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ABSTRACT

We study batched linear and generalized linear contextual bandits and introduce
practical batched algorithms, aiming for methods that are both practical and prov-
ably optimal under limited adaptivity. For linear contextual bandits, we propose
the first algorithm that attains minimax-optimal regret (up to polylogarithmic fac-
tors in 7') in both small- K and large- K regimes using only O(loglog T') batches,
while our second algorithm removes the G-optimal design step—the dominant
computational bottleneck—yet preserves the same order of statistical guarantees
and achieves the lowest known runtime complexity. We then adapt to the general-
ized linear contextual bandits and design an algorithm that is fully free of curva-
ture parameter «: neither the algorithm requires knowledge of nor its regret bound
depends on &, and it retains O(loglog T") batch complexity with near-optimal re-
gret. Collectively, these results deliver the first batched linear contextual methods
that are simultaneously minimax-optimal across all regimes and computationally
efficient, and the first generalized linear method that is both statistically and com-
putationally efficient while remaining fully x-independent.

1 INTRODUCTION

Stochastic linear contextual bandits are a cornerstone of sequential decision-making, where an agent
repeatedly selects actions from a time-varying, feature-based set and observes rewards generated by
an unknown linear model (Abe & Longl |1999; |Auer, [2002; |Abe et al., 2003} [Dani et al., 2008 L1
et al., 2010; |Chu et al.l 2011; |Abbasi- Yadkori et al.l 2011 |L1 et al., 2019; |Lattimore & Szepesvari,
2020; [Kirschner et al.l |2021). The resulting low-dimensional structure enables efficient general-
ization and has seen wide application, from recommender systems (Li et al., 2010) and inventory
control (Jin et al.,2021al) to clinical trials and precision medicine (Lu et al., 2021}

In practice, however, fully adaptive algorithms—which update policies every round—are often in-
feasible due to computational or operational constraints. This motivates the study of batched linear
contextual bandits, where updates occur at a small number of batch endpoints (Abbasi-Yadkori et al.,
2011; Ruan et al.,|2021; [Hanna et al., 2023a:bj, Zhang et al.,2025)). While recent algorithms achieve
strong theoretical guarantees with as few as O(loglog T') batches, many still rely on computation-
ally expensive G-optimal design or update more frequently than desirable, limiting their practical
efficiency (see Table[3]and Figure[T)). Recently,[Yu & Oh|(2025) proposed a computationally efficient
batched algorithm to achieve minimax-optimal regret. However, their method is only applicable to
non-contextual, fixed feature settings.

Beyond linear models, generalized linear contextual bandits allows expected rewards to follow a
nonlinear link function (e.g., logistic or Poisson). This broadens applicability but introduces new
challenges: existing analyses typically depend on instance dependent curvature parameters such as
+ (defined in Section [5.2)), and a prior batched algorithm for generalized linear contextual ban-
dits (Sawarni et al.||2024) require knowledge of x, while still incurring loose regret bounds and high
computational cost (see Table . In their method, the first batch size scales as K1/ 3 which can be
prohibitively large in saturated regimes where « is large. Thus, beyond the difficulty of requiring
prior knowledge of «, developing algorithms that are entirely x-free is a central challenge.

Consequently, practical algorithms with provable regret guarantees for both linear and generalized
linear contextual bandits remain elusive. This shortfall is also evident in our numerical experiments,
where existing methods underperform (see Section[6). This motivates the following open research:
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* For linear contextual bandits, can we design batched algorithms that achieve minimax-
optimal regret in both small-K and large- K regimes with the minimal batch complexity?
Can we also design a computationally more efficient algorithm avoiding G-optimal design
procedure while still maintaining the minimax optimality in regret?

* As an extension, can we adapt the computationally efficient batched algorithm to gener-
alized linear contextual bandits (hence, again not relying on G-optimal design) and show
near-optimal regret, entirely free of x dependence, while still maintaining the minimal batch
complexity?

Positive answers to these questions would unify theory and practice in linear and generalized lin-
ear contextual bandits, leading to algorithms that remain statistically optimal and computationally
efficient under limited adaptivity. Our main contributions are summarized as follows:

* Tightest regret bounds for batched linear contextual bandits. We introduce BLCE-G,
which combines near G-optimal design and arm elimination. It achieves the worst-case
regret bound O(v/dT (\/log(KT) A /d + log T)+/Tog dloglog T'), where K is the num-
ber of arms, d is the feature dimension, and 7" is the horizon. This is the tightest known
bound for batched linear contextual bandits. BLCE-G is the first algorithm to simultane-
ously match the minimax lower bounds Q(d+/T) in the large-K regime (K > Q(e?)) and
Q(y/dTTog K) in the small-K regime (K < O(e?)), up to logarithmic factors.

* First minimax-optimal algorithm without G-optimal design. We propose BLCE, which
replaces the G-optimal design step with uncertainty-driven exploration combined with arm
elimination. It still achieves the minimax-optimal regret with the lowest total time complex-
ity O(Kd*T loglog T'). To our knowledge, BLCE is the first theoretically optimal batched
linear contextual bandit algorithm that avoids G-optimal design, which is the main com-
putational bottleneck of the exsiting batched algorithms (Ruan et al., 2021} |Hanna et al.,
2023alb; |[Zhang et al.||[2025)). Its guarantees also extend beyond conventional i.i.d. contexts,
as discussed in Remark [Tl

* First x-independent algorithm for generalized linear contextual bandits. We develop
BGLE, which extends BLCE to generalized linear contextual bandits. It achieves the worst-
case regret bound O(dRSVT /i) + O((R?Se8R3d% + R)T'/?), where R is the upper-
bound on rewards, S is the norm-bound of the parameter ||6*||2 < S, and & is the expected
inverse curvature at the optimal arm. This is the tightest known bound for batched general-
ized linear contextual bandits (Sawarni et al., 2024), and uniquely, it is entirely independent
of x in both leading and transient terms. Here, x measures worst-case curvature and can
diverge in saturated regimes, while & reflects average curvature around the optimal arm.
Unlike prior work (Sawarni et al.| 2024), our algorithm requires no prior knowledge of x
and inherits the efficiency of BLCE.

» Batch Complexity. While achieving favorable regret guarantees, all of our proposed algo-
rithms only require the minimal batch complexity of O(loglogT).

* Practical Superiority. Our experiments demonstrate that BLCE-G, BLCE, and BGLE consis-
tently outperform prior batched linear and generalized linear contextual bandit algorithms
across various instances, combining provable efficiency with strong empirical performance
and substantially reduced runtime overhead.

2 RELATED WORK

A substantial literature on batched bandits spans from multi-armed to linear (contextual) mod-
els. Early work established near-optimal learning with few policy updates in the multi-armed set-
ting (Perchet et al., 2016} |Gao et al.l 2019; Jin et al.l [2021bic), later extended to linear bandits
under Gaussian-type features (Han et al.| |2020) and adversarial features (Esfandiari et al.| [2021),
culminating in algorithms that achieve near-optimal regret with the minimal batch complexity
O(loglog T) (Ren et al.;, 2024; |Yu & Oh, 2025). Although|Yu & Oh|(2025)) attain minimax-optimal
regret in both regimes, their analysis is restricted to non-contextual batched bandits and does not
extend to the linear contextual setting. In the linear contextual bandits, recent methods (Ruan et al.,
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Table 1: Worst-case regret, batch complexity, and time complexity comparison in batched linear
contextual bandits. Both BLCE-G and BLCE achieve minimax-optimal regret, matching the min-
imax lower bounds O(v/dT log K A d\/T) (Dani et al., 2008} [Li et al., [2019) across all regimes
while requiring only O(loglog T') batches. Among existing approaches, BLCE-G attains the tight-
est regret bound, whereas BLCE achieves the lowest time complexity. Note that 7 is the cost
of one call to the linear optimization oracle.

Paper Worst-Case Regret Batches Time Complexity
Abbasi-Yadkori et al{(2011) O(dv/T logT') O(dlogT) O(Kd+ d*)T + Kd®logT)
Ruan et al.|(2021) O(y/dT log(dKT)log dloglogT) O(loglogT) O(Kd*T(logT + logd))
Hanna et al.[(2023b) O(d+/TTog T loglog T) O(loglog T) Q(T%)

O(d3 Topt T log d log® T log log T)
+ O(d* log dlog® T log log T')

O(Kd?*T loglog T)

Zh: t al.| (2025 3 O(loglog T

ang et al.|( ) O({/dT log(dKT)log T log(dT)loglogT) O(loglogT) +O(KdT? /T Tog(dRT) og T)
\/dT log(KT) log dloglog T)

o(
{O(\/d(d + log T)T log dloglog T)
O(\/dT log(KT)log T'loglog T')
m
O(y/d(d +1log T)T log T log log T")

Hanna et al.|(2023a) O(d®/2\/T log T log log T) O(loglogT)

Algorithm O(loglog T) O(Kd?*T(d + loglogT))

Algorithm

min
in

O(loglog T) O(Kd?*T loglogT)

Table 2: Worst-case regret, batch complexity, and time complexity comparison in batched gener-
alized linear contextual bandits. BGLE attains the tightest regret bound with only O(loglogT')
batches, is entirely x-free in the regret bound, and attains the lowest time complexity

Paper Worst-Case Regret Batches Time Complexity

= " 4 tot
Sevamr et 655 O((RSd(«/d/n A /Ry logd)vIog T loglog T + R)ﬁ) Olloglog ) O Tlog T +Ci5t)
+O(Kd5(KR,'L)1/362RS
(R%5%T log? T)/3)

+O((rRyRPS%)M/ €215 42 log T)2/ log log T - T%)

o (RS V/A(d + log T) log T log log T/ - \/T) Olloglog ) O(Kd*T loglog T)

Algorithm N
+0 ((R2SeSRSd(d 4 log T) log T loglog T + ﬁ)T§) +o(ci)

2021; Hanna et al., [2023b} |[Zhang et al., [2025) achieve minimax-optimal regret under i.i.d. contexts
with only O(loglog T') batches, but each achieves optimality in only one regime.

Despite these advances, challenges remain. Algorithm based on rare policy switches require
O(log T') batches (Abbasi-Yadkori et al., 2011), which exceeds the O(loglog T') barrier. Methods
that achieve O(log log T') batches with optimal regret (Ruan et al.,|2021; Hanna et al.| 2023b; [Zhang
et al.,[2025)) typically rely on G-optimal design, introducing a computational bottleneck. Hanna et al.

(2023a)) improve efficiency, but their regret bound o (d®/2\/T) is not minimax optimal.

Batched generalized linear contextual bandits have been studied more recently.|[Sawarni et al.|(2024])
obtain O(v/T) regret with O(loglog T') batches but require prior knowledge of the parameter £,
which characterizes the worst-case curvature of the link function. Large values of « degrade the
performance of UCB-based elimination, and in their method the first batch size scales as K1/3,
which can be prohibitively large in saturated regimes, causing the algorithm to spend much of the
horizon with no informative updates. Moreover, their regret bound is loose due to the leading term
\/d/F, preventing the optimal O(d+/T) rate. Their reliance on the G-optimal based method of Ruan
et al.|(2021) also incurs significant runtime overhead.

In contrast, our proposed BGLE builds on BLCE, ensuring computational efficiency. Crucially, it re-
moves any dependence on « in both leading and transient terms, eliminates the extraneous factor d

in /d/%, and achieves the optimal regret bound O(dv/T).

lcg‘;,z denotes the total oracle cost of solving the log-loss minimization at batch boundaries. With B batches,
CEt = S°F | Copt(Te — Te—1,d), where Cops(n, d) is the cost of computing the unconstrained MLE from n

samples in d dimensions.
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3 PRELIMINARIES

3.1 NOTATIONS

For a set, || denotes its cardinality. For z € R, ||z||2 is the Euclidean norm, and for positive definite

H, ||z|lg = V2T Hz. For a matrix, tr(-) and det(-) denote its trace and determinant. For n € N,
we write [n] := {1,...,n}, and use A for the minimum operator. For symmetric matrices A, B of
the same dimension, A < B (resp. A = B) means B — A (resp. A — B) is positive semidefinite.
The indicator 1¢r) equals 1 if the event E occurs and 0 otherwise. Finally, the natural filtration is
Fi=0(A1,%1,415715 - - -, Aty Ty q,, T¢) With Fy trivial.

3.2 PROBLEM SETTING: BATCHED LINEAR CONTEXTUAL BANDITS

We study the stochastic linear contextual bandit problem. At each round ¢ € [T, the agent observes
K arms A, = {z41,..., 2k} C R and selects one arm Tta, € A receiving reward r; =
(®t,a,,0%) +ni, where 0* € R¢ is unknown and 7n; is independent o-subgaussian noise. The agent’s
performance is measured by the cumulative expected regret

T
R<T) =E Z(<xr7 9*> - <xt,ame*>) )
t=1
where 2} € argmax,c 4, (z,0") is the optimal arm. We make the following standard assumptions:
Assumption 1. |z|y < 1 forall x € Ay and ||0* |2 < 1.
Assumption 2. The noise 1, is a 1-subgaussian random variable for all t € [T).

In the batched setting, the horizon [T] is partitioned into B disjoint batches,
{1,...., T}y =[To+1,..., 1] U--- U [Tg-1+1,...,TB] ,
—_——
batch 1 batch B

with the agent constrained to a fixed policy within each batch, updating only at boundaries. Thus at
most B — 1 updates are allowed, unlike the fully adaptive case where updates occur every round.

Three models of limited adaptivity have been studied: the static grid, where batch boundaries are
fixed in advance; the adaptive grid, where batch sizes are chosen adaptively at the beginning of each
batch; and the rare policy switch, which allows arbitrary changes subject to a limit on total switches.
The static grid is most restrictive, while rare policy switch is most permissive. Most prior works
on batched linear contextual bandits adopts the static grid under i.i.d. contexts from an unknown
distribution D (Ruan et al., [2021} [Hanna et al., 2023a3bj |[Zhang et al., [2025), while |Abbasi- Yadkori
et al.| (2011) study the rare policy switch model. In this work we focus on the static grid with contexts
sampled i.i.d. from an unknown distribution D, though correlations may still exist among contexts
within the same round. As noted in Remark [I] our Algorithm 2]can also relax the i.i.d. assumption.

3.3 PROBLEM SETTING: BATCHED GENERALIZED LINEAR CONTEXTUAL BANDITS

We next consider the generalized linear contextual bandits, where rewards follow a one—parameter
exponential family distribution. Conditioned on an arm = € R? and the unknown parameter * ¢
R, the reward r has density p(r | z;60*) = exp (r(x,0*) — m({z,0%)) + h(r)) v(dr), with log-
partition function m, base measure v, and link function u(z) := m/(z). We impose the following
standard assumptions:

Assumption 3. ||z||2 < 1forall x € Ay, and ||0*||2 < S for a known constant S > 0.

Assumption 4. The log-partition function m is convex and three times differentiable. Equivalently,
f=m" > 0and m' exists.

At each round ¢ € [T, the learner observes an arm set A; = {z;1,...,7;x} C R? and selects
T, € Ai. The reward 7, is drawn from p(r |z q,;6*) with natural parameter (z;,,,60*), and
satisfies E[r | z; 0*] = pu((z, 6*)). The performance is measured by the cumulative expected regret
T
R(T) =E|> (u((x},0%) = p(z1a,,67))) ]| ,

t=1
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where z} € argmax, ¢ 4, pu({z,0*)) is the optimal arm. Following Sawarni et al.| (2024), we adopt
the static-grid setting with i.i.d. contexts from an unknown distribution D. In addition, the rewards
are supported on [0, R] almost surely, which implies that the link function satisfies |ji(z)| < Rp(z)
for all z € R. This self-concordance property of GLMs is crucial for our analysis.

4 BATCHED LINEAR CONTEXTUAL BANDIT ALGORITHMS

We propose two batched algorithms BLCE-G and BLCE for linear contextual bandits. Let us start
with explanation on our first algorithm, BLCE-G, which stands for the Batched Linear Contextual
Bandit with Elimination and G-optmial design, whose pseudocode is given in Algorithm [I] In the
first batch, rounds are divided into two phases with ratio ¢ : (1 — ¢). During the first c-fraction, arms
are sampled according to a near G-optimal design over .A; (Line 5), while in the remaining (1 — ¢)-
fraction the algorithm selects the most informative direction with respect to the current Gram matrix
(Line 7). To reduce computational and runtime cost, we adopt a relaxation of the G-optimal design,
namely the near G-optimal design, which loosens the bound by at most a factor of two. Formally,
for any arm set X C R, there exists a design distribution K x supported on X such that

T -1
~ < .
max (Bonicxlzz )2 < 2d

As shown in Corollary 4| such a design can be computed in time O(Kd?3). For fair comparison,
we also account for this cost when evaluating other algorithms that rely on G-optimal design (Ruan
et al., 2021; Hanna et al., [2023b; [Zhang et al., 2025). After each arm pull, the inverse Gram matrix
is updated using the Sherman-Morrison formula (reducing the cost from O(d?) to O(d?)), and the
response vector is accumulated (Line 8). At the end of the first batch, we set V; := H7,, compute

the regression estimate 01, and reinitialize H- 7, and b7, for the next batch (Line 9).

For any batch £ > 2, the algorithm eliminates suboptunal arms l— 1 tlmes using the past estimates

6, . 05 1, yielding a nested sequence of feasible sets .A . .A (Lme 13). The elimination
threshold ¢, for k € [¢ — 1] is defined as

26d—51d(B — 1)2
et S <\/210g (|A(k 1B - 1)T2) - \FAAQ\/Iog( 157;—(1/T2 ) > +2\f/\> :

Within batch ¢ > 2, the rounds are partitioned in the ratio ¢? : ¢(1 — ¢) : (1 — ¢). In the first ¢*-

fraction, arms are sampled according to a near G-optimal design over A,Ez_l) (Line 15). In the next
¢(1 — c¢)-fraction, the algorithm selects the most informative direction relative to the Gram matrix
(Line 17). In the final (1 — ¢)-fraction, arms are chosen greedily with respect to the latest estimate
(Line 19). As before, after each pull the Gram matrix and response vector are updated (Line 20),
and at the end of the batch we set V; := Hr,, compute 0y, and reinitialize H. 7, and b7, for the next
batch (Line 21).

Now, let us introduce our second algorithm, BLCE, which stands for Batched Linear Contextual Ban-
dit with Elimination. The pseudocode of BLCE is given in Algorithm[2] Relative to Algorithm|[T]} BLCE
eliminates the near G-optimal design segment and instead lengthens the uncertainty-driven explo-
ration phase to occupy those rounds. To our knowledge, BLCE is the first batched linear contextual
bandit algorithm that achieves theoretical optimality without relying on G-optimal design, which has
traditionally been regarded as essential (Ruan et al.,|2021; |[Hanna et al.,[2023b; |Zhang et al., [2025)).
Notably, both BLCE-G and BLCE avoid enforcing any fixed choice of ¢ € (0, 1], thereby providing
theoretical guarantees together with practical flexibility in balancing exploration and exploitation.

4.1 REGRET ANALYSIS FOR BATCHED LINEAR CONTEXTUAL BANDITS

Theorem 1 (Regret of BLCE-G). Consider running the BLCE-G algorithm for T' rounds with K arms
in d dimensions. The worst-case cumulative regret satisfies

R(T) = O(VAT(v/log(KT) A \/d+10gT)\/log dloglog T) = O(\/dTlog K A dVT) .

Discussion of Theorem [I} Theorem|I|shows that BLCE-G achieves minimax-optimal regret for fully
adaptive linear contextual bandits using only O(loglogT') batches, the lowest attainable batch
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Algorithm 1 BLCE-G

1: Input: Horizon T'; batch end times 7; = [ﬁ—‘ +1,7, = (7} 1+ [ﬁ

for ¢ > 2; number of batches B, with T = T'; within-batch allocation rate ¢

|+2) AT

Initialize: \ < log(dT), Hy < AI, by < O;

fort < 1,2,...,7; do

if t < [¢v/T/log,log, T'| then

| Pullarm x4, ~ 7 (A;), and receive reward 7;

else

t Pull arm z; o, € arg maxgc 4, ||| -1, » and receive reward r4;

® RN kR

1 1 -1 T -1 T -1 )
| Hy < H_ - Ht—lxt7atxt7ath—1/(1 + xt7ath—1xt,at>’ bt <= bi—1 + 12 a,3

9: Vit < Hy' 01« Vi 'by,, Hyy < M, by, < 0;
10: for £ <+ 2,...,Bdo
11: fort < Tp_14+1,...,T,do

12: fork < 1,...,/—1do
13: L ( ) arg max_ A(k—1)<x7ék>, §’“) — {x € A(k 2 <9k,xtk) —z) < 2&,;6};
14; ift < Ti1+ [T'"2"" /log, log, T then
15: ‘ Pull arm x; 4, ~ Te (Ay*l)), and receive reward 7
16: elseift <7, 1 + [CQTl_ﬂ/log2 logy T'| + [e(1 — T2 /log, log, T'| then
17: ‘ Pull arm @,q, € argmax__ ,«-1 [[2 ;-1 , and receive reward r¢;
’ TeAL t—1
18: else )
19: t Pull arm z; ,, € arg max Al 1y (x,0¢-1), and receive reward r4;
20: H_ <7Ht_1 H 11£Ct afSC;raf — 1/(1+If afH 1I’t ﬂt) bt (*bt_l +tht,at;

20| Ve Hyl 6y Vo lbr, Hy, « AL by, + 0

complexity. A notable feature of this bound is that it simultaneously covers both regimes. In the
small-K regime (K < O(e?)), the regret scales as O(y/dT log K ), while in the large-K regime

(K > Q(e?)), it scales as O(dv/T). Thus, BLCE-G provides the tightest known performance guar-
antees for batched linear contextual bandits and, to our knowledge, is the first algorithm to match
the minimax lower bounds in both regimes. Moreover, it achieves the smallest regret bound within
each regime among existing works (Abbasi-Yadkori et al., 2011} Ruan et al., 2021} |Hanna et al.,
2023ab; Zhang et al.| 2025).

Theorem 2 (Regret of BLCE). Consider running the BLCE algorithm for T rounds with K arms in
d dimensions. The worst-case cumulative regret satisfies

R(T) = O(ﬁ(\/log(KT) AVd+ logT)\/longoglogT) - @(\/dTlogK A d\/T) .

Discussion of Theorem 2} Theorem [2] establishes that BLCE also achieves the minimax-optimal re-
gret bound with only O(loglog T') batches. Its key distinction lies in computational: by removing
the G-optimal design step, BLCE significantly reduces both complexity and runtime yet retains the
best-known regret guarantees. As shown in Table [3] this makes BLCE the first batched linear con-
textual bandit algorithm to combine minimax optimality across both regimes with no reliance on
G-optimal design. Moreover, in the large-K regime, BLCE attains the smallest regret bound among
existing approaches (Abbasi-Yadkori et al.| 201 1; Hanna et al.| | 2023ajb)).

Remark 1. While prior work on batched linear contextual bandits typically assumes i.i.d. con-
texts (Ruan et al.| 2021} |Hanna et al.| 2023alib; |Zhang et al.| |2025), we show that this assumption
can be relaxed to the following batch-wise conditions (for any £ > 1)

(1) LaW(At‘./—"T(_l) ~Dy_1 fO}’ te [72,1 + ].,72+1] s
(2) At AL {Asvws ags rs}z—g Te 1+1‘]:7},1 fOl’ te [72 + 1a72+1} s
(3) Ag L {A,, x, uu,ru}u T 1+1|]-"7;271 for se€ (Te—1+ 1,74 .
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Algorithm 2 BLCE

)
1: Input: Horizon T'; batch end times 77 = [&—‘, T = (7}_1 + {%—‘ + 1) AT

for ¢ > 2; number of batches B, with T = T'; within-batch allocation rate ¢

2: Initialize: \ < 1, Hy < M, by < O;
3: fort < 1,2,...,7; do
4: Pull arm z; 4, € argmaxye 4, ||| -2, » and receive reward r;
o
5: L Ht_l — Ht_—ll - Ht_—llewatxzath_—ll/(l + Izath_—llxtaat)’ by <= b1 + TtTt,a,5
6: Vit HZ' 61« Vi 'op, Hy < AL by, « 0;
7: for{ < 2,...,Bdo
8: fort < Tp_1+1,...,7,do
9: fork<1,...,0—1do
k 5 k k=1) | 5 (K
10 L a:§ ) argmaxzeAikq)(x,@k), A§ ) {SL’ € A§ ) <9k7x§ ) x) < 2€t,k};
11: ift<7T, 1+ [ch’ﬂ/log2 log, T'| then
12: ‘ Pull arm z; ,, € arg Max, -1 H;L'||H;_11, and receive reward r;
13: else .
14: t Pull arm z¢ 4, € argmax__ -1 (x,6,_1), and receive reward 7;
t
15: B H[l — Htill — H;llxt,atxzatH;ll/(l + xzatH;llxtyat), by < b1 + 1% 0,5
16: | V7'« HZ' 6y + V. "oy, Hy, < M, by, + 0;

Given the history Fr,_,, condition (1) requires batches ¢ and {+1 to share the same condi-
tional law of contexts; condition (2) enforces that batch {+1 contexts are conditionally independent
of the contexts/actions/rewards realized in batch {; and condition (3) imposes within-batch con-
ditional independence of each context from earlier within-batch observations. These assumptions
are strictly weaker than full i.i.d.: rather than identical and independent sampling across all
rounds, we only require (i) equality of the conditional context law across consecutive batches and
(ii) conditional independence across and within batches. This relaxation affords greater modeling
flexibility while preserving the guarantees proved in Appendix|B]

4.2 TIME-COMPLEXITY OF ALGORITHMS

The computational bottlenecks of BLCE-G are the near G-optimal design step and arm elimination.
By Corollary El, each call to the near G-optimal design costs O (K d>) operations, giving a total cost
of O(Kd*T). For arm elimination, computing &, ;. requires O (K d?) operations; since the number of
elimination rounds % is at most O(log log T'), this step costs O(K d*T loglog T'). Thus, the overall
complexity of BLCE-G is O( K d?T'(d+loglog T))). For BLCE, the only bottleneck is arm elimination,
which follows the same procedure as in BLCE-G, yielding a total complexity of O(K d*T loglogT).

5 EXTENSIONS TO GENERALIZED LINEAR CONTEXTUAL BANDITS

5.1 PROPOSED ALGORITHM

Here, we propose BGLE (Batched Generalized Linear Contextual Bandit with Elimination), whose
pseudocode is given in Algorithm [3] To extend our approach to the generalized linear setting, we
build on the structure of Algorithm [2] In the first batch, the algorithm repeatedly pulls the most
informative direction with respect to the current Gram matrix (Line 4) and updates its inverse via
the Sherman—Morrison (Line 5). At the batch boundary, we set V; := H,, compute the MLE él for
the per-round log-loss ¢;(0) = m({z.q4,,0)) — r¢{¢.q,,0), and reinitialize Hr, for the next batch

(Line 6). For each batch ¢ > 2, the Gram matrix is weighted by oy g—1(\) f1({Z¢,q,, ég,1>), where
a1 (A) = exp(—2RS) Tig=1y + exp(—R(2S A Hl’t’at”Vk—lB()\))) Lig>2y
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(Line 17). Begmmng at batch ¢ > 3, the algorithm performs ¢ — 2 elimination rounds using the
estimates 92, .. Hg 1, yleldlng nested feasible sets A(2) A(z D (Line 11-12). Because no

elimination is conducted with 6y, we set A, = EO) = AEU. The elimination threshold &} ; (A) for
ke [¢ — 1]\ {1} is defined as

max, lylly,- (24RS(\/d TlogT + R(d+log T)/ V) + 25&) ,
ye

which, under the choice A = R?(d+log T'), simplifies to max e At ||y||V 1(50RSV/d +logT).

Within each batch ¢ > 2, the action selection strategy follows that of BLCE splitting the batch in
the ratio ¢ : (1 — ¢) between exploration and exploitation. The key difference is that arm selection
is based on the weighted Gram matrix (Lines 14 and 16). At the end of batch ¢, we set V; := Hry,,

compute the MLE 6, for ¢,(6), and reinitialize H-, for the next batch (Line 18).

5.2 REGRET ANALYSIS FOR BATCHED GENERALIZED LINEAR CONTEXTUAL BANDITS

To analyze BGLE, we introduce parameters that capture problem non-linearity. For any arm set A,
let z* € argmax,c 4 p((z, 6*)) denote the optimal arm, and define
L 1 R i((e",6))
K= max maXx — k= - L = max T .
Aesupp(D) ze A fi({x,0%)) Eapli({z*,0%)] " " .AGsupp(D)’u ’
Here, x captures the worst-case curvature, < the average inverse curvature at the optimal arm, and
R, the maximum derivative of the link function at optimal arms.

Theorem 3 (Regret of BGLE). Consider running the BGLE algorithm for T rounds with K arms in
d dimensions. The worst-case cumulative regret satisfies

R(T)=0 (RS\/d(d +log T)T log T log log T/f%) (leading term)
+ 0 ((RQSeSRSd(d +logT)log T loglog T + R/ loglog T)T1/3> (transient term)
= O(RSAVT V&) + O((R?Se*5d? + RYT'/3) .

Discussion of Theorem [3} Theorem|[3|shows that both the leading and transient terms of BGLE are -
free, in sharp contrast to (Sawarni et al.,|2024)), whose transient term depends on . Since 1(z) — 0
in saturation, s can grow arbitrarily large, so removing this dependence is a substantial improvement.
Moreover, BGLE uses only O(loglog T") batches, matching the lowest known batch complexity. Be-
cause % < R, the leading term in our regret bound is strictly smaller than that of [Sawarni et al.

(2024); by eliminating the extraneous d in +/d/#, our bound attains a sharper dependence on &,
thereby addressing the open question noted in that work. Finally, by building on the BLCE frame-
work, BGLE inherits substantially lower computational complexity.

Remark 2. The total time complexity of BGLE is O(Kd*T loglog T + CL%,), where the first term

comes from the BLCE, and the second from computing the MLE at batch boundaries.

6 NUMERICAL EXPERIMENTS

We evaluate the performance of BLCE-G and BLCE over a horizon of 7" = 10,000 across 10 inde-
pendent runs. At each round, K arms are sampled i.i.d. from a d-dimensional uniform distribution,
and the parameter 6* is drawn from a d-dimensional normal distribution. We consider four (K, d)
pairs: (1000, 5) and (5000, 10), representing the large-K regime, and (50, 20) and (100, 30), rep-
resenting the small-K regime. For comparison, we benchmark against state-of-the-art algorithms:
RS-OFUL (Abbasi- Yadkori et al.,[2011)), BatchLinUCB-DG (Ruan et al., 2021)), SoftBatch (Hanna
et al.| 2023b), and BatchLearning (Zhang et al.,|2025). Hyperparameters are set consistently with
theory, ensuring all choices satisfy the required conditions: BLCE-G and BLCE use within-batch allo-
cation rate ¢ = 0.5; RS-OFUL uses switching parameter C' = 1; and SoftBatch employs discretiza-
tion parameter ¢ = 1/(8/d). Algorithms requiring G-optimal design are implemented using the
same near G-optimal routine. Due to the substantial computational overhead reported in Table[T] we
omit regret plots for the methods of Hanna et al.| (2023b).
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Figure 1: Regret, zoomed-in regret, and batch complexity over time for different values of K and d.

We present three types of figures: (i) the average cumulative regret (solid line) with its standard devi-
ation (shaded region) over 10 runs, (ii) zoomed-in views of regret curves to highlight the differences
between BLCE-G and BLCE, and (iii) the average batch complexity across 10 runs, showing the fre-
quency of policy updates. As shown in Figure[I] both BLCE-G and BLCE consistently outperform all
baselines in both large- K and small-K regimes, achieving the lowest regret with greater stability.
Runtime comparisons in Table [3] further show that our methods incur substantially lower compu-
tational cost; in particular, BLCE, which eliminates G-optimal design entirely, achieves the fastest
runtime among optimal algorithms, comparable even to suboptimal baselines. Overall, these results
demonstrate that BLCE-G and BLCE combine minimax-optimal regret with practical efficiency.

For generalized linear contextual bandits, BGLE likewise outperforms the baseline, achieving lowest
regret, stable performance, and reduced computational cost. Detailed results are provided in Ap-

pendix[D.2]

Table 3: Average runtime (seconds) over 10 runs.

Suboptimal algorithms Optimal algorithms
(K,d) RS-OFUL  SoftBatch  BatchLinUCB-DG  |[Hannaetal|(2023b)  BatchLearning  BLCE-G BLCE
(1000, 5) 0.85 1.18 290.87 Exponential 166.17 23.40 5.91
(5000, 10) 4.15 13.17 1300.01 Exponential 621.09 40.27  12.83
(50, 20) 0.42 1.74 1031.66 Exponential 45.85 2.26 1.06
(100, 30) 0.61 3.50 2987.07 Exponential 77.01 3.70 1.62
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REPRODUCIBILITY STATEMENT

All theoretical results in Section are accompanied by complete proofs provided in the appendix,
and the full set of employed assumptions is clearly specified in Section [3.2] and Section [3.3] The
numerical experiments reported in Section [6] and additional experiments in Appendix [D] are fully
reproducible: we provide the source code, along with implementation details, as supplementary
material to facilitate verification and replication of our results.

USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were used solely as an assistive tool for writing. Specifically, we
employed an LLM to improve clarity, grammar, and style of exposition. No part of the research
ideation, algorithm design, theoretical analysis, or experimental results involved the use of LLMs.
The authors take full responsibility for the content of the paper.
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Appendix

A  PROOF OF THEOREM 1

Lemma 1. (Yu & Oh, 2025) Let V; be the Gram matrix and ég be the least squares estimator
obtained from the contexts in the (-th batch (¢ > 1). Then, for any x € RYand 0 < 6§ < 1, the
following inequality holds with probability at least 1 — §

|<$79z—9*>|<< 210g (; )+f> Jelly+

Lemma 2. (Yu & O [2025) Let V; be the Gram matrix and ég be the least squares estimator
obtained from the contexts in the {-th batch (¢ > 1). Then, for any 0 < (,6 < 1 and d > 2, the
Sfollowing inequality holds with probability at least 1 — ¢

oo o V@ Dlostate) +2108CBE) + VA
H L — ||V€ — 1— C
Lemma [I] and Lemma 2] were originally proved in the linear bandit setting. However, the proofs do

not rely on the non-contextual assumption that the feature vectors of arms remain fixed. Therefore,
the results can be directly applied to the linear contextual bandit setting as well.

Corollary 1. Let V; be the Gram matrix and 0y be the least squares estimator obtained from the
contexts in the {-th batch (¢ > 1). Then, for any 0 < § < 1 and d > 2, the following inequality
holds with probability at least 1 — ¢

. . 26d=57q

Proof. Substituting ¢ = 0.5 into Lemma 2] yields the desired result. O

Lemma 3 (Good event). Define the following quantities:

(£-1) -
;?(5) = \/2log <2At ‘6(B UT) + \f/\,

26d=37d(B — 1)2
2\/10g ( 5152 ) +2VA,

ce@) = max [yl - (876) 787 9)) -
Yy

cAlf=Y

20) -

Here, § is a constant in the interval (0,1). Then, the following event E holds with probability at

least1 — 6§ ,
ﬂ N { (2,0, — 07)| < e0.0(6), Va € Ag‘“”} .
=1 t=To+

Proof. Fix arbitrary ¢ and ¢. By Lemma the following inequality holds for all z € AE’H) with
probability at least 1 — ﬁ

(£-1)
) 2 B-1T
(@, 00— 07) < max [yl \/210g< 4 1B )+ﬁ

yeA

Applying a union bound over all £ and ¢, the following event holds with probability at least 1 — g

B—1 T
N N {|<~T792—9*>|< max [yl ), v:ceA,E‘f‘”}. (1)
yeA

{=1 t=Ty+1

12
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Next, for fixed ¢, by the Cauchy-Schwarz inequality and Corollary[I] the following inequality holds

forall t and x € Agé_l) with probability at least 1 — ﬁ

. A 26d-37d(B — 1)?
[, 00— < el 60 wﬁyelﬁgxl)”y”w1'<2\/10g( e ))+2ﬁ>-

A union bound over ¢ yields the following event with probability at least 1 — %

ﬂ N {xée—e*ns max |ylly-: - 57 (6), v:ceA,Ef—”}. @)
yeAEI‘Ll) ¢ )

(=1 t=Ti+1

Combining event (I} and event (2)), we conclude that the following event holds with probability at
least 1 — §

1

— T
m N { (0,00 =07} < max, lwlly, - (B 6) A B2(®)), Vo € AL ”}
(=1 t=To+ yes

O

Lemma 4. Let E be the good event defined in Lemmawith 0= % Conditioned on E, the optimal
arm T} € argmaxge 4, (x, 0*) is never eliminated at any round t. In particular,

x;‘eAﬁl), forall 1 << B—-1and Tp+1<t<T.

Proof. Fixt € [T; + 1, Ts41] for some s € [B — 1]. We show by induction on ¢ that x} € Ay) for
all ¢ € [s].
Base case (¢ = 1). Since both z} and :vl(tl) belong to AEO) (= A;), we have

= (6, — 0", 2" —a}) + (072" — )
< (b - o*,xﬁ” —aj)
N * 1 N * %
|01 =07, 2) | + 1001 — 07, 7))
where the first inequality follows from the optimality of 7 and the last from the definition of the
good event E. Hence z; € Agl).

Inductive step. Assume z; € Ay*l) for some ¢ € {2,...,s}. Since 331(5[) € A(e 2
similarly obtain

(O, 2 —ap) = (00— 0%, 2" —a}) + (07,2 — )

which shows that z; € AEZ). By induction, the claim holds for all £ € [s], completing the proof. [J
Lemma 5. (Abbasi-Yadkori et al., 2011) Let {x1,...,x,} C R? be a sequence of vectors such

that ||xz\|2 <1 for all i € [n]. Let Hy € R4 be a positive definite matrix, and define H; =
Hy + Zl 1 %5 x] . Then, the following inequality holds

n

. det(H,,)
R dettin) )

;mln {17 ||73t||H;11} < 2log (det(Ho)>

13
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Corollary 2. Let {z1,...,7,} C R? be a sequence of vectors such that ||z;||s < 1 for all i € [n].
Suppose A > 1, and define Hy = X\ and H; .= \I + Z);:l z;x; foreacht € {1,...,n}. Then,

forany1 <m <mn,
det(H,,)
2, <2log | —=" ) .
Z ||mt” 1 (det(Hm_1)>

Proof. Since H, ', < A\~ for all t, it follows that F,"", < A~'I < I. Consequently,

T ”?{—1 <
[|¢]|3 < 1 for each t € [m,n]. Applying Lemma [3|over the interval [m, n] yields the stated bound.
O

Lemma 6 Let H be a positive definite matrix. Suppose x € R? satisfies | z||? 4r-1 < c Then
cH = zz7.

Proof. For any z € R?, we have

2T (cH)z > x|} - 2|3 = |H 22|? - |H=2|* >

(x,2)> =2 (zz ")z .

The first inequality follows from the assumption ||z||3,_, < c. The second inequality follows from

the Cauchy—Schwarz inequality. Since this bound holds for all z € R?, the matrix inequality cH >
zx " follows. O

Lemma 7. (Ruan et al.| |2021) Let x1,...,x, be independent and identically distributed (i.i.d.)
random vectors drawn from a distribution D such that ||z;||2 < 1 almost surely. For any cutoff level
A > 0, the following inequality holds with probability at least 1 — 2d exp(f%‘)

1 — 1
R)V —E szl ==
+n TiT; =

']
i=1 8

Ezup [xas

Corollary 3. Let x1,...,x, be independent and identically distributed (i.i.d.) random vectors
drawn from a distribution D such that ||z;||2 < 1 almost surely. Then, the following inequality
holds with probability at least 1 — %

24 log(dT 1 o 1

%I + - ;x,xj > gExND [sz]

Proof. The proof is a direct application of Lemma [/} We achieve the desired inequality by setting
the cutoff level A to A = &%MT). O

Lemma 8. (Todd & Yildirum| 2007) Let X = {x1,...,xx} C R? be a set of K points that spans
R, and fix ¢ € (0,1]. Then Khachiyan’s barycentric coordinate descent algorithm computes a
(1 + &)-approximation to the minimum-volume enclosing ellipsoid of X in

O(Kd2 ([(1 + )% @D — 1]~ 4 log d))

arithmetic operations. In particular, since [(1 + £)2/(@+1) — 1)1 = ©(d/e) for € (0, 1), the total
time complexity simplifies to
o(£L2) .

Corollary 4 (Near G-optimal design). Let X = {x1,..., 25} C R? and letr = rank(X) < d. Let
U e Rd” have orthonormal columns spanning span{z;}, and define =, :== U z; € R" together

with X' ( w; XLk for w € Ak (K-dimensional probability simplex). Applying the

algorlthm of Lemma-to {x e with accuracy parameter fixed to € = 1 returns weights w, € Ak
such that

-1
T / /
jnel?i?] ;z:; (Z (wo)) r; < 2r,

O(Kr2([(1 1)/ D) _q)-1 +logr)> = O(K1?)

14
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arithmetic operations. Equivalently, in the original space we have

K
T + o T 17— 77T
(X (wo) ™M)z, < 27, here & -—E i, , IL:=0U0" ,
;relfﬁ(]x]( (wo)TI) a; T where ¥(w) i:1w ;X

with T denoting the Moore—Penrose pseudoinverse. Hence w, is a constant-factor near-optimal
design in the effective dimension r, computed in polynomial time O(Kr3) by the method in LemmaE?]

Proof. Consider the subspace spanned by {z;} of dimension r, let U be an orthonormal basis, and
project '} := U "z; € R". The MVEE and D /G-optimal design problems are equivalently posed in
R", and guarantees for 2 and X' (w) := Y, w;x; transfer back to the original space through the
projector IT = UU " and the Moore—Penrose pseudoinverse. By Lemma Khachiyan’s barycentric
coordinate descent computes an e-approximate MVEE of {z}} in

O(Krz([(l + 6)2/(T+1) —1]7 1+ logr))

arithmetic operations; fixing e = 1 gives O(Kr3).

Moreover, the standard MVEE <« D/G-optimal duality and the algorithm’s stopping rule imply
that the returned weights w, € Ay satisfy the constraint-violation guarantee

—1
T / !
T(Pwa) o < :
jnel[%ﬁc]x] ( (wo)) x; < (1+¢)r
With € = 1 this yields

-1
-
Jrél%m; (Z’(wo)) xh < 2.

Finally, lifting back to the original space uses the identity

K
-1
x! (E’(wo)> o = x) (X (we) ™) a; Y(w) := sz zix; , M:=UU",

J J
i=1

so that
T +
max z. (IIX(we) ) x; < 27.
i ] (I100) 1) ;. <
Hence w;, is a constant-factor near-G-optimal design in effective dimension r, computed in polyno-
mial time O(K73) by the method in Lemma

Proof of Theorem 1. To establish the claimed batch complexity bound, we analyze the lower bound
on the length of the ¢-th batch, where £ = [log, log, T'|. By definition of the schedule, the length of
this batch is at least
T1_24 Tl_gf [logs logs T'] T1_2— logo logy T Tliﬁ T
> = = .
’V -‘ logs log, T~ loggylog, T logylog, T' 2log, logy T

log, log, T

Since the batch length is non-decreasing in ¢, every batch with index ¢ > [log, log, 7] has length
at least m. Given the total time horizon 7°, the number of such batches is therefore at most
[21og, log, T']. Including the initial [log, log, 7] — 1 batches, the total number of batches B is
bounded by

B < [2log,log, T'] + [logy logy Tl — 1 < 3log,log, T+ 1,
which implies that the batch complexity is O(loglog T').

Next, we begin by decomposing the cumulative expected regret based on the good event FE.
The regret can be written as

RMTM)=> > E

k=1t=Tr_1+1

max(z,0") — (v4,q,,0")

B Tk
|:I€.At
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- kZitzgjlﬂE {@;; 0, 07) ‘E} P(E°) + E {@; _ xt,at79*>‘E:| P(E) .

Using the triangle inequality followed by the Cauchy-Schwarz inequality, we have

(#{ = 210, 07) < (2] — 210, 07)]

< (@, 0+ (@0, 07)]

< [z {1 10711 =+ llta, 1 - 1671
2,

IN

where the last inequality follows from Assumption[I] Hence, the cumulative expected regret can be
bounded as

B Tk
R <27 PE)+Y. Y E[(x: - $t7au9*>’E:| P(E)
k=1t=Tr_1+1

B T
<om+Y Y E[@c:—xt,wm

k=1t=Tr_1+1

where the O(1) term follows from the high-probability guarantee P(E°) = O(1/T"). Throughout
the remainder of the analysis, we therefore condition on the good event E. Let Regret, denote the
cumulative expected regret incurred during batch ¢. We analyze the regret separately for the case
¢ =1 and for all subsequent batches ¢ > 2.

Case 1: / = 1. In the first batch, the number of rounds is 77 = [&1 + 1, and the instanta-

neous regret is bounded by 2. Therefore,

Regret; = iE[(m* — Tt q,,0")] <271 <2 L +2 = O(ﬁ) .
! — ¢ e - ~ "\log,log, T

Case 2: / > 2. For each batch ¢ > 2, the rounds following the arm elimination steps are divided
into three phases:

_o—t 1-2—¢
Phases 1 & 2. In the first two phases of length [ T2 —‘ + [C(lfc)T —‘ , the algorithm selects

log, log, T' log, log, T'
arm according to a near G-optimal design and the most informative direction with respect to the
current Gram matrix. For any round ¢ in these phases, the instantaneous regret satisfies

(@} = Tra,,07) = (@} = Tpa,, 0" — Op1) + (@} — T4, 001)
(£-1)

< <J3: - xtﬂt?e* - é€—1> + <xt = xt,améé—1>

< wf, 001 — 0%)] + |(Tt,a0, Oe—1 — 07| + 26401

<depo-a . 3)
The first inequality uses the fact that xf‘l) is optimal with respect to 6,_, and that xy belongs to

AEZ_Q) by Lemma E The second inequality follows since z; ,, € Aﬁe‘” by construction of the

arm elimination step. The final inequality follows from the definition of the good event E and again

from Lemma@ which guarantees x; € Aﬁé‘z).

Phase 3. In the last phase, the algorithm selects arms greedily with respect to the estimated

parameter, i.e., Ty 4, € arg max -1 (x,0¢—1). For any round ¢ in this phase, the instantaneous
t

regret satisfies

(@ = T40,,07) =
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<2601 4)

The first inequality follows from the fact that x; ,, is optimal with respect to ég 1 and that xy
belongs to A by Lemmal 4l The final inequality follows directly from the definition of the good

event IV and from Lemmafd] as in Phases 1 & 2.

Therefore, it suffices to upper bound the quantity ZZ*TI[ 41 €t for each £ € [B — 1], which
reduces to bounding the sum Zt Tt max, -1 ||y|\V[1. Since both V7 and the arm elimina-

tion rule—determined by 91, ey 6y_,—are measurable with respect to F,, they can be treated as
fixed quantities conditional on this filtration. Given that the contexts are drawn independently and
identically, it follows by the tower property that for any ¢, v € [Ty + 1, T¢41], we have

el e, w70 =2[E] e o7 ||

=E E{ max y ‘Q ‘fn]]

yeAL—D
— ~1
=K Iﬁgxl) Y V y} . (5)

_o—4
and 7)), =T/, + [M—‘ for all # > 2, whereas for

Deﬁnen 1= 7} 1+ ’Vlog log, T—‘ log, log, T'

the first batch (¢ = 1), we set T = To+ [%-‘ and 7" :== T1. Now, fix any ¢t € [Ty +1, To41]

and consider the interval s € [T/, + 1,7, ,]. Then, we have the following result

T T -
> E[ e, v v }S > E s,y TH 14
s=T/_,+1 ye s=T/_,+1
T -
= Z E IE{ max yTH ‘}—Slﬂ
527-[/_1_,’_1 L yE.A
T -
= Z E(E max y H 1y’]:5 1”
5:7-@/714,’»1 L yeA;
T -
_ T
= Z E max =y H_ 14 (6)

3:72/,1 41 LyeAs
The first inequality follows from the monotonicity of the matrices, as Hs_; =< V; for all s in the

interval. The first and last equalities follow from the tower property. The second equahty uses the

fact that, conditional on F;_1, both H,_; and the arm elimination rule (determined by 01, .. 9,3 1)
are fixed, and the distribution of the contexts remains unchanged due to their i.i.d. nature.

In Phase 2, the algorithm proceeds by selecting the most informative direction at each step
with respect to the current Gram matrix. For all £ > 1, we obtain

T [ T
T _ T
O DO Y
s=T/_1+1 Y Ls=T,/_1+1 Y
[ T
=E Z xlasH;llxs’as
Ls=T,_,+1
[ det(HTu )
<E |[2log | ————— 7
| g (det(Hn/l) ; (7

17
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where the second equality follows from the arm-selection strategy of Phase 2, and the first inequality
follows from Corollary [2]

Next, we establish a probabilistic bound on the Gram matrix. With probability at least 1 — %, the
following holds for all ¢ > 1

T
_ T
HTZIL1 - HTeLl + Z Ls,asTs,a,
s=T/_;+1
T
= H7},L1 + Z 2d - ]EZNWG/(.A&[A)) [ZZT]
s=T/_1+1
T/
2Ty, T S .
= HT' + —" E o~ (e—1) [ZZ ]
0—1 72/71 _72_1 5:7;+1 zeomer (As )
ot ,
16d (m + 1) T
= an_l 4 FQng g22 - | 24log(dT)I + Z IS@SJSI,,,S
lé)g2 log, T’ s=Tp_1+1
384d  384dlog,log, T
= <1+ c + 271271 Hry
(3840 + 385)d
= c2 HELl

The first inequality follows from the application of Corollary f]together with Lemma|6] The second
equality holds because the contexts are drawn i.i.d., which allows the sum over the current phase
to be related to the sum over the previous phase by a scaling factor. The second inequality follows

directly from Lemma([7]since in Phase 1 the algorithm selects arm according to a near G-optimal de-

sign. The third inequality follows from the bound 24 log(dT)I—i—Zz—é T 41 Tsa. xja < 24H7;

Finally, the last inequality is obtained by simplifying constants, using the facts that 1 < C% and

logy log, T < T2 forall T > 1.

We define the event F,, which occurs with probability at least 1 — %, as

384c + 385)d
( i, )

0= {Hn”_l = 2

This event ensures that the Gram matrix does not grow excessively during Phase 2 of the algorithm.
Conditioning on E; and E, we obtain the following upper bound for , valid forall / > 1

t(Hry )

21og<d Wy )>]
det(Hryr )

2log (det( 1))

£—1
4 2
< 2dlog ((386:2385)61) + 2 E |20

11
Tl

E E{ max -y H 14 <E
1)
S=7—z/71+1 ye.A

=E P(E;) +E ES| - P(ES)

det(Hr»
2log M
det(H7; )

det(HULl) c
g( det(\) ) E‘]

I—l

T
17 d

< 2dlog (769 ) E |log (((;)/)) ES

< 2dlog (769 ) T log (1 + 3;\)

< 2d1og (769d> 4d Oi(ZT) . ®)
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The second inequality follows from the definition of E, and its high-probability guarantee. The
third inequality uses ¢ < 1 and replaces the determinant by the bound det(H) < (tr(H)/d),
which is a consequence of the AM-GM inequality. The fourth inequality applies the fact that
[[z]l2 < 1 for all contexts, which implies tr(H7, ) < dA+T.

Now, we establish an upper bound on the cumulative expected regret. By combining the

bounds derived in (3) and (4)), we can bound the cumulative expected regret for batch ¢, denoted by
Regret,, for any ¢ > 2 as follows

Te

Regret, = Z E[{z} — xt.q,,0")]
t=Ty_1+1

:4Z]E d

t=Ty_1+1

<4Z

t=T¢—1+1

1) 2 (2) 2
max vl AB
ye A2 Hy|| < et (7 ) bt (7 >)

15d 1

The last inequality follows from the fact that the size of the candidate arm set satisfies
|A§ei2)| < |A = K forallt € [Te—1 + 1,7, allowing us to upper bound the confidence
parameter 55,14)71 uniformly over the action set.

Using , (H), and , we can bound the summation ZZT[ 1 E [maxyeA(efz) Hy||V[_1}
= t -1

for any £ > 2 as

Te Te

> E maxlylly,-1 | < > L\|E mixz)ywz Ly
t=Ty_1+1 yE.A t=T¢_1+1 YEA,

=(Te—Ti—1) 4| E| max yVely

A(" 2)
Tils
T =T -
< — E E| max yTH
"o T yE.A(e 2)
£—2 -2 s=T,/_,+1

9d\  4dlog(2T
>+ og(27)

SL \/2d1 762
VT =Ty ¢

T
p1-27*%
< log, log, T 2d1 769d> + 4d 10g(2T)
N c(l1—c)T1— 21-¢ 02 T
log, log, T'

m%XZ)HyHV 1] . <\/210g(K( —1)7?2) _|_\f/\ \/lo 26d=57d(B —1)2T2> +2\f)\> -

T log, log, T 769d 4dlog(2T)
= 3 ~4/2d]
(\/0(1 —¢)logy logy T + \/c(l —c)Tt-27" B\ + T
T 3 769
< + -1/2dlogd+2|log| — | +2]|d
<\/c(1 —¢)logy logy T \/m> \/ & ( & ( c? ) )
<. dT logd 7
log, log, T
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where ¢ is arbitrary in the interval [Ty_; + 1, T¢], and we define ¢’ := 4 %97/5)2”3). The first

inequality applies Jensen’s inequality to move the square root outside the expectation. The first
equality follows from (5), while the second inequality uses the bound in (6). The third inequality

follows from . The fifth inequality follows from the facts that log, log, T < 72" and
log(2T) < T for all T > 1. The final inequality uses the bounds 1 < m and d < dlogd for
allT >1andd > 3.

We now derive the cumulative expected regret after the first batch. Based on the previously
derived results, the total regret from batches £ = 2 to B can be bounded as follows

dT logd 26d=57d(B — 1)27?
/
E Regret, < E 4c ”10g2 og, T <\/210g —1)17?) +\f/\ \/lo a1 +2V\

=0 <\/dT log dloglog T - <\/10g(KT) + /log (dT) A \/ dlog <f§> + log(dT) + log(dT)>>

:O(\/dTlogdloglogT~ (\/log(KT)+\/logT/\ Vd+logT + \/logT))
= O(\/dTlogdloglogT~ (\/log(KT)/\ \/d+logT)) :

The first equality follows from substituting B = O(loglogT) and A = log(dT"). The second
equality holds in the regime where T° > d. This is a safe assumption, as for 7" < d, the total regret
is trivially bounded by R(T) = S/ E[(x} — 21,4,,0%)] < 2T < 2V/dT = O(VdT), which is a
much smaller bound.

Thus, the total worst-case regret is bounded as

B
<y > wfe sl
k=1t=Tr_1+1
B

= Regret, + Z Regret,,
k=2

—O(T)+0 (\/dTlogdlog log T - (\/log(KT) Ad+ logT>)

=0 (\/cﬁ (\/log(KT) A \/d+10gT) \/logdloglogT) .

Therefore, the worst-case regret for the algorithm is given by

R(T) = O (\/CTT (\/10g(KT) A +\/d+ log T) Vlogdloglog T) -0 (\/WA d\FT) .
0
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B PROOF OF THEOREM 2

Proof of Theorem 2. As Remark[I|encompasses the standard i.i.d. context assumption, we establish
Theorem [2Junder the more general conditions specified therein.

To establish the claimed batch complexity bound, we analyze the lower bound on the length of the
¢-th batch, where ¢ = [log, log, T']. By definition of the schedule, the length of this batch is at least

T1727[ T1727 [logo logg T'] T1727 logg logg T Tl_$ T
> = = .
logyloge T = logylogy, T logy logy, T 2logy logy T

log, log, T

Since the batch length is non-decreasing in ¢, every batch with index ¢ > [log, log, 7] has length
at least m. Given the total time horizon 7', the number of such batches is therefore at most
[2log, log, T']. Including the initial [log, log, 7] — 1 batches, the total number of batches B is
bounded by

B < [2log, log, T + [logy logy Tl — 1 < 3log,log, T+ 1,

which implies that the batch complexity is O(loglog T').

Next, we begin by decomposing the cumulative expected regret based on the good event F.
The regret can be written as

B Tr
R(T) = Z Z E 3{22}4}((:13,6‘*) - <$t,a“9*>]
k=1 =T} +1 !

E} P(E°) + ]E{{x;‘ - xt,at79*>’E} ‘P(E) .

B Tk
:Z Z IEI:<CC;K —xt’atﬁ*)

k=1t=Tk_1+1
Using the triangle inequality followed by the Cauchy-Schwarz inequality, we have

(27 = @4,0,,0%) < [(2f = T4,0,,07)]
< [z, 07) + (@10, 07)
< [l [F- 16711 =+ llt,a, 1 - 1671
<2,

where the last inequality follows from Assumption [I] Hence, the cumulative expected regret can be
bounded as

B Tk

R(T)<2T-P(E)+Y Y E[@;: - xmt,ﬁ*)‘E} - P(E)

k=1t=Tr_1+1

where the O(1) term follows from the high-probability guarantee P(E°) = O(1/T"). Throughout
the remainder of the analysis, we therefore condition on the good event E. Let Regret, denote the
cumulative expected regret incurred during batch ¢. We analyze the regret separately for the case
¢ =1 and for all subsequent batches ¢ > 2.

B Tk
<om+y, Y E[@Z‘xt,aum

k=1t=Tr_1+1

Case 1: / = 1. In the first batch, the number of rounds is 71 = [%W , and the instantaneous
2 2

regret is bounded by 2. Therefore,

T
Regret, = ZE[(:U;‘ — Tq,,0")] <271 < 2<\/T + 1) = (’)(\/T) :

—~ logy logy, T
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Case 2: ¢ > 2. For each batch ¢ > 2, the rounds following the arm elimination steps are divided
into two phases:

Phase 1. In the first phase of length {

with respect to the current Gram matrix. For any round ¢ in these phases, the instantaneous regret
satisfies

4
W—‘ the algorithm selects the most informative direction

(2] = Tt 07) = (2] — Te,a,, 07— Oo1) + (2] — Tea,, 001)
< (x} — T40,,0" — 9671> + <$§471) - xt,at7é€71>
< Wat 01— 0*) 4 [(r.ap, o1 — 0°)| + 26101
<dep o1 . )

(1) .

The first inequality uses the fact that x; is optimal with respect to 6,_1 and that xy belongs to

Agé 2) by Lemma E The second inequality follows since x; ,, € Ag_l) by construction of the
arm elimination step. The final inequality follows from the definition of the good event F/ and again

from Lemma@ which guarantees z; € AEZ_Z).

Phase 2. In the last phase, the algorithm selects arms greedily with respect to the estimated

parameter, i.e., Ty 4, € arg max, -1 (x,64—1). For any round ¢ in this phase, the instantaneous
t

regret satisfies

<xf — -rt,ame*> = <$: - ﬂft,aﬁe* — ée—1> + <$f — xt,ataé€—1>
<(xf = Tta,,0" —001)
< [, 001 — 0°)] + [(@r,a,, 001 — 07)]
< 2e40-1 - (10

The first inequality follows from the fact that x; ,, is optimal with respect to ég 1 and that xy

belongs to A by Lemmal 4l The final inequality follows directly from the definition of the good
event I and from Lemmald] as in Phase 1.

Therefore, it suffices to upper bound the quantity ZZ*TI[ 41 €t for each £ € [B — 1], which

reduces to bounding the sum Zt Topamax - [lyl[,-1. Since both V; and the arm elimina-
£

yeEA,
tion rule—determined by 01, . 705_1—are measurable with respect to F7,, they can be treated
as fixed quantities conditional on this filtration. Moreover, conditional on F7, the action sets

{As}z—i% 1 are identically distributed with common law D,. Hence, by the tower property, for any
t,v € [Te + 1, Tey1) we have

el e, 7o) =2[E] e o7 ||
S ye

=E E{ max vy VZ ‘fn”

yG.A(lZ D
=E| max y'V, y} (1T)
Lyeal—

Define 7, | = Te—1 + {W—‘ for all £ > 2, while for the first batch we set 7 := 77. Now fix
any t € [Ty + 1, Te4+1] and consider the interval s € [Ty—1 + 1, 7/_;]. Then we obtain

T4 T4
Z IE[ max yTV y} Z E{ max yTH }
A([ 1) GA([ 1)
s=Tp_1+1 ye s=Tp_1+1 Y
T
= > E{E{ e, v Hs_—lly’fn1\/U(Hs—1):|:|
s=Tr_1+1 ye
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=
= Z E[E{ max =y H;fly’fnl\/U(Hs—l)H
s=Tp_1+1 yeA;
Ti—1
— Z ]E{ max_y Hslly] (12)
s=Te_1+1 yE‘A( )

The first inequality follows from monotonicity of the matrices, since H;,_1 < V; for all s in the
interval. The first and last equalities follow from the tower property. The second equality relies on
the fact that, conditional on F7,_, V o(Hs_1), both H;_; and the arm elimination rule (determined
by éh .. ég 1) are fixed. Moreover, conditional on F7r,_,, the action set A; is independent of
{Ay, xy, %,rv}v 7o 1 fort € [T+ 1,Tgy1], and Aj is independent of { Ay, ., au,ru}u T 41

fors € [To—1 +1 72] Hence conditional on Fr,_, V o(Hs_1), both A; and A, share the same
conditional law Dg_l, which justifies replacing A; with A, in the inner expectation.

In Phase 1, the algorithm proceeds by selecting the most informative direction at each step
with respect to the current Gram matrix. For all £ > 1, we obtain

/ ’
Ti-1 Ti—1

Z E| max yTH =K max yTH
eAlD e AL
s=Te_1+1 Y | s=Te—1+1 Y
[ T
T -1
=E Z xs,as Hs—lxsﬂls
|s=Te—1+1

[ det(HTng)
- . ) d
<E |21og <(t<HT)/d)>]

A4
T

< 2d1 14+ —

< 2atog (14 )

< 2dlog(2T) , (13)
where the second equality follows from the arm-selection strategy of Phase 1, and the first
inequality follows from Corollary ] The second inequality replaces the determlnant by the bound
det(H) < (tr(H)/d)?, which is a consequence of the AM—GM inequality. The third inequality
applies the fact that ||33||2 < 1 for all contexts, which implies tr(H7; ) < dA+T.

Now, we establish an upper bound on the cumulative expected regret. By combining the
bounds derived in @I) and , we can bound the cumulative expected regret for batch ¢, denoted
by Regret,, for any £ > 2 as follows
Te
Regret, = Z E[{z} — xt.q,,0")]
t=Tr_1+1

=4 Y E

t=Ty_1+1

(2 @ (2
- — A =
veﬂzx Hy”V < et (T) Prit (T>)

_ 1)2T2

<1y s
t=T¢—1+1
The last inequality follows from the fact that the size of the candidate arm set satisfies

|A§e_2)| < |A = K forallt € [To—1 + 1,7, allowing us to upper bound the confidence

(4 2)
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parameter Bt(lz)fl uniformly over the action set.

Using l| 1) and 1i we can bound the summation ZZTL; 1 E [maxyeAu_m Hy||V[1 for
- t (—1
any £ > 2 as

Te
> Engx2>||y|V,g]< > \[E

t=Te—1+1 t=T¢—1+1

max y'V,_
et n Y Ve 1y

= (Tt —Te-1) - |E| max yTV, 1y

yEA(e 2)
T/
— T —
< > E| max yTHy
1/7—' —Toe—2 \ s=Ts 41 LYEA:
< — T 2dlog (2T)
\ 77—2 - 72*2
pi-27¢
L +2
logs log, T
logy log, T 10%2
logs, logy, T
- 0820822 )\ /adlog (2T)
clog2 log, T cT1-2
< -24/dlogT
(\/ clogQIOgQT f) 8
, dT'logT
log, log, T

where ¢ is arbitrary in the interval [T;_1 + 1, 7¢], and we define ¢’ := %. The first inequality applies

Jensen’s inequality to move the square root outside the expectation. The first equality follows from
(TT), while the second inequality uses the bound in (I2). The third inequality follows from (T3).

The fifth inequality follows from the facts that log, log2 T < 712" and log(2T) < 2logT for

all T' > 2. The final inequality uses the bounds 1 < W forall T > 1.

We now derive the cumulative expected regret after the first batch. Building on the previ-
ously established results, the total regret incurred from batches / = 2 to B can be bounded
as

B
| dTlogT 26d—5 (B — 1)2T2
R < 4ac || ———— - 2log (K (B —1)T? 24 /1 2
; egretg_;:; c ogy Tog, T <\/ og (K ( ) )—i—\[\/\ og( a1 +2VA
64
=0 <\/dTlongog logT - <\/log(KT) A \/dlog (15> + log(dT)>>

-0 (\/dT log T'loglog T - <\/10g(KT) Ad T 1ogT)) .

Here, the first equality follows from substituting B = O(loglogT) and A = O(1), while the
second equality holds because the log(d) term is dominated by d.

Thus, the total worst-case regret is bounded as

B

k=1t=Tr_1+1
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B
= Regret; + Z Regret,,
k=2

= O(\/T) +0 (\/dTlongoglogT- (\/log(KT) A \/d-l-logT))

=0 (\/dT (\/Iog(KT) AVd+ logT> V1og T'log logT) .
Therefore, the worst-case regret for the algorithm is given by

R(T)=0 (\/ﬁ <\/log(KT) A \/d—i—logT) \/longoglogT) =0 (W/\dﬁ) .
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Algorithm 3 BGLE

1
1: Input: Horizon T'; batch end times 7, = 41()(«;231%—‘ for? < 3,7, = (72_14- [%—‘ ) A

T for £ > 4; number of batches B, with Tg = T'; within-batch allocation rate c;

2: Inmitialize: \ < R?(d +logT), Hy < A,

3: fort + 1,2,...,7; do

4: Pull arm z; ,, € arg maxgec4, ||ac||H_11 , and receive reward r;
o

5: Ht <— Ht—l + xt,atl{a,}

6: Vi < Hr,, 0) < argming /%, 0,(0), Hy, < AI;

7: for £ < 2,...,Bdo

8: fort < Tp—1+1,...,7,do

9: if £ > 3 then

10: fork <« 2, ...,/ —1do

N N

11: xg ) argmaxweAEk_l)@,Hw;

12: AR L g e Ak ‘ (O, 2 — 2) < 25;’,6(/\)};

13: ift <71+ [CT1*2«44W>/3/log;2 log, T'| then

14: ‘ Pull arm z; ,, € arg Max, -1 Ha:||Ht__11 , and receive reward r;

15: else A

16: t Pull arm x,; o, € arg max_ _ 41 (x,6,_1), and receive reward 7;
t

17: | Hy < Hyq + at,é—l@\)ﬂ((zt,a“9@—1))5615,%1;%;

18: Ve <— Hr,, 0, < argming Zzﬁin,lﬂ 0.(0), Hr, < M\,

C PROOF OF THEOREM 3

We begin by assuming that the MLE estimator 6, obtained by minimizing the log-loss objective,

always satisfies the boundedness condition ||é |2 < S.If this condition does not hold, one may
instead apply the non-convex projection technique of [Sawarni et al.|(2024). The projected estimator
preserves the same guarantees established in|Sawarni et al.|(2024), up to a multiplicative factor of 2.

Therefore, the assumption [|d]]2 < S can be made without loss of generality.

Lemma 9. For any x € [0, C|, the following inequality holds

z(e —1)
T —— 1.
e’ < o +

Proof. Apply the definition of convexity, f((1 — a)a + ab) < (1 — a)f(a) + af(b), to f(t) =€’
witha =0,b=C,and o = z/C € [0, 1]. This gives

=040 < (1 _0)e® + ae” = <14 L% -1),
which is the claim. O

Lemma 10. For an exponential family distribution with log-partition function m(-), let pu(z) =
m/'(z). Then, for all 1, x5 € R, we have

e~ flr2m () < 1) < eMIP2m T ay)

Proof. Without loss of generality, assume that zo > x,. Define hy(z) = ji(z)ef® and ho(x) =
fi(z)e B, Differentiating these functions yields h} (z) = (ji(x)+Rf(z))el™ and hly(z) = (ji(x)—
Rju(x))e~ . By the self-concordance property, we have b/ (z) > 0 and h)(z) < 0, which implies
that hy(x) is non-decreasing and ho(z) is non-increasing. Consequently, hq(z2) > hi(x;) and
ha(x2) < ha(z1), which together establish the desired inequality.
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Lemma 11. (Sawarni et al.| [2024) For each batch { > 1, let r7, |41, ...,rT, denote independent
random variables drawn from the canonical exponential family such that Elrs] = p((xs,q,,0)) for

some 0* € R%. Define the maximum likelihood estimator by f; = arg ming Ztn 71 b0 ) and

let V' .= A + Zs Tois1 M(Tsa,, 0°))Ts.a, 24 ... Then, with probability at least 1 — 7, the
Jfollowing inequality holds

10e = 6" |lv; < 24RS < d+1ogT + W) +25VAL B .

Lemma 12. For any batch { > 2, define V) = X\ + ZZ_‘ Toia1 (T 50,5 0%))Ts, .4, and

Vy = )\I—|—ZS Tooi1 Qs t— 1(A)pe({zs, as,@g 1))Ts,a, T 5 a.- Then, for every £ > 2, with probability
at least 1 — T2 , the following matrix inequality holds

Vi<V
Proof. We first consider the case ¢ = 2, applying Lemma [I0]yields

e Bl hi=0 (o 01)) < fu(2s.a,,07)) -

By the assumptions ||z 4. [|2 < 1, [|§*]|2 < S, and |61 |2 < S, we further obtain

[(@s.0,501 = 07) < @s,a,ll2 - 100 = 0%[l2 < 1012+ 1167]1> < 25
Consequently,
as,l(x\)ﬂ«xs,as,él)) - eizRSﬂ(@s,as,@Al))
< e Rl 1o (a 0,,01)
< il{Tsa.,07))
which establishes Vo < V5.

For the general case ¢ > 3, Lemma@ gives

e~ Rl{zs,a, vé“l_gwﬂ((xs,awéf*1>) < ﬂ(<$s7asa9*>) .

Using Lemmatogether with the assumptions ||z, 4, ]2 < 1, [|6*]2 < S and ||6;_1]]2 < S, we
obtain

|<xs,asaé€—1 - 9*>| < (25 A ||x5,as|

V[*:llﬁ(/\)) < (25 A ||l‘s,aS Vlillﬁ()\)) ’

where the second inequality follows inductively from V,_; < V;* ,. Therefore,

_ . —R(2SA[|@s,a5ll,—1 BOV)) | A
ot N0 B0 1)) = € KRR

< e M P (o, )
< ﬂ(<x37a5a9*>) )
which completes the proof that V; < V" for all £ > 2. O

Lemma 13 (Good event). Define the following quantities:

_ R(d+1logT)
B(A) == 24RS ( d+logT + 7 > + 25V/X,

s;,Z(A) = max ||yHV 1-B(A) for £>2.
y

_A(@ 1)

2(3 2)

Then, with probability at least 1 — , the following event holds

B-1
N N {10 - 07)] < 2, (0), Yo e AV}

{=2 t=Ty+1

27



Under review as a conference paper at ICLR 2026

Proof. For any batch £ > 2, by the Cauchy-Schwarz inequality together with Lemma and

Lemrna it follows that for every round ¢ and for all x € Agé_l), with probability at least 1 — %
we have

(2,00 = )| < [[2lly, 10 — 67|

ve < llzlly B < max [yl 1 - B0V -
Yy

eAlf—b
Applying a union bound over all batches ¢ then guarantees that the event E’ holds with probability
at least 1 — 2(];752), which completes the proof. O

Lemma 14. Let E' be the good event defined in Lemma Conditioned on E’, the optimal arm
x; € argmaxye 4, (z,0%) is never eliminated at any round t. In particular,

x:eA,(f), forall 1 <f<B—-1and Tp+1<t<T.

Proof. Fixt € [Ts + 1, T441] for some s € [B — 1]. We show by induction on ¢ that =} € .Age) for
all £ € [s].

Base case ({ = 1). By definition we have A; = Aﬁo) = E”, which immediately implies
that 27 € A holds trivially.

Inductive step. Assume z} € Aﬁe‘” for some ¢ € {2,...,s}. Since ng) € Aﬁé‘”, we
similarly obtain

O, 289 — 27y = (0, — 07,219 — 27) + (07, 219 — a7)

which shows that z} € A,(f). By induction, the claim holds for all £ € [s], completing the proof. [

Proof of Theorem 3. To establish the claimed batch complexity bound, we analyze the lower bound
on the length of the /-th batch, where ¢ = [log, log, T'] 4+ 4. By definition of the schedule, the length
of this batch is at least

- 1 T —1 1 T __1
T1-2 og2 logy T'] T1-2 ogz loga Tl o T T

Tl_ ,2%74
> = = .

log,y log, T logylogy T = logylogy T' logylogy, T 2loggy logy T
Since the batch length is non-decreasing in ¢, every batch with index ¢ > [log, log, T'| + 4 has
length at least m. Given the total time horizon 1", the number of such batches is therefore
at most [2log, log, T']. Including the initial [log, log, T'] + 3 batches, the total number of batches
B is bounded by

B < [2log,log, T + [logy logy T + 3 < 3logy logy, T+ 5,

which implies that the batch complexity is O(loglog T').

Next, we decompose the cumulative expected regret with respect to the good event E’. The
regret can be expressed as

B Tk

k=1t=Th_1+1
B Tk

=30 Y B[t = o )| B B 4B [, 0)) ~ sl || BB

k=1t=Tr_1+1

Since the rewards are supported on [0, R] and E[r|z;0*] = u({x,0*)) holds, the instantaneous
regret is bounded by the support width, i.e.,
p((ey, 0%) — p((zta,,07)) < R. (14)
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Hence, the cumulative expected regret can be bounded as

B
Rty <y 282 5§ [ (£5,0%)) = {100, 0°))

k=1t=Tr-1+1

SWBT‘%% S B[ (et 0%) = w10, 07)
—o (BT ¢ S B[ (a7, 0%) - (a0

k=1t=Tr_1+1
k=1t=Tr_1+1

E’] -P(E')

Throughout the remainder of the analysis, we condition on the good event E’. Let Regret, denote
the cumulative expected regret incurred during batch ¢. We analyze the regret by separating the
discussion into four cases, namely ¢ = 1, £ = 2, { = 3, and the subsequent batches with ¢ > 4.

Case 1: ¢ € {1,2,3}. In the first three batches, the number of rounds is given by {logjixg;ﬂ—‘ .By

(14), each round incurs an instantaneous regret of at most R. Consequently, for the first batch we
obtain

T1 \?/* 3
T RYT
Regret, = E 1,07 — as N <RhH <Rl——————+1)=0——] .
ety = 3 Elul(ei.07) (o 0] < BT: < Bt 1) <10g10gT>
The same reasoning applies to the second and third batches, which yields the same order of regret,
RYT )

Regret, = Regret; = O <loglogT

Case 2: / > 4. For each batch ¢ > 4, the instantaneous regret can be controlled using the Mean
Value Theorem. For some z lying between (z; o, ,6*) and (z},0*), we have

p((ay,07) = p((@ea,, 07) = 1(2) (2} = 2ta,,07)

() (2} — Tt 0° — Op—1) + (2] — T40,,00-1))
A (@F, 01 = 0]+ [(@rar, 01 = 07} + (@)™ = i, 0e-1))
< 4M(z)€tf 1(A) (15)
T
The first inequality uses the fact that J;ié*l) is optimal with respect to Oy, together with the guar-

antee from Lemmathat xy belongs to A§£_2). The final bound follows because z; ,, € .A,E[_l) by
the arm elimination rule, combined with the definition of the good event E’ and again Lemma

*

which ensures that x; € Agé_z). As in the analysis of Algorithm [2| during the greedy selection
step the regret can be bounded more tightly as p((zy,0%)) — p((z1,6,,0%)) by 201(2)e} o1 (N),
analogous to Equation (I0). For simplicity in the subsequent analysis, we substitute the greedy
selection step with uncertainty-driven exploration, so that in all batches the algorithm may be ana-
lyzed under uncertainty-driven exploration alone. For rigor, batch end time 7, must be replaced by

1—2(4=0) /3
7}/_1 — 7271 + ’VCT

W—‘ , as in the proof of Theorem but this modification affects the regret
2 2

bound only by a constant factor.

Bounding EtZTe-lH E[A;].

Te Te
> ElA=4 ) E[i(x)ef1 (V)]
t=Te—1+1 t=Tr_1+1

Te
<43 E[ME (e 0) e 1Y)
t=Te—1+1
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Te -
<43 B[R et (ar,0%)) ¢y (V)]

Te -
<4 Z E e4R(5’/\Ei,271()\))ﬂ(<gj’tk76‘*>)€;’571()\)}

t=Te_1+1
Te r 4RS
. . [ S/\E)g_ A)) . %
<4 Y EM(@“M)@;M(A)%E ( St i ))u(<wt,9>)52,471(A>
t=Tr_1+1 .
=Bt éC‘t

The first inequality is a direct application of Lemma The second inequality holds because z
lies between (x; q,,0*) and (x7, 0*). The third inequality follows from Assumption (I|together with
the bound on (z} — x;4,,0*) derived in . Finally, the last inequality is obtained by invoking
Lemma[9

Bounding ZZT(,IH E[B,).

Te Te
> EB=50N > E mgx2)|u<<z:,e*>>y||m]
t=To_1+1 t=Te_1+1 LYEA:
=BT = T )E | mavx, (e}, 9*>>y||v,11] (16)
Y t
Te—1 r

S A LL T 4 E | max ;.0 -1
T, S:TIE_ZH et (5 0" Nylly,
Te—1

ﬁ()\)(ﬁ - 7271) [ . * *
< — E E 0 —1
I Rl [ B _yerﬁ?fz) It 6" ol
Te-1
/‘:’,(A)(72 - 72—1) . * x
=" =7 E E |E 0 -1 5
Teer = Te—2 £~ yeli?%% (s, 0Dl 2, | o
Te—1 r
e S a— ]E E ,9 -1 Fs—
Teer =Tz £~ yerﬁ?f% (G, 6Dyl 2, | Fon
Te—1 r

B)(Te — To- ok
SPQUETE) N B |u<<xs,e>>yH;1]

Te—1 r

ﬂ(A)(‘e - 15*1) . * x :|
- - = 7 E ,9 s,a -1
Tor—Tos s:;,m A3, 67 )25 0l 2,

Ap,

The second equality mirrors the reasoning in (3)), since both V;_; and the arm elimination rule—
determined by él . ég_g—are measurable with respect to F7,_,, and can therefore be regarded as
fixed conditional on this filtration. Given that the contexts are drawn independently and identically,
their values are equal. The first inequality follows from the monotonicity, as Hy_; < Vp_; for all s
in the interval. The fourth and sixth equalities use the tower property. The fifth equality relies on the
fact that, conditional on F5_1, both H,_; and the arm elimination rule (determined by 91 ey 0}_2)
are fixed, while the distribution of the contexts remains unchanged. Finally, the last equality follows
from the arm-selection strategy, since the factor fi({z*,0*)) does not affect the maximization and
can thus be pulled outside without altering the arg max.
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Bounding 27271 E[Dq].

s=Tp_2+1
Te—1 Te-1 r
B\(g x P
Z E[D,] < Z E | |[e5/(2567) —(@s.as.00- \\/ﬂ (x*,0)) (.0, ,gé 2)) s a, ]
s=Tp—2+1 s=Tp—2+1 L H:—ll

Te—1 r
R . . 5
< Z E | ||e2 (2575eae-2(0) \/M(<"L‘:’9*>)M(<m87as79672>>$8’as L ‘|
s=Tp_o+1 H -,

IA

Te-1 r
Z E e%(zS/\SsS,efg(A))+§(2S/\55,272(z\))\/ﬂ«x:,9*>)a37272()\)ﬂ(<ms’a5’9}72»%’% ]
s=Tp_2+1 H:jl

Te—1 B
S B | [esrnene 00 it 6 ane 2Ol (anr B2 ]
s=Ty_2+1 L Hs_—ll

IN

Te—1

S E ||Vl 0)age o il( 0, 01-2)) e,

s=Tp_2+1

IN

-1
H571

A

+E Nase— 2N i((Ts.a., 00-2))Ts.a.

3RS(S/\‘C:SZ 2 \/
£e({

1 ‘|
Ho

AF,
The first inequality is obtained by applying Lemma|10|to compare /i (x*, 8*)) and i((2s 4., 0¢_2)).
The second inequality follows from Assumption || together with the decomposition |[{x* —
Toan 0 + [(Taa., 0% — 04_2)| < dei 1 o(N) + €} 4_5()), as implied by and the definition
of the good event E’. The third inequality directly follows from the definition of a, s_2()\) when
¢ > 4. The final bound is obtained by invoking Lemma 9}

Bounding Zzi%,2+1 E[E).

Te—-1 Te-1

S EEI< S VER(E 0]

s=Ty—2+1 s=Tp—2+1

7—2

Te—1—Te—2 1

< f Qs p— 2 msaﬁaeﬁ 2>)msab
K s= 'Tg 2+1

\/n yfn ;¢ det(Hy, J)

thD

< \/2d 72,1 — 72,2) IOg(QT)

< N .
The first two inequalities are obtained by successive applications of the Cauchy-Schwarz inequality.
The third inequality follows directly from Corollary 2] Finally, the last inequality is derived using

the same reasoning as in (I3), where the determinant is upper bounded by a trace argument, yielding
a logarithmic dependence on 7.

H\/asé 2 xa agaaé 2>)xa as

2 ]
-1
H,
2 ‘|
-1
H,,

Bounding ES 7oy i1 E[Fs].

Te—1 o3RS Te—1 -

E E[Fs] < S E E 65,@—2()‘) H\//l«x:)9*>)a87€—2()‘)/}’(<$8,a579(—2>)x8,as ]
_ _ ol
s=T¢—2+1 s=Tp—2+1 s—1
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Nats,e—2(N)jt(@s.a,, 00-2))s.a,

-1
Hs—l‘|

Te—1
e?’RSﬁ(/\) )
=S B el ||V
s=Tp—2+1 el ™
SR
< S B e VAT, |8
s=Te—2+1 yeAs B

1“; s 06 2>)xe as

o=

2 ]
-1
H,

3Rsﬁ \/Qd 72 1 — 72 2) 10g(2T)

| /\

S ’V max ”V ‘raaa* yHV 1‘| .

£G,

The second inequality follows from an application of the Cauchy-Schwarz inequality. The final

inequality uses the fact that the expectation E [ max, _ - I/ fe({zz, 0*>)y”%/_1 } takes the same
S £—2

value for all s € [Ty—2 + 1, Ty—1], as established in (16), together with Corollary |2} which bounds

the quadratic form by a log-determinant expression.

Bounding E[G;] for s € [Tr—2 + 1, Tr—1].
1 Te—2 r
— > E

Te2=Te—s 57
Te—2 r

1
S E
T Ti—2 — Ti—3 Z

TP u=Tp3+1 LY

E[Gs] =

ax
AL

Te—2

1
T Tis—Tis Z E_l

u=Tp_3+1

Te—2
_ Z E
To—o—Te3 l

u=Ty_3+1
1 Te—2
it Yo
Ta—Tia, 2
Te—2

1
= — E
Te2 = Te—s u:;+1 L

(1’ 3)

max |/, 0yl -

eAlf~

yEA“f

(2, 6%))

xu7au

AN

21,

max, Vs, 0NylIT, - 1]
* 2
max [/ ({3, 6)yll, -

max [/ f((xy, 07)yll

2 1
H,

u(<w§,9*>)ylliu111

o
v

1

The first inequality follows from the monotonicity of the matrices, since H,_1 < Vp_5 for all v in
the summation range. The second and fourth equalities are applications of the tower property. The

third equality holds because, conditional on F,,_1, both H,,_
mined by 64, ...,

1 and the arm elimination rule (deter-
0,_3) are fixed, while the distribution of the contexts remains unchanged. Finally,

the last equality follows from the arm-selection strategy: the multiplicative factor fi({zX, 8*)) does
not affect the maximization and can therefore be factored out without altering the arg max.

Bounding 23;72273+1 E[L,].
Te—2 Te—2 R
>, ElL]s ) B Ml fe ]\/u<<xu,awezs>>xu,au
u=Tg_3+1 u=Tr_3+1
Te—2 2
S Z E €4RS \/045,2—3()\),[5(<xu,au3 02—3>)xu,au ]
u=Tp_3+1 H;—ll

< 2¢*R9d1og(27) .
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The first inequality is obtained by applying Lemma|[10] which allows us to compare f((z},,0*)) and
(({Zy.a,,00—3)). The second inequality uses Assumption together with the fact that s p—_3(\) >

e~ 2BS5 for all ¢ > 4. Finally, the last inequality follows from Corollary which bounds the quadratic
form in terms of a log-determinant expression and yields the stated order.

We now combine the previous bounds step by step. First, from the result on E[G;], we obtain
Te—2

1 2e*75 dlog (2T
E[G)< ———— Y E[L]< 277 dlog(2T)
Te—2—Te—3 u= Tyt Te—2—Te—3
Next, substituting this into the bound for Z:i%_Q 41 E[F}], we obtain
= SRS B(\)\/2d(Te_1 — Tr_2) log(2T
Z ]E[FS} S € ﬂ( )\/ (72*1 7272) Og( ) ]E[GS]
S
s=Tp_2+1
_ 265\ dlog(2T)/Tioy — Tics
B SV Te—2—To—s .
Furthermore, combining this with the result on ere:%72 +1 E[E], we can bound ZST‘; . o+1 E[Ds]
as
Te—1 Te—1 Te—1
>, EDJ< ) EE]+ ) E[F]
s=Ty_2+1 s=Tr—2+1 s=Tp_o+1

< \/Qd(ﬁ_l — Te—2) log(2T) N 2e5RS B(N)d1og(2T)\/Te—1 — To—2
B Vi S\/Te—2 —Ti—3 '

Finally, substituting this bound into the expression for ZZT[ 41 E[B] yields

Te Te—1
M (Te — Te—
t=Te_1+1 =1 =2 s=Tp—2+1

_ BT = Tea) ( 2d10g(2T) 2e5RSB(A)d10g(2T)> |

VT—1 —Ti—2 Vi Sv/Te—o —Ti—3

Bounding ZQn,lH E[Cy].

Te 4RS Te

Y Elc)< S E [}, 6%) e 1 (V)]

t=T¢-1+1 t=Te—1+1

€4Rsﬁ()\)2 Te

:fZE

max, I\/u(<x2‘,9*>)2|2vz_11]

=Ty 141 ZEA,
641?,5'6 MN2(T7 — T :
— AT TE g | (VA8
ZEA; -

4RS by 2 7— _7-7 Te—1 r -
_¢ 5(57(2_)1(_572_21; 1) Z E| max || N(<$§79*>)z|3/21]]

(£—2)
s=Tp_o+1 [ zE€A;

ARS B(\V2(T) — To T [
VI S g e IR

(£—2)
s=Ti_o+1 L[2€A
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Te—1 r

BN (Te = Tin)
= ' E |E Vin((xx, 050 z]|2, 0 |Fe_
ST Tia) 2 Sk, IV, 07))2ly o, Foms
s=Ty_2+1 s
BT -Ten) | . )
ST T 2| e IV e,
s=T¢—2+1 L s
64RS5()\)2(72 _7271) Te-1 _
- > E IV 0.2 |
S(Te-1=Te-2) £~ ., -1
eSS BN (T — To— =
-1 -2 =T ol
2e35 B(N)2 (T — To—1)dlog(2T)
o S(Te—1 — Ti—2) .
The second equality follows from the same reasoning as in (5), since both V;_; and the arm elimi-
nation rule—determined by 01, . .., 8,_o—are measurable with respect to F7, , and can therefore

be treated as fixed conditional on this filtration; given that the contexts are drawn independently
and identically, their values coincide. The second inequality uses the monotonicity of the matrices,
as Hy_1 = Vp_; for all s in the interval. The fourth and sixth equalities apply the tower property.
The fifth equality holds because, conditional on F,_1, both H,_; and the arm elimination rule (de-
termined by él, ey 6y_») are fixed, while the distribution of the contexts remains unchanged. The
seventh equality is justified by the arm-selection strategy, as the multiplicative factor pi((z%, 6*))

does not affect the maximization and hence does not alter the arg max. The final inequality follows
from the previously established bound on Zz—i%_z +1 E[L4].

Combining the previously derived bounds for thn_lﬂ E[B;] and Etzn_lﬂ E[C], we obtain

Te Te Te
Z E[4;] <4 Z E[B,] +4 Z E[Cy]
t=Te_1+1 t=Ty_1+1 t=Ty_1+1

< ABNTe —Tey) (V2d108(2T) | 2e°%55(\)dlog(2T) | | 8e*™5F(N)*(Te — Te_1)dlog(2T)
T VT -T2 Vi SVTi—2—Tis S(Te1 — Ti—2) '

For the case ¢ = 4, this simplifies to

2
Te E[A} o RS d+logT~10ngﬁ legT+R65RSd10gT d+10gT
z t] = S = -
e oz g T vE TR tosT

2
R2 SegRS . dT'3 (d+logT)log T

loglog T'
+0 7T
loglog T
RS+\/d(d+1logT)T logT
=0 ( vl ATogolgog)T o8 + R2Se*B5d(d + logT)T% log T) .
i
For all subsequent batches with £ > 5, we similarly obtain
f: E[4)] = O RSv/d+logT - Tlogiogqu VdlogT N ReSSdlog T/d +log T
t] = = -
t=Te—1+1 T 35t=5 \/E 7' 332=%
log log T' log log T’
-1
R2Ge8RS . ar 3-2414 (IdJrlog T)logT
+ O — - oglogT
T 325
loglog T'
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_0 RS\/d(d+1logT)Tlog T
N VkloglogT

_ 0 RS\/d(d +1log T)Tlog T
N VkloglogT
Therefore, the total worst-case regret is bounded as
3 B
R(T) = Z Regret, + Z Regret,

(=4

=4 t=Tp_1+1

i
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D ADDITIONAL EXPERIMENTS

D.1 LINEAR CONTEXTUAL BANDITS: EXPERIMENTAL RESULTS WITH NORMAL CONTEXTS

We evaluate the performance of BLCE-G and BLCE by measuring the cumulative regret over 7' =
10,000 rounds. At each iteration, K arms are independently sampled from a d-dimensional normal
distribution, and the parameter vector #* is drawn from a d-dimensional normal distribution. Each
experiment is repeated 10 times. We consider (K, d) € {(1000, 5), (5000, 10), (50, 20), (100, 30) },
where the first two pairs represent the large- K regime and the latter two correspond to the small- K
regime.

For comparison, we benchmark against state-of-the-art algorithms: Rarely Switching OFUL
(RS-OFUL; |Abbasi-Yadkori et al.|2011), BatchLinUCB-DG (Ruan et al.|2021)), Efficient Batched
Algorithm for linear contextual Bandits (SoftBatch; Hanna et al.|[2023b), and BatchLearning
(Zhang et al.|2025)). The within-batch allocation rate for BLCE-G and BLCE is set to ¢ = 0.5. For
RS-OFUL, the switching parameter is C' = 3, and for SoftBatch, the discretization parameter is
q = 1/(8V/d). Algorithms of Hanna et al./(2023b) incur substantial computational overhead, as re-
flected in their time complexity reported in Table [T} we therefore omit their regret plots. Importantly,
BLCE-G and BLCE are implemented with the exact theoretical hyperparameters specified in our main
results, without additional tuning.

We report three types of figures. First, the average cumulative regret (solid line) together with its
standard deviation (shaded region) over 10 runs. Second, zoomed-in views of the regret curves to
highlight the differences between BLCE-G and BLCE. Third, the average batch complexity across 10
runs, showing how frequently each algorithm updates its policy.

As illustrated in Figure [2) both BLCE-G and BLCE consistently outperform all baselines in both
the large-K and small-K regimes, achieving lowest regret and exhibiting greater stability. These
results confirm that BLCE-G and BLCE not only attain the tightest theoretical guarantees but also
deliver strong empirical performance, thereby fulfilling their design objectives of near-optimal
regret and minimal batch complexity. Furthermore, runtime comparisons in Table ] show that
BLCE-G and BLCE incur substantially lower computation cost than other theoretically optimal al-
gorithms. In particular, BLCE, which eliminates reliance on G-optimal design, attains the fastest
runtime—comparable even to suboptimal algorithms.

Overall, these experiments demonstrate a distinctive advantage of our approach: BLCE-G and BLCE
combine minimax-optimal regret guarantees with practical efficiency. This dual benefit of theoret-
ical optimality and empirical superiority sets them apart from all prior methods for batched linear
contextual bandits.

Table 4: Average runtime (seconds) over 10 runs.

Suboptimal algorithms Optimal algorithms
(K,d) RS-OFUL  SoftBatch  BatchLinUCB-DG  |Hannaetal|(2023b)  BatchLearning BLCE-G  BLCE
(1000, 5) 1.37 1.15 148.19 Exponential 143.07 3.58  2.17
(5000, 10) 10.46 12.62 555.11 Exponential 590.69 9.16  6.19
(50, 20) 0.54 1.83 981.19 Exponential 46.24 1.39 1.05
(100, 30) 0.95 3.51 2773.66 Exponential 75.07 1.97 1.41
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Figure 2: Regret, zoomed-in regret, and batch complexity over time for different values of K and d.

D.2 EXPERIMENTAL RESULTS FOR GENERALIZED LINEAR CONTEXTUAL BANDITS

We evaluate the performance of BGLE by measuring the cumulative regret over a horizon of
T = 10,000 rounds. At each iteration, K arms are independently sampled from either a d-
dimensional uniform or normal distribution, and the parameter vector 6* is drawn from a d-
dimensional normal distribution. Each experiment is repeated 20 times for the parameter pairs
(K,d) € {(20,2), (50, 3)}, considering both uniform and normal contexts.

For comparison, we benchmark against state-of-the-art algorithm: B-GLinCB (Sawarni et al.|2024).
The within-batch allocation rate for BGLE is set to ¢ = 0.5, and we conduct experiments on logistic
bandits with R = S = 1. Importantly, BGLE is implemented with the exact theoretical hyperparam-
eters from our main results, without any tuning.

We report two types of figures. First, the average cumulative regret (solid line) together with its
standard deviation (shaded region) over 20 runs. Second, the average batch complexity across 20
runs, showing how frequently each algorithm updates its policy.

As shown in Figure 3] BGLE consistently outperforms the baseline, achieving lowest regret and
demonstrating stable performance. Runtime comparisons in Table [3] further show that BGLE incur
lower computation cost than B-GLinCB.
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An additional limitation of B-GLinCB is that it often uses only one batch (see Figure [3), even for
small values of K and d. This behavior arises because its first batch length is determined by

2
(900R25ﬁ63RS & log T\FT) 3

which easily exceeds 7" = 10,000 when d is small, thereby preventing meaningful batching.

Overall, these experiments highlight a clear advantage of our approach: BGLE combines optimal
regret guarantees with practical efficiency. This dual benefit of theoretical optimality and empirical
superiority distinguishes our method from prior approaches to batched generalized linear contextual
bandits.

Table 5: Average runtime (seconds) over 20 runs.

Uniform distribution Normal distribution

(K,d) B-GLinCB BGLE B-GLinCB  BGLE
(20,2) 24.94 3.62 25.82 3.88
(50,3) 27.45 3.91 28.78 4.06
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Figure 3: Regret and batch complexity over time for different values of K and d.
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