to the previous zero-error proof: we place probability mass p, rather than 1/n, on389

x1, . . . , xV−1.390

As for the clean and noisy class probabilities, choose391

If x = x0, then η(x) = ej , η̃(x) = e1, j ∈ {1, 2, . . . k} (7)

If x = xt, 1 ≤ t ≤ V − 1, then η(x) =


1
2 + c

κ+δ · (−1)bt+1

1
2 − c

κ+δ · (−1)bt+1

0
...
0

 , η̃(x) =


1
2 + c · (−1)bt+1

1
2 − c · (−1)bt+1

0
...
0

 ,

bt ∈ {1, 2}, δ > 0, c ∈
(
0,

1

2

)
(8)

x = xV , η(x) =


1
2 + 1

2(κ+δ)
1
2 − 1

2(κ+δ)

0
...
0

 , η̃(x) = e1, (9)

where ei denotes the one-hot vector whose i-th element is one.392

The construction for class posterior is also similar to the previous proof, except that for x =393

xt, t ∈ {1, . . . , V − 1}, η̃ is no longer a one-hot vector, rather has class probability separated by 2c:394 ∣∣∣ [η̃(x)]1 − [η̃(x)]2

∣∣∣ = 2c.395

The triple (PX ,η, η̃) can be parameterized by j, b := [b1 b2 · · · bV−1]
⊤, δ, c and p.396

Again, this construction ensures (PX ,η, η̃) ∈ Π(ϵ, κ), to be specific:397

Aκ ⊇ {x1, x2, . . . , xV }, PX(Aκ) ≥ 1− ϵ,

X \ Aκ ⊆ {x0}, PX(X \ Aκ) ≤ ϵ,
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For any classifier f , its risk can be decomposed into two parts398

R (f) =

∫
{x0}

(
1− [η(x)]f(x)

)
dPX(x)︸ ︷︷ ︸

:=R0(f)

+

∫
{x1,...,xV }

(
1− [η(x)]f(x)

)
dPX(x)︸ ︷︷ ︸

:=RV (f)

,

so does the excess risk399

R (f)−R(f∗) =
(
R0 (f)−R0(f

∗)
)
+
(
RV

(
f
)
−RV (f

∗)
)
.

In our construction, (PX ,η, η̃) is parameterized by j, b := [b1 b2 · · · bV−1]
⊤, δ, c and p, therefore400

sup
(PX ,η,η̃)∈Π(ϵ,κ,V,L)

EZn

[
R
(
f̂
)
−R(f∗)

]
≥ sup

j
EZn

[
R0

(
f̂
)
−R0(f

∗)
]

(10)

+ sup
b,δ,c,p

EZn

[
1

κ+ δ

(
R̃V (f)− R̃V (f̃

∗)
)]

. (11)

Note that we have used the fact that401

RV (f)−RV (f
∗) =

1

κ+ δ

(
R̃V (f)− R̃V (f̃

∗)
)
,

where R̃V (f) :=
∫
{x1,...,xV }

(
1− [η̃(x)]f(x)

)
dPX(x).402

The first part (10) is exactly the same as the that of the zero-error proof, we have403

sup
j

EZn

[
R0

(
f̂
)
−R0(f

∗)
]
≥
(
1− 1

K

)
ϵ.

From this point forward, the procedure is similar to the proof of Theorem 14.5 in Devroye et al.404

[1996]. For the second part (11), the noisy Bayes classifier is still405

f̃∗(x) =


j x = x0,

bt x = xt, 1 ≤ t ≤ V

1 x = xV .

We also use the shorthand fb := f̃∗ to denote that the noisy Bayes classifier depends on b. The noisy406

Bayes risk is no longer zero. In fact407

R̃V (f̃
∗) = (V − 1)(1− ϵ)p

(
1

2
− c

)
Notice that our construction (PX ,η, η̃) ∈ Π(ϵ, κ, V, L), by definition408

R̃Aκ

(
f̃∗
)

PX

(
Aκ (η, η̃)

) = L,

therefore409

L =
R̃Aκ

(
f̃∗
)

PX

(
Aκ (η, η̃)

) ≤ R̃V (f̃
∗)

PX

(
{x1, . . . , xV }

) = (V − 1)p

(
1

2
− c

)
, (12)

where the inequality holds from R̃Aκ
(f̃∗) = R̃V (f̃

∗) and PX

(
Aκ (η, η̃)

)
≥ PX

(
{x1, . . . , xV }

)
.410

It should be noted that since (V − 1)p ≤ 1 is required, and that c > 0, we have L < 1 · 1/2. This is411

the origin of our condition L < 1/2 in the statement of the theorem. Naturally, the statement can be412

adjusted to min(L, 1/2) instead.413
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For fixed b, the excess risk in region {x1, . . . , xV } becomes414

R̃V (f̂)− R̃V (f̃
∗) =

∫
{x1,...,xV }

2c1f̂(x)̸=fb(x)
dPX(x)

≥ 2c

V−1∑
t=1

(1− ϵ)p1f̂(xt) ̸=fb(xt)
,

where the inequality follows from the fact that we ignore the risk on point xV .415

Using the probabilistic method, replace b with B ∼ Uniform{1, 2}V−1,416

sup
b,δ,c,p

EZn

[
1

κ+ δ

(
R̃V (f̂)− R̃V (f̃

∗)
)]

≥ sup
δ,c,p

EB,Zn

[
1

κ+ δ

(
R̃V (f̂)− R̃V (f̃

∗)
)]

= sup
δ,c,p

1

κ+ δ
EZn

[
EB|Zn

[(
R̃V (f̂)− R̃V (f̃

∗)
)]]

Now, we need to calculate B|Zn, which can be calculated using Bayes rule because we have417

B ∼ Uniform{1, 2}V−1 and also Z|B ∼ PXỸ .418

To be specific, for any x ∈ {x0, x1, . . . , xV−1}, assume point xt is observed k times in training419

sample Zn,420

P (fB(x) = 1|Zn) =

{
1
2 x ̸= X1, . . . , x ̸= Xn, x ̸= xV

P (Bt = 1|Yt1 , . . . , Ytk) x = xt = Xt1 = · · · = Xtk , 1 ≤ t ≤ V − 1,

where Bt denotes the t-th element of vector B.421

Next we compute P (Bt = 1|Yt1 = y1, . . . , Ytk = yk) for y1, . . . , yk ∈ {1, 2}. Denote the numbers422

of ones and twos by k1 = |{j ≤ k : yj = 1}| and k2 = |{j ≤ k : yj = 2}|. Using Bayes rule, we423

get424

P (Bt = 1|Yt1 , . . . , Ytk) =
P (Bt = 1 ∩ Yt1 , . . . , Ytk)

P (Yt1 , . . . , Ytk)

=
P (Yt1 , . . . , Ytk |Bt = 1)P (Bt = 1)∑2
i=1 P (Yt1 , . . . , Ytk |Bt = i)P (Bt = i)

=
(1/2 + c)k1(1/2− c)k2(1/2)

(1/2 + c)k1(1/2− c)k2(1/2) + (1/2 + c)k2(1/2− c)k1(1/2)

After some calculation, following Theorem 14.5 in Devroye et al. [1996], we get425

sup
b,δ,c,p

EZn

[
1

κ+ δ

(
R̃Aκ

(f)− R̃Aκ
(f̃∗)

)]
≥ sup

δ,c,p

1

κ+ δ
c(V − 1)(1− ϵ)pe−

8n(1−ϵ)pc2

1−2c − 4c
√

n(1−ϵ)p

1−2c

≥ 1− ϵ

κ
sup
c,p

c(V − 1)pe−
8npc2

1−2c − 4c
√

np

1−2c ∵ ϵ ≥ 0, take δ ↓ 0

=
1− ϵ

κ
sup
c,p

c
L

1/2− c
e−

8npc2

1−2c − 4c
√

np

1−2c

Take c =
√

(V−1)
8nL , and p is automatically specified by Eqn. (12). Then426

sup
b,δ,c,p

EZn

[
1

κ+ δ

(
R̃Aκ

(f)− R̃Aκ
(f̃∗)

)]
≥ 1− ϵ

κ

√
V − 1

8nL

L

1/2− c
e−

p(V −1)+
√

4
1−2c

1−2c

Furthermore, take n ≥ 9(V−1)
2L , such that c ≤ 1/6. Also use the fact that (V − 1)p ≤ 1, simplify the427

expression428

sup
b,δ,c,p

EZn

[
1

κ+ δ

(
R̃Aκ

(f)− R̃Aκ
(f̃∗)

)]
≥ 1− ϵ

κ

√
V − 1

8nL

L

1/2− 1/6
e−

1+
√

6
1−1/3

≥ 1− ϵ

κ

√
3(V − 1)L

8n
e−6
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In order to satisfy the condition L ≤ (V − 1)p(1/2− c) and (V − 1)p ≤ 1, plug in c =
√

(V−1)
8nL ,429

we have n ≥ V−1
2L(1−2L)2 .430

Compare two parts together431

sup
(PX ,η,η̃)∈Π(ϵ,κ)

EZn

[
R
(
f̂
)
−R(f∗)

]
≥ K − 1

K
ϵ+

1− ϵ

κ

√
3(V − 1)L

8n
e−6,

for n ≥ V−1
2L max

{
9, 1

(1−2L)2

}
.432

433

A.1.3 Proof of Upper Bounds: Lemma 1 and Theorem 2434

Lemma 1 (Oracle Inequality under Feature-dependent Label Noise) For any (PX ,η, η̃) and435

any classifier f , we have436

R(f)−R(f∗) ≤ inf
κ

{
PX

(
X \ Aκ (η, η̃)

)
+

1

κ

(
R̃(f)− R̃

(
f̃∗
))}

.

437

Proof. For any κ ≥ 0, the input space X can be divided into two regions: X \ Aκ and Aκ.438

For any f , its risk can be decomposed into two parts439

R (f) = EX,Y

[
1f(X )̸=Y

]
= EXEY |X [1f(X) ̸=Y ]

= EXEY |X [1− 1f(X)=Y ]

= EX

[
1− [η(X)]f(X)

]
=

∫
X

(
1− [η(x)]f(x)

)
dPX(x)

=

∫
X\Aκ

(
1− [η(x)]f(x)

)
dPX(x) +

∫
Aκ

(
1− [η(x)]f(x)

)
dPX(x)

Thereofore, excess risk equals to440

R(f)−R(f∗)

∫
X\Aκ

(
maxη(x)− [η(x)]f(x)

)
dPX(x)︸ ︷︷ ︸

a⃝

+

∫
Aκ

(
maxη(x)− [η(x)]f(x)

)
dPX(x)︸ ︷︷ ︸

b⃝

Now examine the two terms separately,441

a⃝ ≤
∫
X\Aκ

1 dPX(x) = PX

(
X \ Aκ (η, η̃)

)
,

and442

b⃝ <

∫
Aκ

1

κ

(
max η̃(x)− [η̃(x)]f(x)

)
dPX(x) ∵ by definition of relative signal strength

≤
∫
X

1

κ

(
max η̃(x)− [η̃(x)]f(x)

)
dPX(x)

=
1

κ

(
R̃(f)− R̃(f̃∗)

)
∵ by definition of R̃.

Since this works for any κ > 0, we then have443

R(f)−R(f∗) ≤ inf
κ>0

{
PX

(
X \ Aκ (η, η̃)

)
+

1

κ

(
R̃(f)− R̃

(
f̃∗
))}

.
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444

Now, to prepare for the rate of convergence proof, we first introduce the concept of shattering in445

multiclass and the Natarajan dimension [Natarajan, 1989], which can be viewed as a multi-class446

analogy of VC dimension [Vapnik and Chervonenkis, 1971].447

Definition 2 (Shattering (Multiclass)) Let H be a class of functions from X to Y = {1, 2, . . . ,K}.448

For any set containing n distinct elements Cn = {x1, . . . , xn} ⊂ X , denote449

HCn
= {(h(x1), . . . , h(xn)) : h ∈ H} ,

and therefore |HCn
| is the number of distinct vectors of length n that can be realized by functions in450

H.451

The nth shatter coefficient is defined as452

S(H, n) := max
Cn

|HCn
| .

We say that a set Cn is shattered by H if there exists f, g : Cn → Y such that for every x ∈ Cn,453

f(x) ̸= g(x), and454

HC ⊇ {f(x1), g(x1)} × {f(x2), g(x2)} × · · · × {f(xn), g(xn)}

If Y = {1, 2}, this definition reduces the binary notion of shattering which says all labeling of points455

can be realized by some function in the hypothesis class H, i.e., HC = {1, 2}|C|. Contrary to the456

intuition that multiclass shattering means being able to label all K possible labels for each point457

x ∈ C: HC = {1, 2, . . . ,K}|C|. This definition is more like “embed the binary cube into multiclass”,458

where every x ∈ C is allowed to pick from two labels rather than from K labels.459

Definition 3 (Natarajan Dimension) The Natarajan dimension of H, denoted Ndim(H), is the460

maximal size of a shattered set C ∈ X .461

Theorem (Excess Risk Upper Bound of NI-ERM) Let ϵ ∈ [0, 1], κ ∈ (0,+∞). Consider any462

(PX ,η, η̃) ∈ Π(ϵ, κ), assume function class F has Natarajan dimension V , and the noisy Bayes463

classifier f̃∗ belongs to F . Let f̂ ∈ F be the ERM trained on Zn =
{
(Xi, Ỹi)

}n
i=1

, then464

EZn

[
R
(
f̂
)
−R(f∗)

]
≤ ϵ+

1

κ
· 8
√

V log 2n+ 2V logK + 4

2n

≤ ϵ+O

(
1

κ

√
V

n

)
up to log factor.

Proof. Following directly from Lemma 1, with (PX ,η, η̃) ∈ Π(ϵ, κ), we already have465

R(f)−R(f∗) ≤ PX

(
X \ Aκ (η, η̃)

)
+

1

κ

(
R̃(f)− R̃

(
f̃∗
))

≤ ϵ+
1

κ

(
R̃(f)− R̃

(
f̃∗
))

.

Now replace f with NI-ERM f̂ , the following procedure is similar to the derivation of generalization466

error based on VC dimension in binary classification setup, except using a “Natarajan version” of467

Sauer’s lemma.468

Let’s start from excess risk bound based on Shattering coefficient.469

Lemma 2

EZn

[
R̃
(
f̂
)
− R̃

(
f̃∗
)]

≤ 8

√
log(8eS(H, 2n))

2n
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Proof Sketch. First convert excess risk R̃
(
f̂
)
− R̃

(
f̃∗
)

to generalization error with the inequality470

([Devroye et al., 1996, Lemma 8.2])471

R̃
(
f̂
)
− R̃

(
f̃∗
)
≤ 2 sup

f∈F

∣∣∣R̃(f)− R̃n (f)
∣∣∣ ,

where R̃n denotes the empirical risk evaluated on training sample Zn.472

Then use the “symmetrization lemma” [Vapnik and Chervonenkis, 1971, Lemma 2], for nϵ2 ≥ 2,473

P

(
sup
f∈F

∣∣∣R̃(f)− R̃n (f)
∣∣∣ ≥ ϵ

)
≤ 2P

(
sup
f∈F

∣∣∣R̃′
n(f)− R̃n (f)

∣∣∣ ≥ ϵ

2

)

to convert the population risk R̃(f) into R̃′
n(f), the risk evaluated on the “ghost sample”, a second,474

independent sample of n points.475

Finally, with union bound and Hoeffding’s inequality, we can bound the error probability with476

shattering coefficient on 2n points477

2P

(
sup
f∈F

∣∣∣R̃′
n(f)− R̃n (f)

∣∣∣ ≥ ϵ

2

)
≤ 2S(H, 2n)P

(∣∣∣R̃′
n(f)− R̃n (f)

∣∣∣ ≥ ϵ

2

)
≤ 2S(H, 2n)

{
P
(∣∣∣R̃′

n(f)− R̃ (f)
∣∣∣ ≥ ϵ

4

)
+ P

(∣∣∣R̃′
n(f)− R̃ (f)

∣∣∣ ≥ ϵ

4

)}
≤ 2S(H, 2n)

{
2 · 2 · e−2n( ϵ

4 )
2}

≤ 8S(H, 2n)e−
nϵ2

8 ,

notice that the inequality also holds for nϵ2 < 2 because in this case the upper bound is bigger than 1.478

Therefore we get the convergence in probability bound for ERM f̂ ,479

P
(
R̃
(
f̂
)
− R̃

(
f̃∗
)
≥ ϵ
)
≤ 8S(H, 2n)e−

nϵ2

32 .

Convert it to expectation using the inequality from Devroye et al. [1996, Problem 12.1], we finally get480

EZn

[
R̃
(
f̂
)
− R̃

(
f̃∗
)]

≤ 8

√
log(8eS(H, 2n))

2n
.

481

The last step is to bound multiclass shattering coefficient with Natarajan dimension. We leverage the482

following lemma.483

Lemma 3 (Natarajan [1989]) Let C and Y be two finite sets and let H be a set of functions from C484

to Y .485

|H| ≤ |C|Ndim(H) · |Y|2Ndim(H)
.

Replacing shattering coefficient with Natarajan dimension, we get486

EZn

[
R̃
(
f̂
)
− R̃

(
f̃∗
)]

≤ 8

√
log 8e+ log ((2n)V K2V )

2n

≤ 8

√
V log 2n+ 2V logK + 4

2n

Putting things together,487

EZn

[
R
(
f̂
)
−R(f∗)

]
≤ ϵ+

1

κ
· 8
√

V log 2n+ 2V logK + 4

2n
.

488
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A.2 Experimental Details489

A.2.1 2D Gaussian with synthetic label noise490

For 2D Gaussian mixture data, we draw from two Gaussian centered at [1 1]⊤ and [−1 − 1]⊤, with491

covariance matrix being identity, 200 data points from each, with label Y = 1, 2 respectively. To492

generate noisy labels, we flip every label uniformly with some probability. We use Sklearn’s logistic493

regression (with no ℓ2 regularization). The experiment was conducted on AMD Ryzen 5 3600 CPU.494

The goal of the simulation is to experimentally verify noise immunity results in Section ??. Notice495

that different trial corresponds to different draw of both instances and noisy labels.496

Table 2: Testing accuracy of logistic regression on gaussian mixture data with uniform label noise.
“Noise rate” refers to P

(
Ỹ ̸= Y

)
, the percentage of wrong labels in the training data. As theory in

Section ?? predicts, when P
(
Ỹ ̸= Y

)
reach 50%, there is a sharp decrease in performance.

Noise rate 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Trial #1 93.00 92.83 92.38 92.08 91.78 91.93 92.25 92.90 91.83 92.58 74.68 25.12 9.70 7.73 7.52 7.25 7.38 7.15 7.18 7.10 7.00
Trial #2 91.73 91.60 92.05 91.63 91.78 91.78 91.68 91.63 91.55 91.48 80.40 21.10 9.93 8.55 8.38 8.22 8.20 8.35 8.33 8.40 8.28
Trial #3 92.73 92.75 92.78 92.78 92.58 92.45 91.68 88.15 82.58 59.83 49.53 35.80 21.28 14.35 9.33 8.53 8.12 7.70 7.13 7.23 7.28
Trial #4 91.55 91.58 91.60 91.63 91.68 91.60 91.25 90.98 89.98 86.38 60.53 9.95 8.75 10.00 10.45 9.08 9.00 9.53 9.20 9.03 8.45
Trial #5 91.55 91.58 91.60 91.63 91.68 91.60 91.25 90.98 89.98 86.38 60.53 9.95 8.75 10.00 10.45 9.08 9.00 9.53 9.20 9.03 8.45
Mean 92.11 92.07 92.08 91.95 91.90 91.87 91.62 90.93 89.18 83.33 65.13 20.40 11.68 10.10 9.23 8.43 8.34 8.45 8.21 8.16 7.89
Std 0.70 0.66 0.51 0.50 0.38 0.35 0.41 1.74 3.79 13.44 12.35 10.94 5.39 2.56 1.29 0.75 0.68 1.07 1.03 0.94 0.70

A.2.2 MNIST with synthetic label noise497

We flip the clean training label of MNIST (http://yann.lecun.com/exdb/mnist/) uniformly498

(to any of the wrong classes). We use a shallow neural network with two convolution layers and499

two fully connected layers. We train with stochastic gradient descent with learning rate 0.01 for 10500

epochs, batch size equals 64. We use the same hyperparamters for all tests. The experiments were501

conducted on a single NVIDIA GTX 1660S GPU. The goal of the simulation is to experimentally502

verify noise immunity results in Section ??. Here randomness corresponds to different realization of503

noisy labels and stochastic gradient descent.504

Table 3: Testing accuracy of a shallow CNN (2 conv layers with 2 fully connected layers) on MNIST
with uniform label noise. “Noise rate” refers to P

(
Ỹ ̸= Y

)
, the percentage of wrong labels in the

training data. As theory in Section ?? predicts, when P
(
Ỹ ̸= Y

)
reach 90%, there is a sharp decrease

in performance.

Noise rate 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Trial #1 98.97 98.89 98.81 98.46 98.49 98.16 98.46 98.07 97.98 97.57 97.88 97.84 97.19 97.10 96.70 95.02 89.00 83.72 11.58 0.17 0.03
Trial #2 98.88 98.73 98.94 98.55 98.72 98.66 98.50 98.24 98.15 98.23 97.86 97.98 97.70 97.10 96.91 95.76 91.99 88.49 9.99 0.08 0.04
Trial #3 99.00 99.04 98.86 98.56 98.69 98.66 98.51 98.49 98.37 98.25 98.25 97.39 97.37 97.18 96.66 94.88 92.15 81.48 6.19 0.14 0.04
Trial #4 99.04 98.86 98.70 98.76 98.83 98.65 98.34 98.42 98.58 98.47 98.00 97.41 97.63 97.09 96.46 95.94 93.19 84.78 8.68 0.19 0.01
Trial #5 99.05 98.58 98.89 98.82 98.72 98.83 98.34 98.55 98.40 98.38 98.01 97.31 97.33 96.21 96.29 94.92 90.38 85.84 8.98 0.13 0.08
Mean 98.99 98.82 98.84 98.63 98.69 98.59 98.43 98.35 98.30 98.18 98.00 97.59 97.44 96.94 96.60 95.30 91.34 84.86 9.08 0.14 0.04
Std 0.07 0.17 0.09 0.15 0.12 0.25 0.08 0.20 0.23 0.36 0.16 0.30 0.21 0.41 0.24 0.51 1.65 2.59 1.98 0.04 0.03

A.2.3 CIFAR with synthetic label noise505

We flip the clean training label of CIFAR-10 (https://www.cs.toronto.edu/~kriz/cifar.506

html) uniformly (to any of the wrong classes). To have a fair comparison between different methods,507

we fix the realization of noisy labels. Follow the 2-step procedure described in Section 5, we use508

different pre-trained neural networks as feature extractor: forward-passing the training image thought509

the network and record the feature. Then use sklearn’s (https://scikit-learn.org/stable/)510

logistic regression function to fit the (feature, noisy label) pair in a full batch manner. We pre-511

specify a range of values for ℓ2 regularization ({0.0001, 0.001, 0.01, 0.1, 1, 10, 100} ) and number of512

iterations for lbfgs optimizer ({10, 20, 50, 100}), then do cross-validation on noisy data to pick the513

best hyper-parameters. We use the same range of hyper-parameters in all tests. The experiments were514

conducted on a single NVIDIA Tesla V100 GPU. The result is deterministic.515
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Table 4: Peformance on CIFAR-10 with synthetic label noise. We apply linear model on top of
different feature extractors: “ResNet-50 TL” refers to using a pre-trained ResNet-50 on ImageNet
[Deng et al., 2009] (available in Pytorch model library) in a transfer learning fashion, “ResNet-50 SSL”
refers to using a pre-trained ResNet-50 on unlabeled CIFAR data with self-supervised loss [Chen
et al., 2020] (publicly downloadable weights https://github.com/ContrastToDivide/C2D?
tab=readme-ov-file) and “DINOv2 SSL” refers to using the self-supervised foundation model
DINOv2 [Oquab et al., 2023] (available at https://github.com/facebookresearch/dinov2)
as the feature extractor. “Noise rate” refers to P

(
Ỹ ̸= Y

)
, the percentage of wrong labels in the

training data. As theory in Section ?? predicts, when P
(
Ỹ ̸= Y

)
reach 90%, there is a sharp decrease

in performance. We employed Python’s sklearn logistic regression and cross-validation functions
without data augmentation. The results are deterministic.

Noise rate 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85 0.9 0.95 1
Linear 41.37 41.09 40.97 40.37 40.45 39.44 37.28 35.20 26.74 18.00 10.28 5.50 3.92

Linear + ResNet-50 TL 90.17 89.58 89.01 88.27 87.55 87.28 86.40 85.01 82.03 74.02 10.82 1.47 0.26
Linear + ResNet-50 SSL 92.48 92.26 91.74 91.46 91.13 90.33 91.07 90.99 89.11 83.89 10.08 1.31 0.34
Linear + DINOv2 SSL 99.25 99.27 99.23 99.14 99.10 99.11 99.02 98.84 95.50 76.91 10.13 0.92 0.03

A.2.4 CIFAR with human label error516

We load the noisy human labels provided by http://noisylabels.com/, then follow exact the517

same procedure as above.518

Table 5: Performance on CIFAR-N dataset (http://noisylabels.com/) in terms of testing accu-
racy. “Aggre”, “Rand1”, . . . , “Noisy” denote various types of human label noise. We apply linear
model on top of different feature extractors: “ResNet-50 TL” refers to using a pre-trained ResNet-50
on ImageNet [Deng et al., 2009] in a transfer learning fashion, “ResNet-50 SSL” refers to using a
pre-trained ResNet-50 on unlabeled CIFAR data with self-supervised loss [Chen et al., 2020] and
“DINOv2 SSL” refers to using the self-supervised foundation model DINOv2 [Oquab et al., 2023] as
the feature extractor. We employed Python’s sklearn logistic regression and cross-validation functions
without data augmentation; the results are deterministic and directly reproducible.

Methods CIFAR-10N CIFAR-100N

Aggre Rand1 Rand2 Rand3 Worst Noisy

Linear 40.73 40.41 40.31 40.63 38.43 16.61
Linear + ResNet-50 TL 89.18 88.63 88.61 88.66 85.32 62.89

Linear + ResNet-50 SSL 91.78 91.66 91.39 91.28 87.84 57.95
Linear + DINOv2 SSL 98.69 98.80 98.65 98.67 95.71 83.17
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A.2.5 Linear probing, then fine tuning (LP-FT)519

We study whether LP-FT works in label noise learning scenario.520

Table 6: Performance on CIFAR-N dataset (http://noisylabels.com/) in terms of testing accu-
racy. “Aggre”, “Rand1”, . . . , “Noisy” denote various types of human label noise. We apply linear
model on top of different feature extractors: “ResNet-50 TL” refers to using a pre-trained ResNet-50
on ImageNet [Deng et al., 2009] in a transfer learning fashion, “ResNet-50 SSL” refers to using
a pre-trained ResNet-50 on unlabeled CIFAR data with contrastive loss [Chen et al., 2020] and
“DINOv2 SSL” refers to using the self-supervised foundation model DINOv2 [Oquab et al., 2023] as
the feature extractor.

Feature Method CIFAR-10N CIFAR-100N

Clean Aggre Rand1 Rand2 Rand3 Worst Clean Noisy

ResNet-50 TL LP 90.17 89.18 88.63 88.61 88.66 85.32 71.79 62.89
LP-FT 95.94 92.03 88.55 87.78 87.82 71.88 82.3 63.85

ResNet-50 SSL LP 92.54 91.78 91.66 91.46 91.17 87.85 69.88 57.98
LP-FT 94.11 89.11 84.49 83.75 84.15 65.00 74.41 54.49

DINOv2 (small) SSL LP 96.09 94.8 94.39 94.42 94.35 91.14 83.82 72.46
LP-FT 98.23 93.29 88.03 87.27 86.94 67.42 89.97 64.81

A.2.6 Robust learning strategy over DINOv2 feature521

This section examines how different robust learning strategy works over DINOv2 feature, compared522

with only training with cross entropy.523

Feature Method CIFAR-10N CIFAR-100N

Clean Aggre Rand1 Rand2 Rand3 Worst Clean Noisy

DINOv2 SSL

CE 99.25 98.69 98.8 98.65 98.67 95.71 92.85 83.17
MAE 99.27 99.04 99.01 99.09 99.11 95.55 90.68 82.55

Sigmoid 99.26 98.86 98.91 98.87 98.96 96.66 92.82 82.03
CE + SAM 99.09 97.66 98.47 98.53 98.47 95.47 89.97 82.85

524
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will be specifically instructed to not penalize honesty concerning limitations.572
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instructions for how to replicate the results, access to a hosted model (e.g., in the case610
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appropriate to the research performed.612
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