
Rethinking the Membrane Dynamics and
Optimization Objectives of Spiking Neural Networks

Hangchi Shen1,2, Qian Zheng3,4, Huamin Wang1,2,∗, Gang Pan3,4

1College of Artificial Intelligence, Southwest University
2Chongqing Key Laboratory of Brain Inspired Computing and Intelligent Chips

3The State Key Lab of Brain-Machine Intelligence, Zhejiang University
4College of Computer Science and Technology, Zhejiang University

stephen1998@email.swu.edu.cn, hmwang@swu.edu.cn,
{qianzheng, gpan}@zju.edu.cn

Abstract

Despite spiking neural networks (SNNs) have demonstrated notable energy effi-
ciency across various fields, the limited firing patterns of spiking neurons within
fixed time steps restrict the expression of information, which impedes further im-
provement of SNN performance. In addition, current implementations of SNNs
typically consider the firing rate or average membrane potential of the last layer as
the output, lacking exploration of other possibilities. In this paper, we identify that
the limited spike patterns of spiking neurons stem from the initial membrane poten-
tial (IMP), which is set to 0. By adjusting the IMP, the spiking neurons can generate
additional firing patterns and pattern mappings. Furthermore, we find that in static
tasks, the accuracy of SNNs at each time step increases as the membrane potential
evolves from zero. This observation inspires us to propose a learnable IMP, which
can accelerate the evolution of membrane potential and enables higher performance
within a limited number of time steps. Additionally, we introduce the last time step
(LTS) approach to accelerate convergence in static tasks, and we propose a label
smooth temporal efficient training (TET) loss to mitigate the conflicts between opti-
mization objective and regularization term in the vanilla TET. Our methods improve
the accuracy by 4.05% on ImageNet compared to baseline and achieve state-of-the-
art performance of 87.80% on CIFAR10-DVS and 87.86% on N-Caltech101. The
code is available at https://github.com/StephenTaylor1998/IMP-SNN.

1 Introduction

In recent years, deep learning technology based on artificial neural networks (ANNs) has made
significant breakthroughs in many fields [1, 2, 3, 4, 5]. However, as we all known, its high training
and inference costs have become a major obstacle to restrict its further widespread applications. To
overcome these challenges, a new generation of neural network architectures named Spiking Neural
Networks (SNNs) [6] have been developed, which may be a feasible path to refer to the efficient
dynamics mechanism of biological nervous systems [7]. SNNs leverage the dynamic mechanisms
of membrane potential integration and fire from biological neural networks, which can process
time-varying input data by using a single model [8] as biological neurons, maintaining linearly
increasing computational complexity. Therefore, the advantages of energy efficiency and biologically
plausible dynamical mechanisms [7, 9, 10] make them a bridge between the fields of brain science
and artificial intelligence, which is widely regarded as the next generation of ANNs [6]. In addition,
it is worth mentioning that SNNs can cleverly avoid multiplication operations on neuromorphic chips

∗Corresponding author.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/StephenTaylor1998/IMP-SNN

[11, 12, 13] by spike-based computing, achieving synaptic computation and membrane potential
accumulation solely through addition operations, which can significantly enhance their computational
efficiency.

It should be noted that training SNNs to achieve the comparable performance with the same
ANN architecture remains a formidable challenge at present. The conversion method of ANNs
to SNNs (ANN2SNN) [14, 15, 16, 17, 18] has proved to be an effective approach for obtaining
high-performance SNNs. However, these methods mainly incorporate knowledge from the ANN’s
learning of static inputs into the converted SNNs, which motivates us to concern about the biological
plausibility of these SNNs as they do not require the acquisition of spatiotemporal information.
Another alternative is to leverage surrogate gradient [19, 20, 21] and backpropagation [22] through
time to train high-performing SNNs. This method only requires four time steps to achieve an ac-
curacy surpassing that of conversion methods requiring hundreds of time steps, making it the most
promising training approach for currently available energy-efficient SNNs. Therefore, due to the
development of direct training methods, SNNs have been extended to various tasks, including image
classification[23, 24, 25], image reconstruction [26, 27, 28], object detection [29], natural language
processing [30, 31], etc, and have demonstrated significant energy efficiency advantages in these
fields. It is a pity that these training methods and architecture designs typically consider the firing rate
or average membrane potential of the last layer as the output, instead of fully exploring the impacts
of the membrane potential on the model performance and the training process [32, 33].

(a) Adjusting IMP. (b) Adjusting input intensity.

Figure 1: Membrane potentials and spikes (yellow) generated by adjusting IMP and input intensity.

In this paper, we find that the initial membrane potential (IMP) has different effects on the membrane
potential integration and spike firing compared to input intensity(Figure 1). Then, we discover that
the novel spike patterns can be generated by adjusting the IMP of spiking neurons and additional
mappings between firing patterns can be established, which motivates us to propose a learnable IMP.
Furthermore, we find that in static tasks, the variation of the output accuracy at each time step for
SNNs is directly related to the membrane potential, as it is the only time-varying term. Then we
can explain why the convergence speed of temporal efficient training (TET) [34] in static tasks is
significantly lower than standard direct training (SDT) [20]. To address this problem, we propose
a method called last time steps (LTS) to achieve faster convergence in static tasks. And then, we
propose a label-smoothed TET loss for neuromorphic tasks, which can outperform vanilla TET
on neuromorphic datasets [35, 36]. It is worth noting that the proposed novel IMP method can
obtain significant performance without any additional adjustments for the network structure and
training method. By simply setting the IMP of the original LIF neurons to a learnable version, we
achieve SOTA accuracies of up to 87.8% and 86.32% on CIFAR10DVS [35] and NCaltech101 [36],
respectively. Furthermore, our LTS method improves the accuracy of SEW-ResNet50 [37] on the
ImageNet1k [38] dataset to 71.83%, surpassing the vanilla SEW-ResNet152, 69.26%. The main
contributions are as follows:

1) We discover that SNNs can generate new spike patterns by adjusting the IMP values, and
prove that on the static tasks, the variation of SNN accuracy at each time step is only caused by the
change of membrane potential. In addition, we innovatively introduce the learnable IMP in SNNs to
accelerate the evolution of membrane potential.

2) To alleviate the slow convergence of TET on the static tasks, we propose the LTS method, which
can accelerate the rate of convergence on the static tasks. Additionally, we construct a label-smoothed
TET loss to further enhance the performances of SNNs on the neuromorphic tasks.

2

3) Compared with the baselines on the neuromorphic datasets and the large-scale static dataset
ImageNet1k, our methods can achieve significant improvements. Moreover, there is almost no
difference in the computational overhead and inference speed compared to the original models.

2 Related Works

2.1 Neuron Dynamics Modeling

The leaky integrate and analog fire spiking neuron [39] was proposed to replace binary spike with
analog values for transmission, alleviating the issue of decreased performance in SNNs. The paramet-
ric leaky integrate-and-fire spiking neuron [40] was introduced to design a learnable dynamic model,
enabling each neuron to learn optimal membrane time constants, thus increasing neuronal diversity.
The gated leaky integrate-and-fire neuron [41] was employed for a channel-wise parameterization
approach to fully parameterize the spiking neuron, including learnable decay mechanisms, potential
thresholds, reset voltages, input conductance, and gating factors. The multi-level firing method
[42] was used to enhance the expressive ability and achieve more efficient gradient propagation by
integrating neurons with different thresholds to realize multi-level firing. Parallel spiking neurons [43]
were discussed to remove the membrane potential reset process and redefine the dynamic mechanism
in a non-iterative manner, addressing the difficulty of ordinary spiking neurons in learning long-term
dependencies.

2.2 Direct Training Methods

The binary spikes emitted by spiking neurons during the forward phase are generated by a step func-
tion, which is a non-differentiable activation. In the backward propagation phase, this step function
can be replaced with a surrogate gradient [19] to achieve direct training. The most common direct
training method currently is backpropagation through time (BPTT) [22], which treats spiking neural
networks (SNNs) as a special type of recurrent neural network (RNN). In this approach, gradients are
propagated backward along the temporal dimension, which requires more computational resources
and memory compared to their corresponding ANNs [44]. tdBN [21] explored normalization methods
for spiking neural networks (SNNs) and achieved direct training of large-scale SNNs on the ImageNet
dataset for the first time. Based on this, a more effective normalization method called TEBN [45] was
proposed, which rescales the presynaptic inputs at each time step using distinct weights. TET [34]
enabling spiking neural networks (SNNs) to converge to flatter minima compared to SDT [20], which
enhances generalization capabilities. OTTT [46] and SLTT [47] simplified the gradient calculations
along the temporal dimension in BPTT, significantly reducing memory and computational costs.

3 Analysis of Membrane Dynamics

In this section, we first investigate how the initial membrane potential affects neuronal spike patterns,
and then analyze how the dynamic evolution of membrane potential drives improved SNN perfor-
mance. These analyses underscore the critical role of membrane dynamics in SNNs and provide new
insights into its impact on the SNN’s representational capacity and convergence.

3.1 Preliminary of Spiking Neurons and Loss Functions

Spiking neurons are the fundamental unit of SNNs, used to simulate the dynamic behavior of brain
neurons. Their operation is described by dynamical equations that are related to membrane potential
and input current. The leaky integrate-and-fire (LIF) [7] model is one of the commonly used spiking
neuron models, and its iterative form of the dynamical equations can be represented as follows:

h[t] = (1− τ)s[t] + I[t], h ∈ RT×N , I ∈ RT×N (1)

o[t] = h[t] > Vth, o ∈ {0, 1}T×N , Vth ∈ R (2)

s[t+ 1] = h[t]− o[t], s ∈ RT×N , s[0] ∈ {0}N (3)

where I[t] represents the neural input current at time t, τ represents the membrane potential decay
coefficient. When τ = 0, it reduces to the Integrate-and-Fire (IF) [7] neuron. s[t] represents the
state of the membrane potential at time step t, and s[0] is the state of the IMP, which is typically set

3

to a constant 0. h[t] represents the change in membrane potential during time step t, o[t] indicates
whether the neuron fires a spike at time t, and Vth represents the firing threshold of the neuron.

The most commonly used loss functions in direct training SNNs are SDT [20] and TET [34]. The
SDT loss function LSDT is defined as:

LSDT = LCE(
1

T
×

T∑
t

y[t], ygt), (4)

here, T represents the total number of time steps, y[t] represents the raw output of the model at
each time step, ygt represents the ground truth label, and LCE denotes the cross-entropy loss. SDT
aggregate the outputs of the SNN by taking the mean of the outputs from all time steps, then calculate
the loss based on the voting result. In TET, the averaging step is placed after the calculation of cross
entropy loss:

LTET =
1

T
×

T∑
t

LCE(y[t], ygt), (5)

the LTET calculates the loss for each time step individually and then aggregates the losses from each
time step to obtain the final loss. This approach can effectively improve the performance of SNN on
neuromorphic datasets.

3.2 Membrane Dynamics Related to IMP

The membrane potential is commonly reset to zero before the next task in the current implementations
of SNNs. However, through some experiments and the analysis of experimental results, we find that
novel firing patterns and pattern mappings can be generated by adjusting IMP.

Firing PatternInput Intensity

0 0 0 1
0 0 1 0
0 1 0 1

[0.25,0.33)
[0.33,0.50)
[0.50,0.75)

1 1 1 1

0 0 0 0(- ∞ ,0.25)

[1.00, + ∞)

IMP=0.0

IF

Firing Pattern

0 1 0 0
1 0 1 0

IMP=0.5

Input Intensity

0 0 0 1
0 0 1 0

[0.125,0.166)
[0.166,0.250)
[0.250,0.500)

0 0 0 0(- ∞ ,0.125)

[0.500,1.000)
[1.000, + ∞) 1 1 1 1

IF

IMP=1.0

Firing PatternInput Intensity

1 0 0 1
1 0 1 0

[0.333,0.500)
[0.500,0.100)

1 0 0 0(- ∞ ,0.333)

[1.000, + ∞) 1 1 1 1

IF

Figure 2: All firing patterns that IF neurons can generate under constant intensity input and 4 time
steps. The red box highlights the disappearing firing patterns, while the green and yellow boxes
denote the additional firing patterns due to the IMP change.

Observation 1: Novel firing patterns under constant intensity input can be generated by adjusting
IMP. Figure 2 displays the firing patterns (spike sequences) generated by an IF neuron under constant
input intensity. The number of patterns varies depending on the IMP. When the value of IMP increases
from 0.0 to 0.5, the pattern ’0101’ disappears, while the new patterns ’0100’ and ’1010’ emerge,
resulting in increased pattern diversity. Conversely, setting the IMP to 1.0 leads to the emergence of
new patterns ’1000’, ’1001’, and ’1010’, but reduces the overall number of patterns. These additional
patterns that cannot be generated if IMP is set to 0, can benefit static tasks by enabling SNNs to
encode more information during the processing of static inputs.

Observation 2: New mappings of firing patterns can be generated by adjusting IMP. Apart from
its impact on input encoding, our primary focus is whether the model’s capabilities can be enhanced
by modifying IMP. In ANNs, artificial neurons can map any single input variable to any value
by adjusting the weights. Similarly, we hope that spiking neurons can also map input sequences
to as many firing patterns as possible, thereby enabling the network to have better representation
capabilities. From figure 3, we observe that every output pattern has at least one available pattern
mapping. However, we can notice that black areas present in the figure, which means that no matter
how the synaptic weights are adjusted, mapping among these spike patterns still cannot be established.
In other words, spiking neurons can theoretically generate all firing patterns, but they cannot map any

4

(a) IMP=0.0 (b) IMP=0.25 (c) Learnable IMP

Figure 3: Pattern mapping of IF neuron over 4 time steps. The horizontal and vertical axes in the
figure represent all possible spike patterns (16 total) that IF neurons may receive and emit. The white
squares indicate that IF neuron can receive the spike pattern from the horizontal axis and emit a spike
pattern on the vertical axis, known as pattern mapping.

specific pattern to all patterns. Figure 3b illustrates that through adjusting the IMP value from 0 to
0.25 can generate additional pattern mappings. Furthermore, Figure 3c demonstrates that when IMP
is learnable, it exhibits a greater potential for establishing mappings among spike patterns. Therefore,
we believe that the learnable IMP can effectively improve the expression capacity of spiking neurons.

3.3 Membrane Potential Evolution in Static Tasks

We further explore the effect of membrane potential variations on static tasks through a image
classification task. We define SNN as follows to focus on its performance at each time step,

(s[t+ 1], y[t])←− f(x[t], s[t], θ), (6)

where f(·) represents the network computation, θ represents the network weights, s[t] represents
the set of membrane potentials of all neurons in SNN with time step t, x[t] represents the input at
time step t, and y[t] is the corresponding output. Assuming x = x(t) is a constant input intensity for
t = 1, 2, ..., T , then we can simplify Eq. 6 as:

y[t] = f(x, s[t], θ). (7)

On the static tasks, the temporal variations are determined solely by the state of the membrane
potential s[t], resulting in corresponding changes for the output y[t].

Observation 3: In static tasks, the accuracy of SNNs at the each time step is sensitive
to the current MP. Figure 4 demonstrates the test accuracy of SNNs at each time step on
cifar10 dataset [48], which shows that the accuracy is extremely low at T=1, only 10.76%.

10.76

90.44

92.04 92.05
92.36

T=1 T=2 T=3 T=4 mean
0

20

40

60

91

92

93

94

A
cc

ur
ac

y

 Constant IMP

Figure 4: The test accuracy at each time
step on the CIFAR10 dataset.

However, as the time step T increases, the model accuracy
exhibits an upward trend, exceeding 90%. It is worth not-
ing that on the static tasks, since the input x and weight θ
are fixed at each time step, the model’s output at each time
step is entirely determined by the current state of the mem-
brane potential s[t]. For instance, when the membrane
potential evolves to a "sufficiently good" state, such as at
t = 4, the SNNs only requires the current membrane po-
tential s[4] and input x to achieve an accuracy of 92.05%,
which is close to the model’s final performance of 92.36%.
Therefore, these findings prompt us to reconsider how to
accelerate the evolution of the membrane potential to en-
hance the SNNs performances within a limited number of
time steps.

Observation 4: TET performs well on the neuromorphic tasks but exhibits slow convergence on the
static tasks. We compare the SDT loss and the TET loss on the static datasets and the neuromorphic

5

Table 1: Test accuracy of TET and SDT on the static and neuromorphic datasets.
Loss Static Dataset(SEW-R18) Neuromorphic Dataset(VGG11)

Function CIFAR10/100 ImageNet100 ImageNet1k CIFAR10DVS DVSG128 NCaltech101

SDT Loss 94.56/76.58 78.42 63.21 84.3 98.26 85.78
TET Loss 94.33/76.40 77.80 62.92 85.6 98.61 86.32

(a) T=1 (b) T=2 (c) T=4 (d) T=6

Figure 5: The convergence speed of TET and SDT on the static data.

datasets, and find that TET loss has a significant advantage on the neuromorphic datasets, but it is not
superior to SDT loss on the static datasets, as shown in Table 1. We believe that this phenomenon
arises from the constant intensity input on the static datasets. By applying the TET loss Eq. 5 to the
SNNs with the static input Eq. 7, we have:

LTET =
1

T
×

T∑
t

LCE(y[t], ygt), where y[t] = f(s[t], x, θ). (8)

It can be observed that on static tasks, the membrane potential s[t], as the only time-varying term
in the dynamic system, evolves gradually as the time step progresses. However, according to
Observation 3, we know SNNs are sensitive to s[t], which means that it is difficult to output the
same result for different s[t]. The optimization goal of the TET loss is to make the network output
the correct results for every time step, i.e. y[t] = ygt. In this case, TET requires more iterations
to build a flat "landscape", slowing down the convergence, as shown in Figure 5. Additionally, if
the SNNs are insensitive to the value of s[t] and even tends to the same value for all time steps, i.e.
y[1] = y[2] = ... = y[T] = 1

T

∑T
t y[t], then the output of the first time step is sufficient to represent

the results of all T time steps. In this case, the computations for the subsequent time steps become
redundant and meaningless.

4 Methods

4.1 Learnable IMP

The membrane potential in the current dynamic model of SNNs is typically initialized to a uniform
constant value (usually 0). Based on Observation 1 and Observation 2, we find that the learnable IMP
can enhance the expressive power of SNNs. Based on Observation 3, the learnable IMP can allow
the membrane potential to start from a non-zero value, which may help improve the performances
of SNNs on the static tasks. We can assign an independent learnable IMP for each spiking neuron.
According to Eq. 1, the membrane potential accumulation can be represented as follows,

h[t] = ŝ[t] + x[t], x ∈ RT×N , h ∈ RT×N , ŝ ∈ RT×N , ŝ[0] ∈ RN , (9)

where ŝ[0] represents the state of the IMP that is extended from zero to the real number. As a
counterpart to the method of setting IMP to 0, in the initialization process, we set IMP to a uniform
distribution with an expected value of 0,

ŝ[0] = Uniform(−λ, λ)N , (10)

where λ is a hyper-parameter used to control the boundaries of the uniform distribution, ensuring
the IMP remains within an appropriate range. Since the current implementation of SNNs requires
memory allocation to store membrane potential states, replacing 0 with a trained IMP during the
inference process will not incur additional computational overhead.

6

4.2 LTS Method for the Static Tasks

We propose a new post-processing representation method called last time step (LTS) to alleviate the
convergence difficulties of TET on the static tasks, based on Observation 3 and Observation 4. This
approach masks all outputs of the SNNs before the LTS and only retains the output of the LTS as
the result of the entire model, which ensures that the SNNs can generate the most "high-quality"
membrane potential without interference before the LTS T ,

y[T] = f(s[T], x, θ). (11)

where y[T] represents the LTS’s output of the SNNs. When using only the LTS as the output, both
SDT and TET losses yield the same representation,

LLTS = LCE(y[T], ygt). (12)

4.3 Label Smooth TET Loss for the Neuromorphic Tasks

Based on the results in Table 1, we recommend using TET loss to achieve better performances
when dealing with the neuromorphic tasks. In the original version of TET [34], an additional
mean squared error (MSE) regularization term was added to control the firing level of the last
layer of the model, given by LREG = 1

T

∑T
t=1 LMSE(y[t], ϕ), where ϕ denotes the target firing level.

The coefficient λ controls the proportion of the two losses, and the complete loss is defined as
LTotal = (1− λ)LTET + λLREG. We think that this setup will prevent the training loss of the model
from converging to zero, because when LREG = 0, the model will output a constant value 1 at every
time steps, rendering the model unable to perform the classification task. On the other hand, when
LTET = 0, LMSE > 0. Considering that LMSE plays a role similar to a smoothing process in the
loss function, we propose removing LREG and replacing the cross-entropy loss with a label smooth
cross-entropy loss, as shown by the following equation:

LTET-S =
1

T
×

T∑
t

LCE(f(s[t], x, θ), ŷgt), where ŷgt = (1− ϵ)ygt +
ϵ

K
, (13)

here, ygt represents the ground truth, ŷgt represents the smoothed label, ϵ represents the smoothing
factor, and K represents the number of classes. It can be observed that LTET-S can effectively avoid
the trade-off between firing level and classification accuracy for model training, and can theoretically
allow the training loss to converge to zero.

5 Experiments

In this section, we demonstrate the effectiveness of our proposed method by extensive experiments.
We compare the results of our method with other methods on both the neuromorphic dataset and the
static dataset. Additional training procedures and other hyperparameter settings are provided in the
appendix A.

5.1 Execution Speed Benchmark of IMP

T=2 T=4 T=8 T=16 T=32
0

5

10

15

20 IF 28 IF+IMP 28

 IF 212 IF+IMP 212

 IF 216 IF+IMP 216

 IF 220 IF+IMP 220

Figure 6: Execution time (ms) for the forward and
backward pass of IF neurons, w/wo IMP.

We compare the execution speed and the mem-
ory consumption between the vanilla IF neurons
and IF+IMP neurons in Figures 6. The number
of neurons are set to 28, 212, 216, and 220, with
time steps of 2, 4, 8, 16, and 32. All neurons
are implemented by using spikingjelly and Py-
Torch, and the computations are performed on
GPU. It can be observed that there is almost
no difference (about ±1.03%) in the execution
time between the IF neurons with IMP and the
vanilla IF neurons, including forward and back-
ward propagation. In addition, since the compu-
tational consumption of SNNs is mainly caused
by synaptic computation, the additional over-
head caused by adding IMP can be neglected.

7

5.2 Convergence Speed of LTS on the Static Data

(a) T=1 (b) T=2 (c) T=4 (d) T=6

Figure 7: Convergence speed of LTS, TET, and SDT on the static data.

We have conducted a validation of the convergence speed of SDT, TET, and LTS on the commonly
used time steps (1, 2, 4, and 6), as shown in Figure 7. The application of LTS post-processing has
resulted in an improvement in the convergence speed of SNNs.

5.3 Performances on the Neuromorphic Data Classification

Table 2: Comparison of our methods and other SOTA methods on the neuromorphic datasets. Size
refers to the input resolution of SNNs.

Dataset Method SNN Architecture Size Time Steps Accuracy(%)

CIFAR10-DVS

GLIF[41] Wide 7B Net 48 16 78.10
NDA[49] VGG 48 10 79.60
TET[34] VGG 48 10 83.17

TEBN[45] VGG 48 10 84.90
PSN[43] VGG 48 10 85.90

IMP(ours) VGG 48 10 85.90
IMP+TET-S(ours) VGG 48 10 87.10
IMP+TET-S(ours) VGG 48 8 87.80

PLIF[40] PLIF Net 128 20 74.80
TDBN[21] ResNet-19 128 10 67.80
Dspike[50] ResNet-18 128 10 75.40
KLIF[51] PLIF Net 128 15 70.90

SEW ResNet[52] Wide 7B Net 128 16 74.40
Spikformer[23] Spikformer 128 10 78.90
Spikformer[23] Spikformer 128 16 80.90

NDA[49] VGG 128 10 81.70
IMP(ours) VGG 128 16 86.30

IMP+TET-S(ours) VGG 128 16 87.00

N-Caltech101

NDA[49] VGG 48 10 78.20
EventMix[53] ResNet18 48 10 79.47

ESP[54] SNN7-LIFB 48 10 81.74
TCJA[55] TCJA-SNN 48 10 82.50
TKS[56] VGG-TKS 48 10 84.10

IMP(ours) VGG 48 10 84.68
IMP+TET-S(ours) VGG 48 10 85.01

EventDrop[57] VGG 128 10 74.04
NDA[49] VGG 128 16 83.70

EventRPG[58] VGG 128 10 85.62
STR[59] VGG 128 10 85.91

IMP(ours) VGG 128 16 86.12
IMP+TET-S(ours) VGG 128 16 87.86

We have applied our methods to a simple spiking VGG model and compare them with the SOTA
SNNs on the neuromorphic datasets. Since the CIFAR10DVS and NCaltech101 datasets are not
pre-divided into training and testing sets, we split these datasets in a 9:1 ratio. To ensure a fair

8

comparison with other existed methods, we adopt the two configurations with resolutions of 48 and
128, respectively. The data preprocessing and training settings refer to the appendix A.8.

Table 2 reports the experimental results on the CIFAR10DVS and NCaltech101 datasets. On the
CIFAR10DVS dataset, when setting the resolution to 48, the IMP method achieves the SOTA accuracy
of 85.9%, which is 2.73% higher than the baseline [34] and is on par with the current SOTA method
PSN. It should be noted that the removal of the reset process in PSN means that the spiking activities
in the previous time steps will not affect the membrane potential values in the subsequent time steps.
When we set the resolution to 128, the IMP method once again demonstrates its superiority, achieving
the SOTA accuracy of 86.3%, which exceeds all other methods, including the current SOTA data
augmentation method EventRPG[58]. In addition, we further explore the impact of using smoothed
TET loss on model performance. The experimental results show that the performance of the model
has been significantly improved under both configurations, achieving accuracies of 87.00% and
87.10% respectively. In addition, the accuracy can be further improved to 87.8% by setting the time
step to 8. On the NCaltech101 dataset, our method can also demonstrate excellent performance.
Specifically, when we set the resolution to 48, our method achieves the current SOTA accuracy
of 85.01%. When switching to resolution of 128, our method further demonstrates its advantages,
achieving the SOTA accuracy of 87.86%.

5.4 Performances on the Static Data Classification

Table 3: Comparison of our methods and other methods on the ImageNet1k dataset.
Method Network Architecture Reset Params Time Steps Accuracy(%)

PSN[43] SEW ResNet-18 11.69 4 67.63
SEW ResNet-34 21.79 4 70.54

Dspike[50] ResNet-34 ! 21.79 6 68.19
VGG-16 ! 138.42 5 71.24

TET[34] SEW ResNet-34 ! 21.79 4 68.00
TDBN[21] ResNet-34 ! 21.79 6 67.05
TEBN[45] SEW ResNet-34 ! 21.79 4 68.28
GLIF[41] ResNet-34 ! 21.79 4 67.52

Spikformer[23] Spikformer-6-512 ! 23.37 4 72.64
Spikformer-8-512 ! 29.68 4 73.38

SEW ResNet[52]

SEW ResNet-18 ! 11.69 4 63.18
SEW ResNet-34 ! 21.79 4 67.04
SEW ResNet-50 ! 25.56 4 67.78

SEW ResNet-101 ! 44.55 4 68.76
SEW ResNet-152 ! 60.19 4 69.26

LTS
SEW ResNet-18 ! 11.69 4 64.33(+1.15)
SEW ResNet-34 ! 21.79 4 68.10(+1.06)
SEW ResNet-50 ! 25.56 4 71.24(+3.46)

IMP+LTS
SEW ResNet-18 ! 14.17 4 65.38(+2.20)
SEW ResNet-34 ! 25.54 4 68.90(+1.86)
SEW ResNet-50 ! 36.67 4 71.83(+4.05)

We apply our proposed IMP and LTS post-processing methods to the standard SEW-ResNet[52]
architecture and compare them with the SOTA spiking neurons and the directly training SNN methods
on the large-scale static dataset ImageNet1k [38].

Table 3 presents the detailed experimental results on the large-scale static dataset ImageNet1k. Specifi-
cally, by applying the LTS post-processing method to the SEW-ResNet18/34/50 models, we can obtain
the accuracy improvements of 1.15%, 1.06%, and 3.46% compared to the baselines, respectively.
These results demonstrate the effectiveness of LTS on the large-scale datasets. Furthermore, with the
introduction of the learnable IMP, the accuracy can be further increased by 2.2%/1.86%/4.05%. With

9

the LTS post-processing and learnable IMP, our SEW-ResNet50 achieves an accuracy of 71.83%,
surpassing the accuracy of the vanilla SEW-ResNet152, 69.26%.

5.5 Further Ablation Studies

Table 4: Ablation Study on CIFAR10DVS and Imagenet100.
Dataset Method Spiking Network Time-steps Accuracy(%)

CIFAR10-DVS

SDT(ϵ = 0.0) VGG 10 83.70
TET(ϵ = 0.0) VGG 10 84.90

TET-S(ϵ = 0.1) VGG 10 85.60
TET-S(ϵ = 0.01) VGG 10 86.10
TET-S(ϵ = 0.001) VGG 10 85.40

IMP+SDT(λ = 0.0) VGG 10 83.70
IMP+TET(λ = 0.0) VGG 10 85.90

IMP+TET-S(λ = 0.0) VGG 10 86.20
IMP+TET-S(λ = 0.2) VGG 10 87.10
IMP+TET-S(λ = 0.4) VGG 10 86.40

ImageNet100

TET SEW-ResNet18 4 78.50
SDT SEW-ResNet18 4 79.10
LTS SEW-ResNet18 4 80.20

IMP+TET SEW-ResNet18 4 78.70
IMP+SDT SEW-ResNet18 4 79.90
IMP+LTS SEW-ResNet18 4 80.80

Table 4 presents the results of a series of ablation studies conducted on the CIFAR10-DVS and
ImageNet100 datasets, aimed at analyzing the impact of various factors on model performance. This
helps understand the role of different components and parameters in the overall model, and aids in
optimizing the model design. For the CIFAR10-DVS dataset, we explored methods including SDT,
TET, and their variants TET-S and versions combined with IMP. VGG was used as the spiking neural
network structure. The results show that for different ϵ values, the TET-S+IMP method achieved the
best accuracy, with IMP+TET-S (λ = 0.2) reaching 87.10%, the highest among all methods on the
CIFAR10-DVS dataset. For the ImageNet100 dataset, we tried TET, SDT, LTS, and their versions
combined with IMP, using SEW-ResNet18 as the spiking neural network structure. On this dataset,
the LTS method and its combined version with IMP, IMP+LTS, performed the best, reaching 80.80%
accuracy.

6 Conclusions

We have proposed a learnable IMP by rethinking the membrane dynamics of SNNs to enhance the
dynamics mechanism of spiking neurons. Additionally, we have presented a LTS post-processing
method for the static tasks and a label-smoothed TET loss for the neuromorphic tasks. It is worth
mentioning that our methods only require very minor modifications to the settings and loss functions
of spiking neurons to effectively improve the performance of SNNs on the static tasks and the
neuromorphic tasks. At the same time, almost no additional computational cost is required. Since our
proposed method has broad compatibility with existing model structures and training methods, it can
be widely applied on the existed methods to further improve their network performances.

Acknowledgement

This work was supported by Fundamental Research Funds for the Central Universities (Grant No.
SWU021002), Project of Science and Technology Research Program of Chongqing Education
Commission (Grant No. KJZD-K202100203), Key R&D Program of Zhejiang (2022C01048), and
National Natural Science Foundation of China (Grant Nos. U1804158, 62376247, U20A20220, and
62334014).

10

References
[1] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In

H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural
Information Processing Systems (NeurIPS), volume 33, pages 6840–6851. Curran Associates,
Inc., 2020.

[2] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in Neural Information Processing Systems (NeurIPS), 33:1877–
1901, 2020.

[3] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In Proceedings of the 38th International Conference
on Machine Learning (ICML), pages 8748–8763, 2021.

[4] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski,
and Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings
of the IEEE/CVF International Conference on Computer Vision (ICCV), pages 9650–9660,
2021.

[5] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson,
Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pages
4015–4026, 2023.

[6] Wolfgang Maass. Networks of spiking neurons: The third generation of neural network models.
Neural Networks, 10(9):1659–1671, 1997.

[7] Wulfram Gerstner, Werner M Kistler, Richard Naud, and Liam Paninski. Neuronal dynamics:
From single neurons to networks and models of cognition. Cambridge University Press, 2014.

[8] Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured
state spaces. In International Conference on Learning Representations, 2022.

[9] Ming ZHANG, Zonghua Gu, and Gang Pan. A survey of neuromorphic computing based on
spiking neural networks. Chinese Journal of Electronics, 27(4):667–674, 2018.

[10] Duzhen Zhang, Tielin Zhang, Shuncheng Jia, Qingyu Wang, and Bo Xu. Tuning synaptic
connections instead of weights by genetic algorithm in spiking policy network. Machine
Intelligence Research, pages 1–13, 2024.

[11] Michael V DeBole, Brian Taba, Arnon Amir, Filipp Akopyan, Alexander Andreopoulos,
William P Risk, Jeff Kusnitz, Carlos Ortega Otero, Tapan K Nayak, Rathinakumar Appuswamy,
et al. Truenorth: Accelerating from zero to 64 million neurons in 10 years. Computer, 52(5):20–
29, 2019.

[12] Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha
Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, et al. Loihi: A neuromorphic
manycore processor with on-chip learning. IEEE Micro, 38(1):82–99, 2018.

[13] De Ma, Xiaofei Jin, Shichun Sun, Yitao Li, Xundong Wu, Youneng Hu, Fangchao Yang, Huajin
Tang, Xiaolei Zhu, Peng Lin, and Gang Pan. Darwin3: a large-scale neuromorphic chip with a
novel ISA and on-chip learning. National Science Review, 11(5):nwae102, 03 2024.

[14] Bing Han and Kaushik Roy. Deep spiking neural network: Energy efficiency through time
based coding. In European Conference on Computer Vision (ECCV), pages 388–404. Springer,
2020.

[15] Shikuang Deng and Shi Gu. Optimal conversion of conventional artificial neural networks to
spiking neural networks. In International Conference on Learning Representations (ICLR),
2021.

11

[16] Yuhang Li, Shikuang Deng, Xin Dong, Ruihao Gong, and Shi Gu. A free lunch from ann:
Towards efficient, accurate spiking neural networks calibration. In Marina Meila and Tong
Zhang, editors, Proceedings of the 38th International Conference on Machine Learning, volume
139 of Proceedings of Machine Learning Research, pages 6316–6325. PMLR, 18–24 Jul 2021.

[17] Liuzhenghao Lv, Wei Fang, Li Yuan, and Yonghong Tian. Optimal ann-snn conversion with
group neurons. arXiv preprint arXiv:2402.19061, 2024.

[18] Yangfan Hu, Qian Zheng, Xudong Jiang, and Gang Pan. Fast-snn: Fast spiking neural network
by converting quantized ann. IEEE Transactions on Pattern Analysis and Machine Intelligence,
45(12):14546–14562, 2023.

[19] Jun Haeng Lee, Tobi Delbruck, and Michael Pfeiffer. Training deep spiking neural networks
using backpropagation. Frontiers in Neuroscience, 10, 2016.

[20] Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for
training high-performance spiking neural networks. Frontiers in Neuroscience, 12, 2018.

[21] Hanle Zheng, Yujie Wu, Lei Deng, Yifan Hu, and Guoqi Li. Going deeper with directly-trained
larger spiking neural networks. Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI), 35(12):11062–11070, May 2021.

[22] Emre O. Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gradient learning in
spiking neural networks: Bringing the power of gradient-based optimization to spiking neural
networks. IEEE Signal Processing Magazine, 36(6):51–63, 2019.

[23] Zhaokun Zhou, Yuesheng Zhu, Chao He, Yaowei Wang, Shuicheng YAN, Yonghong Tian,
and Li Yuan. Spikformer: When spiking neural network meets transformer. In International
Conference on Learning Representations (ICLR), 2023.

[24] Hangchi Shen, Huamin Wang, Yuqi Ma, Long Li, Shukai Duan, and Shiping Wen. Multi-
lra: Multi logical residual architecture for spiking neural networks. Information Sciences,
660:120136, 2024.

[25] Tao Chen, Chunyan She, Lidan Wang, and Shukai Duan. Memristive leaky integrate-and-
fire neuron and learnable straight-through estimator in spiking neural networks. Cognitive
Neurodynamics, pages 1–17, 2024.

[26] Lin Zhu, Siwei Dong, Jianing Li, Tiejun Huang, and Yonghong Tian. Retina-like visual image
reconstruction via spiking neural model. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 1438–1446, June 2020.

[27] Zhanfeng Liao, Yan Liu, Qian Zheng, and Gang Pan. Spiking nerf: Representing the real-world
geometry by a discontinuous representation. Proceedings of the AAAI Conference on Artificial
Intelligence, 38(12):13790–13798, Mar. 2024.

[28] Weixing Zhang, Zongrui Li, De Ma, Huajin Tang, Xudong Jiang, Qian Zheng, and Gang
Pan. Spiking gs: Towards high-accuracy and low-cost surface reconstruction via spiking
neuron-based gaussian splatting, 2024.

[29] Qiaoyi Su, Yuhong Chou, Yifan Hu, Jianing Li, Shijie Mei, Ziyang Zhang, and Guoqi Li. Deep
directly-trained spiking neural networks for object detection. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), pages 6555–6565, October 2023.

[30] Malyaban Bal and Abhronil Sengupta. Spikingbert: Distilling bert to train spiking language
models using implicit differentiation. Proceedings of the AAAI Conference on Artificial Intelli-
gence (AAAI), 38(10):10998–11006, Mar. 2024.

[31] Rui-Jie Zhu, Qihang Zhao, Guoqi Li, and Jason K Eshraghian. Spikegpt: Generative pre-trained
language model with spiking neural networks. arXiv preprint arXiv:2302.13939, 2023.

[32] Sumit Bam Shrestha and Garrick Orchard. Slayer: Spike layer error reassignment in time. In
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors,
Advances in Neural Information Processing Systems (NeurIPS), volume 31. Curran Associates,
Inc., 2018.

12

[33] Seijoon Kim, Seongsik Park, Byunggook Na, and Sungroh Yoon. Spiking-yolo: Spiking neural
network for energy-efficient object detection. Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), 34(07):11270–11277, Apr. 2020.

[34] Shikuang Deng, Yuhang Li, Shanghang Zhang, and Shi Gu. Temporal efficient training of
spiking neural network via gradient re-weighting. In International Conference on Learning
Representations (ICLR), 2022.

[35] Hongmin Li, Hanchao Liu, Xiangyang Ji, Guoqi Li, and Luping Shi. Cifar10-dvs: an event-
stream dataset for object classification. Frontiers in neuroscience, 11:244131, 2017.

[36] Garrick Orchard, Ajinkya Jayawant, Gregory K Cohen, and Nitish Thakor. Converting static
image datasets to spiking neuromorphic datasets using saccades. Frontiers in neuroscience,
9:159859, 2015.

[37] Wei Fang, Zhaofei Yu, Yanqi Chen, Tiejun Huang, Timothée Masquelier, and Yonghong Tian.
Deep residual learning in spiking neural networks. In M. Ranzato, A. Beygelzimer, Y. Dauphin,
P.S. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information Processing
Systems (NeurIPS), volume 34, pages 21056–21069. Curran Associates, Inc., 2021.

[38] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pages 248–255, 2009.

[39] Zhenzhi Wu, Hehui Zhang, Yihan Lin, Guoqi Li, Meng Wang, and Ye Tang. Liaf-net: Leaky
integrate and analog fire network for lightweight and efficient spatiotemporal information
processing. IEEE Transactions on Neural Networks and Learning Systems, 33(11):6249–6262,
2022.

[40] Wei Fang, Zhaofei Yu, Yanqi Chen, Timothée Masquelier, Tiejun Huang, and Yonghong Tian.
Incorporating learnable membrane time constant to enhance learning of spiking neural networks.
In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pages
2661–2671, October 2021.

[41] Xingting Yao, Fanrong Li, Zitao Mo, and Jian Cheng. Glif: A unified gated leaky integrate-and-
fire neuron for spiking neural networks. Advances in Neural Information Processing Systems
(NeurIPS), 35:32160–32171, 2022.

[42] Lang Feng, Qianhui Liu, Huajin Tang, De Ma, and Gang Pan. Multi-level firing with spiking
ds-resnet: Enabling better and deeper directly-trained spiking neural networks. In Proceedings
of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI), pages
2471–2477, 2022.

[43] Wei Fang, Zhaofei Yu, Zhaokun Zhou, Yanqi Chen, Zhengyu Ma, Timothée Masquelier, and
Yonghong Tian. Parallel spiking neurons with high efficiency and long-term dependencies
learning ability. arXiv preprint arXiv:2304.12760, 2023.

[44] Lei Deng, Yujie Wu, Xing Hu, Ling Liang, Yufei Ding, Guoqi Li, Guangshe Zhao, Peng Li, and
Yuan Xie. Rethinking the performance comparison between snns and anns. Neural Networks,
121:294–307, 2020.

[45] Chaoteng Duan, Jianhao Ding, Shiyan Chen, Zhaofei Yu, and Tiejun Huang. Temporal effective
batch normalization in spiking neural networks. In Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho, editors, Advances in Neural Information Processing Systems
(NeurIPS), 2022.

[46] Mingqing Xiao, Qingyan Meng, Zongpeng Zhang, Di He, and Zhouchen Lin. Online training
through time for spiking neural networks. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave,
K. Cho, and A. Oh, editors, Advances in Neural Information Processing Systems, volume 35,
pages 20717–20730. Curran Associates, Inc., 2022.

13

[47] Qingyan Meng, Mingqing Xiao, Shen Yan, Yisen Wang, Zhouchen Lin, and Zhi-Quan Luo.
Towards memory- and time-efficient backpropagation for training spiking neural networks. In
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pages
6166–6176, October 2023.

[48] Alex Krizhevsky et al. Learning multiple layers of features from tiny images. Master’s thesis,
University of Tront, 2009.

[49] Yuhang Li, Youngeun Kim, Hyoungseob Park, Tamar Geller, and Priyadarshini Panda. Neuro-
morphic data augmentation for training spiking neural networks. In European Conference on
Computer Vision (ECCV), pages 631–649. Springer, 2022.

[50] Yuhang Li, Yufei Guo, Shanghang Zhang, Shikuang Deng, Yongqing Hai, and Shi Gu. Differ-
entiable spike: Rethinking gradient-descent for training spiking neural networks. In A. Beygelz-
imer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information
Processing Systems (NeurIPS), 2021.

[51] Chunming Jiang and Yilei Zhang. KLIF: An optimized spiking neuron unit for tuning surrogate
gradient slope and membrane potential. arXiv e-prints, page arXiv:2302.09238, February 2023.

[52] Wei Fang, Zhaofei Yu, Yanqi Chen, Tiejun Huang, Timothée Masquelier, and Yonghong Tian.
Deep residual learning in spiking neural networks. Advances in Neural Information Processing
Systems (NeurIPS), 34, 2021.

[53] Guobin Shen, Dongcheng Zhao, and Yi Zeng. Eventmix: An efficient data augmentation
strategy for event-based learning. Information Sciences, 644:119170, 2023.

[54] Guobin Shen, Dongcheng Zhao, and Yi Zeng. Exploiting high performance spiking neural
networks with efficient spiking patterns. arXiv preprint arXiv:2301.12356, 2023.

[55] Rui-Jie Zhu, Malu Zhang, Qihang Zhao, Haoyu Deng, Yule Duan, and Liang-Jian Deng. Tcja-
snn: Temporal-channel joint attention for spiking neural networks. IEEE Transactions on
Neural Networks and Learning Systems, 2024.

[56] Yiting Dong, Dongcheng Zhao, and Yi Zeng. Temporal knowledge sharing enable spiking
neural network learning from past and future. IEEE Transactions on Artificial Intelligence,
2024.

[57] Fuqiang Gu, Weicong Sng, Xuke Hu, and Fangwen Yu. Eventdrop: Data augmentation for
event-based learning. In 30th International Joint Conference on Artificial Intelligence (IJCAI),
2021.

[58] Mingyuan Sun, Donghao Zhang, Zongyuan Ge, Jiaxu Wang, Jia Li, Zheng Fang, and Renjing
Xu. Eventrpg: Event data augmentation with relevance propagation guidance. arXiv preprint
arXiv:2403.09274, 2024.

[59] Dengyu Wu, Yi Qi, Kaiwen Cai, Gaojie Jin, Xinping Yi, and Xiaowei Huang. Direct training
needs regularisation: Anytime optimal inference spiking neural network. arXiv preprint
arXiv:2405.00699, 2024.

14

A Appendix / supplemental material

A.1 Broader Impacts

This paper focuses on the fundamental research of spiking neural networks, with the goal of revealing
the impact of membrane dynamics on the network and optimizing its performance. Generally, there
are no negative societal impacts in this work.

A.2 Limitations

IMP has a small gradient during training, which makes it sensitive to initialization (Figure 4). In
addition, learnable IMP may lead to an excessive number of parameters, as it assigns initial states to
each neuron, although this has the same computational cost as setting the IMP to 0. The advantage of
LTS may reduce when the time step is set too large, due to the supervision is only applied at the last
time step. Therefore, we only recommend using LTS on static tasks with time steps less than 8 (Table
8), which should be able to handle most situations. Additionally, the performance of the combination
of LTS and the latest spike transformer technology is not yet clear. Furthermore, we have not found a
unified loss function that can achieve superior performance on both static tasks and neuromorphic
tasks, which remains a challenge in the current research.

A.3 Convergence Speed

We compared the convergence speed of TET and SDT at different time steps (T=1,2,4,6,8,12,16,24,32).
For static tasks, TET’s convergence speed was lower than SDT’s, and the difference in convergence
speed diminished as the time step increased.

(a) T=1 (b) T=2 (c) T=4 (d) T=6

(e) T=8 (f) T=16 (g) T=24 (h) T=32

Figure 8: The convergence speed of SDT, TET and LTS on static data.

A.4 Compared with Transformer-based SNNs

The performance of SEW-ResNet-LTS can be close to some Transformer-based SNNs (Table 5).

Table 5: Accuracy and theoretical energy consumption compared with Transformer-based SNNs.
Model Param (M) SOPs (G) Power (mJ) Accuracy

Spikformer-8-384 16.81 6.82 7.73 70.24
Spikformer-6-512 23.37 8.69 9.42 72.46
Spike-driven 8-384 16.81 - 3.90 72.28
Meta-SpikeFormer 15.10 - 16.70 74.10

SEW-R50-LTS (ours) 25.56 3.10 2.79 71.24
SEW-R50-LTS+IMP (ours) 36.67 3.45 3.11 71.83

15

A.5 Energy Consumption

IMP does not incur significant additional theoretical power consumption, but can effectively improve
the performance of SNNs (Table 6).

Table 6: Accuracy and theoretical energy consumption on ImageNet1k dataset.
Model Training Method Accuracy SOPs(G) Power(mJ)

SEW-ResNet18 TET 62.92 1.36055 1.22449
SEW-ResNet18 SDT 63.21 1.37418 1.23676
SEW-ResNet18 LTS 64.33 1.21427 1.09285
SEW-ResNet18 LTS+IMP 65.38 1.31371 1.18234
SEW-ResNet34 TET 67.98 3.59539 3.23585
SEW-ResNet34 SDT 68.10 3.52732 3.17459
SEW-ResNet34 LTS 68.10 3.11694 2.80525
SEW-ResNet34 LTS+IMP 68.90 3.12180 2.80962
SEW-ResNet50 TET 69.87 3.40181 3.06163
SEW-ResNet50 SDT 70.33 3.20071 2.88064
SEW-ResNet50 LTS 71.24 3.10432 2.79389
SEW-ResNet50 LTS+IMP 71.83 3.45325 3.10792

A.6 Performance of LTS on DVS Tasks

The LTS method can lead to information loss, especially on DVS tasks with a large number of
time steps (Table 7). Therefore, we suggest considering the use of LTS only in static tasks, as the
effectiveness of LTS relies on the assumption of having the same input at each time step.

Table 7: Accuracy on CIFAR10DVS dataset with different time-steps.
Model Training Method T=4 T=8 T=10 T=16
VGG TET 83.8 85.0 85.8 86.4
VGG SDT 83.4 84.3 84.4 85.1
VGG LTS 83.7 83.0 82.9 82.3

A.7 Enhancing Performance by Learnable IMP

The learnable IMP can significantly improve the accuracy of the first time step and lead to better
overall performance (Figure 9).

10.76

90.44

92.04 92.05
92.36

T=1 T=2 T=3 T=4 mean
0

20

40

60

91

92

93

94

A
cc

ur
ac

y

 Constant IMP

(a) ConstantIMP

72.35

91.97
92.32

92.8
93.19

T=1 T=2 T=3 T=4 mean
0

20

40

60

91

92

93

94

A
cc

ur
ac

y

 Learnable IMP

(b) LearnableIMP

Figure 9: The test accuracy at each time step on the CIFAR10 dataset.

16

A.8 Experimental Configurations and Hyperparameter Settings

Table 8 lists the key parameters required for training on the static datasets ImageNet1k, ImageNet100,
CIFAR10, and CIFAR100. Table 9 outlines the key parameters used for training on the neuromorphic
datasets CIFAR10-DVS-128, CIFAR10-DVS-48, N-Caltech101-128, and N-Caltech101-48.

Table 8: Experimental configurations on static task.
hyper-parameter ImageNet1K ImageNet100 CIFAR10 CIFAR100

architecture SEW-ResNet SEW-ResNet SEW-ResNet SEW-ResNet
time steps 4 4 4 4

enable TEBN No No No No
detach reset Yes Yes Yes Yes

spiking neuron IF+IMP IF+IMP IF+IMP IF+IMP
sg function Atan Atan Atan Atan

membrane decay - - - -
optimizer AdamW AdamW AdamW AdamW

learning rate 0.001 0.001 0.001 0.001
weight decay 5e-4 5e-4 5e-4 5e-4
momentum - - - -

epoch 320 200 200 200
warm up 10 10 10 10

lr schedule cosine cosine cosine cosine
loss function SDT/TET SDT/TET SDT/TET SDT/TET
label smooth - 0.1 0.1 0.1
data augment standard standard standard standard
enable cutmix No Yes Yes Yes
enable mixup No Yes Yes Yes

GPUs 4 1 1 1

Table 9: Experimental configurations on neuromorphic task.
hyper-parameter CIFAR10DVS-48 CIFAR10DVS-128 NC101-48 NC101-128

architecture VGG11 VGG11 VGG11 VGG11
time steps 10 16 10 16

enable TEBN Yes No Yes No
detach reset Yes Yes Yes Yes

spiking neuron LIF+IMP LIF+IMP LIF+IMP LIF+IMP
sg function ZIF sigmoid ZIF sigmoid

membrane decay 0.25 0.5 0.25 0.5
optimizer SGD AdamW SGD AdamW

learning rate 0.1 0.001 0.1 0.001
weight decay 5e-4 0.06 5e-4 0.06
momentum 0.9 - 0.9 -

epoch 200 200 150 150
warm up 0 30 0 30

lr schedule cosine cosine cosine cosine
loss function SDT/TET SDT/TET SDT/TET SDT/TET
label smooth 0.01 0.01 0.01 0.01

event augment standard NDA standard NDA
enable cutmix No Yes No Yes
enable mixup No Yes No Yes

GPUs 1 1 1 1

A.9 On-chip Learning

The following approach can be useful for implementing on-chip learning IMP: (1) Use an auxiliary
neuron to distribute IMP (by firing a spike) to the other neurons at the initial time step. (2) Optimize
the synaptic weights of this auxiliary neuron to adjust IMP.

17

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state our contributions in the field of
spiking neural networks, including the discovery of special phenomena caused by SNN
dynamics and the inspired improvement methods.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed the limitations of the proposed method in the appendix, which is
enlightening for future work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

18

Answer: [Yes]

Justification: The paper provides a complete proof of the proposed viewpoint and method.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The method section provides a detailed introduction to the method proposed in
this paper, which can be reproduced by referring to the appendix and submitted code.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

19

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The dataset used in this article is publicly available, and the code will be made
public to ensure that others can reproduce the experimental results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The appendix of the paper provides detailed experimental settings.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper accurately presents error bars for the execution speed benchmark.
Notably, our experiments involved comparing our method’s optimal performance with other
approaches.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

20

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The article provides the resource cost required for conducting experiments, as
well as the execution time of our proposed method. Further detailed information is provided
in the code.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research in this paper adheres to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper focuses on the fundamental research of spiking neural networks,
with the goal of revealing the impact of membrane dynamics on the network and optimizing
its performance. Generally, there are no negative societal impacts in this work.

21

https://neurips.cc/public/EthicsGuidelines

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper focuses on the fundamental research of spiking neural networks,
which does not involve the development or release of data or models that have a high risk
for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators or original owners of the assets (such as code, data, and models)
used in this paper have been properly credited. Their contributions have been explicitly
mentioned in an appropriate manner. Additionally, the license and terms of use for each asset
have been explicitly stated and adhered to, including obtaining any necessary permissions or
authorizations.

Guidelines:

22

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The experimental code will be made openly accessible, along with the neces-
sary documents to facilitate reproducibility of the experimental results and utilization of the
code for future work.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing experiments or research with
human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

23

paperswithcode.com/datasets

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

24

	Introduction
	Related Works
	Neuron Dynamics Modeling
	Direct Training Methods

	Analysis of Membrane Dynamics
	Preliminary of Spiking Neurons and Loss Functions
	Membrane Dynamics Related to IMP
	Membrane Potential Evolution in Static Tasks

	Methods
	Learnable IMP
	LTS Method for the Static Tasks
	Label Smooth TET Loss for the Neuromorphic Tasks

	Experiments
	Execution Speed Benchmark of IMP
	Convergence Speed of LTS on the Static Data
	Performances on the Neuromorphic Data Classification
	Performances on the Static Data Classification
	Further Ablation Studies

	Conclusions
	Appendix / supplemental material
	Broader Impacts
	Limitations
	Convergence Speed
	Compared with Transformer-based SNNs
	Energy Consumption
	Performance of LTS on DVS Tasks
	Enhancing Performance by Learnable IMP
	Experimental Configurations and Hyperparameter Settings
	On-chip Learning

