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ABSTRACT

We study batched linear and generalized linear contextual bandits and introduce
practical batched algorithms, aiming for methods that are both practical and prov-
ably optimal under limited adaptivity. For linear contextual bandits, we propose
the first algorithm that attains minimax-optimal regret (up to polylogarithmic fac-
tors in T ) in both small-K and large-K regimes using only O(log log T ) batches,
while our second algorithm removes the G-optimal design step—the dominant
computational bottleneck—yet preserves the same order of statistical guarantees
and achieves the lowest known runtime complexity. We then adapt to the general-
ized linear contextual bandits and design an algorithm that is fully free of curva-
ture parameter κ: neither the algorithm requires knowledge of nor its regret bound
depends on κ, and it retains O(log log T ) batch complexity with near-optimal re-
gret. Collectively, these results deliver the first batched linear contextual methods
that are simultaneously minimax-optimal across all regimes and computationally
efficient, and the first generalized linear method that is both statistically and com-
putationally efficient while remaining fully κ-independent.

1 INTRODUCTION

Stochastic linear contextual bandits are a cornerstone of sequential decision-making, where an agent
repeatedly selects actions from a time-varying, feature-based set and observes rewards generated by
an unknown linear model (Abe & Long, 1999; Auer, 2002; Abe et al., 2003; Dani et al., 2008; Li
et al., 2010; Chu et al., 2011; Abbasi-Yadkori et al., 2011; Li et al., 2019; Lattimore & Szepesvári,
2020; Kirschner et al., 2021). The resulting low-dimensional structure enables efficient general-
ization and has seen wide application, from recommender systems (Li et al., 2010) and inventory
control (Jin et al., 2021a) to clinical trials and precision medicine (Lu et al., 2021).

In practice, however, fully adaptive algorithms—which update policies every round—are often in-
feasible due to computational or operational constraints. This motivates the study of batched linear
contextual bandits, where updates occur at a small number of batch endpoints (Abbasi-Yadkori et al.,
2011; Ruan et al., 2021; Hanna et al., 2023a;b; Zhang et al., 2025). While recent algorithms achieve
strong theoretical guarantees with as few as O(log log T ) batches, many still rely on computation-
ally expensive G-optimal design or update more frequently than desirable, limiting their practical
efficiency (see Table 3 and Figure 1). Recently, Yu & Oh (2025) proposed a computationally efficient
batched algorithm to achieve minimax-optimal regret. However, their method is only applicable to
non-contextual, fixed feature settings.

Beyond linear models, generalized linear contextual bandits allows expected rewards to follow a
nonlinear link function (e.g., logistic or Poisson). This broadens applicability but introduces new
challenges: existing analyses typically depend on instance dependent curvature parameters such as
κ (defined in Section 5.2), and a prior batched algorithm for generalized linear contextual ban-
dits (Sawarni et al., 2024) require knowledge of κ, while still incurring loose regret bounds and high
computational cost (see Table 2). In their method, the first batch size scales as κ1/3, which can be
prohibitively large in saturated regimes where κ is large. Thus, beyond the difficulty of requiring
prior knowledge of κ, developing algorithms that are entirely κ-free is a central challenge.

Consequently, practical algorithms with provable regret guarantees for both linear and generalized
linear contextual bandits remain elusive. This shortfall is also evident in our numerical experiments,
where existing methods underperform (see Section 6). This motivates the following open research:
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• For linear contextual bandits, can we design batched algorithms that achieve minimax-
optimal regret in both small-K and large-K regimes with the minimal batch complexity?
Can we also design a computationally more efficient algorithm avoiding G-optimal design
procedure while still maintaining the minimax optimality in regret?

• As an extension, can we adapt the computationally efficient batched algorithm to gener-
alized linear contextual bandits (hence, again not relying on G-optimal design) and show
near-optimal regret, entirely free of κ dependence, while still maintaining the minimal batch
complexity?

Positive answers to these questions would unify theory and practice in linear and generalized lin-
ear contextual bandits, leading to algorithms that remain statistically optimal and computationally
efficient under limited adaptivity. Our main contributions are summarized as follows:

• Tightest regret bounds for batched linear contextual bandits. We introduce BLCE-G,
which combines near G-optimal design and arm elimination. It achieves the worst-case
regret bound O(

√
dT (

√
log(KT ) ∧

√
d+ log T )

√
log d log log T ), where K is the num-

ber of arms, d is the feature dimension, and T is the horizon. This is the tightest known
bound for batched linear contextual bandits. BLCE-G is the first algorithm to simultane-
ously match the minimax lower bounds Ω(d

√
T ) in the large-K regime (K ≥ Ω(ed)) and

Ω(
√
dT logK) in the small-K regime (K ≤ O(ed)), up to logarithmic factors.

• First minimax-optimal algorithm without G-optimal design. We propose BLCE, which
replaces the G-optimal design step with uncertainty-driven exploration combined with arm
elimination. It still achieves the minimax-optimal regret with the lowest total time complex-
ity O(Kd2T log log T ). To our knowledge, BLCE is the first theoretically optimal batched
linear contextual bandit algorithm that avoids G-optimal design, which is the main com-
putational bottleneck of the exsiting batched algorithms (Ruan et al., 2021; Hanna et al.,
2023a;b; Zhang et al., 2025). Its guarantees also extend beyond conventional i.i.d. contexts,
as discussed in Remark 1.

• First κ-independent algorithm for generalized linear contextual bandits. We develop
BGLE, which extends BLCE to generalized linear contextual bandits. It achieves the worst-
case regret bound Õ(dRS

√
T/
√
κ̂) + Õ((R2Se8RSd2 + R)T 1/3), where R is the upper-

bound on rewards, S is the norm-bound of the parameter ∥θ∗∥2 ≤ S, and κ̂ is the expected
inverse curvature at the optimal arm. This is the tightest known bound for batched general-
ized linear contextual bandits (Sawarni et al., 2024), and uniquely, it is entirely independent
of κ in both leading and transient terms. Here, κ measures worst-case curvature and can
diverge in saturated regimes, while κ̂ reflects average curvature around the optimal arm.
Unlike prior work (Sawarni et al., 2024), our algorithm requires no prior knowledge of κ
and inherits the efficiency of BLCE.

• Batch Complexity. While achieving favorable regret guarantees, all of our proposed algo-
rithms only require the minimal batch complexity of O(log log T ).

• Practical Superiority. Our experiments demonstrate that BLCE-G, BLCE, and BGLE consis-
tently outperform prior batched linear and generalized linear contextual bandit algorithms
across various instances, combining provable efficiency with strong empirical performance
and substantially reduced runtime overhead.

2 RELATED WORK

A substantial literature on batched bandits spans from multi-armed to linear (contextual) mod-
els. Early work established near-optimal learning with few policy updates in the multi-armed set-
ting (Perchet et al., 2016; Gao et al., 2019; Jin et al., 2021b;c), later extended to linear bandits
under Gaussian-type features (Han et al., 2020) and adversarial features (Esfandiari et al., 2021),
culminating in algorithms that achieve near-optimal regret with the minimal batch complexity
O(log log T ) (Ren et al., 2024; Yu & Oh, 2025). Although Yu & Oh (2025) attain minimax-optimal
regret in both regimes, their analysis is restricted to non-contextual batched bandits and does not
extend to the linear contextual setting. In the linear contextual bandits, recent methods (Ruan et al.,
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Table 1: Worst-case regret, batch complexity, and time complexity comparison in batched linear
contextual bandits. Both BLCE-G and BLCE achieve minimax-optimal regret, matching the min-
imax lower bounds Õ(

√
dT logK ∧ d

√
T ) (Dani et al., 2008; Li et al., 2019) across all regimes

while requiring only O(log log T ) batches. Among existing approaches, BLCE-G attains the tight-
est regret bound, whereas BLCE achieves the lowest time complexity. Note that Topt is the cost
of one call to the linear optimization oracle.

Paper Worst-Case Regret Batches Time Complexity

Abbasi-Yadkori et al. (2011) O(d
√
T log T ) O(d log T ) O((Kd + d2)T + Kd3 log T )

Ruan et al. (2021) O(
√

dT log(dKT ) log d log log T ) O(log log T ) O(Kd4T (log T + log d))

Hanna et al. (2023b) O(d
√
T log T log log T ) O(log log T ) Ω(Td)

Hanna et al. (2023a) O(d3/2
√
T log T log log T ) O(log log T )

O(d3ToptT log d log3 T log log T )
+O(d4 log d log3 T log log T )

Zhang et al. (2025) O(
√

dT log(dKT ) log T log(dT ) log log T ) O(log log T )
O(Kd2T log log T )

+O(Kd7/2
√

T log(dKT ) log T )

Algorithm 1 min

{
O
(√

dT log(KT ) log d log log T
)

O
(√

d(d + log T )T log d log log T
) O(log log T ) O(Kd2T (d + log log T ))

Algorithm 2 min

{
O
(√

dT log(KT ) log T log log T
)

O
(√

d(d + log T )T log T log log T
) O(log log T ) O(Kd2T log log T )

Table 2: Worst-case regret, batch complexity, and time complexity comparison in batched gener-
alized linear contextual bandits. BGLE attains the tightest regret bound with only O(log log T )
batches, is entirely κ-free in the regret bound, and attains the lowest time complexity.1

Paper Worst-Case Regret Batches Time Complexity

Sawarni et al. (2024) O
(
(RSd(

√
d/κ̂ ∧

√
Rµ̇ log d)

√
log T log log T + R)

√
T
)

O(log log T )
O(Kd4T log T + Ctot

opt)

+O
(
(κRµ̇R

5S2)
1/3

e2RSd2(log T )2/3 log log T · T
1
3

)
+O

(
Kd5(κRµ̇)

1/3e2RS

(R2S2T log2 T )1/3
)

Algorithm 3 O
(
RS

√
d(d + log T ) log T log log T/κ̂ ·

√
T
)

O(log log T )
O(Kd2T log log T )

+O
(
(R2Se8RSd(d + log T ) log T log log T + R

log log T )T
1
3

)
+O(Ctot

opt)

2021; Hanna et al., 2023b; Zhang et al., 2025) achieve minimax-optimal regret under i.i.d. contexts
with only O(log log T ) batches, but each achieves optimality in only one regime.

Despite these advances, challenges remain. Algorithm based on rare policy switches require
O(log T ) batches (Abbasi-Yadkori et al., 2011), which exceeds the O(log log T ) barrier. Methods
that achieveO(log log T ) batches with optimal regret (Ruan et al., 2021; Hanna et al., 2023b; Zhang
et al., 2025) typically rely on G-optimal design, introducing a computational bottleneck. Hanna et al.
(2023a) improve efficiency, but their regret bound Õ(d3/2

√
T ) is not minimax optimal.

Batched generalized linear contextual bandits have been studied more recently. Sawarni et al. (2024)
obtain Õ(

√
T ) regret with O(log log T ) batches but require prior knowledge of the parameter κ,

which characterizes the worst-case curvature of the link function. Large values of κ degrade the
performance of UCB-based elimination, and in their method the first batch size scales as κ1/3,
which can be prohibitively large in saturated regimes, causing the algorithm to spend much of the
horizon with no informative updates. Moreover, their regret bound is loose due to the leading term√
d/κ̂, preventing the optimal Õ(d

√
T ) rate. Their reliance on the G-optimal based method of Ruan

et al. (2021) also incurs significant runtime overhead.

In contrast, our proposed BGLE builds on BLCE, ensuring computational efficiency. Crucially, it re-
moves any dependence on κ in both leading and transient terms, eliminates the extraneous factor d
in
√

d/κ̂, and achieves the optimal regret bound Õ(d
√
T ).

1Ctot
opt denotes the total oracle cost of solving the log-loss minimization at batch boundaries. With B batches,

Ctot
opt =

∑B
ℓ=1 Copt(Tℓ − Tℓ−1, d), where Copt(n, d) is the cost of computing the unconstrained MLE from n

samples in d dimensions.
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3 PRELIMINARIES

3.1 NOTATIONS

For a set, |·| denotes its cardinality. For x ∈ Rd, ∥x∥2 is the Euclidean norm, and for positive definite
H , ∥x∥H :=

√
x⊤Hx. For a matrix, tr(·) and det(·) denote its trace and determinant. For n ∈ N,

we write [n] := {1, . . . , n}, and use ∧ for the minimum operator. For symmetric matrices A,B of
the same dimension, A ⪯ B (resp. A ⪰ B) means B − A (resp. A − B) is positive semidefinite.
The indicator 1{E} equals 1 if the event E occurs and 0 otherwise. Finally, the natural filtration is
Ft := σ(A1, x1,a1

, r1, . . . ,At, xt,at
, rt) with F0 trivial.

3.2 PROBLEM SETTING: BATCHED LINEAR CONTEXTUAL BANDITS

We study the stochastic linear contextual bandit problem. At each round t ∈ [T ], the agent observes
K arms At := {xt,1, . . . , xt,K} ⊆ Rd and selects one arm xt,at

∈ At, receiving reward rt =
⟨xt,at

, θ∗⟩+ ηt, where θ∗ ∈ Rd is unknown and ηt is independent σ-subgaussian noise. The agent’s
performance is measured by the cumulative expected regret

R(T ) = E

[
T∑

t=1

(
⟨x∗

t , θ
∗⟩ − ⟨xt,at

, θ∗⟩
)]

,

where x∗
t ∈ argmaxx∈At

⟨x, θ∗⟩ is the optimal arm. We make the following standard assumptions:
Assumption 1. ∥x∥2 ≤ 1 for all x ∈ At and ∥θ∗∥2 ≤ 1.
Assumption 2. The noise ηt is a 1-subgaussian random variable for all t ∈ [T ].

In the batched setting, the horizon [T ] is partitioned into B disjoint batches,
{1, . . . , T} = [T0+1, . . . , T1]︸ ︷︷ ︸

batch 1

∪ · · · ∪ [TB−1+1, . . . , TB ]︸ ︷︷ ︸
batch B

,

with the agent constrained to a fixed policy within each batch, updating only at boundaries. Thus at
most B − 1 updates are allowed, unlike the fully adaptive case where updates occur every round.

Three models of limited adaptivity have been studied: the static grid, where batch boundaries are
fixed in advance; the adaptive grid, where batch sizes are chosen adaptively at the beginning of each
batch; and the rare policy switch, which allows arbitrary changes subject to a limit on total switches.
The static grid is most restrictive, while rare policy switch is most permissive. Most prior works
on batched linear contextual bandits adopts the static grid under i.i.d. contexts from an unknown
distribution D (Ruan et al., 2021; Hanna et al., 2023a;b; Zhang et al., 2025), while Abbasi-Yadkori
et al. (2011) study the rare policy switch model. In this work we focus on the static grid with contexts
sampled i.i.d. from an unknown distribution D, though correlations may still exist among contexts
within the same round. As noted in Remark 1, our Algorithm 2 can also relax the i.i.d. assumption.

3.3 PROBLEM SETTING: BATCHED GENERALIZED LINEAR CONTEXTUAL BANDITS

We next consider the generalized linear contextual bandits, where rewards follow a one–parameter
exponential family distribution. Conditioned on an arm x ∈ Rd and the unknown parameter θ∗ ∈
Rd, the reward r has density p(r |x; θ∗) = exp (r⟨x, θ∗⟩ − m(⟨x, θ∗⟩) + h(r)) ν(dr), with log-
partition function m, base measure ν, and link function µ(z) := m′(z). We impose the following
standard assumptions:
Assumption 3. ∥x∥2 ≤ 1 for all x ∈ At, and ∥θ∗∥2 ≤ S for a known constant S > 0.
Assumption 4. The log-partition function m is convex and three times differentiable. Equivalently,
µ̇ := m′′ ≥ 0 and m′′′ exists.

At each round t ∈ [T ], the learner observes an arm set At = {xt,1, . . . , xt,K} ⊆ Rd and selects
xt,at

∈ At. The reward rt is drawn from p(r |xt,at
; θ∗) with natural parameter ⟨xt,at

, θ∗⟩, and
satisfies E[r |x; θ∗] = µ(⟨x, θ∗⟩). The performance is measured by the cumulative expected regret

R(T ) = E

[
T∑

t=1

(µ(⟨x∗
t , θ

∗⟩)− µ(⟨xt,at
, θ∗⟩))

]
,

4
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where x∗
t ∈ argmaxx∈At

µ(⟨x, θ∗⟩) is the optimal arm. Following Sawarni et al. (2024), we adopt
the static-grid setting with i.i.d. contexts from an unknown distribution D. In addition, the rewards
are supported on [0, R] almost surely, which implies that the link function satisfies |µ̈(z)| ≤ Rµ̇(z)
for all z ∈ R. This self-concordance property of GLMs is crucial for our analysis.

4 BATCHED LINEAR CONTEXTUAL BANDIT ALGORITHMS

We propose two batched algorithms BLCE-G and BLCE for linear contextual bandits. Let us start
with explanation on our first algorithm, BLCE-G, which stands for the Batched Linear Contextual
Bandit with Elimination and G-optmial design, whose pseudocode is given in Algorithm 1. In the
first batch, rounds are divided into two phases with ratio c : (1− c). During the first c-fraction, arms
are sampled according to a near G-optimal design over At (Line 5), while in the remaining (1− c)-
fraction the algorithm selects the most informative direction with respect to the current Gram matrix
(Line 7). To reduce computational and runtime cost, we adopt a relaxation of the G-optimal design,
namely the near G-optimal design, which loosens the bound by at most a factor of two. Formally,
for any arm set X ⊂ Rd, there exists a design distribution KX supported on X such that

max
x∈X

x⊤(Ez∼KX
[zz⊤])−1x ≤ 2d .

As shown in Corollary 4, such a design can be computed in time O(Kd3). For fair comparison,
we also account for this cost when evaluating other algorithms that rely on G-optimal design (Ruan
et al., 2021; Hanna et al., 2023b; Zhang et al., 2025). After each arm pull, the inverse Gram matrix
is updated using the Sherman-Morrison formula (reducing the cost from O(d3) to O(d2)), and the
response vector is accumulated (Line 8). At the end of the first batch, we set V1 := HT1

, compute
the regression estimate θ̂1, and reinitialize HT1

and bT1
for the next batch (Line 9).

For any batch ℓ ≥ 2, the algorithm eliminates suboptimal arms ℓ− 1 times using the past estimates
θ̂1, . . . , θ̂ℓ−1, yielding a nested sequence of feasible setsA(1)

t , . . . ,A(ℓ−1)
t (Line 13). The elimination

threshold εt,k for k ∈ [ℓ− 1] is defined as

max
y∈A(k−1)

t

∥y∥V −1
k

(√
2 log

(
|A(k−1)

t |(B − 1)T 2
)
+
√
λ ∧ 2

√
log

(
26d−5πd(B − 1)2

15d−1/T 2

)
+ 2
√
λ

)
.

Within batch ℓ ≥ 2, the rounds are partitioned in the ratio c2 : c(1 − c) : (1 − c). In the first c2-
fraction, arms are sampled according to a near G-optimal design over A(ℓ−1)

t (Line 15). In the next
c(1 − c)-fraction, the algorithm selects the most informative direction relative to the Gram matrix
(Line 17). In the final (1 − c)-fraction, arms are chosen greedily with respect to the latest estimate
(Line 19). As before, after each pull the Gram matrix and response vector are updated (Line 20),
and at the end of the batch we set Vℓ := HTℓ

, compute θ̂ℓ, and reinitialize HTℓ
and bTℓ

for the next
batch (Line 21).

Now, let us introduce our second algorithm, BLCE, which stands for Batched Linear Contextual Ban-
dit with Elimination. The pseudocode of BLCE is given in Algorithm 2. Relative to Algorithm 1, BLCE
eliminates the near G-optimal design segment and instead lengthens the uncertainty-driven explo-
ration phase to occupy those rounds. To our knowledge, BLCE is the first batched linear contextual
bandit algorithm that achieves theoretical optimality without relying on G-optimal design, which has
traditionally been regarded as essential (Ruan et al., 2021; Hanna et al., 2023b; Zhang et al., 2025).
Notably, both BLCE-G and BLCE avoid enforcing any fixed choice of c ∈ (0, 1], thereby providing
theoretical guarantees together with practical flexibility in balancing exploration and exploitation.

4.1 REGRET ANALYSIS FOR BATCHED LINEAR CONTEXTUAL BANDITS

Theorem 1 (Regret of BLCE-G). Consider running the BLCE-G algorithm for T rounds with K arms
in d dimensions. The worst-case cumulative regret satisfies

R(T ) = O
(√

dT (
√
log(KT ) ∧

√
d+ log T )

√
log d log log T

)
= Õ

(√
dT logK ∧ d

√
T
)
.

Discussion of Theorem 1. Theorem 1 shows that BLCE-G achieves minimax-optimal regret for fully
adaptive linear contextual bandits using only O(log log T ) batches, the lowest attainable batch
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Algorithm 1 BLCE-G

1: Input: Horizon T ; batch end times T1 =
⌈ √

T
log2 log2 T

⌉
+1, Tℓ =

(
Tℓ−1+

⌈
T 1−2−ℓ

log2 log2 T

⌉
+2
)
∧T

for ℓ ≥ 2; number of batches B, with TB = T ; within-batch allocation rate c

2: Initialize: λ← log(dT ), H0 ← λI , b0 ← 0;
3: for t← 1, 2, . . . , T1 do
4: if t ≤

⌈
c
√
T/ log2 log2 T

⌉
then

5: Pull arm xt,at
∼ πG′(At), and receive reward rt;

6: else
7: Pull arm xt,at

∈ argmaxx∈At
∥x∥H−1

t−1
, and receive reward rt;

8: H−1
t ← H−1

t−1 −H−1
t−1xt,at

x⊤
t,at

H−1
t−1/(1 + x⊤

t,at
H−1

t−1xt,at
), bt ← bt−1 + rtxt,at

;
9: V −1

1 ← H−1
T1

, θ̂1 ← V −1
1 bT1

, HT1
← λI , bT1

← 0;
10: for ℓ← 2, . . . , B do
11: for t← Tℓ−1 + 1, . . . , Tℓ do
12: for k ← 1, . . . , ℓ− 1 do

13: x
(k)
t ← argmax

x∈A(k−1)
t
⟨x, θ̂k⟩, A(k)

t ←
{
x ∈ A(k−1)

t

∣∣∣∣ ⟨θ̂k, x(k)
t − x⟩ ≤ 2εt,k

}
;

14: if t ≤ Tℓ−1 +
⌈
c2T 1−2−ℓ

/ log2 log2 T
⌉

then
15: Pull arm xt,at ∼ πG′(A(ℓ−1)

t ), and receive reward rt;
16: else if t ≤ Tℓ−1 +

⌈
c2T 1−2−ℓ

/ log2 log2 T
⌉
+
⌈
c(1− c)T 1−2−ℓ

/ log2 log2 T
⌉

then
17: Pull arm xt,at ∈ argmax

x∈A(ℓ−1)
t
∥x∥H−1

t−1
, and receive reward rt;

18: else
19: Pull arm xt,at ∈ argmax

x∈A(ℓ−1)
t
⟨x, θ̂ℓ−1⟩, and receive reward rt;

20: H−1
t ← H−1

t−1 −H−1
t−1xt,atx

⊤
t,at

H−1
t−1/(1 + x⊤

t,at
H−1

t−1xt,at), bt ← bt−1 + rtxt,at ;
21: V −1

ℓ ← H−1
Tℓ

, θ̂ℓ ← V −1
ℓ bTℓ

, HTℓ
← λI , bTℓ

← 0;

complexity. A notable feature of this bound is that it simultaneously covers both regimes. In the
small-K regime (K ≤ O(ed)), the regret scales as Õ(

√
dT logK), while in the large-K regime

(K ≥ Ω(ed)), it scales as Õ(d
√
T ). Thus, BLCE-G provides the tightest known performance guar-

antees for batched linear contextual bandits and, to our knowledge, is the first algorithm to match
the minimax lower bounds in both regimes. Moreover, it achieves the smallest regret bound within
each regime among existing works (Abbasi-Yadkori et al., 2011; Ruan et al., 2021; Hanna et al.,
2023a;b; Zhang et al., 2025).
Theorem 2 (Regret of BLCE). Consider running the BLCE algorithm for T rounds with K arms in
d dimensions. The worst-case cumulative regret satisfies

R(T ) = O
(√

dT (
√

log(KT ) ∧
√
d+ log T )

√
log T log log T

)
= Õ

(√
dT logK ∧ d

√
T
)
.

Discussion of Theorem 2. Theorem 2 establishes that BLCE also achieves the minimax-optimal re-
gret bound with only O(log log T ) batches. Its key distinction lies in computational: by removing
the G-optimal design step, BLCE significantly reduces both complexity and runtime yet retains the
best-known regret guarantees. As shown in Table 3, this makes BLCE the first batched linear con-
textual bandit algorithm to combine minimax optimality across both regimes with no reliance on
G-optimal design. Moreover, in the large-K regime, BLCE attains the smallest regret bound among
existing approaches (Abbasi-Yadkori et al., 2011; Hanna et al., 2023a;b).
Remark 1. While prior work on batched linear contextual bandits typically assumes i.i.d. con-
texts (Ruan et al., 2021; Hanna et al., 2023a;b; Zhang et al., 2025), we show that this assumption
can be relaxed to the following batch-wise conditions (for any ℓ ≥ 1)

(1) Law(At|FTℓ−1
) ∼ Dℓ−1 for t ∈ [Tℓ−1 + 1, Tℓ+1] ,

(2) At ⊥⊥ {As, xs,as
, rs}Tℓ

s=Tℓ−1+1|FTℓ−1
for t ∈ [Tℓ + 1, Tℓ+1] ,

(3) As ⊥⊥ {Au, xu,au , ru}s−1
u=Tℓ−1+1|FTℓ−1

for s ∈ (Tℓ−1 + 1, Tℓ] .
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Algorithm 2 BLCE

1: Input: Horizon T ; batch end times T1 =
⌈ √

T
log2 log2 T

⌉
, Tℓ =

(
Tℓ−1 +

⌈
T 1−2−ℓ

log2 log2 T

⌉
+ 1
)
∧ T

for ℓ ≥ 2; number of batches B, with TB = T ; within-batch allocation rate c

2: Initialize: λ← 1, H0 ← λI , b0 ← 0;
3: for t← 1, 2, . . . , T1 do
4: Pull arm xt,at ∈ argmaxx∈At ∥x∥H−1

t−1
, and receive reward rt;

5: H−1
t ← H−1

t−1 −H−1
t−1xt,atx

⊤
t,at

H−1
t−1/(1 + x⊤

t,at
H−1

t−1xt,at), bt ← bt−1 + rtxt,at ;
6: V −1

1 ← H−1
T1

, θ̂1 ← V −1
1 bT1

, HT1
← λI , bT1

← 0;
7: for ℓ← 2, . . . , B do
8: for t← Tℓ−1 + 1, . . . , Tℓ do
9: for k ← 1, . . . , ℓ− 1 do

10: x
(k)
t ← argmax

x∈A(k−1)
t
⟨x, θ̂k⟩, A(k)

t ←
{
x ∈ A(k−1)

t

∣∣∣∣ ⟨θ̂k, x(k)
t − x⟩ ≤ 2εt,k

}
;

11: if t ≤ Tℓ−1 +
⌈
cT 1−2−ℓ

/ log2 log2 T
⌉

then
12: Pull arm xt,at ∈ argmax

x∈A(ℓ−1)
t
∥x∥H−1

t−1
, and receive reward rt;

13: else
14: Pull arm xt,at ∈ argmax

x∈A(ℓ−1)
t
⟨x, θ̂ℓ−1⟩, and receive reward rt;

15: H−1
t ← H−1

t−1 −H−1
t−1xt,atx

⊤
t,at

H−1
t−1/(1 + x⊤

t,at
H−1

t−1xt,at), bt ← bt−1 + rtxt,at ;
16: V −1

ℓ ← H−1
Tℓ

, θ̂ℓ ← V −1
ℓ bTℓ

, HTℓ
← λI , bTℓ

← 0;

Given the history FTℓ−1
, condition (1) requires batches ℓ and ℓ+ 1 to share the same condi-

tional law of contexts; condition (2) enforces that batch ℓ+1 contexts are conditionally independent
of the contexts/actions/rewards realized in batch ℓ; and condition (3) imposes within-batch con-
ditional independence of each context from earlier within-batch observations. These assumptions
are strictly weaker than full i.i.d. : rather than identical and independent sampling across all
rounds, we only require (i) equality of the conditional context law across consecutive batches and
(ii) conditional independence across and within batches. This relaxation affords greater modeling
flexibility while preserving the guarantees proved in Appendix B.

4.2 TIME-COMPLEXITY OF ALGORITHMS

The computational bottlenecks of BLCE-G are the near G-optimal design step and arm elimination.
By Corollary 4, each call to the near G-optimal design costs O(Kd3) operations, giving a total cost
ofO(Kd3T ). For arm elimination, computing εt,k requiresO(Kd2) operations; since the number of
elimination rounds k is at most O(log log T ), this step costs O(Kd2T log log T ). Thus, the overall
complexity of BLCE-G isO(Kd2T (d+log log T )). For BLCE, the only bottleneck is arm elimination,
which follows the same procedure as in BLCE-G, yielding a total complexity ofO(Kd2T log log T ).

5 EXTENSIONS TO GENERALIZED LINEAR CONTEXTUAL BANDITS

5.1 PROPOSED ALGORITHM

Here, we propose BGLE (Batched Generalized Linear Contextual Bandit with Elimination), whose
pseudocode is given in Algorithm 3. To extend our approach to the generalized linear setting, we
build on the structure of Algorithm 2. In the first batch, the algorithm repeatedly pulls the most
informative direction with respect to the current Gram matrix (Line 4) and updates its inverse via
the Sherman–Morrison (Line 5). At the batch boundary, we set V1 := HT1

, compute the MLE θ̂1 for
the per–round log-loss ℓt(θ) =m(⟨xt,at

, θ⟩) − rt⟨xt,at
, θ⟩, and reinitialize HT1

for the next batch
(Line 6). For each batch ℓ ≥ 2, the Gram matrix is weighted by αt,ℓ−1(λ) µ̇(⟨xt,at

, θ̂ℓ−1⟩), where

αt,k(λ) = exp(−2RS)1{k=1} + exp(−R(2S ∧ ∥xt,at
∥V −1

k
β(λ)))1{k≥2}

7
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(Line 17). Beginning at batch ℓ ≥ 3, the algorithm performs ℓ − 2 elimination rounds using the
estimates θ̂2, . . . , θ̂ℓ−1, yielding nested feasible sets A(2)

t , . . . ,A(ℓ−1)
t (Line 11-12). Because no

elimination is conducted with θ̂1, we set At = A(0)
t = A(1)

t . The elimination threshold ε′t,k(λ) for
k ∈ [ℓ− 1] \ {1} is defined as

max
y∈A(k−1)

t

∥y∥V −1
k

(
24RS(

√
d+ log T +R(d+ log T )/

√
λ) + 2S

√
λ
)
,

which, under the choice λ = R2(d+log T ), simplifies to max
y∈A(k−1)

t
∥y∥V −1

k
(50RS

√
d+ log T ).

Within each batch ℓ ≥ 2, the action selection strategy follows that of BLCE, splitting the batch in
the ratio c : (1 − c) between exploration and exploitation. The key difference is that arm selection
is based on the weighted Gram matrix (Lines 14 and 16). At the end of batch ℓ, we set Vℓ := HTℓ

,
compute the MLE θ̂ℓ for ℓt(θ), and reinitialize HTℓ

for the next batch (Line 18).

5.2 REGRET ANALYSIS FOR BATCHED GENERALIZED LINEAR CONTEXTUAL BANDITS

To analyze BGLE, we introduce parameters that capture problem non-linearity. For any arm set A,
let x∗ ∈ argmaxx∈A µ(⟨x, θ∗⟩) denote the optimal arm, and define

κ := max
A∈supp(D)

max
x∈A

1

µ̇(⟨x, θ∗⟩)
, κ̂ :=

1

EA∼D[µ̇(⟨x∗, θ∗⟩]
, Rµ̇ := max

A∈supp(D)
µ̇(⟨x∗, θ∗⟩) .

Here, κ captures the worst-case curvature, κ̂ the average inverse curvature at the optimal arm, and
Rµ̇ the maximum derivative of the link function at optimal arms.
Theorem 3 (Regret of BGLE). Consider running the BGLE algorithm for T rounds with K arms in
d dimensions. The worst-case cumulative regret satisfies

R(T ) = O
(
RS
√
d(d+ log T )T log T log log T/κ̂

)
(leading term)

+ O
(
(R2Se8RSd(d+ log T ) log T log log T +R/ log log T )T 1/3

)
(transient term)

= Õ(RSd
√
T/
√
κ̂) + Õ((R2Se8RSd2 +R)T 1/3) .

Discussion of Theorem 3. Theorem 3 shows that both the leading and transient terms of BGLE are κ-
free, in sharp contrast to (Sawarni et al., 2024), whose transient term depends on κ. Since µ̇(z)→ 0
in saturation, κ can grow arbitrarily large, so removing this dependence is a substantial improvement.
Moreover, BGLE uses only O(log log T ) batches, matching the lowest known batch complexity. Be-
cause 1

κ̂ ≤ Rµ̇, the leading term in our regret bound is strictly smaller than that of Sawarni et al.
(2024); by eliminating the extraneous d in

√
d/κ̂, our bound attains a sharper dependence on κ̂,

thereby addressing the open question noted in that work. Finally, by building on the BLCE frame-
work, BGLE inherits substantially lower computational complexity.
Remark 2. The total time complexity of BGLE is O(Kd2T log log T + Ctotopt), where the first term
comes from the BLCE, and the second from computing the MLE at batch boundaries.

6 NUMERICAL EXPERIMENTS

We evaluate the performance of BLCE-G and BLCE over a horizon of T = 10,000 across 10 inde-
pendent runs. At each round, K arms are sampled i.i.d. from a d-dimensional uniform distribution,
and the parameter θ∗ is drawn from a d-dimensional normal distribution. We consider four (K, d)
pairs: (1000, 5) and (5000, 10), representing the large-K regime, and (50, 20) and (100, 30), rep-
resenting the small-K regime. For comparison, we benchmark against state-of-the-art algorithms:
RS-OFUL (Abbasi-Yadkori et al., 2011), BatchLinUCB-DG (Ruan et al., 2021), SoftBatch (Hanna
et al., 2023b), and BatchLearning (Zhang et al., 2025). Hyperparameters are set consistently with
theory, ensuring all choices satisfy the required conditions: BLCE-G and BLCE use within-batch allo-
cation rate c = 0.5; RS-OFUL uses switching parameter C = 1; and SoftBatch employs discretiza-
tion parameter q = 1/(8

√
d). Algorithms requiring G-optimal design are implemented using the

same near G-optimal routine. Due to the substantial computational overhead reported in Table 1, we
omit regret plots for the methods of Hanna et al. (2023b).
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(a) K = 1000, d = 5

(b) K = 5000, d = 10

(c) K = 50, d = 20

(d) K = 100, d = 30

Figure 1: Regret, zoomed-in regret, and batch complexity over time for different values of K and d.

We present three types of figures: (i) the average cumulative regret (solid line) with its standard devi-
ation (shaded region) over 10 runs, (ii) zoomed-in views of regret curves to highlight the differences
between BLCE-G and BLCE, and (iii) the average batch complexity across 10 runs, showing the fre-
quency of policy updates. As shown in Figure 1, both BLCE-G and BLCE consistently outperform all
baselines in both large-K and small-K regimes, achieving the lowest regret with greater stability.
Runtime comparisons in Table 3 further show that our methods incur substantially lower compu-
tational cost; in particular, BLCE, which eliminates G-optimal design entirely, achieves the fastest
runtime among optimal algorithms, comparable even to suboptimal baselines. Overall, these results
demonstrate that BLCE-G and BLCE combine minimax-optimal regret with practical efficiency.

For generalized linear contextual bandits, BGLE likewise outperforms the baseline, achieving lowest
regret, stable performance, and reduced computational cost. Detailed results are provided in Ap-
pendix D.2.

Table 3: Average runtime (seconds) over 10 runs.

Suboptimal algorithms Optimal algorithms

(K, d) RS-OFUL SoftBatch BatchLinUCB-DG Hanna et al. (2023b) BatchLearning BLCE-G BLCE

(1000, 5) 0.85 1.18 290.87 Exponential 166.17 23.40 5.91
(5000, 10) 4.15 13.17 1300.01 Exponential 621.09 40.27 12.83
(50, 20) 0.42 1.74 1031.66 Exponential 45.85 2.26 1.06
(100, 30) 0.61 3.50 2987.07 Exponential 77.01 3.70 1.62
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REPRODUCIBILITY STATEMENT

All theoretical results in Section 4.1 are accompanied by complete proofs provided in the appendix,
and the full set of employed assumptions is clearly specified in Section 3.2 and Section 3.3. The
numerical experiments reported in Section 6 and additional experiments in Appendix D are fully
reproducible: we provide the source code, along with implementation details, as supplementary
material to facilitate verification and replication of our results.

USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were used solely as an assistive tool for writing. Specifically, we
employed an LLM to improve clarity, grammar, and style of exposition. No part of the research
ideation, algorithm design, theoretical analysis, or experimental results involved the use of LLMs.
The authors take full responsibility for the content of the paper.
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Appendix

A PROOF OF THEOREM 1

Lemma 1. (Yu & Oh, 2025) Let Vℓ be the Gram matrix and θ̂ℓ be the least squares estimator
obtained from the contexts in the ℓ-th batch (ℓ ≥ 1). Then, for any x ∈ Rd and 0 < δ < 1, the
following inequality holds with probability at least 1− δ

|⟨x, θ̂ℓ − θ∗⟩| ≤

(√
2 log

(
1

δ

)
+
√
λ

)
∥x∥V −1

ℓ
.

Lemma 2. (Yu & Oh, 2025) Let Vℓ be the Gram matrix and θ̂ℓ be the least squares estimator
obtained from the contexts in the ℓ-th batch (ℓ ≥ 1). Then, for any 0 < ζ, δ < 1 and d ≥ 2, the
following inequality holds with probability at least 1− δ

∥θ̂ℓ − θ∗∥Vℓ
≤

√
(d− 1) log( 4

4ζ2−ζ4 ) + 2 log(
√
2πd
δ ) +

√
λ

1− ζ
.

Lemma 1 and Lemma 2 were originally proved in the linear bandit setting. However, the proofs do
not rely on the non-contextual assumption that the feature vectors of arms remain fixed. Therefore,
the results can be directly applied to the linear contextual bandit setting as well.

Corollary 1. Let Vℓ be the Gram matrix and θ̂ℓ be the least squares estimator obtained from the
contexts in the ℓ-th batch (ℓ ≥ 1). Then, for any 0 < δ < 1 and d ≥ 2, the following inequality
holds with probability at least 1− δ

∥θ̂ℓ − θ∗∥Vℓ
≤ 2

√
log

(
26d−5πd

15d−1δ2

)
+ 2
√
λ .

Proof. Substituting ζ = 0.5 into Lemma 2 yields the desired result.

Lemma 3 (Good event). Define the following quantities:

β
(1)
t,ℓ (δ) :=

√
2 log

(
2|A(ℓ−1)

t |(B − 1)T

δ

)
+
√
λ ,

β
(2)
t,ℓ (δ) := 2

√
log

(
26d−3πd(B − 1)2

15d−1δ2

)
+ 2
√
λ ,

εt,ℓ(δ) := max
y∈A(ℓ−1)

t

∥y∥V −1
ℓ
·
(
β
(1)
t,ℓ (δ) ∧ β

(2)
t,ℓ (δ)

)
.

Here, δ is a constant in the interval (0, 1). Then, the following event E holds with probability at
least 1− δ

E :=

B−1⋂
ℓ=1

T⋂
t=Tℓ+1

{
|⟨x, θ̂ℓ − θ∗⟩| ≤ εt,ℓ(δ), ∀x ∈ A(ℓ−1)

t

}
.

Proof. Fix arbitrary ℓ and t. By Lemma 1, the following inequality holds for all x ∈ A(ℓ−1)
t with

probability at least 1− δ
2(B−1)T

|⟨x, θ̂ℓ − θ∗⟩| ≤ max
y∈A(ℓ−1)

t

∥y∥V −1
ℓ
·

√2 log

(
2|A(ℓ−1)

t |(B − 1)T

δ

)
+
√
λ

 .

Applying a union bound over all ℓ and t, the following event holds with probability at least 1− δ
2

B−1⋂
ℓ=1

T⋂
t=Tℓ+1

{
|⟨x, θ̂ℓ − θ∗⟩| ≤ max

y∈A(ℓ−1)
t

∥y∥V −1
ℓ
· β(1)

t,ℓ (δ), ∀x ∈ A
(ℓ−1)
t

}
. (1)
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Next, for fixed ℓ, by the Cauchy-Schwarz inequality and Corollary 1, the following inequality holds
for all t and x ∈ A(ℓ−1)

t with probability at least 1− δ
2(B−1)

|⟨x, θ̂ℓ−θ∗⟩| ≤ ∥x∥V −1
ℓ
∥θ̂ℓ−θ∗∥Vℓ

≤ max
y∈A(ℓ−1)

t

∥y∥V −1
ℓ
·

(
2

√
log

(
26d−3πd(B − 1)2

15d−1δ2

)
+ 2
√
λ

)
.

A union bound over ℓ yields the following event with probability at least 1− δ
2

B−1⋂
ℓ=1

T⋂
t=Tℓ+1

{
|⟨x, θ̂ℓ − θ∗⟩| ≤ max

y∈A(ℓ−1)
t

∥y∥V −1
ℓ
· β(2)

t,ℓ (δ), ∀x ∈ A
(ℓ−1)
t

}
. (2)

Combining event (1) and event (2), we conclude that the following event holds with probability at
least 1− δ

B−1⋂
ℓ=1

T⋂
t=Tℓ+1

{
|⟨x, θ̂ℓ − θ∗⟩| ≤ max

y∈A(ℓ−1)
t

∥y∥V −1
ℓ
·
(
β
(1)
t,ℓ (δ) ∧ β

(2)
t,ℓ (δ)

)
, ∀x ∈ A(ℓ−1)

t

}
.

Lemma 4. Let E be the good event defined in Lemma 3 with δ = 2
T . Conditioned on E, the optimal

arm x∗
t ∈ argmaxx∈At⟨x, θ∗⟩ is never eliminated at any round t. In particular,

x∗
t ∈ A

(ℓ)
t , for all 1 ≤ ℓ ≤ B − 1 and Tℓ + 1 ≤ t ≤ T .

Proof. Fix t ∈ [Ts + 1, Ts+1] for some s ∈ [B − 1]. We show by induction on ℓ that x∗
t ∈ A

(ℓ)
t for

all ℓ ∈ [s].

Base case (ℓ = 1). Since both x∗
t and x

(1)
t belong to A(0)

t (= At), we have

⟨θ̂1, x(1)
t − x∗

t ⟩ = ⟨θ̂1 − θ∗, x
(1)
t − x∗

t ⟩+ ⟨θ∗, x
(1)
t − x∗

t ⟩

≤ ⟨θ̂1 − θ∗, x
(1)
t − x∗

t ⟩

≤ |⟨θ̂1 − θ∗, x
(1)
t ⟩|+ |⟨θ̂1 − θ∗, x∗

t ⟩|
≤ 2εt,1 ,

where the first inequality follows from the optimality of x∗
t and the last from the definition of the

good event E. Hence x∗
t ∈ A

(1)
t .

Inductive step. Assume x∗
t ∈ A

(ℓ−1)
t for some ℓ ∈ {2, . . . , s}. Since x

(ℓ)
t ∈ A(ℓ−1)

t , we
similarly obtain

⟨θ̂ℓ, x(ℓ)
t − x∗

t ⟩ = ⟨θ̂ℓ − θ∗, x
(ℓ)
t − x∗

t ⟩+ ⟨θ∗, x
(ℓ)
t − x∗

t ⟩

≤ ⟨θ̂ℓ − θ∗, x
(ℓ)
t − x∗

t ⟩

≤ |⟨θ̂ℓ − θ∗, x
(ℓ)
t ⟩|+ |⟨θ̂ℓ − θ∗, x∗

t ⟩|
≤ 2εt,ℓ ,

which shows that x∗
t ∈ A

(ℓ)
t . By induction, the claim holds for all ℓ ∈ [s], completing the proof.

Lemma 5. (Abbasi-Yadkori et al., 2011) Let {x1, . . . , xn} ⊂ Rd be a sequence of vectors such
that ∥xi∥2 ≤ 1 for all i ∈ [n]. Let H0 ∈ Rd×d be a positive definite matrix, and define Ht :=

H0 +
∑t

i=1 xix
⊤
i . Then, the following inequality holds

n∑
t=1

min
{
1, ∥xt∥2H−1

t−1

}
≤ 2 log

(
det(Hn)

det(H0)

)
.
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Corollary 2. Let {x1, . . . , xn} ⊂ Rd be a sequence of vectors such that ∥xi∥2 ≤ 1 for all i ∈ [n].
Suppose λ ≥ 1, and define H0 := λI and Ht := λI +

∑t
i=1 xix

⊤
i for each t ∈ {1, . . . , n}. Then,

for any 1 ≤ m ≤ n,
n∑

t=m

∥xt∥2H−1
t−1

≤ 2 log

(
det(Hn)

det(Hm−1)

)
.

Proof. Since H−1
t−1 ⪯ λ−1I for all t, it follows that H−1

t−1 ⪯ λ−1I ⪯ I . Consequently, ∥xt∥2H−1
t−1

≤
∥xt∥22 ≤ 1 for each t ∈ [m,n]. Applying Lemma 5 over the interval [m,n] yields the stated bound.

Lemma 6. Let H be a positive definite matrix. Suppose x ∈ Rd satisfies ∥x∥2H−1 ≤ c. Then
cH ⪰ xx⊤.

Proof. For any z ∈ Rd, we have

z⊤(cH)z ≥ ∥x∥2H−1 · ∥z∥2H = ∥H− 1
2x∥2 · ∥H 1

2 z∥2 ≥ ⟨x, z⟩2 = z⊤(xx⊤)z .

The first inequality follows from the assumption ∥x∥2H−1 ≤ c. The second inequality follows from
the Cauchy–Schwarz inequality. Since this bound holds for all z ∈ Rd, the matrix inequality cH ⪰
xx⊤ follows.

Lemma 7. (Ruan et al., 2021) Let x1, . . . , xn be independent and identically distributed (i.i.d.)
random vectors drawn from a distribution D such that ∥xi∥2 ≤ 1 almost surely. For any cutoff level
λ > 0, the following inequality holds with probability at least 1− 2d exp(−λn

8 )

3λI +
1

n

n∑
i=1

xix
⊤
i ⪰

1

8
Ex∼D

[
xx⊤]

Corollary 3. Let x1, . . . , xn be independent and identically distributed (i.i.d.) random vectors
drawn from a distribution D such that ∥xi∥2 ≤ 1 almost surely. Then, the following inequality
holds with probability at least 1− 2

T

24 log(dT )

n
I +

1

n

n∑
i=1

xix
⊤
i ⪰

1

8
Ex∼D

[
xx⊤]

Proof. The proof is a direct application of Lemma 7. We achieve the desired inequality by setting
the cutoff level λ to λ = 8 log(dT )

n .

Lemma 8. (Todd & Yıldırım, 2007) Let X = {x1, . . . , xK} ⊂ Rd be a set of K points that spans
Rd, and fix ε ∈ (0, 1]. Then Khachiyan’s barycentric coordinate descent algorithm computes a
(1 + ε)-approximation to the minimum-volume enclosing ellipsoid of X in

O
(
Kd2

(
[(1 + ε)2/(d+1) − 1]−1 + log d

))
arithmetic operations. In particular, since [(1 + ε)2/(d+1) − 1]−1 = Θ(d/ε) for ε ∈ (0, 1], the total
time complexity simplifies to

O
(

Kd3

ε

)
.

Corollary 4 (Near G-optimal design). Let X = {x1, . . . , xK} ⊂ Rd and let r = rank(X) ≤ d. Let
U ∈ Rd×r have orthonormal columns spanning span{xi}, and define x′

i := U⊤xi ∈ Rr together
with Σ′(w) :=

∑K
i=1 wi x

′
ix

′⊤
i for w ∈ ∆K (K-dimensional probability simplex). Applying the

algorithm of Lemma 8 to {x′
i}Ki=1 with accuracy parameter fixed to ε = 1 returns weights w◦ ∈ ∆K

such that
max
j∈[K]

x′⊤
j

(
Σ′(w◦)

)−1

x′
j ≤ 2 r ,

in
O
(
Kr2

(
[(1 + 1)2/(r+1) − 1]−1 + log r

))
= O(Kr3)
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arithmetic operations. Equivalently, in the original space we have

max
j∈[K]

x⊤j
(
ΠΣ(w◦)

+Π
)
xj ≤ 2 r , where Σ(w) :=

K∑
i=1

wi xix
⊤
i , Π := UU⊤ ,

with + denoting the Moore–Penrose pseudoinverse. Hence w◦ is a constant-factor near-optimal
design in the effective dimension r, computed in polynomial time O(Kr3) by the method in Lemma 8.

Proof. Consider the subspace spanned by {xi} of dimension r, let U be an orthonormal basis, and
project x′

i := U⊤xi ∈ Rr. The MVEE and D/G-optimal design problems are equivalently posed in
Rr, and guarantees for x′

i and Σ′(w) :=
∑

i wix
′
ix

′⊤
i transfer back to the original space through the

projector Π = UU⊤ and the Moore–Penrose pseudoinverse. By Lemma 8, Khachiyan’s barycentric
coordinate descent computes an ε-approximate MVEE of {x′

i} in

O
(
Kr2

(
[(1 + ε)2/(r+1) − 1]−1 + log r

))
arithmetic operations; fixing ε = 1 gives O(Kr3).

Moreover, the standard MVEE ↔ D/G-optimal duality and the algorithm’s stopping rule imply
that the returned weights w◦ ∈ ∆K satisfy the constraint-violation guarantee

max
j∈[K]

x′⊤
j

(
Σ′(w◦)

)−1

x′
j ≤ (1 + ε) r .

With ε = 1 this yields

max
j∈[K]

x′⊤
j

(
Σ′(w◦)

)−1

x′
j ≤ 2 r .

Finally, lifting back to the original space uses the identity

x′⊤
j

(
Σ′(w◦)

)−1

x′
j = x⊤j

(
ΠΣ(w◦)

+Π
)
xj , Σ(w) :=

K∑
i=1

wi xix
⊤
i , Π := UU⊤,

so that
max
j∈[K]

x⊤j
(
ΠΣ(w◦)

+Π
)
xj ≤ 2 r .

Hence w◦ is a constant-factor near-G-optimal design in effective dimension r, computed in polyno-
mial time O(Kr3) by the method in Lemma 8.

Proof of Theorem 1. To establish the claimed batch complexity bound, we analyze the lower bound
on the length of the ℓ-th batch, where ℓ = ⌈log2 log2 T ⌉. By definition of the schedule, the length of
this batch is at least⌈

T 1−2−ℓ

log2 log2 T

⌉
+ 2 ≥ T 1−2−⌈log2 log2 T⌉

log2 log2 T
≥ T 1−2− log2 log2 T

log2 log2 T
=

T 1− 1
log2 T

log2 log2 T
=

T

2 log2 log2 T
.

Since the batch length is non-decreasing in ℓ, every batch with index ℓ ≥ ⌈log2 log2 T ⌉ has length
at least T

2 log2 log2 T . Given the total time horizon T , the number of such batches is therefore at most
⌈2 log2 log2 T ⌉. Including the initial ⌈log2 log2 T ⌉ − 1 batches, the total number of batches B is
bounded by

B ≤ ⌈2 log2 log2 T ⌉+ ⌈log2 log2 T ⌉ − 1 ≤ 3 log2 log2 T + 1 ,

which implies that the batch complexity is O(log log T ).

Next, we begin by decomposing the cumulative expected regret based on the good event E.
The regret can be written as

R(T ) =
B∑

k=1

Tk∑
t=Tk−1+1

E
[
max
x∈At

⟨x, θ∗⟩ − ⟨xt,at
, θ∗⟩

]
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=

B∑
k=1

Tk∑
t=Tk−1+1

E
[
⟨x∗

t − xt,at
, θ∗⟩

∣∣∣∣Ec

]
· P(Ec) + E

[
⟨x∗

t − xt,at
, θ∗⟩

∣∣∣∣E] · P(E) .

Using the triangle inequality followed by the Cauchy-Schwarz inequality, we have

⟨x∗
t − xt,at

, θ∗⟩ ≤ |⟨x∗
t − xt,at

, θ∗⟩|
≤ |⟨x∗

t , θ
∗⟩|+ |⟨xt,at , θ

∗⟩|
≤ ∥x∗

t ∥ · ∥θ∗∥+ ∥xt,at
∥ · ∥θ∗∥

≤ 2 ,

where the last inequality follows from Assumption 1. Hence, the cumulative expected regret can be
bounded as

R(T ) ≤ 2T · P(Ec) +

B∑
k=1

Tk∑
t=Tk−1+1

E
[
⟨x∗

t − xt,at
, θ∗⟩

∣∣∣∣E] · P(E)

≤ O(1) +
B∑

k=1

Tk∑
t=Tk−1+1

E
[
⟨x∗

t − xt,at
, θ∗⟩

∣∣∣∣E] ,
where the O(1) term follows from the high-probability guarantee P(Ec) = O(1/T ). Throughout
the remainder of the analysis, we therefore condition on the good event E. Let Regretℓ denote the
cumulative expected regret incurred during batch ℓ. We analyze the regret separately for the case
ℓ = 1 and for all subsequent batches ℓ ≥ 2.

Case 1: ℓ = 1. In the first batch, the number of rounds is T1 =
⌈ √

T
log2 log2 T

⌉
+ 1, and the instanta-

neous regret is bounded by 2. Therefore,

Regret1 =

T1∑
t=1

E[⟨x∗
t − xt,at , θ

∗⟩] ≤ 2T1 ≤ 2

( √
T

log2 log2 T
+ 2

)
= O

(√
T
)
.

Case 2: ℓ ≥ 2. For each batch ℓ ≥ 2, the rounds following the arm elimination steps are divided
into three phases:

Phases 1 & 2. In the first two phases of length
⌈

c2T 1−2−ℓ

log2 log2 T

⌉
+
⌈
c(1−c)T 1−2−ℓ

log2 log2 T

⌉
, the algorithm selects

arm according to a near G-optimal design and the most informative direction with respect to the
current Gram matrix. For any round t in these phases, the instantaneous regret satisfies

⟨x∗
t − xt,at

, θ∗⟩ = ⟨x∗
t − xt,at

, θ∗ − θ̂ℓ−1⟩+ ⟨x∗
t − xt,at

, θ̂ℓ−1⟩

≤ ⟨x∗
t − xt,at

, θ∗ − θ̂ℓ−1⟩+ ⟨x(ℓ−1)
t − xt,at

, θ̂ℓ−1⟩
≤ |⟨x∗

t , θ̂ℓ−1 − θ∗⟩|+ |⟨xt,at , θ̂ℓ−1 − θ∗⟩|+ 2εt,ℓ−1

≤ 4εt,ℓ−1 . (3)

The first inequality uses the fact that x(ℓ−1)
t is optimal with respect to θ̂ℓ−1 and that x∗

t belongs to
A(ℓ−2)

t by Lemma 4. The second inequality follows since xt,at ∈ A
(ℓ−1)
t by construction of the

arm elimination step. The final inequality follows from the definition of the good event E and again
from Lemma 4, which guarantees x∗

t ∈ A
(ℓ−2)
t .

Phase 3. In the last phase, the algorithm selects arms greedily with respect to the estimated
parameter, i.e., xt,at ∈ argmax

x∈A(ℓ−1)
t
⟨x, θ̂ℓ−1⟩. For any round t in this phase, the instantaneous

regret satisfies

⟨x∗
t − xt,at

, θ∗⟩ = ⟨x∗
t − xt,at

, θ∗ − θ̂ℓ−1⟩+ ⟨x∗
t − xt,at

, θ̂ℓ−1⟩
≤ ⟨x∗

t − xt,at
, θ∗ − θ̂ℓ−1⟩

≤ |⟨x∗
t , θ̂ℓ−1 − θ∗⟩|+ |⟨xt,at , θ̂ℓ−1 − θ∗⟩|
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≤ 2εt,ℓ−1 . (4)

The first inequality follows from the fact that xt,at is optimal with respect to θ̂ℓ−1 and that x∗
t

belongs toA(ℓ−1)
t by Lemma 4. The final inequality follows directly from the definition of the good

event E and from Lemma 4, as in Phases 1 & 2.

Therefore, it suffices to upper bound the quantity
∑Tℓ+1

t=Tℓ+1 εt,ℓ for each ℓ ∈ [B − 1], which

reduces to bounding the sum
∑Tℓ+1

t=Tℓ+1 max
y∈A(ℓ−1)

t
∥y∥V −1

ℓ
. Since both Vℓ and the arm elimina-

tion rule—determined by θ̂1, . . . , θ̂ℓ−1—are measurable with respect to FTℓ
, they can be treated as

fixed quantities conditional on this filtration. Given that the contexts are drawn independently and
identically, it follows by the tower property that for any t, v ∈ [Tℓ + 1, Tℓ+1], we have

E
[

max
y∈A(ℓ−1)

t

y⊤V −1
ℓ y

]
= E

[
E
[

max
y∈A(ℓ−1)

t

y⊤V −1
ℓ y

∣∣∣∣FTℓ

]]
= E

[
E
[

max
y∈A(ℓ−1)

v

y⊤V −1
ℓ y

∣∣∣∣FTℓ

]]
= E

[
max

y∈A(ℓ−1)
v

y⊤V −1
ℓ y

]
. (5)

Define T ′
ℓ−1 := Tℓ−1 +

⌈
c2T 1−2−ℓ

log2 log2 T

⌉
and T ′′

ℓ−1 := T ′
ℓ−1 +

⌈
c(1−c)T 1−2−ℓ

log2 log2 T

⌉
for all ℓ ≥ 2, whereas for

the first batch (ℓ = 1), we set T ′
0 := T0+

⌈
c
√
T

log2 log2 T

⌉
and T ′′

0 := T1. Now, fix any t ∈ [Tℓ+1, Tℓ+1]

and consider the interval s ∈ [T ′
ℓ−1 + 1, T ′′

ℓ−1]. Then, we have the following result

T ′′
ℓ−1∑

s=T ′
ℓ−1+1

E
[

max
y∈A(ℓ−1)

t

y⊤V −1
ℓ y

]
≤

T ′′
ℓ−1∑

s=T ′
ℓ−1+1

E
[

max
y∈A(ℓ−1)

t

y⊤H−1
s−1y

]

=

T ′′
ℓ−1∑

s=T ′
ℓ−1+1

E
[
E
[

max
y∈A(ℓ−1)

t

y⊤H−1
s−1y

∣∣∣∣Fs−1

]]

=

T ′′
ℓ−1∑

s=T ′
ℓ−1+1

E
[
E
[

max
y∈A(ℓ−1)

s

y⊤H−1
s−1y

∣∣∣∣Fs−1

]]

=

T ′′
ℓ−1∑

s=T ′
ℓ−1+1

E
[

max
y∈A(ℓ−1)

s

y⊤H−1
s−1y

]
. (6)

The first inequality follows from the monotonicity of the matrices, as Hs−1 ⪯ Vℓ for all s in the
interval. The first and last equalities follow from the tower property. The second equality uses the
fact that, conditional onFs−1, both Hs−1 and the arm elimination rule (determined by θ̂1, . . . , θ̂ℓ−1)
are fixed, and the distribution of the contexts remains unchanged due to their i.i.d. nature.

In Phase 2, the algorithm proceeds by selecting the most informative direction at each step
with respect to the current Gram matrix. For all ℓ ≥ 1, we obtain

T ′′
ℓ−1∑

s=T ′
ℓ−1+1

E
[

max
y∈A(ℓ−1)

s

y⊤H−1
s−1y

]
= E

 T ′′
ℓ−1∑

s=T ′
ℓ−1+1

max
y∈A(ℓ−1)

s

y⊤H−1
s−1y


= E

 T ′′
ℓ−1∑

s=T ′
ℓ−1+1

x⊤
s,as

H−1
s−1xs,as


≤ E

[
2 log

(
det(HT ′′

ℓ−1
)

det(HT ′
ℓ−1

)

)]
, (7)
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where the second equality follows from the arm-selection strategy of Phase 2, and the first inequality
follows from Corollary 2.

Next, we establish a probabilistic bound on the Gram matrix. With probability at least 1 − 2
T , the

following holds for all ℓ ≥ 1

HT ′′
ℓ−1

= HT ′
ℓ−1

+

T ′′
ℓ−1∑

s=T ′
ℓ−1+1

xs,as
x⊤
s,as

⪯ HT ′
ℓ−1

+

T ′′
ℓ−1∑

s=T ′
ℓ−1+1

2d · E
z∼πG′ (A(ℓ−1)

s )

[
zz⊤

]

= HT ′
ℓ−1

+
2d(T ′′

ℓ−1 − T ′
ℓ−1)

T ′
ℓ−1 − Tℓ−1

·
T ′
ℓ−1∑

s=Tℓ−1+1

E
z∼πG′ (A(ℓ−1)

s )

[
zz⊤

]

⪯ HT ′
ℓ−1

+
16d

(
cT 1−2−ℓ

log2 log2 T + 1
)

c2T 1−2−ℓ

log2 log2 T

·

24 log(dT )I +

T ′
ℓ−1∑

s=Tℓ−1+1

xs,asx
⊤
s,as


⪯
(
1 +

384d

c
+

384d log2 log2 T

c2T 1−2−ℓ

)
·HT ′

ℓ−1

⪯ (384c+ 385)d

c2
HT ′

ℓ−1
.

The first inequality follows from the application of Corollary 4 together with Lemma 6. The second
equality holds because the contexts are drawn i.i.d., which allows the sum over the current phase
to be related to the sum over the previous phase by a scaling factor. The second inequality follows
directly from Lemma 7 since in Phase 1 the algorithm selects arm according to a near G-optimal de-

sign. The third inequality follows from the bound 24 log(dT )I+
∑T ′

ℓ−1

s=Tℓ−1+1 xs,as
x⊤
s,as
⪯ 24HT ′

ℓ−1
.

Finally, the last inequality is obtained by simplifying constants, using the facts that 1 ≤ d
c2 and

log2 log2 T ≤ T 1−2−ℓ

for all T ≥ 1.

We define the event Eℓ, which occurs with probability at least 1− 2
T , as

Eℓ :=

{
HT ′′

ℓ−1
⪯ (384c+ 385)d

c2
HT ′

ℓ−1

}
.

This event ensures that the Gram matrix does not grow excessively during Phase 2 of the algorithm.
Conditioning on Eℓ and Ec

ℓ , we obtain the following upper bound for (7), valid for all ℓ ≥ 1

T ′′
ℓ−1∑

s=T ′
ℓ−1+1

E
[

max
y∈A(ℓ−1)

s

y⊤H−1
s−1y

]
≤ E

[
2 log

(
det(HT ′′

ℓ−1
)

det(HT ′
ℓ−1

)

)]

= E

[
2 log

(
det(HT ′′

ℓ−1
)

det(HT ′
ℓ−1

)

)∣∣∣∣∣Eℓ

]
· P(Eℓ) + E

[
2 log

(
det(HT ′′

ℓ−1
)

det(HT ′
ℓ−1

)

)∣∣∣∣∣Ec
ℓ

]
· P(Ec

ℓ )

≤ 2d log

(
(384c+ 385)d

c2

)
+

2

T
· E

[
2 log

(
det(HT ′′

ℓ−1
)

det(λI)

)∣∣∣∣∣Ec
ℓ

]

≤ 2d log

(
769d

c2

)
+

4

T
· E

[
log

(
(tr(HT ′′

ℓ−1
)/d)d

λd

)∣∣∣∣∣Ec
ℓ

]

≤ 2d log

(
769d

c2

)
+

4d

T
· log

(
1 +

T

dλ

)
≤ 2d log

(
769d

c2

)
+

4d log(2T )

T
. (8)
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The second inequality follows from the definition of Eℓ and its high-probability guarantee. The
third inequality uses c ≤ 1 and replaces the determinant by the bound det(H) ≤ (tr(H)/d)d,
which is a consequence of the AM–GM inequality. The fourth inequality applies the fact that
∥x∥2 ≤ 1 for all contexts, which implies tr(HT ′′

ℓ−1
) ≤ dλ+ T .

Now, we establish an upper bound on the cumulative expected regret. By combining the
bounds derived in (3) and (4), we can bound the cumulative expected regret for batch ℓ, denoted by
Regretℓ, for any ℓ ≥ 2 as follows

Regretℓ =
Tℓ∑

t=Tℓ−1+1

E[⟨x∗
t − xt,at

, θ∗⟩]

≤ 4

Tℓ∑
t=Tℓ−1+1

E[εt,ℓ−1]

= 4

Tℓ∑
t=Tℓ−1+1

E

[
max

y∈A(ℓ−2)
t

∥y∥V −1
ℓ−1
·
(
β
(1)
t,ℓ−1

(
2

T

)
∧ β

(2)
t,ℓ−1

(
2

T

))]

≤ 4

Tℓ∑
t=Tℓ−1+1

E

[
max

y∈A(ℓ−2)
t

∥y∥V −1
ℓ−1

]
·

(√
2 log (K(B − 1)T 2) +

√
λ
∧

2

√
log

(
26d−5πd(B − 1)2T 2

15d−1

)
+ 2
√
λ

)
.

The last inequality follows from the fact that the size of the candidate arm set satisfies
|A(ℓ−2)

t | ≤ |At| = K for all t ∈ [Tℓ−1 + 1, Tℓ], allowing us to upper bound the confidence
parameter β(1)

t,ℓ−1 uniformly over the action set.

Using (5), (6), and (8), we can bound the summation
∑Tℓ

t=Tℓ−1+1 E
[
max

y∈A(ℓ−2)
t
∥y∥V −1

ℓ−1

]
for any ℓ ≥ 2 as

Tℓ∑
t=Tℓ−1+1

E

[
max

y∈A(ℓ−2)
t

∥y∥V −1
ℓ−1

]
≤

Tℓ∑
t=Tℓ−1+1

√√√√E

[
max

y∈A(ℓ−2)
t

y⊤V −1
ℓ−1y

]

= (Tℓ − Tℓ−1) ·

√√√√E

[
max

y∈A(ℓ−2)
t

y⊤V −1
ℓ−1y

]

≤ Tℓ − Tℓ−1√
T ′′
ℓ−2 − T ′

ℓ−2

·

√√√√√ T ′′
ℓ−2∑

s=T ′
ℓ−2+1

E
[

max
y∈A(ℓ−2)

s

y⊤H−1
s−1y

]

≤ Tℓ − Tℓ−1√
T ′′
ℓ−2 − T ′

ℓ−2

·

√
2d log

(
769d

c2

)
+

4d log(2T )

T

≤
T 1−2−ℓ

log2 log2 T + 3√
c(1−c)T 1−21−ℓ

log2 log2 T

·

√
2d log

(
769d

c2

)
+

4d log(2T )

T

=

(√
T

c(1− c) log2 log2 T
+ 3

√
log2 log2 T

c(1− c)T 1−21−ℓ

)
·

√
2d log

(
769d

c2

)
+

4d log(2T )

T

≤

(√
T

c(1− c) log2 log2 T
+

3√
c(1− c)

)
·

√
2d log d+ 2

(
log

(
769

c2

)
+ 2

)
d

≤ c′ ·

√
dT log d

log2 log2 T
,
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where t is arbitrary in the interval [Tℓ−1 + 1, Tℓ], and we define c′ := 4
√

2(log(769/c2)+3)
c(1−c) . The first

inequality applies Jensen’s inequality to move the square root outside the expectation. The first
equality follows from (5), while the second inequality uses the bound in (6). The third inequality
follows from (8). The fifth inequality follows from the facts that log2 log2 T ≤ T 1−21−ℓ

and
log(2T ) ≤ T for all T ≥ 1. The final inequality uses the bounds 1 ≤ T

log2 log2 T and d ≤ d log d for
all T ≥ 1 and d ≥ 3.

We now derive the cumulative expected regret after the first batch. Based on the previously
derived results, the total regret from batches ℓ = 2 to B can be bounded as follows

B∑
ℓ=2

Regretℓ ≤
B∑

ℓ=2

4c′

√
dT log d

log2 log2 T
·

(√
2 log (K(B − 1)T 2) +

√
λ
∧

2

√
log

(
26d−5πd(B − 1)2T 2

15d−1

)
+ 2
√
λ

)

= O

(√
dT log d log log T ·

(√
log(KT ) +

√
log (dT ) ∧

√
d log

(
64

15

)
+ log(dT ) +

√
log(dT )

))
= O

(√
dT log d log log T ·

(√
log(KT ) +

√
log T ∧

√
d+ log T +

√
log T

))
= O

(√
dT log d log log T ·

(√
log(KT ) ∧

√
d+ log T

))
.

The first equality follows from substituting B = O(log log T ) and λ = log(dT ). The second
equality holds in the regime where T ≥ d. This is a safe assumption, as for T ≤ d, the total regret
is trivially bounded by R(T ) =

∑T
t=1 E[⟨x∗

t − xt,at , θ
∗⟩] ≤ 2T ≤ 2

√
dT = O(

√
dT ), which is a

much smaller bound.

Thus, the total worst-case regret is bounded as

R(T ) ≤
B∑

k=1

Tk∑
t=Tk−1+1

E
[
⟨x∗

t − xt,at
, θ∗⟩

∣∣∣∣E]

= Regret1 +
B∑

k=2

Regretk

= O
(√

T
)
+O

(√
dT log d log log T ·

(√
log(KT ) ∧

√
d+ log T

))
= O

(√
dT
(√

log(KT ) ∧
√

d+ log T
)√

log d log log T
)

.

Therefore, the worst-case regret for the algorithm is given by

R(T ) = O
(√

dT
(√

log(KT ) ∧
√
d+ log T

)√
log d log log T

)
= Õ

(√
dT logK ∧ d

√
T
)

.
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B PROOF OF THEOREM 2

Proof of Theorem 2. As Remark 1 encompasses the standard i.i.d. context assumption, we establish
Theorem 2 under the more general conditions specified therein.

To establish the claimed batch complexity bound, we analyze the lower bound on the length of the
ℓ-th batch, where ℓ = ⌈log2 log2 T ⌉. By definition of the schedule, the length of this batch is at least⌈

T 1−2−ℓ

log2 log2 T

⌉
+ 1 ≥ T 1−2−⌈log2 log2 T⌉

log2 log2 T
≥ T 1−2− log2 log2 T

log2 log2 T
=

T 1− 1
log2 T

log2 log2 T
=

T

2 log2 log2 T
.

Since the batch length is non-decreasing in ℓ, every batch with index ℓ ≥ ⌈log2 log2 T ⌉ has length
at least T

2 log2 log2 T . Given the total time horizon T , the number of such batches is therefore at most
⌈2 log2 log2 T ⌉. Including the initial ⌈log2 log2 T ⌉ − 1 batches, the total number of batches B is
bounded by

B ≤ ⌈2 log2 log2 T ⌉+ ⌈log2 log2 T ⌉ − 1 ≤ 3 log2 log2 T + 1 ,

which implies that the batch complexity is O(log log T ).

Next, we begin by decomposing the cumulative expected regret based on the good event E.
The regret can be written as

R(T ) =
B∑

k=1

Tk∑
t=Tk−1+1

E
[
max
x∈At

⟨x, θ∗⟩ − ⟨xt,at
, θ∗⟩

]

=

B∑
k=1

Tk∑
t=Tk−1+1

E
[
⟨x∗

t − xt,at , θ
∗⟩
∣∣∣∣Ec

]
· P(Ec) + E

[
⟨x∗

t − xt,at , θ
∗⟩
∣∣∣∣E] · P(E) .

Using the triangle inequality followed by the Cauchy-Schwarz inequality, we have

⟨x∗
t − xt,at

, θ∗⟩ ≤ |⟨x∗
t − xt,at

, θ∗⟩|
≤ |⟨x∗

t , θ
∗⟩|+ |⟨xt,at , θ

∗⟩|
≤ ∥x∗

t ∥ · ∥θ∗∥+ ∥xt,at
∥ · ∥θ∗∥

≤ 2 ,

where the last inequality follows from Assumption 1. Hence, the cumulative expected regret can be
bounded as

R(T ) ≤ 2T · P(Ec) +

B∑
k=1

Tk∑
t=Tk−1+1

E
[
⟨x∗

t − xt,at , θ
∗⟩
∣∣∣∣E] · P(E)

≤ O(1) +
B∑

k=1

Tk∑
t=Tk−1+1

E
[
⟨x∗

t − xt,at , θ
∗⟩
∣∣∣∣E] ,

where the O(1) term follows from the high-probability guarantee P(Ec) = O(1/T ). Throughout
the remainder of the analysis, we therefore condition on the good event E. Let Regretℓ denote the
cumulative expected regret incurred during batch ℓ. We analyze the regret separately for the case
ℓ = 1 and for all subsequent batches ℓ ≥ 2.

Case 1: ℓ = 1. In the first batch, the number of rounds is T1 =
⌈ √

T
log2 log2 T

⌉
, and the instantaneous

regret is bounded by 2. Therefore,

Regret1 =

T1∑
t=1

E[⟨x∗
t − xt,at , θ

∗⟩] ≤ 2T1 ≤ 2

( √
T

log2 log2 T
+ 1

)
= O

(√
T
)
.
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Case 2: ℓ ≥ 2. For each batch ℓ ≥ 2, the rounds following the arm elimination steps are divided
into two phases:

Phase 1. In the first phase of length
⌈

cT 1−2−ℓ

log2 log2 T

⌉
, the algorithm selects the most informative direction

with respect to the current Gram matrix. For any round t in these phases, the instantaneous regret
satisfies

⟨x∗
t − xt,at

, θ∗⟩ = ⟨x∗
t − xt,at

, θ∗ − θ̂ℓ−1⟩+ ⟨x∗
t − xt,at

, θ̂ℓ−1⟩

≤ ⟨x∗
t − xt,at

, θ∗ − θ̂ℓ−1⟩+ ⟨x(ℓ−1)
t − xt,at

, θ̂ℓ−1⟩
≤ |⟨x∗

t , θ̂ℓ−1 − θ∗⟩|+ |⟨xt,at , θ̂ℓ−1 − θ∗⟩|+ 2εt,ℓ−1

≤ 4εt,ℓ−1 . (9)

The first inequality uses the fact that x(ℓ−1)
t is optimal with respect to θ̂ℓ−1 and that x∗

t belongs to
A(ℓ−2)

t by Lemma 4. The second inequality follows since xt,at
∈ A(ℓ−1)

t by construction of the
arm elimination step. The final inequality follows from the definition of the good event E and again
from Lemma 4, which guarantees x∗

t ∈ A
(ℓ−2)
t .

Phase 2. In the last phase, the algorithm selects arms greedily with respect to the estimated
parameter, i.e., xt,at

∈ argmax
x∈A(ℓ−1)

t
⟨x, θ̂ℓ−1⟩. For any round t in this phase, the instantaneous

regret satisfies

⟨x∗
t − xt,at , θ

∗⟩ = ⟨x∗
t − xt,at , θ

∗ − θ̂ℓ−1⟩+ ⟨x∗
t − xt,at , θ̂ℓ−1⟩

≤ ⟨x∗
t − xt,at

, θ∗ − θ̂ℓ−1⟩
≤ |⟨x∗

t , θ̂ℓ−1 − θ∗⟩|+ |⟨xt,at
, θ̂ℓ−1 − θ∗⟩|

≤ 2εt,ℓ−1 . (10)

The first inequality follows from the fact that xt,at
is optimal with respect to θ̂ℓ−1 and that x∗

t

belongs toA(ℓ−1)
t by Lemma 4. The final inequality follows directly from the definition of the good

event E and from Lemma 4, as in Phase 1.

Therefore, it suffices to upper bound the quantity
∑Tℓ+1

t=Tℓ+1 εt,ℓ for each ℓ ∈ [B − 1], which

reduces to bounding the sum
∑Tℓ+1

t=Tℓ+1 max
y∈A(ℓ−1)

t
∥y∥V −1

ℓ
. Since both Vℓ and the arm elimina-

tion rule—determined by θ̂1, . . . , θ̂ℓ−1—are measurable with respect to FTℓ
, they can be treated

as fixed quantities conditional on this filtration. Moreover, conditional on FTℓ
the action sets

{As}
Tℓ+2

s=Tℓ+1 are identically distributed with common law Dℓ. Hence, by the tower property, for any
t, v ∈ [Tℓ + 1, Tℓ+1] we have

E
[

max
y∈A(ℓ−1)

t

y⊤V −1
ℓ y

]
= E

[
E
[

max
y∈A(ℓ−1)

t

y⊤V −1
ℓ y

∣∣∣∣FTℓ

]]
= E

[
E
[

max
y∈A(ℓ−1)

v

y⊤V −1
ℓ y

∣∣∣∣FTℓ

]]
= E

[
max

y∈A(ℓ−1)
v

y⊤V −1
ℓ y

]
. (11)

Define T ′
ℓ−1 := Tℓ−1 +

⌈
cT 1−2−ℓ

log2 log2 T

⌉
for all ℓ ≥ 2, while for the first batch we set T ′

0 := T1. Now fix
any t ∈ [Tℓ + 1, Tℓ+1] and consider the interval s ∈ [Tℓ−1 + 1, T ′

ℓ−1]. Then we obtain

T ′
ℓ−1∑

s=Tℓ−1+1

E
[

max
y∈A(ℓ−1)

t

y⊤V −1
ℓ y

]
≤

T ′
ℓ−1∑

s=Tℓ−1+1

E
[

max
y∈A(ℓ−1)

t

y⊤H−1
s−1y

]

=

T ′
ℓ−1∑

s=Tℓ−1+1

E
[
E
[

max
y∈A(ℓ−1)

t

y⊤H−1
s−1y

∣∣∣∣FTℓ−1
∨ σ(Hs−1)

]]
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=

T ′
ℓ−1∑

s=Tℓ−1+1

E
[
E
[

max
y∈A(ℓ−1)

s

y⊤H−1
s−1y

∣∣∣∣FTℓ−1
∨ σ(Hs−1)

]]

=

T ′
ℓ−1∑

s=Tℓ−1+1

E
[

max
y∈A(ℓ−1)

s

y⊤H−1
s−1y

]
. (12)

The first inequality follows from monotonicity of the matrices, since Hs−1 ⪯ Vℓ for all s in the
interval. The first and last equalities follow from the tower property. The second equality relies on
the fact that, conditional on FTℓ−1

∨ σ(Hs−1), both Hs−1 and the arm elimination rule (determined
by θ̂1, . . . , θ̂ℓ−1) are fixed. Moreover, conditional on FTℓ−1

, the action set At is independent of
{Av, xv,av

, rv}Tℓ

v=Tℓ−1+1 for t ∈ [Tℓ +1, Tℓ+1], andAs is independent of {Au, xu,au
, ru}s−1

u=Tℓ−1+1

for s ∈ [Tℓ−1 + 1, Tℓ]. Hence, conditional on FTℓ−1
∨ σ(Hs−1), both At and As share the same

conditional law Dℓ−1, which justifies replacing At with As in the inner expectation.

In Phase 1, the algorithm proceeds by selecting the most informative direction at each step
with respect to the current Gram matrix. For all ℓ ≥ 1, we obtain

T ′
ℓ−1∑

s=Tℓ−1+1

E
[

max
y∈A(ℓ−1)

s

y⊤H−1
s−1y

]
= E

 T ′
ℓ−1∑

s=Tℓ−1+1

max
y∈A(ℓ−1)

s

y⊤H−1
s−1y


= E

 T ′
ℓ−1∑

s=Tℓ−1+1

x⊤
s,as

H−1
s−1xs,as


≤ E

[
2 log

(
det(HT ′

ℓ−1
)

det(λI)

)]

≤ E

[
2 log

(
(tr(HT ′

ℓ−1
)/d)d

λd

)]

≤ 2d log

(
1 +

T

dλ

)
≤ 2d log(2T ) , (13)

where the second equality follows from the arm-selection strategy of Phase 1, and the first
inequality follows from Corollary 2. The second inequality replaces the determinant by the bound
det(H) ≤ (tr(H)/d)d, which is a consequence of the AM–GM inequality. The third inequality
applies the fact that ∥x∥2 ≤ 1 for all contexts, which implies tr(HT ′

ℓ−1
) ≤ dλ+ T .

Now, we establish an upper bound on the cumulative expected regret. By combining the
bounds derived in (9) and (10), we can bound the cumulative expected regret for batch ℓ, denoted
by Regretℓ, for any ℓ ≥ 2 as follows

Regretℓ =
Tℓ∑

t=Tℓ−1+1

E[⟨x∗
t − xt,at

, θ∗⟩]

≤ 4

Tℓ∑
t=Tℓ−1+1

E[εt,ℓ−1]

= 4

Tℓ∑
t=Tℓ−1+1

E

[
max

y∈A(ℓ−2)
t

∥y∥V −1
ℓ−1
·
(
β
(1)
t,ℓ−1

(
2

T

)
∧ β

(2)
t,ℓ−1

(
2

T

))]

≤ 4

Tℓ∑
t=Tℓ−1+1

E

[
max

y∈A(ℓ−2)
t

∥y∥V −1
ℓ−1

]
·

(√
2 log (K(B − 1)T 2) +

√
λ
∧

2

√
log

(
26d−5πd(B − 1)2T 2

15d−1

)
+ 2
√
λ

)
.

The last inequality follows from the fact that the size of the candidate arm set satisfies
|A(ℓ−2)

t | ≤ |At| = K for all t ∈ [Tℓ−1 + 1, Tℓ], allowing us to upper bound the confidence
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parameter β(1)
t,ℓ−1 uniformly over the action set.

Using (11), (12), and (13), we can bound the summation
∑Tℓ

t=Tℓ−1+1 E
[
max

y∈A(ℓ−2)
t
∥y∥V −1

ℓ−1

]
for

any ℓ ≥ 2 as

Tℓ∑
t=Tℓ−1+1

E

[
max

y∈A(ℓ−2)
t

∥y∥V −1
ℓ−1

]
≤

Tℓ∑
t=Tℓ−1+1

√√√√E

[
max

y∈A(ℓ−2)
t

y⊤V −1
ℓ−1y

]

= (Tℓ − Tℓ−1) ·

√√√√E

[
max

y∈A(ℓ−2)
t

y⊤V −1
ℓ−1y

]

≤ Tℓ − Tℓ−1√
T ′
ℓ−2 − Tℓ−2

·

√√√√√ T ′
ℓ−2∑

s=Tℓ−2+1

E
[

max
y∈A(ℓ−2)

s

y⊤H−1
s−1y

]

≤ Tℓ − Tℓ−1√
T ′
ℓ−2 − Tℓ−2

·
√
2d log (2T )

≤
T 1−2−ℓ

log2 log2 T + 2√
cT 1−21−ℓ

log2 log2 T

·
√

2d log (2T )

=

(√
T

c log2 log2 T
+ 2

√
log2 log2 T

cT 1−21−ℓ

)
·
√
2d log (2T )

≤

(√
T

c log2 log2 T
+

2√
c

)
· 2
√
d log T

≤ c′ ·

√
dT log T

log2 log2 T
,

where t is arbitrary in the interval [Tℓ−1+1, Tℓ], and we define c′ := 6√
c
. The first inequality applies

Jensen’s inequality to move the square root outside the expectation. The first equality follows from
(11), while the second inequality uses the bound in (12). The third inequality follows from (13).
The fifth inequality follows from the facts that log2 log2 T ≤ T 1−21−ℓ

and log(2T ) ≤ 2 log T for
all T ≥ 2. The final inequality uses the bounds 1 ≤ T

log2 log2 T for all T ≥ 1.

We now derive the cumulative expected regret after the first batch. Building on the previ-
ously established results, the total regret incurred from batches ℓ = 2 to B can be bounded
as
B∑

ℓ=2

Regretℓ ≤
B∑

ℓ=2

4c′

√
dT log T

log2 log2 T
·

(√
2 log (K(B − 1)T 2) +

√
λ
∧

2

√
log

(
26d−5πd(B − 1)2T 2

15d−1

)
+ 2
√
λ

)

= O

(√
dT log T log log T ·

(√
log(KT ) ∧

√
d log

(
64

15

)
+ log(dT )

))
= O

(√
dT log T log log T ·

(√
log(KT ) ∧

√
d+ log T

))
.

Here, the first equality follows from substituting B = O(log log T ) and λ = O(1), while the
second equality holds because the log(d) term is dominated by d.

Thus, the total worst-case regret is bounded as

R(T ) ≤
B∑

k=1

Tk∑
t=Tk−1+1

E
[
⟨x∗

t − xt,at
, θ∗⟩

∣∣∣∣E]
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= Regret1 +
B∑

k=2

Regretk

= O
(√

T
)
+O

(√
dT log T log log T ·

(√
log(KT ) ∧

√
d+ log T

))
= O

(√
dT
(√

log(KT ) ∧
√

d+ log T
)√

log T log log T
)

.

Therefore, the worst-case regret for the algorithm is given by

R(T ) = O
(√

dT
(√

log(KT ) ∧
√
d+ log T

)√
log T log log T

)
= Õ

(√
dT logK ∧ d

√
T
)

.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Algorithm 3 BGLE

1: Input: Horizon T ; batch end times Tℓ = ℓ
⌈

3√
T

log2 log2 T

⌉
for ℓ ≤ 3, Tℓ =

(
Tℓ−1+

⌈
T

1− 1
3·2ℓ−4

log2 log2 T

⌉)
∧

T for ℓ ≥ 4; number of batches B, with TB = T ; within-batch allocation rate c;

2: Initialize: λ← R2(d+ log T ), H0 ← λI;
3: for t← 1, 2, . . . , T1 do
4: Pull arm xt,at

∈ argmaxx∈At
∥x∥H−1

t−1
, and receive reward rt;

5: Ht ← Ht−1 + xt,at
x⊤
t,at

;
6: V1 ← HT1

, θ̂1 ← argminθ
∑T1

t=1 ℓt(θ), HT1
← λI;

7: for ℓ← 2, . . . , B do
8: for t← Tℓ−1 + 1, . . . , Tℓ do
9: if ℓ ≥ 3 then

10: for k ← 2, . . . , ℓ− 1 do
11: x

(k)
t ← argmax

x∈A(k−1)
t
⟨x, θ̂k⟩;

12: A(k)
t ←

{
x ∈ A(k−1)

t

∣∣∣∣ ⟨θ̂k, x(k)
t − x⟩ ≤ 2ε′t,k(λ)

}
;

13: if t ≤ Tℓ−1 +
⌈
cT 1−2((4−ℓ)∧1)/3/ log2 log2 T

⌉
then

14: Pull arm xt,at
∈ argmax

x∈A(ℓ−1)
t
∥x∥H−1

t−1
, and receive reward rt;

15: else
16: Pull arm xt,at

∈ argmax
x∈A(ℓ−1)

t
⟨x, θ̂ℓ−1⟩, and receive reward rt;

17: Ht ← Ht−1 + αt,ℓ−1(λ)µ̇(⟨xt,at , θ̂ℓ−1⟩)xt,atx
⊤
t,at

;
18: Vℓ ← HTℓ

, θ̂ℓ ← argminθ
∑Tℓ

t=Tℓ−1+1 ℓt(θ), HTℓ
← λI;

C PROOF OF THEOREM 3

We begin by assuming that the MLE estimator θ̂, obtained by minimizing the log-loss objective,
always satisfies the boundedness condition ∥θ̂∥2 ≤ S. If this condition does not hold, one may
instead apply the non-convex projection technique of Sawarni et al. (2024). The projected estimator
preserves the same guarantees established in Sawarni et al. (2024), up to a multiplicative factor of 2.
Therefore, the assumption ∥θ̂∥2 ≤ S can be made without loss of generality.

Lemma 9. For any x ∈ [0, C], the following inequality holds

ex ≤ x(eC − 1)

C
+ 1 .

Proof. Apply the definition of convexity, f
(
(1− α)a+ αb

)
≤ (1− α)f(a) + αf(b), to f(t) = et

with a = 0, b = C, and α = x/C ∈ [0, 1]. This gives

e(1−α)0+αC ≤ (1− α)e0 + αeC ⇒ ex ≤ 1 + x
C (eC − 1) ,

which is the claim.

Lemma 10. For an exponential family distribution with log-partition function m(·), let µ(z) :=
m′(z). Then, for all x1, x2 ∈ R, we have

e−R|x2−x1|µ̇(x2) ≤ µ̇(x1) ≤ eR|x2−x1|µ̇(x2) .

Proof. Without loss of generality, assume that x2 ≥ x1. Define h1(x) := µ̇(x)eRx and h2(x) :=
µ̇(x)e−Rx. Differentiating these functions yields h′

1(x) = (µ̈(x)+Rµ̇(x))eRx and h′
2(x) = (µ̈(x)−

Rµ̇(x))e−Rx. By the self-concordance property, we have h′
1(x) ≥ 0 and h′

2(x) ≤ 0, which implies
that h1(x) is non-decreasing and h2(x) is non-increasing. Consequently, h1(x2) ≥ h1(x1) and
h2(x2) ≤ h2(x1), which together establish the desired inequality.
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Lemma 11. (Sawarni et al., 2024) For each batch ℓ ≥ 1, let rTℓ−1+1, . . . , rTℓ
denote independent

random variables drawn from the canonical exponential family such that E[rs] = µ(⟨xs,as
, θ∗⟩) for

some θ∗ ∈ Rd. Define the maximum likelihood estimator by θ̂ℓ = argminθ
∑Tℓ

t=Tℓ−1+1 ℓt(θ), and

let V ∗
ℓ := λI +

∑Tℓ

s=Tℓ−1+1 µ̇(⟨xs,as , θ
∗⟩)xs,asx

⊤
s,as

. Then, with probability at least 1 − 1
T 2 , the

following inequality holds

∥θ̂ℓ − θ∗∥V ∗
ℓ
≤ 24RS

(√
d+ log T +

R(d+ log T )√
λ

)
+ 2S

√
λ ≜ β(λ) .

Lemma 12. For any batch ℓ ≥ 2, define V ∗
ℓ := λI +

∑Tℓ

s=Tℓ−1+1 µ̇(⟨xs,as
, θ∗⟩)xs,as

x⊤
s,as

and

Vℓ := λI+
∑Tℓ

s=Tℓ−1+1 αs,ℓ−1(λ)µ̇(⟨xs,as
, θ̂ℓ−1⟩)xs,as

x⊤
s,as

. Then, for every ℓ ≥ 2, with probability
at least 1− 1

T 2 , the following matrix inequality holds

Vℓ ⪯ V ∗
ℓ .

Proof. We first consider the case ℓ = 2, applying Lemma 10 yields

e−R|⟨xs,as ,θ̂1−θ∗⟩|µ̇(⟨xs,as
, θ̂1⟩) ≤ µ̇(⟨xs,as

, θ∗⟩) .

By the assumptions ∥xs,as
∥2 ≤ 1, ∥θ∗∥2 ≤ S, and ∥θ̂1∥2 ≤ S, we further obtain

|⟨xs,as , θ̂1 − θ∗⟩| ≤ ∥xs,as∥2 · ∥θ̂1 − θ∗∥2 ≤ ∥θ̂1∥2 + ∥θ∗∥2 ≤ 2S .

Consequently,

αs,1(λ)µ̇(⟨xs,as , θ̂1⟩) = e−2RSµ̇(⟨xs,as , θ̂1⟩)

≤ e−R|⟨xs,as ,θ̂1−θ∗⟩|µ̇(⟨xs,as
, θ̂1⟩)

≤ µ̇(⟨xs,as
, θ∗⟩) ,

which establishes V2 ⪯ V ∗
2 .

For the general case ℓ ≥ 3, Lemma 10 gives

e−R|⟨xs,as ,θ̂ℓ−1−θ∗⟩|µ̇(⟨xs,as
, θ̂ℓ−1⟩) ≤ µ̇(⟨xs,as

, θ∗⟩) .

Using Lemma 11 together with the assumptions ∥xs,as
∥2 ≤ 1, ∥θ∗∥2 ≤ S and ∥θ̂ℓ−1∥2 ≤ S, we

obtain

|⟨xs,as
, θ̂ℓ−1 − θ∗⟩| ≤ (2S ∧ ∥xs,as

∥V ∗−1
ℓ−1

β(λ)) ≤ (2S ∧ ∥xs,as
∥V −1

ℓ−1
β(λ)) ,

where the second inequality follows inductively from Vℓ−1 ⪯ V ∗
ℓ−1. Therefore,

αs,ℓ−1(λ)µ̇(⟨xs,as
, θ̂ℓ−1⟩) = e

−R(2S∧∥xs,as∥V
−1
ℓ−1

β(λ))
µ̇(⟨xs,as

, θ̂ℓ−1⟩)

≤ e−R|⟨xs,as ,θ̂ℓ−1−θ∗⟩|µ̇(⟨xs,as
, θ̂ℓ−1⟩)

≤ µ̇(⟨xs,as
, θ∗⟩) ,

which completes the proof that Vℓ ⪯ V ∗
ℓ for all ℓ ≥ 2.

Lemma 13 (Good event). Define the following quantities:

β(λ) := 24RS

(√
d+ log T +

R(d+ log T )√
λ

)
+ 2S

√
λ ,

ε′t,ℓ(λ) := max
y∈A(ℓ−1)

t

∥y∥V −1
ℓ
· β(λ) for ℓ ≥ 2 .

Then, with probability at least 1− 2(B−2)
T 2 , the following event holds

E′ :=

B−1⋂
ℓ=2

T⋂
t=Tℓ+1

{
|⟨x, θ̂ℓ − θ∗⟩| ≤ ε′t,ℓ(λ), ∀x ∈ A

(ℓ−1)
t

}
.
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Proof. For any batch ℓ ≥ 2, by the Cauchy-Schwarz inequality together with Lemma 11 and
Lemma 12, it follows that for every round t and for all x ∈ A(ℓ−1)

t , with probability at least 1− 2
T 2

we have

|⟨x, θ̂ℓ − θ∗⟩| ≤ ∥x∥V ∗
ℓ

−1∥θ̂ℓ − θ∗∥V ∗
ℓ
≤ ∥x∥V −1

ℓ
· β(λ) ≤ max

y∈A(ℓ−1)
t

∥y∥V −1
ℓ
· β(λ) .

Applying a union bound over all batches ℓ then guarantees that the event E′ holds with probability
at least 1− 2(B−2)

T 2 , which completes the proof.

Lemma 14. Let E′ be the good event defined in Lemma 13. Conditioned on E′, the optimal arm
x∗
t ∈ argmaxx∈At

⟨x, θ∗⟩ is never eliminated at any round t. In particular,

x∗
t ∈ A

(ℓ)
t , for all 1 ≤ ℓ ≤ B − 1 and Tℓ + 1 ≤ t ≤ T .

Proof. Fix t ∈ [Ts + 1, Ts+1] for some s ∈ [B − 1]. We show by induction on ℓ that x∗
t ∈ A

(ℓ)
t for

all ℓ ∈ [s].

Base case (ℓ = 1). By definition we have At = A(0)
t = A(1)

t , which immediately implies
that x∗

t ∈ A
(1)
t holds trivially.

Inductive step. Assume x∗
t ∈ A

(ℓ−1)
t for some ℓ ∈ {2, . . . , s}. Since x

(ℓ)
t ∈ A(ℓ−1)

t , we
similarly obtain

⟨θ̂ℓ, x(ℓ)
t − x∗

t ⟩ = ⟨θ̂ℓ − θ∗, x
(ℓ)
t − x∗

t ⟩+ ⟨θ∗, x
(ℓ)
t − x∗

t ⟩

≤ ⟨θ̂ℓ − θ∗, x
(ℓ)
t − x∗

t ⟩

≤ |⟨θ̂ℓ − θ∗, x
(ℓ)
t ⟩|+ |⟨θ̂ℓ − θ∗, x∗

t ⟩|
≤ 2ε′t,ℓ(λ) ,

which shows that x∗
t ∈ A

(ℓ)
t . By induction, the claim holds for all ℓ ∈ [s], completing the proof.

Proof of Theorem 3. To establish the claimed batch complexity bound, we analyze the lower bound
on the length of the ℓ-th batch, where ℓ = ⌈log2 log2 T ⌉+4. By definition of the schedule, the length
of this batch is at least⌈

T 1− 1

3·2ℓ−4

log2 log2 T

⌉
≥ T 1−2−⌈log2 log2 T⌉

log2 log2 T
≥ T 1−2− log2 log2 T

log2 log2 T
=

T 1− 1
log2 T

log2 log2 T
=

T

2 log2 log2 T
.

Since the batch length is non-decreasing in ℓ, every batch with index ℓ ≥ ⌈log2 log2 T ⌉ + 4 has
length at least T

2 log2 log2 T . Given the total time horizon T , the number of such batches is therefore
at most ⌈2 log2 log2 T ⌉. Including the initial ⌈log2 log2 T ⌉+ 3 batches, the total number of batches
B is bounded by

B ≤ ⌈2 log2 log2 T ⌉+ ⌈log2 log2 T ⌉+ 3 ≤ 3 log2 log2 T + 5 ,

which implies that the batch complexity is O(log log T ).

Next, we decompose the cumulative expected regret with respect to the good event E′. The
regret can be expressed as

R(T ) =
B∑

k=1

Tk∑
t=Tk−1+1

E
[
max
x∈At

µ(⟨x, θ∗⟩)− µ(⟨xt,at
, θ∗⟩)

]

=

B∑
k=1

Tk∑
t=Tk−1+1

E
[
µ(⟨x∗

t , θ
∗⟩)− µ(⟨xt,at

, θ∗⟩)
∣∣∣∣E′c

]
· P(E′c) + E

[
µ(⟨x∗

t , θ
∗⟩)− µ(⟨xt,at

, θ∗⟩)
∣∣∣∣E′
]
· P(E′) .

Since the rewards are supported on [0, R] and E[r |x; θ∗] = µ(⟨x, θ∗⟩) holds, the instantaneous
regret is bounded by the support width, i.e.,

µ(⟨x∗
t , θ

∗⟩)− µ(⟨xt,at
, θ∗⟩) ≤ R . (14)
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Hence, the cumulative expected regret can be bounded as

R(T ) ≤ RT · 2(B − 2)

T 2
+

B∑
k=1

Tk∑
t=Tk−1+1

E
[
µ(⟨x∗

t , θ
∗⟩)− µ(⟨xt,at , θ

∗⟩)
∣∣∣∣E′
]
· P(E′)

≤ 2R(B − 2)

T
+

B∑
k=1

Tk∑
t=Tk−1+1

E
[
µ(⟨x∗

t , θ
∗⟩)− µ(⟨xt,at , θ

∗⟩)
∣∣∣∣E′
]

= O
(
R log log T

T

)
+

B∑
k=1

Tk∑
t=Tk−1+1

E
[
µ(⟨x∗

t , θ
∗⟩)− µ(⟨xt,at

, θ∗⟩)
∣∣∣∣E′
]
.

Throughout the remainder of the analysis, we condition on the good event E′. Let Regretℓ denote
the cumulative expected regret incurred during batch ℓ. We analyze the regret by separating the
discussion into four cases, namely ℓ = 1, ℓ = 2, ℓ = 3, and the subsequent batches with ℓ ≥ 4.

Case 1: ℓ ∈ {1, 2, 3}. In the first three batches, the number of rounds is given by
⌈

3√
T

log2 log2 T

⌉
. By

(14), each round incurs an instantaneous regret of at most R. Consequently, for the first batch we
obtain

Regret1 =

T1∑
t=1

E[µ(⟨x∗
t , θ

∗⟩)− µ(⟨xt,at
, θ∗⟩)] ≤ RT1 ≤ R

( 3
√
T

log2 log2 T
+ 1

)
= O

(
R 3
√
T

log log T

)
.

The same reasoning applies to the second and third batches, which yields the same order of regret,

Regret2 = Regret3 = O

(
R 3
√
T

log log T

)
.

Case 2: ℓ ≥ 4. For each batch ℓ ≥ 4, the instantaneous regret can be controlled using the Mean
Value Theorem. For some z lying between ⟨xt,at , θ

∗⟩ and ⟨x∗
t , θ

∗⟩, we have

µ(⟨x∗
t , θ

∗⟩)− µ(⟨xt,at
, θ∗⟩) = µ̇(z)⟨x∗

t − xt,at
, θ∗⟩

= µ̇(z)(⟨x∗
t − xt,at , θ

∗ − θ̂ℓ−1⟩+ ⟨x∗
t − xt,at , θ̂ℓ−1⟩)

≤ µ̇(z)(|⟨x∗
t , θ̂ℓ−1 − θ∗⟩|+ |⟨xt,at

, θ̂ℓ−1 − θ∗⟩|+ ⟨x(ℓ−1)
t − xt,at

, θ̂ℓ−1⟩)
≤ 4µ̇(z)ε′t,ℓ−1(λ)︸ ︷︷ ︸

≜At

. (15)

The first inequality uses the fact that x(ℓ−1)
t is optimal with respect to θ̂ℓ−1, together with the guar-

antee from Lemma 14 that x∗
t belongs toA(ℓ−2)

t . The final bound follows because xt,at
∈ A(ℓ−1)

t by
the arm elimination rule, combined with the definition of the good event E′ and again Lemma 14,
which ensures that x∗

t ∈ A
(ℓ−2)
t . As in the analysis of Algorithm 2, during the greedy selection

step the regret can be bounded more tightly as µ(⟨x∗
t , θ

∗⟩) − µ(⟨xt,at
, θ∗⟩) by 2µ̇(z)ε′t,ℓ−1(λ),

analogous to Equation (10). For simplicity in the subsequent analysis, we substitute the greedy
selection step with uncertainty-driven exploration, so that in all batches the algorithm may be ana-
lyzed under uncertainty-driven exploration alone. For rigor, batch end time Tℓ must be replaced by

T ′
ℓ−1 := Tℓ−1+

⌈
cT 1−2(4−ℓ)/3

log2 log2 T

⌉
, as in the proof of Theorem 2, but this modification affects the regret

bound only by a constant factor.

Bounding
∑Tℓ

t=Tℓ−1+1 E[At].

Tℓ∑
t=Tℓ−1+1

E[At] = 4

Tℓ∑
t=Tℓ−1+1

E[µ̇(z)ε′t,ℓ−1(λ)]

≤ 4

Tℓ∑
t=Tℓ−1+1

E
[
eR(⟨x∗

t ,θ
∗⟩−z)µ̇(⟨x∗

t , θ
∗⟩) ε′t,ℓ−1(λ)

]
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≤ 4

Tℓ∑
t=Tℓ−1+1

E
[
eR⟨x∗

t−xt,at ,θ
∗⟩µ̇(⟨x∗

t , θ
∗⟩) ε′t,ℓ−1(λ)

]

≤ 4

Tℓ∑
t=Tℓ−1+1

E
[
e4R(S∧ε′t,ℓ−1(λ))µ̇(⟨x∗

t , θ
∗⟩) ε′t,ℓ−1(λ)

]

≤ 4

Tℓ∑
t=Tℓ−1+1

E
[
µ̇(⟨x∗

t , θ
∗⟩) ε′t,ℓ−1(λ)︸ ︷︷ ︸
≜Bt

]
+ E

[
e4RS(S ∧ εt,ℓ−1(λ))

S
µ̇(⟨x∗

t , θ
∗⟩) ε′t,ℓ−1(λ)︸ ︷︷ ︸

≜Ct

]
.

The first inequality is a direct application of Lemma 10. The second inequality holds because z
lies between ⟨xt,at , θ

∗⟩ and ⟨x∗
t , θ

∗⟩. The third inequality follows from Assumption 1 together with
the bound on ⟨x∗

t − xt,at
, θ∗⟩ derived in (15). Finally, the last inequality is obtained by invoking

Lemma 9.

Bounding
∑Tℓ

t=Tℓ−1+1 E[Bt].

Tℓ∑
t=Tℓ−1+1

E[Bt] = β(λ)

Tℓ∑
t=Tℓ−1+1

E

[
max

y∈A(ℓ−2)
t

∥µ̇(⟨x∗
t , θ

∗⟩)y∥V −1
ℓ−1

]

= β(λ)(Tℓ − Tℓ−1)E

[
max

y∈A(ℓ−2)
t

∥µ̇(⟨x∗
t , θ

∗⟩)y∥V −1
ℓ−1

]
(16)

=
β(λ)(Tℓ − Tℓ−1)

Tℓ−1 − Tℓ−2

Tℓ−1∑
s=Tℓ−2+1

E

[
max

y∈A(ℓ−2)
t

∥µ̇(⟨x∗
t , θ

∗⟩)y∥V −1
ℓ−1

]

≤ β(λ)(Tℓ − Tℓ−1)

Tℓ−1 − Tℓ−2

Tℓ−1∑
s=Tℓ−2+1

E

[
max

y∈A(ℓ−2)
t

∥µ̇(⟨x∗
t , θ

∗⟩)y∥H−1
s−1

]

=
β(λ)(Tℓ − Tℓ−1)

Tℓ−1 − Tℓ−2

Tℓ−1∑
s=Tℓ−2+1

E

[
E

[
max

y∈A(ℓ−2)
t

∥µ̇(⟨x∗
t , θ

∗⟩)y∥H−1
s−1

∣∣∣∣∣Fs−1

]]

=
β(λ)(Tℓ − Tℓ−1)

Tℓ−1 − Tℓ−2

Tℓ−1∑
s=Tℓ−2+1

E

[
E

[
max

y∈A(ℓ−2)
s

∥µ̇(⟨x∗
s, θ

∗⟩)y∥H−1
s−1

∣∣∣∣∣Fs−1

]]

=
β(λ)(Tℓ − Tℓ−1)

Tℓ−1 − Tℓ−2

Tℓ−1∑
s=Tℓ−2+1

E

[
max

y∈A(ℓ−2)
s

∥µ̇(⟨x∗
s, θ

∗⟩)y∥H−1
s−1

]

=
β(λ)(Tℓ − Tℓ−1)

Tℓ−1 − Tℓ−2

Tℓ−1∑
s=Tℓ−2+1

E
[
∥µ̇(⟨x∗

s, θ
∗⟩)xs,as∥H−1

s−1︸ ︷︷ ︸
≜Ds

]
.

The second equality mirrors the reasoning in (5), since both Vℓ−1 and the arm elimination rule—
determined by θ̂1, . . . , θ̂ℓ−2—are measurable with respect toFTℓ−1

, and can therefore be regarded as
fixed conditional on this filtration. Given that the contexts are drawn independently and identically,
their values are equal. The first inequality follows from the monotonicity, as Hs−1 ⪯ Vℓ−1 for all s
in the interval. The fourth and sixth equalities use the tower property. The fifth equality relies on the
fact that, conditional onFs−1, both Hs−1 and the arm elimination rule (determined by θ̂1, . . . , θ̂ℓ−2)
are fixed, while the distribution of the contexts remains unchanged. Finally, the last equality follows
from the arm-selection strategy, since the factor µ̇(⟨x∗

s, θ
∗⟩) does not affect the maximization and

can thus be pulled outside without altering the argmax.
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Bounding
∑Tℓ−1

s=Tℓ−2+1 E[Ds].

Tℓ−1∑
s=Tℓ−2+1

E[Ds] ≤
Tℓ−1∑

s=Tℓ−2+1

E

[∥∥∥∥eR
2 |⟨x∗

s ,θ
∗⟩−⟨xs,as ,θ̂ℓ−2⟩|

√
µ̇(⟨x∗

s, θ
∗⟩)µ̇(⟨xs,as

, θ̂ℓ−2⟩)xs,as

∥∥∥∥
H−1

s−1

]

≤
Tℓ−1∑

s=Tℓ−2+1

E

[∥∥∥∥eR
2 (2S∧5εs,ℓ−2(λ))

√
µ̇(⟨x∗

s, θ
∗⟩)µ̇(⟨xs,as

, θ̂ℓ−2⟩)xs,as

∥∥∥∥
H−1

s−1

]

≤
Tℓ−1∑

s=Tℓ−2+1

E

[∥∥∥∥eR
2 (2S∧5εs,ℓ−2(λ))+

R
2 (2S∧εs,ℓ−2(λ))

√
µ̇(⟨x∗

s, θ
∗⟩)αs,ℓ−2(λ)µ̇(⟨xs,as

, θ̂ℓ−2⟩)xs,as

∥∥∥∥
H−1

s−1

]

≤
Tℓ−1∑

s=Tℓ−2+1

E

[∥∥∥∥e3R(S∧εs,ℓ−2(λ))

√
µ̇(⟨x∗

s, θ
∗⟩)αs,ℓ−2(λ)µ̇(⟨xs,as

, θ̂ℓ−2⟩)xs,as

∥∥∥∥
H−1

s−1

]

≤
Tℓ−1∑

s=Tℓ−2+1

E


∥∥∥∥√µ̇(⟨x∗

s, θ
∗⟩)αs,ℓ−2(λ)µ̇(⟨xs,as

, θ̂ℓ−2⟩)xs,as

∥∥∥∥
H−1

s−1︸ ︷︷ ︸
≜Es


+ E

[∥∥∥∥∥e3RS(S ∧ ε′s,ℓ−2(λ))

S

√
µ̇(⟨x∗

s, θ
∗⟩)αs,ℓ−2(λ)µ̇(⟨xs,as

, θ̂ℓ−2⟩)xs,as

∥∥∥∥∥
H−1

s−1︸ ︷︷ ︸
≜Fs

]
.

The first inequality is obtained by applying Lemma 10 to compare µ̇(⟨x∗
s, θ

∗⟩) and µ̇(⟨xs,as
, θ̂ℓ−2⟩).

The second inequality follows from Assumption 1 together with the decomposition |⟨x∗
s −

xs,as
, θ∗⟩| + |⟨xs,as

, θ∗ − θ̂ℓ−2⟩| ≤ 4ε′t,ℓ−2(λ) + ε′t,ℓ−2(λ), as implied by (15) and the definition
of the good event E′. The third inequality directly follows from the definition of αs,ℓ−2(λ) when
ℓ ≥ 4. The final bound is obtained by invoking Lemma 9.

Bounding
∑Tℓ−1

s=Tℓ−2+1 E[Es].

Tℓ−1∑
s=Tℓ−2+1

E[Es] ≤
Tℓ−1∑

s=Tℓ−2+1

√
E [µ̇(⟨x∗

s, θ
∗⟩)]

√√√√E

[∥∥∥∥√αs,ℓ−2(λ)µ̇(⟨xs,as
, θ̂ℓ−2⟩)xs,as

∥∥∥∥2
H−1

s−1

]

≤
√
Tℓ−1 − Tℓ−2√

κ̂

√√√√√ Tℓ−1∑
s=Tℓ−2+1

E

[∥∥∥∥√αs,ℓ−2(λ)µ̇(⟨xs,as
, θ̂ℓ−2⟩)xs,as

∥∥∥∥2
H−1

s−1

]

≤
√
Tℓ−1 − Tℓ−2√

κ̂

√
2 log

(
det(HTℓ−1

)

det(λI)

)
≤
√
2d(Tℓ−1 − Tℓ−2) log(2T )√

κ̂
.

The first two inequalities are obtained by successive applications of the Cauchy-Schwarz inequality.
The third inequality follows directly from Corollary 2. Finally, the last inequality is derived using
the same reasoning as in (13), where the determinant is upper bounded by a trace argument, yielding
a logarithmic dependence on T .

Bounding
∑Tℓ−1

s=Tℓ−2+1 E[Fs].

Tℓ−1∑
s=Tℓ−2+1

E[Fs] ≤
e3RS

S

Tℓ−1∑
s=Tℓ−2+1

E

[
εs,ℓ−2(λ)

∥∥∥∥√µ̇(⟨x∗
s, θ

∗⟩)αs,ℓ−2(λ)µ̇(⟨xs,as
, θ̂ℓ−2⟩)xs,as

∥∥∥∥
H−1

s−1

]
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=
e3RSβ(λ)

S

Tℓ−1∑
s=Tℓ−2+1

E

[
max

y∈A(ℓ−3)
s

∥y∥V −1
ℓ−2

∥∥∥∥√µ̇(⟨x∗
s, θ

∗⟩)αs,ℓ−2(λ)µ̇(⟨xs,as , θ̂ℓ−2⟩)xs,as

∥∥∥∥
H−1

s−1

]

≤ e3RSβ(λ)

S

Tℓ−1∑
s=Tℓ−2+1

√√√√E

[
max

y∈A(ℓ−3)
s

∥
√
µ̇(⟨x∗

s, θ
∗⟩)y∥2

V −1
ℓ−2

]√√√√E

[∥∥∥∥√αs,ℓ−2(λ)µ̇(⟨xs,as , θ̂ℓ−2⟩)xs,as

∥∥∥∥2
H−1

s−1

]

≤
e3RSβ(λ)

√
2d(Tℓ−1 − Tℓ−2) log(2T )

S

√√√√E

[
max

y∈A(ℓ−3)
s

∥
√

µ̇(⟨x∗
s, θ

∗⟩)y∥2
V −1
ℓ−2︸ ︷︷ ︸

≜Gs

]
.

The second inequality follows from an application of the Cauchy-Schwarz inequality. The final
inequality uses the fact that the expectation E

[
max

y∈A(ℓ−3)
s
∥
√

µ̇(⟨x∗
s, θ

∗⟩)y∥2
V −1
ℓ−2

]
takes the same

value for all s ∈ [Tℓ−2 + 1, Tℓ−1], as established in (16), together with Corollary 2, which bounds
the quadratic form by a log-determinant expression.

Bounding E[Gs] for s ∈ [Tℓ−2 + 1, Tℓ−1].

E[Gs] =
1

Tℓ−2 − Tℓ−3

Tℓ−2∑
u=Tℓ−3+1

E

[
max

y∈A(ℓ−3)
s

∥
√
µ̇(⟨x∗

s, θ
∗⟩)y∥2

V −1
ℓ−2

]

≤ 1

Tℓ−2 − Tℓ−3

Tℓ−2∑
u=Tℓ−3+1

E

[
max

y∈A(ℓ−3)
s

∥
√
µ̇(⟨x∗

s, θ
∗⟩)y∥2

H−1
u−1

]

=
1

Tℓ−2 − Tℓ−3

Tℓ−2∑
u=Tℓ−3+1

E

[
E

[
max

y∈A(ℓ−3)
s

∥
√
µ̇(⟨x∗

s, θ
∗⟩)y∥2

H−1
u−1

∣∣∣∣∣Fu−1

]]

=
1

Tℓ−2 − Tℓ−3

Tℓ−2∑
u=Tℓ−3+1

E

[
E

[
max

y∈A(ℓ−3)
u

∥
√
µ̇(⟨x∗

u, θ
∗⟩)y∥2

H−1
u−1

∣∣∣∣∣Fu−1

]]

=
1

Tℓ−2 − Tℓ−3

Tℓ−2∑
u=Tℓ−3+1

E

[
max

y∈A(ℓ−3)
u

∥
√
µ̇(⟨x∗

u, θ
∗⟩)y∥2

H−1
u−1

]

=
1

Tℓ−2 − Tℓ−3

Tℓ−2∑
u=Tℓ−3+1

E

[
∥
√
µ̇(⟨x∗

u, θ
∗⟩)xu,au∥2H−1

u−1︸ ︷︷ ︸
≜Iu

]
.

The first inequality follows from the monotonicity of the matrices, since Hu−1 ⪯ Vℓ−2 for all u in
the summation range. The second and fourth equalities are applications of the tower property. The
third equality holds because, conditional on Fu−1, both Hu−1 and the arm elimination rule (deter-
mined by θ̂1, . . . , θ̂ℓ−3) are fixed, while the distribution of the contexts remains unchanged. Finally,
the last equality follows from the arm-selection strategy: the multiplicative factor µ̇(⟨x∗

u, θ
∗⟩) does

not affect the maximization and can therefore be factored out without altering the argmax.

Bounding
∑Tℓ−2

u=Tℓ−3+1 E[Iu].

Tℓ−2∑
u=Tℓ−3+1

E[Iu] ≤
Tℓ−2∑

u=Tℓ−3+1

E

[
eR|⟨x∗

u,θ
∗⟩−⟨xu,au ,θ̂ℓ−3⟩|

∥∥∥∥√µ̇(⟨xu,au , θ̂ℓ−3⟩)xu,au

∥∥∥∥2
H−1

u−1

]

≤
Tℓ−2∑

u=Tℓ−3+1

E

[
e4RS

∥∥∥∥√αs,ℓ−3(λ)µ̇(⟨xu,au , θ̂ℓ−3⟩)xu,au

∥∥∥∥2
H−1

u−1

]
≤ 2e4RSd log(2T ) .

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

The first inequality is obtained by applying Lemma 10, which allows us to compare µ̇(⟨x∗
u, θ

∗⟩) and
µ̇(⟨xu,au , θ̂ℓ−3⟩). The second inequality uses Assumption 1, together with the fact that αs,ℓ−3(λ) ≥
e−2RS for all ℓ ≥ 4. Finally, the last inequality follows from Corollary 2, which bounds the quadratic
form in terms of a log-determinant expression and yields the stated order.

We now combine the previous bounds step by step. First, from the result on E[Gs], we obtain

E[Gs] ≤
1

Tℓ−2 − Tℓ−3

Tℓ−2∑
u=Tℓ−3+1

E[Iu] ≤
2e4RSd log(2T )

Tℓ−2 − Tℓ−3
.

Next, substituting this into the bound for
∑Tℓ−1

s=Tℓ−2+1 E[Fs], we obtain

Tℓ−1∑
s=Tℓ−2+1

E[Fs] ≤
e3RSβ(λ)

√
2d(Tℓ−1 − Tℓ−2) log(2T )

S

√
E [Gs]

≤
2e5RSβ(λ)d log(2T )

√
Tℓ−1 − Tℓ−2

S
√
Tℓ−2 − Tℓ−3

.

Furthermore, combining this with the result on
∑Tℓ−1

s=Tℓ−2+1 E[Es], we can bound
∑Tℓ−1

s=Tℓ−2+1 E[Ds]
as

Tℓ−1∑
s=Tℓ−2+1

E[Ds] ≤
Tℓ−1∑

s=Tℓ−2+1

E[Es] +

Tℓ−1∑
s=Tℓ−2+1

E[Fs]

≤
√
2d(Tℓ−1 − Tℓ−2) log(2T )√

κ̂
+

2e5RSβ(λ)d log(2T )
√
Tℓ−1 − Tℓ−2

S
√
Tℓ−2 − Tℓ−3

.

Finally, substituting this bound into the expression for
∑Tℓ

t=Tℓ−1+1 E[Bt] yields

Tℓ∑
t=Tℓ−1+1

E[Bt] ≤
β(λ)(Tℓ − Tℓ−1)

Tℓ−1 − Tℓ−2

Tℓ−1∑
s=Tℓ−2+1

E[Ds]

≤ β(λ)(Tℓ − Tℓ−1)√
Tℓ−1 − Tℓ−2

(√
2d log(2T )√

κ̂
+

2e5RSβ(λ)d log(2T )

S
√
Tℓ−2 − Tℓ−3

)
.

Bounding
∑Tℓ

t=Tℓ−1+1 E[Ct].
Tℓ∑

t=Tℓ−1+1

E[Ct] ≤
e4RS

S

Tℓ∑
t=Tℓ−1+1

E
[
µ̇(⟨x∗

t , θ
∗⟩) ε′t,ℓ−1(λ)

2
]

=
e4RSβ(λ)2

S

Tℓ∑
t=Tℓ−1+1

E

[
max

z∈A(ℓ−2)
t

∥
√
µ̇(⟨x∗

t , θ
∗⟩)z∥2

V −1
ℓ−1

]

=
e4RSβ(λ)2(Tℓ − Tℓ−1)

S
E

[
max

z∈A(ℓ−2)
t

∥
√
µ̇(⟨x∗

t , θ
∗⟩)z∥2

V −1
ℓ−1

]

=
e4RSβ(λ)2(Tℓ − Tℓ−1)

S(Tℓ−1 − Tℓ−2)

Tℓ−1∑
s=Tℓ−2+1

E

[
max

z∈A(ℓ−2)
t

∥
√
µ̇(⟨x∗

t , θ
∗⟩)z∥2

V −1
ℓ−1

]

≤ e4RSβ(λ)2(Tℓ − Tℓ−1)

S(Tℓ−1 − Tℓ−2)

Tℓ−1∑
s=Tℓ−2+1

E

[
max

z∈A(ℓ−2)
t

∥
√
µ̇(⟨x∗

t , θ
∗⟩)z∥2

H−1
s−1

]

=
e4RSβ(λ)2(Tℓ − Tℓ−1)

S(Tℓ−1 − Tℓ−2)

Tℓ−1∑
s=Tℓ−2+1

E

[
E

[
max

z∈A(ℓ−2)
t

∥
√
µ̇(⟨x∗

t , θ
∗⟩)z∥2

H−1
s−1

∣∣∣∣∣Fs−1

]]
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=
e4RSβ(λ)2(Tℓ − Tℓ−1)

S(Tℓ−1 − Tℓ−2)

Tℓ−1∑
s=Tℓ−2+1

E

[
E

[
max

z∈A(ℓ−2)
s

∥
√
µ̇(⟨x∗

s, θ
∗⟩)z∥2

H−1
s−1

∣∣∣∣∣Fs−1

]]

=
e4RSβ(λ)2(Tℓ − Tℓ−1)

S(Tℓ−1 − Tℓ−2)

Tℓ−1∑
s=Tℓ−2+1

E

[
max

z∈A(ℓ−2)
s

∥
√
µ̇(⟨x∗

s, θ
∗⟩)z∥2

H−1
s−1

]

=
e4RSβ(λ)2(Tℓ − Tℓ−1)

S(Tℓ−1 − Tℓ−2)

Tℓ−1∑
s=Tℓ−2+1

E
[
∥
√

µ̇(⟨x∗
s, θ

∗⟩)xs,as∥2H−1
s−1

]

=
e4RSβ(λ)2(Tℓ − Tℓ−1)

S(Tℓ−1 − Tℓ−2)

Tℓ−1∑
s=Tℓ−2+1

E [Is]

≤ 2e8RSβ(λ)2(Tℓ − Tℓ−1)d log(2T )

S(Tℓ−1 − Tℓ−2)
.

The second equality follows from the same reasoning as in (5), since both Vℓ−1 and the arm elimi-
nation rule—determined by θ̂1, . . . , θ̂ℓ−2—are measurable with respect to FTℓ−1

and can therefore
be treated as fixed conditional on this filtration; given that the contexts are drawn independently
and identically, their values coincide. The second inequality uses the monotonicity of the matrices,
as Hs−1 ⪯ Vℓ−1 for all s in the interval. The fourth and sixth equalities apply the tower property.
The fifth equality holds because, conditional on Fs−1, both Hs−1 and the arm elimination rule (de-
termined by θ̂1, . . . , θ̂ℓ−2) are fixed, while the distribution of the contexts remains unchanged. The
seventh equality is justified by the arm-selection strategy, as the multiplicative factor µ̇(⟨x∗

s, θ
∗⟩)

does not affect the maximization and hence does not alter the argmax. The final inequality follows
from the previously established bound on

∑Tℓ−1

s=Tℓ−2+1 E[Is].

Combining the previously derived bounds for
∑Tℓ

t=Tℓ−1+1 E[Bt] and
∑Tℓ

t=Tℓ−1+1 E[Ct], we obtain

Tℓ∑
t=Tℓ−1+1

E[At] ≤ 4

Tℓ∑
t=Tℓ−1+1

E[Bt] + 4

Tℓ∑
t=Tℓ−1+1

E[Ct]

≤ 4β(λ)(Tℓ − Tℓ−1)√
Tℓ−1 − Tℓ−2

(√
2d log(2T )√

κ̂
+

2e5RSβ(λ)d log(2T )

S
√
Tℓ−2 − Tℓ−3

)
+

8e8RSβ(λ)2(Tℓ − Tℓ−1)d log(2T )

S(Tℓ−1 − Tℓ−2)
.

For the case ℓ = 4, this simplifies to

Tℓ∑
t=Tℓ−1+1

E[At] = O

RS
√
d+ log T · T

2
3

log log T√
3√
T

log log T

√d log T√
κ̂

+
Re5RSd log T

√
d+ log T√

3√
T

log log T


+O

R2Se8RS · dT
2
3 (d+log T ) log T

log log T
3√
T

log log T


= O

(
RS
√
d(d+ log T )T log T√

κ̂ log log T
+R2Se8RSd(d+ log T )T

1
3 log T

)
.

For all subsequent batches with ℓ ≥ 5, we similarly obtain

Tℓ∑
t=Tℓ−1+1

E[At] = O

RS
√
d+ log T · T

1− 1
3·2ℓ−4

log log T√
T

1− 1
3·2ℓ−5

log log T

√d log T√
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+
Re5RSd log T

√
d+ log T√

T
1− 1
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log log T
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+O

R2Se8RS · dT
1− 1

3·2ℓ−4 (d+log T ) log T
log log T

T
1− 1

3·2ℓ−5

log log T


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= O

(
RS
√
d(d+ log T )T log T√

κ̂ log log T
+R2Se8RSd(d+ log T )T

1

3·2ℓ−5 log T

)

= O

(
RS
√
d(d+ log T )T log T√

κ̂ log log T
+R2Se8RSd(d+ log T )T

1
3 log T

)
.

Therefore, the total worst-case regret is bounded as

R(T ) =
3∑

ℓ=1

Regretℓ +
B∑

ℓ=4

Regretℓ

= O

(
RT

1
3

log log T

)
+
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E[µ(⟨x∗
t , θ
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∗⟩)]

≤ O
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RT
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= O
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.
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D ADDITIONAL EXPERIMENTS

D.1 LINEAR CONTEXTUAL BANDITS: EXPERIMENTAL RESULTS WITH NORMAL CONTEXTS

We evaluate the performance of BLCE-G and BLCE by measuring the cumulative regret over T =
10,000 rounds. At each iteration, K arms are independently sampled from a d-dimensional normal
distribution, and the parameter vector θ∗ is drawn from a d-dimensional normal distribution. Each
experiment is repeated 10 times. We consider (K, d) ∈ {(1000, 5), (5000, 10), (50, 20), (100, 30)},
where the first two pairs represent the large-K regime and the latter two correspond to the small-K
regime.

For comparison, we benchmark against state-of-the-art algorithms: Rarely Switching OFUL
(RS-OFUL; Abbasi-Yadkori et al. 2011), BatchLinUCB-DG (Ruan et al. 2021), Efficient Batched
Algorithm for linear contextual Bandits (SoftBatch; Hanna et al. 2023b), and BatchLearning
(Zhang et al. 2025). The within-batch allocation rate for BLCE-G and BLCE is set to c = 0.5. For
RS-OFUL, the switching parameter is C = 3, and for SoftBatch, the discretization parameter is
q = 1/(8

√
d). Algorithms of Hanna et al. (2023b) incur substantial computational overhead, as re-

flected in their time complexity reported in Table 1; we therefore omit their regret plots. Importantly,
BLCE-G and BLCE are implemented with the exact theoretical hyperparameters specified in our main
results, without additional tuning.

We report three types of figures. First, the average cumulative regret (solid line) together with its
standard deviation (shaded region) over 10 runs. Second, zoomed-in views of the regret curves to
highlight the differences between BLCE-G and BLCE. Third, the average batch complexity across 10
runs, showing how frequently each algorithm updates its policy.

As illustrated in Figure 2, both BLCE-G and BLCE consistently outperform all baselines in both
the large-K and small-K regimes, achieving lowest regret and exhibiting greater stability. These
results confirm that BLCE-G and BLCE not only attain the tightest theoretical guarantees but also
deliver strong empirical performance, thereby fulfilling their design objectives of near-optimal
regret and minimal batch complexity. Furthermore, runtime comparisons in Table 4 show that
BLCE-G and BLCE incur substantially lower computation cost than other theoretically optimal al-
gorithms. In particular, BLCE, which eliminates reliance on G-optimal design, attains the fastest
runtime—comparable even to suboptimal algorithms.

Overall, these experiments demonstrate a distinctive advantage of our approach: BLCE-G and BLCE
combine minimax-optimal regret guarantees with practical efficiency. This dual benefit of theoret-
ical optimality and empirical superiority sets them apart from all prior methods for batched linear
contextual bandits.

Table 4: Average runtime (seconds) over 10 runs.

Suboptimal algorithms Optimal algorithms

(K, d) RS-OFUL SoftBatch BatchLinUCB-DG Hanna et al. (2023b) BatchLearning BLCE-G BLCE

(1000, 5) 1.37 1.15 148.19 Exponential 143.07 3.58 2.17
(5000, 10) 10.46 12.62 555.11 Exponential 590.69 9.16 6.19
(50, 20) 0.54 1.83 981.19 Exponential 46.24 1.39 1.05
(100, 30) 0.95 3.51 2773.66 Exponential 75.07 1.97 1.41
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(a) K = 1000, d = 5

(b) K = 5000, d = 10

(c) K = 50, d = 20

(d) K = 100, d = 30

Figure 2: Regret, zoomed-in regret, and batch complexity over time for different values of K and d.

D.2 EXPERIMENTAL RESULTS FOR GENERALIZED LINEAR CONTEXTUAL BANDITS

We evaluate the performance of BGLE by measuring the cumulative regret over a horizon of
T = 10,000 rounds. At each iteration, K arms are independently sampled from either a d-
dimensional uniform or normal distribution, and the parameter vector θ∗ is drawn from a d-
dimensional normal distribution. Each experiment is repeated 20 times for the parameter pairs
(K, d) ∈ {(20, 2), (50, 3)}, considering both uniform and normal contexts.

For comparison, we benchmark against state-of-the-art algorithm: B-GLinCB (Sawarni et al. 2024).
The within-batch allocation rate for BGLE is set to c = 0.5, and we conduct experiments on logistic
bandits with R = S = 1. Importantly, BGLE is implemented with the exact theoretical hyperparam-
eters from our main results, without any tuning.

We report two types of figures. First, the average cumulative regret (solid line) together with its
standard deviation (shaded region) over 20 runs. Second, the average batch complexity across 20
runs, showing how frequently each algorithm updates its policy.

As shown in Figure 3, BGLE consistently outperforms the baseline, achieving lowest regret and
demonstrating stable performance. Runtime comparisons in Table 5 further show that BGLE incur
lower computation cost than B-GLinCB.
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An additional limitation of B-GLinCB is that it often uses only one batch (see Figure 3), even for
small values of K and d. This behavior arises because its first batch length is determined by(

900R2S
√
κe3RSd3 log T

√
T
) 2

3
,

which easily exceeds T = 10,000 when d is small, thereby preventing meaningful batching.

Overall, these experiments highlight a clear advantage of our approach: BGLE combines optimal
regret guarantees with practical efficiency. This dual benefit of theoretical optimality and empirical
superiority distinguishes our method from prior approaches to batched generalized linear contextual
bandits.

Table 5: Average runtime (seconds) over 20 runs.

Uniform distribution Normal distribution
(K, d) B-GLinCB BGLE B-GLinCB BGLE

(20, 2) 24.94 3.62 25.82 3.88
(50, 3) 27.45 3.91 28.78 4.06
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(a) K = 20, d = 2, uniform
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(b) K = 50, d = 3, uniform
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(c) K = 20, d = 2, normal
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(d) K = 50, d = 3, normal

Figure 3: Regret and batch complexity over time for different values of K and d.
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