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Abstract

Large Language Models (LLMs) excel in gen-
eral tasks but struggle in specialized domains
like healthcare due to limited domain-specific
knowledge. Supervised Fine-Tuning (SFT)
data construction for domain adaptation often
relies on heuristic methods, such as GPT-4 an-
notation or manual data selection, with a data-
centric focus on presumed diverse, high-quality
datasets. However, these methods overlook
the model’s inherent knowledge distribution,
introducing noise, redundancy, and irrelevant
data, leading to a mismatch between the se-
lected data and the model’s learning task, re-
sulting in suboptimal performance. To address
this, we propose a two-stage model-centric
data selection framework, Decomposed Dif-
ficulty Data Selection (3DS), which aligns
data with the model’s knowledge distribution
for optimized adaptation. In Stage 1, we ap-
ply Prompt-Driven Data Selection via Explicit
Alignment, where the model filters irrelevant
or redundant data based on its internal knowl-
edge. In Stage 2, we perform Decomposed
Difficulty Data Selection, where data selec-
tion is guided by our defined difficulty de-
composition, using three metrics: Instruction
Understanding, Response Confidence, and Re-
sponse Correctness. Additionally, an attention-
based importance weighting mechanism cap-
tures token importance for more accurate diffi-
culty calibration. This two-stage approach en-
sures the selected data is not only aligned with
the model’s knowledge and preferences but
also appropriately challenging for the model
to learn, leading to more effective and targeted
domain adaptation fine-tuning. In the case
study of the medical domain, our extensive
experiments on real-world healthcare datasets
demonstrate the superiority of 3DS over exist-
ing methods in accuracy by over 5.29%. Our
dataset and code are open-sourced at https:
//anonymous . 4open.science/r/3DS-E67F.

1 Introduction

Large Language Models (LLMs) like GPT-4 (OpenAl,
2023) have showcased significant potential in natural

language understanding. Open-source models such as
LLaMA (Touvron et al., 2023) and Qwen (Bai et al.,
2023) have also rapidly advanced, delivering competi-
tive performance. However, in specialized domains like
healthcare, their effectiveness is often constrained by
the lack of domain-specific knowledge (Sanaei et al.,
2023; Harris, 2023; Waisberg et al., 2023), essential
for tasks like diagnosis (Panagoulias et al., 2024; Ullah
et al., 2024) and treatment recommendations (Wilhelm
et al., 2023; Nwachukwu et al., 2024). To address this,
some works (Wang et al., 2023a; Zhang et al., 2023;
Yang et al., 2023b; Zhu et al., 2023a; Pal and Sankara-
subbu, 2023) have adapted LLMs to the medical domain
by training on large-scale healthcare-specific datasets.

A common approach for LLM domain adaptation is
Supervised Fine-Tuning (SFT) on domain instruction
tuning datasets. Unlike continued pre-training, where
data quantity is crucial (Que et al., 2024), SFT requires
only a small, high-quality dataset to effectively trig-
ger the model’s abilities in the desired direction (Zhou
et al., 2024). Expanding the dataset without careful
selection can introduce challenges that hinder model
performance (Wang et al., 2023d), highlighting the need
for additional factors in data selection to ensure effec-
tive fine-tuning. Yet, it remains unclear how to define
optimal data samples for instruction tuning and system-
atically identify them. Efforts have largely relied on
heuristic methods, such as GPT-4 annotation (Liu et al.,
2023) or manual data selection (Ji et al., 2023; Song
et al., 2024), taking a data-centric approach that prior-
itizes what is assumed to be diverse and high-quality
datasets. However, these datasets may fail to align with
the model’s actual needs, creating gaps between the
selected data and the model’s inherent knowledge,
where the inherent knowledge refers to the broad, task-
agnostic factual knowledge embedded in the model’s
parameters during pre-training on large, diverse tex-
tual corpora (Petroni et al., 2019; Cohen et al., 2023;
AlKhamissi et al., 2022). Training on data that fails
to align with this distribution can lead to suboptimal
fine-tuning performance (Gekhman et al., 2024; Ren
et al., 2024). To bridge this gap, we hope to explore a
model-centric approach that focuses on effectively se-
lecting data aligned with the model’s current knowledge
distribution. We define this setting as model-centric
instruction data selection:

Given a general LLM and a large domain-specific
instruction dataset, how can we efficiently select data
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based on the model’s knowledge distribution to best
trigger its domain abilities?

We address this problem by aligning training data
with the model’s inherent knowledge distribution, op-
timizing both its informativeness and complexity to
drive effective learning. This alignment ensures the
model is exposed to data that is both engaging and ap-
propriately challenging, allowing it to build on existing
knowledge while addressing gaps. As a result, two key
challenges emerge:

Cl. How to filter low-quality and redundant
data for efficient domain adaptation fine-tuning?
Domain-specific datasets, aggregated from diverse,
large-scale sources, often contain noisy or redundant
data—reintroducing knowledge the model has already
internalized. Such data can disrupt learning (Wang
et al., 2024a), hinder the identification of knowledge
gaps (Havrilla and Iyer, 2024), waste resources, and in-
crease the risk of overfitting (Budach et al., 2022; Wang
et al., 2024b). In domain adaptation, acquiring special-
ized knowledge makes a model-centric data selection
strategy necessary, which should filter data based on the
model’s internal knowledge, removing redundancy and
noise to focus on novel, challenging tasks.

C2. How to balance data difficulty with the model’s
learning capacity? Data difficulty reflects the model’s
mastery level over the data. The difficulty of domain-
specific instruction data plays a critical role in shaping
model learning. Overly simple data wastes resources,
while excessively complex data can overwhelm the
model and stall progress (Gekhman et al., 2024; Ren
et al., 2024; Kang et al., 2024). In domain adaptation
fine-tuning, adjusting data selection to align with the
model’s knowledge and capacity is both essential and
challenging. Accurately assessing the model’s current
knowledge state and its ability to handle complex data
is difficult. The variability in model learning progress
further complicates the calibration of data difficulty,
making it challenging to avoid under- or overloading
the model. Achieving the right balance is key to en-
suring steady learning and maximizing domain-specific
knowledge acquisition.

To address these challenges, we propose Decomposed
Difficulty Data Selection (3DS), a two-stage model-
centric data selection framework which aligns with the
model’s knowledge distribution to optimize domain
adaptation fine-tuning. 1) For C1, we employ Prompt-
Driven Data Selection via Explicit Alignment, where the
model scores the dataset to explicitly remove irrelevant
information. This ensures that only high-quality data
aligned with the model’s internal knowledge and prefer-
ences (model’s judgment to decide what data is good) is
retained, minimizing noise. 2) To address C2, we pro-
pose a novel Decomposed Difficulty Data Selection via
Implicit Distribution Modeling. This approach extends
traditional perplexity (PPL) calculations by introducing
three key difficulty metrics: Instruction Understanding
Difficulty, Response Confidence Difficulty, and Re-
sponse Correctness Difficulty. Additionally, we apply

an attention-based importance weighting mechanism
to capture the varying importance of tokens, ensuring
more accurate difficulty evaluation. This method en-
sures that data complexity is dynamically aligned with
the model’s learning capacity, optimizing the fine-tuning
process. In summary, our contributions are as follows:

* We introduce 3DS, a two-stage model-centric data
selection framework aligning training data with the
model’s inherent knowledge distribution, optimizing
effective domain adaptation fine-tuning.

* We propose a novel difficulty decomposition strat-
egy within 3DS, quantifying data difficulty through
three metrics: Instruction Understanding, Response
Confidence, and Response Correctness, ensuring fine-
grained data difficulty quantification in the domain
adaptation fine-tuning process.

e Our extensive experiments on Chinese medical
datasets demonstrate that 3DS outperforms existing
methods, significantly boosting LLMs performance in
the medical domain. 3DS has also been successfully
deployed in real-world medical applications (details
omitted for anonymity).

* We have open-sourced a carefully curated Chinese
medical dataset, including medical dialogues and
domain-specific instructions, to support the fine-
tuning of LLMs in healthcare.

2 Related Work
2.1 Data Selection for LLM Training

Data selection for LLM training has been explored
through various approaches. Some works (Das and
Khetan, 2023) utilize statistical clustering or core-set se-
lection to identify diverse and representative subsets, yet
they neglect data quality, potentially incorporating noisy
samples that hinder model training. To address qual-
ity concerns, some works leverage external models like
proprietary LLMs (Chen et al., 2023a; Liu et al., 2023;
Wettig et al., 2024) or reward models (Du et al., 2023)
to evaluate and select high-quality data. However, due
to distribution differences and preference gaps between
external models and the model to be trained, the selected
data may not be beneficial for the model to be trained,
leading to limited performance gains. Another line of
research leverages information produced by the model
to be trained, such as perplexity (Marion et al., 2023),
gradients(Xia et al., 2024) and derived metrics like data
learnability (Zhou et al., 2023) and instruction follow-
ing difficulty (Li et al., 2024b,a). While these metrics
provide more direct insights into the model’s current
understanding of data, they typically offer only coarse
measures of data difficulty, failing to capture different
aspects of data complexity or account for the model’s
generation behavior, leading to suboptimal selection.
While these methods share similar challenges, insights
and approaches with active learning methods (Yoo and
Kweon, 2019; Karamcheti et al., 2021; Mindermann
et al., 2022),their application scenarios and workflows
are distinct. In this work, we focus exclusively on data



selection tailored to the unique challenges of training
LLMs. We note that existing data selection methods
for LLMs are predominantly tailored for pre-training,
general fine-tuning (transforming a base model into a
chat model), or targeted for specific downstream tasks.
There remains a significant absence in data selection
for domain adaptation fine-tuning, where unique chal-
lenges lies in selecting data that effectively enhances the
model’s diverse domain abilities. To bridge this gap and
overcome the limitations of current methods, our work
introduces a novel data selection framework for domain
adaptation fine-tuning and provides a more fine-grained
analysis of data difficulty.

2.2 Data Learnability in LLM SFT

LLMs encounter significant challenges when learning
unfamiliar or complex knowledge during supervised
fine-tuning, particularly when the data was not encoun-
tered during pre-training, which can impede domain
adaptation fine-tuning. (Gekhman et al., 2024) found
that models acquire new factual knowledge slowly dur-
ing SFT, especially when the information diverges from
their pre-existing understanding, leading to a higher risk
of hallucinations. (Ren et al., 2024) further show that
when the knowledge introduced during Instruction Fine-
tuning significantly differs from what was learned in
pre-training, the model struggles to integrate it, causing
performance degradation. This highlights the difficulty
models face in using pre-training knowledge to under-
stand new concepts. (Kang et al., 2024) also emphasize
that unfamiliar examples during fine-tuning increase
the likelihood of hallucinations, suggesting that high-
difficulty data can destabilize the model and negatively
impact its ability to adapt to new domains. Together,
these findings underscore the risks associated with fine-
tuning on excessively difficult data, which can under-
mine model performance in domain-specific tasks.

3 Methodology

3.1 Task Formulation

We formally define the Data Selection for Domain Adap-
tation Fine-tuning task. Let:

* Mpy denote a pre-trained and generally fine-tuned
LLM (e.g., LLaMA-chat) parameterized by 6.

e X = {2} denote the full domain-specific
dataset where each sample z(") =< Q(®), A(®) >
consists of instruction Q(*) = {qu), qéz), o q,(,i)},
and response A(¥) = {a(ll), aél), o agf)}.

e k € N7 denote a fixed data budget, where k <
| X1

The task is to identify an optimal subset S* C X that
maximizes the target domain performance of the fine-
tuned model M}, formally:

§* = argmax E(, y)p,, [P(Mo (2;5),y)] (1)
SCXx,|8|=k

where Dy, is the target domain test distribution con-
taining diverse multiple domain tasks; P : J x J —
[0, 1] is the performance metric (e.g., accuracy, BLEU,
ROUGE), and My is My fine-tuned on S, i.e., 0 =
0 —nVe > ,cq L(Mg(x),x), with learning rate n and
loss function L.

3.2 Prompt-Driven Data Selection via Explicit
Alignment

The first stage of our framework is to select high-quality
data that closely aligns with the inherent knowledge and
preferences of the model to be trained. Unlike existing
methods that rely on external reward models or propri-
etary LLMs to score data quality, which often result in
suboptimal outcomes due to distributional mismatches
and knowledge gaps, our approach directly uses the
model itself for data evaluation. As illustrated in Fig-
ure 1, we leverage a carefully crafted prompt, detailed
in Appendix A, to instruct the model to explicitly rate
data quality based on its understanding. After obtaining
the model-generated scores, samples with scores ex-
ceeding a predefined threshold ¢ are retained for further
selection. By utilizing this prompt-driven alignment
approach based on explicit model generation, our frame-
work effectively reduces the gap between the training
data and the model’s inherent preferences, filtering out
possible noise from low-quality or misaligned data.

3.3 Decomposed Difficulty Data Selection via
Implicit Distribution Modeling

The second stage of our framework is to analyze data
difficulty via implicit distribution modeling of the model
to be trained, thereby selecting data with moderate diffi-
culty that best aligns with the model’s learning capacity,
to facilitate efficient domain adaptation fine-tuning. To
achieve this, our Decomposed Difficulty Data Selection
employs a fine-grained evaluation of data difficulty.
Inspired by the general problem-solving pro-
cess (Polya and Pélya, 2014; OECD, 2014)—under-
standing the problem, assessing confidence in the solu-
tion, and finally providing the answer—we decompose
data difficulty into three key components that reflect the
model’s understanding: (1) Instruction Understanding
Difficulty measures whether the model comprehends
the given instruction. (2) Response Confidence Diffi-
culty measures the model’s ability to provide a confident
and deterministic response based on the instruction. (3)
Response Correctness Difficulty measures whether the
model can generate a response that accurately matches
the reference answer. In addition, we incorporate an
attention-based importance weighting mechanism
that calibrates difficulty by accounting for the varying
semantic significance of tokens in the output, to ensure a
more precise evaluation of response-related difficulties.
Next, we will delve into the quantification of the decom-
posed difficulties and introduce the selection strategy.
Instruction Understanding Difficulty Challenging
data often come with complex instructions, especially
in specialized domains like healthcare, where instruc-
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Figure 1: 3DS framework. Stage 1 Prompt-Driven Data Selection select high-quality data via explicitly aligning
data with the target LLM. Stage 2 Decomposed Difficulty Data Selection decomposes data difficulty via modeling
the LLM’s implicit distribution and filter the dataset. Attention-based importance weighting mechanism calibrates

difficulty calculation.

tions may contain intricate medical terminologies. Ac-
curately capturing how well a model understands such
instructions is crucial, as a lack of comprehension in-
dicates higher data complexity. To capture this aspect
of data difficulty, we introduce Instruction Understand-
ing Difficulty. Previous research (Gonen et al., 2023)
has shown that a model’s perplexity serves as an effec-
tive indicator of its familiarity with a prompt, where
lower prompt perplexity correlates with better compre-
hension and performance. Building on this insight, we
further recognize that perplexity inherently captures the
predictive uncertainty from model’s distribution. Conse-
quently, we employ perplexity as a measure to quantify
data difficulty from the model’s perspective. Formally,
for a model My, given a data sample © =< Q, A >
with the instruction @ = {¢1, g2, - - . ¢ }, We define its
Instruction Understanding Difficulty as:

Dlg(.’L‘) = PPL@(Q) =
1 — (2)
exp (—m > log Py(gilar, g2, - - -;%‘1))
i=1

where Py(qi|q1, 92, - - ., gi—1) represents the probability
model My generates the i-th token in instruction )
given the preceding tokens. A higher perplexity value
indicates greater difficulty for the model to comprehend
the instruction.

Response Confidence Difficulty When encountering
challenging data, the model often struggles to provide a
confident response. This uncertainty arises from its in-
ability to handle the task and determine the most appro-
priate response, similar to human students (?), which in-
dicates a high data difficulty. To quantify this difficulty,
we introduce Response Confidence Difficulty, measured
by the model’s conditional perplexity when generating

a response based on the instruction. Formally, for a
model My, given a data sample z =< @), A > where
@ is the instruction and A’ = {a},a}...,al, } is the
model-generated response based on @), we define its
Response Confidence Difficulty as:

D2y(z) = PPLy(A'|Q) =

exp —;ZlOng(aHa/lya/Qw~'aa‘/7'717Q)

Jj=1

where higher conditional perplexity indicates higher
uncertainty in model’s distribution and greater difficulty
for the model to provide a confident answer.

Response Correctness Difficulty In instruction fine-
tuning datasets that provide ground truths for given in-
structions, it is essential to assess the model’s ability to
generate accurate responses to assess data difficulty. We
introduce Response Correctness Difficulty, measured
by the model’s conditional perplexity when generating
the reference answer A = {a1,as ..., a,} based on the
instruction Q.

D3, (x) = PPLy(A]Q) =

1 )
exp - Zlong((Ij|a17a2v -1, Q)

Jj=1

A higher conditional perplexity value reflects greater
difficulty in producing the correct response, indicating
that the data point is more challenging for the model.
Attention-based importance weighting mechanism
Both Response Confidence Difficulty and Response Cor-
rectness Difficulty rely on evaluating the uncertainty
inherent in the model’s generation process. While con-
ditional perplexity serves as a common method for un-
certainty estimation, it treats all tokens within a response



equally, disregarding their varying semantic importance.
While key tokens significantly influence the meaning
and correctness of a response, less important tokens like
conjunctions or prepositions, may exhibit high uncer-
tainty without substantially influencing the semantics.
This can lead to skewed uncertainty estimates and in-
accurate data difficulty assessments. To address this
issue, inspired by Su et al. (2024), we introduce an
attention-based importance weighting mechanism that
adjusts perplexity-based measurements by weighting to-
kens according to their semantic importance. We argue
that critical tokens are those playing a pivotal role in
guiding the model’s subsequent generation. Therefore,
we derive importance scores from the model’s internal
attention mechanism. Specifically, for a token sequence
s ={t1,ta,...,t;,...,tn}, when a transformer-based
LLM generates token t;(i < j), it computes the atten-
tion weight A;; by applying a softmax function to the
dot product of the query vector g; and the key vector k;:

qj - ki

Aji = ( NG ) ®)
where dy, is the dimension of k;. The attention weight
Aj; represents the attention the model pays to token ¢;
when generating token ¢;, reflecting the importance of
token ¢;. We define the importance score of token ¢;
as the aggregated attention weight it receives from all
subsequent tokens:

I(t;) = Aggr¢>g_ate (Aji) ©)
7>i

The aggregation function can be either the average
(mean) or maximum (max) value of subsequent token
scores. Using this attention-based importance score, we
refine the calculations of Response Confidence Diffi-
culty and Response Correctness Difficulty as follows:

Atten-D2y(z) = weightedPPL,(A'|Q) =
!/
j

( S0 1(t5) - log Po(a)|a, b, ... a _1,Q)>
exp | — —
Zj:ll(tj)
(7

Atten-D3y(z) = weightedPPLy(A|Q) =

Z;'L:l I(tj) . log Pg(aj|a1, ag,...,05-1, Q)
exp | — oy
Zj:l I(tj)

®)
By integrating attention-based importance weights, this
mechanism prioritizes tokens crucial for semantic cor-
rectness and clarity, offering a more accurate estimation
of model uncertainty and data difficulty.

Selection Strategy based on Decomposed Difficulty
Based on the decomposed data difficulties, the selection
algorithm first identifies samples whose difficulty met-
rics fall within a predefined middle range, filtering out
either trivially easy or overly complex data, focusing on
moderately challenging samples that matches model’s

learning capabilities. Once this subset is identified, we
apply K-Center sampling based on instruction embed-
dings to enhance data diversity, reducing the risk of
overfitting on highly similar samples. Details about K-
Center sampling process are introduced in Appendix C.

Algorithm 1 Model-Driven Data Selection Framework
Input: Full dataset X', model M, scoring threshold 6,
difficulty calculation functions D1, D2, D3, per-
centage thresholds p1, p2, p3, sampling budget
k
Output: Selected data subset S
Stage 1: Prompt-Driven Data Selection
Initialize X} < 0
foreach z € X do
Get score s, «+ M (prompt, )
if s, > 0 then
Add z to X}

end
end
Stage 2: Decomposed Difficulty Data Selection
Initialize S < 0
Compute D1(x),D2(z),D3(x) forall x € X;
Set 7,7,73 based on percentiles pq,ps,p3 of
D1,D2,D3
foreach x € X} do
if 7/ < DI(x) < " and i < D2(z) < 73"
and 7 < D3(x) < 7" then
Add z to intermediate set Spig

end
end
Apply K-Center sampling on Spig to select k diverse
data points
Return final selected subset S

3.4 Model-Driven Data Selection Framework

The overall architecture of our model-centric data selec-
tion framework is illustrated in Figure 1. Pseudo codes
of the complete selection process are shown above.

4 Experiments

4.1 Experimental Setup

Training dataset. For medical domain adaptation
fine-tuning, we construct a comprehensive medical
instruction-response dataset of diversity and abundance.
The dataset comprises over 1.9 million samples, with
its statistics provided in Table 3 and data construction
details introduced in Appendix B. We have released this
complete training dataset to support further research.
Evaluation datasets. We assess fine-tuned mod-
els on diverse medical test datasets: two multi-task,
multiple-choice datasets, MMCU-Medical (Zeng, 2023)
and CMB-Exam (Wang et al., 2023c¢), and an open Q&A
dataset, CMB-Clin (Wang et al., 2023c), with data statis-
tics provided in Table 4. MMCU-Medical and CMB-
Exam, consisting of medical exam questions, assess



model’s reasoning and medical knowledge application
abilities with accuracy as the metric. CMB-clin, com-
prising of patient record analysis tasks, assesses the
model’s complex medical analysis ability, with BLEU-
1, BLEU-4 and ROUGE as the metric (detailed in Ap-
pendix F). Together, these datasets provide a comprehen-
sive evaluation of the model’s proficiency in the medical
domain.

Models. To validate the scalability and general-
izability of our data selection framework, we con-
duct experiments with chat models of varying archi-
tectures and parameter sizes: Baichuan2-7B-Chat,
Baichuan2-13B-Chat (Yang et al., 2023a), and
Qwen1.5-7B-Chat (Bai et al., 2023).

Baselines. We compare 3DS against a series of LLM
fine-tuning data selection strategies. (1)Base directly
tests the chat model without further fine-tuning. (2)
Random Selection randomly selects samples. (3) IFD
(Instruction-Following Difficulty) (Li et al., 2024a,b)
designs a difficulty metric called instruction following
difficulty based on the ground truth loss with or without
the input instruction. (4)MoDS (Model-oriented Data
Selection) (Du et al., 2023) filters high-quality data via
a reward model, and select data necessary for model
learning through a two-stage training and inference pro-
cess. (5)LESS (Xia et al., 2024) searches for training
samples similar to the target task examples through low-
rank gradient similarity. The implementation details of
the baselines are introduced in Appendix D.

Implementations. We fine-tune models using the
full training dataset, as well as subsets selected by our
selection framework and aforementioned baseline, with
a fixed budget of 5K samples per method. All mod-
els are fine-tuned using LoRA(Hu et al., 2021) for 1
epoch, with a learning rate of 5e-5 and a batch size of
64. In our selection framework, the model-centric qual-
ity filtering stage retains data samples with a quality
score > 90. In the subsequent decomposed difficulty
selection stage, difficulty thresholds are determined via
experiments on the CMB hold-out validation set. Specif-
ically, for Baichuan2-7B-Chat, the thresholds are set
to 10% and 60%; for Baichuan2-13B-Chat, 15% and
65%:; and for Qwen1.5-7B-Chat, 25% and 75%. More
implementation details are introduced in Appendix E

4.2 Main Results

Experiment results are shown in Table 1 and Table 2.
We summarize our findings below.

Data selection is necessary for LLM domain adap-
tation fine-tuning. We observe that fine-tuning LLMs
with the full 1.9 million dataset (Full-SFT) leads to
drastic performance drops. This suggests that domain
datasets directly collected from the internet contains
noisy samples that hinder model learning, highlighting
the necessity of data selection.

3DS effectively enhances LL.M’s diverse domain
abilities, significantly outperforming baselines. Base-
line LESS, which focuses on enhancing model’s tar-
geted ability on a specific down-stream task, proves to

be ineffective for domain adaptation fine-tuning where
diverse abilities needs improvement. This approach
leads to performance degradation on CMB-Exam for
Baichuan2-13B-Chat and underperforms random sam-
pling for Qwen1.5-7B-Chat. Similarly, MoDs fails
to surpass random sampling for Qwen1.5-7B-Chat on
CMB-Exam and MMCU-medical benchmarks, indicat-
ing that relying solely on external preferences without
considering the distribution of the model to be trained
are insufficient for enhancing domain-specific capabili-
ties, especially for models already equipped with certain
degree of domain knowledge. Among the baselines, [IFD
shows relative strong results due to its consideration of
data difficulty, which aids in identifying beneficial sam-
ples that contribute to model learning. However, its in-
struction following difficulty is not comprehensive and
the resulting performance improvements are marginal
across tasks, even underperforming the base model on
CMB-Exam for Baichuan2-13B-Chat. In contrast, our
3DS is the only method that consistently outperforms
both the base model and random sampling across all
benchmarks, bringing substantial performance gains to
models of varying architectures and sizes. On medical
exam datasets, our method improves model accuracy by
up to 7.55% and 7.84% and surpass the best baselines by
over 5.29% in accuracy. On the open Q&A CMB-clin,
3DS significantly outperforms all baselines by a large
margin, with the fine-tuned model exhibiting superior
medical analysis ability. These results validate that our
proposed selection framework, which conducts data se-
lection from a model-centric perspective and employs
a fine-grained measurement of data difficulty through
decomposition, consistently identifies effective train-
ing samples for LLM domain adaptation fine-tuning,
universally enhancing their diverse domain abilities.

For CMB-Clin, we randomly sample 100 answers
from models fine-tuned with different data selection
methods and conduct a pair-wise evaluation using GPT-
4 as the judge. The evaluation prompt can be found in
Appendix I. Results shown in Figure 2 further validate
the superiority of our method. 3DS exhibits substan-
tially higher win rates compared to all other baselines,
achieving 67%, 82% and 71% win rates against MoDS,
56%, 70% and 77% against IFD, and 56%, 88% and
85% against LESS, for the three models respectively.
This evaluation provides qualitative evidence that our
method not only excels in quantitative metrics but also
delivers more clinically accurate outputs.

3DS exhibits strong generalization ability and scal-
ability. 3DS’s consistent performance gains across
various models and datasets highlight its great gen-
eralization ability to adapt to different models and
domain tasks. Notably, on the CMB-Clin dataset,
while all models benefit from our data selection
strategy, the largest improvements are seen on the
largest model, Baichuan2-13B-Chat. In Figure 2, the
larger and stronger models Baichuan2-13B-Chat and
Qwen1.5-7B-Chat also show generally higher win rates
compared to Baichuan2-7B-Chat. These results vali-



Table 1: Performance comparison (%) on CMB-Exam, MM CU-Medical of EM score. The best performance is highlighted in
bold, and the second-best performance is underlined. Performance gains are measured against the base model.

Method LLM Turbo Baichuan2-7B-Chat Baichuan2-13B-Chat Qwenl.5-7B-Chat
Dataset CMB-Exam MMCU-Medical | CMB-Exam MMCU-Medical | CMB-Exam MMCU-Medical

Base 24.50 21.67 46.67 47.11 59.80 64.24

Full-Sft 21.53 22.49 40.38 37.90 48.05 47.53

Baselines Random 23.02 23.13 44.07 47.61 61.81 65.10

MoDS 24.90 23.48 47.25 50.37 61.09 64.67

IFD 28.02 2543 46.44 50.08 62.06 65.37

LESS 25.30 23.84 45.79 51.01 60.74 64.85

3DS-MeanAtten 31.84 29.37 47.37 51.08 61.96 66.09

Ours 3DS-MaxAtten 31.89 29.23 47.10 50.69 61.97 66.02

3DS-NoAtten 32.05 29.51 47.10 50.19 61.79 65.84

*Performance Gain 1 7.55 7.84 0.70 3.97 2.16 1.85

3DS (w/o D1) 30.30 27.81 47.35 50.59 61.47 65.80

. 3DS (w/o D2) 30.74 28.02 47.34 47.18 62.00 66.05

Ablations
3DS (w/o D3) 31.22 28.80 47.07 50.59 61.64 65.73
3DS (only D1) 30.95 28.84 47.20 51.22 61.51 65.73

Table 2: Performance comparison (%) on CMB-Clin. The best performance is highlighted in bold, and the second-best
performance is underlined. Performance gains are measured against the base model.

Method LLM Turbo Baichuan2-7B-Chat Baichuan2-13B-Chat Qwen-1.5-7B-Chat

Metric BLEU-1 BLEU-4 ROUGE | BLEU-1 BLEU-4 ROUGE | BLEU-1 BLEU-4 ROUGE

Base 13.37 25.94 15.49 11.15 21.02 14.08 16.17 32.03 16.31

Full-Sft 7.85 18.65 10.76 7.19 16.33 11.70 6.68 16.61 9.62

Baselines Random 17.66 40.45 19.84 12.14 25.95 14.75 16.09 34.45 16.19

MoDS 23.01 56.41 26.47 2243 51.02 22.85 17.61 39.19 19.93

IFD 22.80 60.59 29.83 21.44 51.73 24.94 19.24 43.10 21.08

LESS 23.20 58.52 28.22 13.27 29.20 16.40 17.48 38.88 17.58

3DS-MeanAtten | 22.61 64.57 32.11 24.15 63.51 31.50 24.40 60.32 28.07

Ours 3DS-MaxAtten 23.94 63.58 31.48 23.49 61.95 30.22 24.58 60.47 28.23

3DS-NoAtten 22.41 61.37 29.99 22.58 61.44 29.58 25.62 61.52 27.69

*Performance Gain 1 10.57 38.63 15.99 13.00 42.49 17.42 9.45 29.49 11.92

3DS (w/o0 D1) 23.68 61.02 29.53 22.55 51.75 23.99 24.14 55.12 24.68

Ablations 3DS (w/o D2) 22.96 61.35 30.46 22.22 52.06 23.54 20.48 49.59 23.84

3DS (w/o D3) 23.26 62.00 29.92 20.86 49.40 23.08 22.27 50.18 23.83

3DS (only D1) 22.89 61.76 30.58 22.09 52.01 23.91 21.92 51.48 26.16

date that 3DS not only generalises well but also scales
effectively with more capable models.

4.3 Ablation Studies

To validate the effectiveness of each difficulty metric in
our decomposed difficulties, we conduct ablation stud-
ies by removing each of the three metrics—Instruction
Understanding Difficulty, Response Confidence Diffi-
culty, and Response Correctness Difficulty. As shown
in Table 1 and Table 2, in general, removing any sin-
gle component result in noticeable performance drops
on some evaluation metrics for all three models, indi-
cating a decline in certain aspects of the model’s med-
ical domain abilities. For instance, the exclusion of
Response Confidence Difficulty leads to a noticeable de-
crease in the performance of both Baichuan2-7B-Chat
and Baichuan2-13B-Chat across all evaluation metrics.
Similarly, Qwen-1.5-7B-chat’s performance drops on
CMB-Clin. These observations validate the necessity of
each difficulty metric in identifying beneficial data sam-
ples for enhancing LLM’s domain abilities. Overall, the
combination of these difficulty metrics contributes to

a more accurate data difficulty measurement, ensuring
that selected data matches the model’s learning capacity
and optimally enhances its domain performance. More
ablation studies considering data budgets and selection
steps are introduced in Appendix G.

5 Analysis of Data Difficulty Thresholds
5.1 Impact of Data Difficulty

We conduct sliding-window experiments to investi-
gate how training data difficulty affects model’s med-
ical domain adaptation fine-tuning, as shown in Fig-
ure 3. By training models on data within dynami-
cally adjusted difficulty ranges (o + 25%), we observe
that, for each model, performance improves as the
training data difficulty increases, reaching a peak be-
fore declining. Notably, the optimal difficulty range
aligns with the model’s inherent capability. For in-
stance, Baichuan2-7B-Chat achieves its best perfor-
mance when trained on data within relatively lower dif-
ficulty ranges (10%-60%). For more powerful models
like Baichuan2-13B-Chat and Qwen1.5-7B-Chat, the
optimal ranges are 15%-65% and 25%-75% respectively,
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Figure 3: Impact of Difficulty Thresholds on Model Performance: The figure illustrates how varying difficulty
thresholds of selection affect the accuracy (ACC) of models. The results are shown for Baichuan2-7b-chat,
Baichuan2-13b-chat, and Qwen-1.5-7b-chat, across different difficulty sample centers (percentages).

indicating that more capable models benefit from data of
higher complexity. These findings further highlight the
importance of selecting data that aligns with the model’s
capability. Training less capable models on excessively
difficult data may overwhelm them, whereas stronger
models require more challenging domain data to maxi-
mize their potentials. Our difficulty metrics prove to be
effective measures of data complexity.

5.2 Parameter Selection Guidelines

Our experiments identify the 20%-70% difficulty range
as a robust choice. For model-specific optimization, we
recommend this implementation procedure:

* Model Capability Profiling: Conduct pre-fine-
tuning validation to benchmark the model’s base-
line performance. Strong domain task performance
suggests higher difficulty thresholds, while weaker
models benefit from more conservative ranges.

Hyperparameter Search: Implement search over
potential ranges and select the values that yield the
best performance on the validation set. This allows
for adapting the difficulty range to the model’s
specific strengths and weaknesses.

6 Conclusion

In this paper, we introduce a two-stage model-centric
data selection framework for LLM domain adaptation
fine-tuning. The first stage performs a prompt-driven
selection strategy to explicitly align with the model’s
preferences. The second stage selects data via data
difficulty decomposition. By incorporating Instruction
Understanding, Response Confidence, and Response
Correctness difficulties, alongside an attention-based im-
portance weighting mechanism, our method effectively
captures the model’s implicit distribution and selects
data that matches the its learning capacity. Experimental
results across multiple medical tasks demonstrate signif-
icant performance gains, validating the effectiveness of
our selection framework. Our approach highlights the
effectiveness of model-driven data selection, offering
a path toward more efficient LLM domain adaptation
fine-tuning. Future work will explore extending this
framework to other domains and refining the training
procedure based on difficulty metrics for broader LLM
applications.

Limitations

Due to time and resource constraints, we have only vali-
dated our method in the medical domain. While our data
selection framework is domain-agnostic and adaptable
to other fields, further experiments in other domains are



needed to fully verify its generalization. Since the se-
lection process requires the model to perform inference
on the training data, it involves certain computational
costs. This additional inference step may increase com-
putational overhead, especially when working with very
large datasets. Our framework performs data selection
prior to LLM fine-tuning. Considering that the model’s
evaluation of data difficulty may evolve during train-
ing, future research should explore dynamic selection
that adapts to the model’s changing state. Additionally,
data filtered out is currently discarded. Future work
should consider integrating mechanisms such as human-
in-the-loop validation or strategies to recover potentially
relevant and valuable data from the discarded pool. Fi-
nally, considerations for social bias and fairness issues
are discussed in Appendix J.
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A Data Quality Evaluation Prompt

In the first stage of our proposed data selection frame-
work, we carefully craft a prompt to instruct the current
model to evaluate the training set and filter out noisy
data samples based on its internal knowledge. Inspired
by existing works (Chen et al., 2024; Wang et al., 2023c;
Liu et al., 2023), the model is asked to assess data qual-
ity across five dimensions: Instruction Complexity, Re-
sponse Relevance, Response Thoroughness, Response
Logic and Knowledge Richness. We provide the model
with detailed scoring guidelines. The specific prompt
used in this process is shown below.

Quality Evaluation Prompt in Stage 1

You are an Al assistant with medical expertise.
Your task is to objectively assess the quality
of the medical dialogue between the user and
assistant based on your knowledge, and provide
a score. The data may consist of single or
multi-turn dialogues. You should evaluate based
on the complexity of the question, relevance of
the response, thoroughness, logical coherence,
and knowledge richness, and provide an overall
score. Focus on medical-specific characteristics
to ensure accuracy.

[Evaluation Criteria]

1. Question Complexity:  Evaluate the
complexity of the user’s question. If the ques-

tion requires deep understanding, reasoning, or
medical knowledge, score above 80.

2. Response Relevance: Assess if the as-
sistant’s response is directly aligned with the
question. Score above 80 for responses tightly
related to the question.

3. Response Thoroughness: Check if the
response thoroughly addresses the question
with sufficient detail. A score above 80 reflects
comprehensive answers.

4. Response Logic: Ensure the response
follows clear reasoning and logic. A score
above 80 reflects well-structured reasoning.

5. Knowledge Richness: Determine whether the
response demonstrates rich, specialized medical
knowledge. A score above 80 indicates depth
and accuracy.

[Scoring Guidelines]

[80-100]:  Excellent. High complexity,
thoroughness, relevance, logic, and knowledge
richness, meeting medical standards.

[60-79]: Good. Strong performance but
with minor deficiencies in logic or knowledge.

[40-59]: Fair. Noticeable issues such as
unclear logic or insufficient depth.

[20-39]: Poor. Fails to properly address
the medical issue or lacks substance.

[0-19]: Very Poor. Lacks relevance, logic, or
medical knowledge.

[Start Conversation]

Refer to the guidelines and score the following
dialogue data based on the criteria. Follow the
output format strictly:

{score:}

Dialogue:

<ga_pairs>

Output:

\

B Datasheet For Medical Domain
Adaptation Fine-Tuning Dataset

Data statistics

The statistics of the training dataset and the test
dataset are shown below. The use of the test datasets
complies with their respective licenses.
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Dataset Size (K)
medtalk_singleround 177
medknowledge_KG 796
medknowledge_webqa 360
medtask_promptcblue 82
gqa_website 490
Total 1905

Table 3: Training Dataset Statistics

Dataset Type Size
CMB-Exam multiple-choice | 11200
MMCU-medical | multiple-choice | 2819
CMB-Clin open Q&A 208

Table 4: Test Dataset Statistics

What is the primary purpose of creating this
dataset?

This dataset was created to construct a large-
scale medical domain instruction-following fine-tuning
dataset. The primary purpose is to support the adapta-
tion of large language models (LLMs) to the medical do-
main by providing diverse and comprehensive training
instances. By integrating heterogeneous data sources,
including doctor-patient dialogues, medical knowledge
bases, and various medical tasks formulated into the
instruction-output format, the dataset aims to enhance
the ability of LLMs to perform effectively across a wide
range of real-world medical scenarios. It is designed to
address the unique challenges of the medical domain,
such as specialized terminology, complex reasoning,
and context-sensitive responses, thereby enabling LLMs
to better meet the demands of healthcare applications.

What are the specific components of the dataset,
and how were they constructed or sourced?

Our dataset integrates multiple open-sourced medical
instruction fine-tuning datasets from diverse sources,
along with doctor-patient dialogue data extracted from
medical consultation websites and a variety of medical
tasks reformulated into the instruction-output format, as
detailed in Table 3. Medtalk_singleround originates
from open-sourced doctor-patient question-and-answer
datasets, including CMedQA2 (Zhang et al., 2018)
and Health—Care—Magicl. Medknowledge_KG is built
from the Online Medical Knowledge-Based Data in Hu-
atuo26M (Li et al., 2023), which is derived from the ex-
tensive medical literature data provided by the Chinese
Medical Association. Medknowledge_webga includes
knowledge-driven, open-ended question-and-answer
pairs in the medical domain, sourced from (Wang
et al., 2023b). Medtask_promptcblue combines the
promptCBLUE dataset (Zhu et al., 2023b) with addi-
tional data converted into the instruction-output for-
mat from the CBLUE benchmark (Zhang et al., 2022).

1https://www.kaggle.com/datasets/gunman@Z/
health-care-magic
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QA_website contains authentic doctor-patient dialogue
data collected from the online platform of a collaborat-
ing hospital. Examples from these datasets are shown
in Table 5.

Are the data sources legal? How are privacy and
ethical considerations addressed?

The dataset is derived from carefully selected sources,
including publicly available datasets and data crawled
from the website of a collaborating hospital. Explicit
permission was obtained from the collaborating hospital
for the use of the crawled data, and all data have been
anonymized to ensure that no personal information is
exposed. Additionally, the hospital’s website provides
open-access data, complying with relevant legal and eth-
ical standards. This ensures the legality and security of
the data while addressing privacy and ethical concerns.

What are the potential risks and limitations of this
dataset?

The dataset has certain inherent risks and limitations
that should be acknowledged. First, as the data is col-
lected from diverse sources, it may contain noise or
inconsistencies, which could affect the quality and relia-
bility of downstream applications. Additionally, since
the dataset is derived from Chinese text corpora, includ-
ing medical advice and Q&A exchanges, its content
may be culturally and regionally specific, making it
more suitable for East Asian populations. As a result,
the medical recommendations and insights in the dataset
may not generalize well to other demographic or cul-
tural contexts.

To address these issues, users should carefully eval-
uate the dataset’s suitability for their intended applica-
tions and, if necessary, consider adapting the data to
align with broader use cases. Moreover, noise reduction
and validation techniques can be employed to improve
data quality and reliability in specific tasks.

What is the usage case for this dataset?

This dataset is primarily intended for instruction fine-
tuning of large language models (LLMs), as already
utilized in this study. Practitioners can use it to fine-
tune LLMs to adapt to the medical domain, as well as
to enhance its medical abilities in general fine-tuning.
Additionally, the dataset may be useful for more specific
tasks, such as fine-tuning for sub-tasks in the dataset.

What is the distribution method and maintenance
plan for this dataset?

The dataset is distributed as an open-source resource
at https://drive.google.com/drive/folders/
1SfrwQkDrQJ8i_EIqfc2Di@Xa5Y5pzY9H, allowing
researchers and developers to access and utilize it freely
under the specified license. We are committed to the
ongoing maintenance of the dataset. If any errors or
inaccuracies are identified, particularly those related
to medical knowledge, we will promptly update the
dataset to correct such issues, removing erroneous
data as necessary. Additionally, we will continue to
provide updated documentation to ensure the dataset’s
effective use. While the dataset is stable at present,
users are encouraged to provide feedback or suggest
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improvements, and we will consider updates based on
user input or evolving needs in the field. This ensures
that the dataset remains reliable and beneficial for the
community.

C K-Center Sampling Algorithm

In our data selection framework, K-Center sampling is
employed to ensure diversity within the selected instruc-
tion fine-tuning data. After filtering based on difficulty
levels, we obtain an intermediate set Sp;q, composed
of data points within a moderate difficulty range. The
K-Center sampling is then applied on Spig. Specifically,
the process works as follows:

1. Embedding Generation: For each data sample, the
instruction part is encoded into an embedding using the
LLM. We extract the last hidden states of the LLM and
compute the average across all tokens in the sequence to
form a fixed-size embedding vector. These embeddings
represent the semantic content of the instruction.

2. K-Center Sampling: Using these embeddings, the
K-Center sampling algorithm selects k data points in a
greedy manner. The goal is to maximize the minimum
distance between any pair of selected data points, en-
suring that the sampled data points are as distinct as
possible. This promotes diversity in the selected dataset
and minimizes the risk of overfitting to similar data
points.

The pseudo codes of this greedy K-Center sampling
process are shown below:

Algorithm 2 Greedy K-Center Sampling

{817827 N

Input: Intermediate set S,,;q = ySn s
model M, data budget k&
Output: Final selected set S
Step 1: Encode data in S,,,;; using model M/ foreach
S; € Spiqg do
| Encode s using M to obtain the embedding e,
end
Step 2: Run K-Center greedy algorithm Initialize
S + () Initialize min_distances < co fori = 1 to
k do
if S = () then
| Selects; € Sy, randomly and add it to S
else
min_distances; =
€siH2, VSJ‘ € Smid\S
Select s* =
arg maxs s, \s min_distances;
Add s*to S
end

minsi €S HeSj

end
return S

D Baseline Implementations

Due to differences in task settings and datasets, we
re-implement the baselines using their publicly avail-
able codes. We adapt their data selection strategies

to our domain adaptation fine-tuning task on the med-
ical instruction fine-tuning dataset and models. The
re-implementation details are as follows and our use
of the code repositories complies with their respective
licenses:

(1) IFD: (Liet al., 2024a,b) The Instruction Follow-
ing Difficulty (IFD) method begins by calculating the
instruction-following difficulty scores for each data
point through model forward propagation. Given that
our full domain dataset consists of over 1.9 million sam-
ples, performing this step on the entire dataset would be
computationally prohibitive. Therefore, we randomly
sample 60k samples from the training set, an amount
comparable to the dataset size used in our 3DS after
stage 1. We compute IFD scores for this subset, and,
following the recommendations in the original paper,
select the samples with highest scores. The data budget
is constrained to Sk samples, ensuring consistent with
our main experimental setup.

(2) MoDS: (Du et al., 2023) For the MoDS
baseline, We follow the original paper’s
implementations,  using the reward model

reward-model-deberta-v3-large-v2? to score
the full dataset. We then obtain samples with scores
above 0.5, yielding a subset of 120k high-quality data
samples. From this subset, we apply K-Center sampling
to select 2k seed samples for model warm-up training.
Subsequently, the trained model perform inference on
the 120k high-quality subset, and these predictions are
rescored using the same reward model. Data samples
where model’s generated answers score below O are
deemed necessary and are combined with the seed
samples. From this merged set, we randomly select 5k
samples as the final training data, and train models from
scratch on this final data.

(3) LESS: (Xia et al., 2024) The LESS method in-
volves constructing a gradient library based on the orig-
inal data, which incurs significant computational costs,
particularly for the large dataset like ours. Similarly,
we sample 60k data points to compute the gradients.
Unlike the original LESS method that targets specific
downstream tasks and uses samples from the target-
ing dataset to construct a validation set, our domain
adaptation fine-tuning scenario does not involve fixed
downstream tasks. Therefore, we randomly selected an
additional 100 samples from the training set as the vali-
dation set. Then we run the provided codes and select
5k training samples.

E Implementation Details

The difficulty thresholds in our experiments are de-
termined based on model performance on a hold-out
CMB-validation set composed of 280 samples pro-
vided in the CMB benchmark (Wang et al., 2023c).

Zhttps://huggingface.co/OpenAssistant/reward-model-
deberta-v3-large-v2



As shown in Table 6, we select the optimal difficulty
thresholds for each model based on their validation
performance. Specifically, the resulting thresholds
are 10% and 60% for Baichuan2-7B-Chat; 15% and
65% for Baichuan2-13B-Chat; and 25% and 75% for
Qwen1.5-7B-Chat. All experiments are conducted us-
ing the PyTorch 2.4.0 in Python 3.9, on 8 NVIDIA H100
GPUs and an Intel(R) Xeon(R) CPU, with both training
and inference performed using half-precision FP16 for
efficiency. We employ the LoRA fine-tuning method,
targeting all linear modules within the model, with a
learning rate of 5 x 102, a batch size of 64, and a single
epoch of training. The learning rate is scheduled using a
cosine decay scheduler with a warmup ratio of 0.1. The
LoRA rank is set to 8, and the input sequence length
is cut off at 1024 tokens. DeepSpeed Zero-3 is used
to optimize distributed training. For instruction scor-
ing, response generation, and training, we use templates
corresponding to each model, implemented through the
llamafactory project (Zheng et al., 2024).

Due to the high computational cost of training and
testing LLLMs, most existing instruction data selection
studies conduct experiments with a single run for ef-
ficiency (Li et al., 2024b; Du et al., 2023). We adopt
this approach as well. However, to assess the relia-
bility of our results, we perform the random selection
experiment three times. The results show consistent per-
formance with low variance (MMCU: 0.08; CMB: 0.45
for Baichuan2-7B-Chat, MMCU: 0.07; CMB 0.01 for
Qwen1.5-7B-Chat) and narrow error bars (+0.15 and
+0.25 respectively for Baichuan2-7B-Chat, £0.26
and +0.08 for Qwen1.5-7B-Chat), demonstrating that
our findings are statistically stable and reliable.

F Evaluation Metrics

To evaluate the performance of LLMs on multi-task
medical choice questions, we instruct the models to
provide only the correct answer and adopt the widely-
used metric, Exact Match (EM), as recommended by
prior work (Zhu et al., 2021; Karpukhin et al., 2020).
An answer is deemed correct under the EM metric if its
form exactly matches all the correct answers listed in
the ground truth. The EM score is computed as follows:

EM — Number of Correctly Matched Answers

Total Number of Answers

For open-domain medical Q&A tasks, we employ
ROUGE-R (Xu, 2023; Jiang et al., 2024) and Bilingual
Evaluation Understudy (BLEU) to assess the quality
of the LLMSs’ responses.

BLEU-N Specifically, BLEU-1 is used to measure
answer precision, and BLEU-4 evaluates answer fluency
by considering higher-order n-gram consistency. BLEU
evaluates the similarity of generated responses to the
ground truth using the following formula:

N
1
BLEU-N = BP - exp (N > log pn) ,
n=1

x100%.
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where p,, is the precision of n-grams, B P is the Brevity
Penalty, calculated as:

BP — 1, ?fc>r.
exp(l—%), ife<r

Here c is the length of the generated response, and r is
the length of the reference response.

ROUGE-R quantifies the recall of retrieved knowl-
edge in the LLMs’ responses, emphasizing their ability
to comprehensively cover the information relevant to
the query. For a generated response R and a reference
G, ROUGE-R is computed as:

IRNG|

ROUGE-R = ,
G|

where |R N G| denotes the number of overlapping n-
grams between the generated response and the reference,
and |G/ is the total number of n-grams in the reference.

During implementation, We use the ‘rouge’ package
to calculate ROUGE scores and the ’nltk’ module to
compute BLEU scores (from BLEU-1 to BLEU-4), uti-
lizing the smoothing function for BLEU and the default
settings for ROUGE.

G Supplemental Ablation Studies

G.1 Ablations on Selection Stages

Our proposed data selection framework is composed of
two stages: 1. select high-quality data by prompting
the model; 2. calculate decomposed data difficulties
utilizing model perplexity. To evaluate the contributions
of each stage, we investigate the impact of removing
each stage and conduct a series of ablation experiments.
The experiments include (1) removing Stage 1, where
70,000 samples are randomly sampled from the com-
plete training dataset for subsequent difficulty calcu-
lation and filtering, and (2) removing Stage 2, where
direct K-Center sampling is applied to the high-quality
samples identified in stage 1’ without difficulty filtering.
Additionally, to further validate the necessity of decom-
posed difficulty calculation based on model perplexity,
we test (3) collapsing Stage 2 into Stage 1, where the
model is prompted to verbalize its assessments of the
three data difficulties (Instruction Understanding Diffi-
culty, Response Confidence Difficulty, Response Cor-
rectness Difficulty, with corresponding prompts shown
below), bypassing the original difficulty calculation.

The results highlighted in Table 7, Table 8 and Ta-
ble 9 show a consistent pattern: each modification
leads to a decrease in performance compared to the
original method (3DS-Mean Attention), which consis-
tently remains the best-performing approach across
all models and all testing benchmarks.

Removing Stage 1 leads to significant performance
degradation, demonstrating the importance of quality
control. Removing Stage 2 also results in performance



declines, further emphasizing the necessity of select-
ing appropriately difficult data for effective model fine-
tuning. When Stage 2 is collapsed into Stage 1 via ad-
ditional difficulty prompts, performance also degrades.
During experiments, we observed that the model strug-
gles to provide fine-grained assessments of data diffi-
culty, often generating coarse-grained scores such as
0.5, 0.8, and 1. This lack of granularity makes it chal-
lenging to identify nuanced differences in data difficulty.
Furthermore, without knowing the exact capabilities
of the model, we could not design in-context learning
examples to guide finer-grained difficulty judgments.
Filtering based on model-prompted difficulties typically
results in 20k-30k samples from an initial pool of 60k-
70k, whereas the perplexity-based difficulty calculation
reduces the selection to fewer than 10k samples. This
smaller, more targeted dataset aligns better with the
desired moderate difficulty range, leading to improved
fine-tuning performance.

Although the performance differences between the
proposed method and the ablation variants are not very
pronounced on CMB-Exam and MMCU-Medical, our
method is notably the most consistent across different
models. Other variants, despite performing well on
one model, tend to show degradation on another. For
instance, collapsing Stage 2 into Stage 1 results in rela-
tively good performance on Baichuan2-13B-Chat, but
performs poorly on Baichuan2-7B-Chat. In contrast,
our method maintains steady good performance across
different models, underscoring its robustness and relia-
bility.

Furthermore, domain-adaptation aims to enhance the
model’s diverse abilities in the target domain, where
models need not only to answer questions accurately
but also to analyze and present content effectively. The
results on the medical analysis task CMB-Clin shown
in Table 8 clearly demonstrate that our method signifi-
cantly outperforms the ablation variants, exhibiting su-
perior medical analysis capabilities. While the multiple-
choice results did not conclusively indicate which stage
is most important, the analysis performance reveals a
clear trend: removing Stage 1 leads to the poorest
performance, followed by removing Stage 2, and col-
lapsing Stage 2 into Stage 1 achieves better results
than both. This pattern highlights the crucial role of
quality control in determining the model’s ability to pro-
vide coherent and high-quality answers. At the same
time, difficulty filtering is also essential, as even the
coarser-grained difficulty measurement by model ver-
balization yields better results than ignoring difficulty
at all. This progressive improvement reinforces the im-
portance of the filtering metrics we consider, showing
that both quality and difficulty are vital for selecting
beneficial data.

We also conduct GPT-4 judgment to compare the
analysis generated by the original method and other
alternatives. The win-rate results in Table 9 reinforce
the superiority of our original approach. When compar-
ing 3DS-M ean Attention with ablation variants, the
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win-rate generally exceeds 60%, indicating a significant
preference for the proposed method over its alternatives.

These results together indicate that both steps of the
original algorithm are crucial for maximizing perfor-
mance, and that the calculation method of data difficul-
ties cannot yet be replaced by model-verbalized assess-
ments.

Instruction Following Difficulty Prompt

Based on your existing knowledge, evaluate
the difficulty of understanding the following
instruction. The higher the complexity and
ambiguity of the instruction, the more difficult
it is for the model to understand. Please provide
a score between 0 and 1, where a higher score
indicates that the instruction is more difficult
for you to understand.

Instruction to be evaluated: {instruction}

Please return a real number between 0
and 1, representing the difficulty of understand-
ing the instruction. Only output the score, and
do not output anything else.

\.

Response Confidence Difficulty Prompt

Based on your existing knowledge, evaluate
the difficulty of confidently and definitively
providing the following evaluated response
to the instruction. The more difficult it is to
confidently provide this response, the higher
the difficulty. Please provide a score between 0
and 1, where a higher score indicates greater
difficulty in answering confidently.

Instruction: {instruction?}
Response to be evaluated:
output}

{generated

Please return a real number between 0
and 1, representing the difficulty of confidently
providing the response to the instruction. Only
output the score, and do not output anything
else.

\. J

Response Correctness Difficulty Prompt

Based on the following instruction and the
standard answer, evaluate the difficulty of
providing the correct standard answer. If the
instruction is complex or the answer requires
high expertise, making it difficult to provide
the correct answer, the difficulty will be higher.
Please provide a score between 0 and 1, where
a higher score indicates greater difficulty in
providing the correct answer.

7




Instruction: {instruction}
Standard Answer: {output}

Please return a real number between O
and 1, representing the difficulty of providing
the correct answer. Only output the score, and
do not output anything else.

\. J

G.2 Comparison with Selection via External LLM
Annotation

To further evaluate the effectiveness of our proposed
3DS, we conduct a comparison with data selection based
on external LLM annotations. This experiment aims to
investigate whether our method can match or surpass the
performance of a costly external LLM-based approach
in identifying beneficial data for model training, with-
out incurring additional costs. In this experiment, we
use Qwen2.5-72B, a state-of-the-art Chinese LLM, as
the external data quality evaluator. The evaluation pro-
cess follows the same quality evaluation prompt used
in our method and 5000 data points scoring of 85 or
higher are selected and used to train the models. Ta-
ble 10 presents the experimental results. Across all
tested models and benchmarks, the models trained us-
ing our 3DS consistently outperform those trained on
data selected by Qwen2.5-72B. The results demonstrate
that our model-centric 3DS data selection approach ef-
fectively identifies beneficial data that leads to superior
model performance compared to external LLM-based
annotation. Importantly, our method achieves these
results without incurring additional annotation costs,
further validating the practicality of model-centric data
selection. These findings underscore the potential of
leveraging the model itself to guide data selection in a
cost-effective and performance-optimized manner.

G.3 Comparison with Existing Medical LLMs

To further validate the practical utility of our proposed
3DS framework, we conduct a comparison against
existing medical LLMs. This experiment aimed to
evaluate whether our approach can achieve competi-
tive or superior performance compared to established
medical LLMs, including open-source models Med-
iTron (Chen et al., 2023b) (7B version due to its similar
size to Baichuan2-7B and Qwen1.5-7B), and state-of-
the-art Chinese medical LLMs HuatuoGPT-II-7B, and
HuatuoGPT-1I-34B (Chen et al., 2024). The results of
the comparison are presented in Table 11. MediTron-
7B, as an English-based LLM, demonstrates limited
performance on Chinese medical benchmarks, signif-
icantly underperforming other models. Huatuo-7B
shows strong results on MMCU-Medical, exceeding
Baichuan2-7B-3DS, but falls short on the more com-
plex and larger CMB-Exam. This suggests that while
Huatuo-7B captures certain domain-specific informa-
tion, it struggles with broader and more diverse tasks.
Huatuo-34B, with nearly five times the size of Qwenl.5-
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7B, achieves comparable performance with Qwen1.5-
7B-3DS. However, this comes with significantly higher
computational and resource requirements.

It is worth noting that the performance of fine-tuned
models is closely tied to the capability of the base model,
so relative improvements achieved through domain-
specific fine-tuning are more important than absolute
performance. Still, the strong performance of models
fine-tuned with 3DS validates its practical utility and ef-
ficiency for developing medical domain LLMs, paving
ways for more building more powerful and advanced
models in the future.

G.4 Ablation on Data Budgets

Our results show that increasing the training data size
initially boosts performance as the model learns to align
with domain-specific knowledge. However, beyond a
certain point (5K), performance degradation arise due
to potential data redundancy and reduced diversity.

H Domain Shift Analysis

To examine the domain shift effects induced by fine-
tuning the model on the data subset selected via 3DS,
we conduct an evaluation using a random sample of
500 examples from the entire domain dataset. Impor-
tantly, these examples are not necessarily included in
the selected training dataset, allowing for an unbiased
assessment of the model’s domain adaptation. The de-
composed difficulties of these samples are analyzed for
the model before and after fine-tuning, as illustrated in
Figure 4.

The figure reveals a clear shift in the point distribu-
tion towards reduced difficulty levels post fine-tuning.
Specifically, the decrease in PP Ly (Q) represents an im-
provement in the model’s ability to comprehend instruc-
tions. Concurrently, the decrease in PP Ly (A) indicates
that the model has learned to generate more accurate
answers. Interestingly, we also observe a slight increase
in PPLy(A’), which suggests the model exhibiting less
confidence in its own responses. This could be inter-
preted as that the model becomes less overconfident
after encountering new patterns in the domain-specific
data. In addition, the more condensed distribution of
points after domain adaptation fine-tuning indicates that
the model has gained a more cohesive understanding
of the domain, reducing the variance when handling
domain samples.

Overall, these results demonstrate that the model has
successfully adapted to the target domain, further vali-
dating the effectiveness of 3DS in facilitating domain
adaptation fine-tuning.

I Domain-specific Tasks Evaluation
Prompt

When evaluating model performance on the open Q&A
dataset CMB-Clin, in addition to traditional metrics
such as BLEU1, BLEU4 and Rouge, we conduct a
pair-wise comparison to more thoroughly compare the
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Figure 4: Domain shift before and after 3DS domain
adaptation fine-tuning

fine-tuned models’ medical analysis ability. In this ex-
periment, we employ GPT-4, a highly capable LLM,
as the judge to determine which model generates a bet-
ter answer. Below, we present the prompt used in to
instruct GPT-4 to compare the answers from two mod-
els in this qualitative pair-wise evaluation. To ensure a
fair comparison and eliminate any possible positional
bias in GPT-4, we randomly assign the answers from
each model as "Student 1" or "Student 2" throughout
the experiment.

GPT4 Evaluation Prompt

You are now a medical expert guiding students
in analyzing medical cases. You have two
students, Student 1 and Student 2. You assess
them through real medical case questions and
choose the one with the best answer to become
your assistant.

[High-Quality Answer Criteria]
1. The answer should address the question
directly and solve the problem posed.

2. The description of symptoms should
be comprehensive and accurate, and the diag-
nosis should be the most reasonable inference
based on all relevant factors and possibilities.

3. The treatment recommendation should be
effective and reliable, considering the severity
or stage of the condition.

4. The prescription should consider indi-
cations, contraindications, and dosages, being
both effective and reliable.

[Judgment Instructions]

Please compare the answers of Student 1
and Student 2. You need to tell me whether
Student 1 is [better], [worse], or [equal] to
Student 2. Compare their answers, refer to the
question and the correct answer, and determine
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which one meets the given requirements more
closely. Please only output one of the following:
[Student 1 is better than Student 2], [Student
1 is worse than Student 2], or [Student 1 and
Student 2 are equal]. Do not output any other
words.

[Case Example]
Here is the [Question]:
<Insert medical question here>

Here is the [Standard Answer]:
<Insert standard answer here>

Here is [Student 1]’s answer:
<Insert Student 1’s answer here>

Here is [Student 2]’s answer:

<Insert Student 2’s answer here>

Please compare the two answers and give your
judgment.

. J

J Bias and Fairness Considerations

Fairness and bias are critical considerations, particu-
larly in sensitive domains like healthcare. While our
approach demonstrates promising results in fine-tuning
LLMs for medical tasks, it is essential to acknowledge
its limitations and potential implications concerning fair-
ness and bias. Our method employs the LLM to evaluate
data quality and calculate data difficulty. Although the
evaluation prompts and difficulty calculation metrics are
designed to be neutral, the inherent biases in the base
model may still influence the selection results. And the
LoRA fine-tuning’s impact on LLM fairness also needs
further investigations (Bui and Von Der Wense, 2024).
Another source of potential bias arises from the compo-
sition of our training data, which predominantly consists
of Chinese medical texts. While this dataset effectively
reflects the health conditions and medical practices of
East Asian populations, it may limit the generalizabil-
ity to other regions or demographics. Current LLM
data selection methods generally prioritize factors such
as difficulty, quality, or diversity, without addressing
fairness or examine what data is included or excluded.
They focus on improving model performance on stan-
dard benchmarks, while the impact of these methods
on fairness, safety, and truthfulness benchmarks, such
as SafetyBench (Zhang et al., 2024) and TruthfulQA
(Lin et al., 2022), remains underexplored. Therefore,
we recognize that these issues are valuable directions
for future research. Investigating how data selection and
fine-tuning methods impact LLM fairness and safety
will be essential for developing more equitable and reli-
able LLMs.



Medtalk_singleround

English translation

Question [EEE MRS T H LS Q: Doctor, can hyperthyroidism during preg-
BT 42 ZHISE B TLAZ2ES  nancy be inherited by the baby? Mine recurred
NEXRTHRZEEZZEHEEE  during pregnancy, but I didn’t take medication.
SNSWIRL? Will my baby be affected?

Answer HILGHEE —EMRAR, [E1=2 A: Hyperthyroidism has some genetic links but
eBE R, ANZEHL - BUCPRS  is not always inherited. Don’t worry. Maintain
EHEZHRE, WESMESEH abalanced diet rich in calories, protein, and
Fim 4 AE R AR IR - FEME vitamins, but low in iodine. Stay relaxed, rest
B - EHRE, EEREARITE - adequately, and avoid strenuous activities.
Medknowledge_KG English translation

Question  ZI A HR M [ HFARIGTTH LA 47 Q: What surgical treatments are available for

facial depression?

Answer  HRFR AR #HE; B AEH#% A: Autologous micro-fat grafting, autolo-
TH; BRI THEIE; B  gous fat transplantation, autologous stem cell-
AR A 4E - enriched fat grafting, and autologous fat parti-

cle transplantation.
Medknowledge_webqa English translation

Question 1E IR 4 HIFEHIVETT 771 - Q: Please describe the treatment methods for

parasitic diseases.

Answer LU KEFERNE, RIEHMEH  A: The primary goal is to eliminate the para-
HERBVIRRZAY) . ERIYELE  sites by using the most effective antiparasitic
FERFFH, AIATXFITEE,  drugs based on the specific type of parasite.
G IR & IERE N M B T b RE  In cases of severe infection where the host
B is weakened, supportive therapy may be pro-

vided. Surgical intervention should be per-
formed promptly if complications arise.
Medtask_promptcblue English translation

Question A2 XM 1ERISLARHE: P fLFE R Q: Entity extraction in diagnostic dialogues:
BB T, MELHE AU, 4% "Caught a cold two weeks ago, still have a bit
FLXAER? U BARMZY4  of a cough now—could it be related?" Options:
PR, BEITHEAE, ERARTS, AE  specific medication names, medical procedures,
IR medical tests and examinations, symptoms.

Answer LR A]FHEISERE S JEIRSE  A: The entities in the above sentence include:
. BE, P Symptom entities: cold, cough.

QA_website English translation

Question &R FFKE="T75t°C, BRI Q: Low-grade fever of 36-37°C every after-
i, WHEEE, %, =18, H noon, occasional chest tightness, no cough,
EH RIS AT RE? night sweats, or fatigue—could this indicate

a possibility of tuberculosis?
Answer  RIX MR ESEMIGIR FoRE, A A: From a clinical perspective, this temperature

BRARG, —MOoRUE, 37 _LIE
AEREH, PRl R IRE A
HIR AR AR, AREZ AT LL
B THEAEWERENATRE, F
=, BN F?

doesn’t qualify as a low-grade fever—typically,
temperatures above 37.2°C are considered low-
grade. Therefore, its connection to tuberculosis
is unlikely. However, you might want to check
for the possibility of a viral infection or con-
sider whether it could be related to COVID-19.

Table 5: Examples For various type dataset

Table 6: Performance of models on the hold-out set.

Model 5-55 10-60 15-65 20-70 25-75 30-80
Baichuan2-7B | 28.22 28.99 27.67 2822 24.18 24.25
Baichuan2-13B | 37.58 36.83 37.81 37.63 38.58 37.65
Qwenl.5-7B | 56.97 57.60 57.80 58.23 58.65 57.91
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Table 7: Performance comparisons (%) on CMB-Exam, MM CU-Medical of removing individual steps and collapsing
stage 2 into stage 1 across different datasets and models. The best performance is highlighted in bold, and the
second-best performance is underlined. The original method (3DS-Mean Attention) consistently outperforms the
ablation variants.

LLM Turbo Baichuan2-7B-Chat Baichuan2-13B-Chat Qwenl.5-7B-Chat

Dataset CMB-Exam MMCU-Medical | CMB-Exam MMCU-Medical | CMB-Exam MMCU-Medical
Without Stage 1 29.61 28.88 44.64 48.06 60.37 64.03
Without Stage 2 29.41 27.03 47.09 50.83 61.59 6591
Stage 2 Collapsed into Stage 1 29.09 25.97 47.28 51.01 60.56 63.99
3DS-MeanAtten 31.84 29.37 47.37 51.08 61.96 66.09

Table 8: Performance comparison (%) on CMB-Clin of removing individual steps and collapsing stage 2 into stage 1
across different datasets and models. The best performance is highlighted in bold, and the second-best performance
is underlined. The original method (3DS-Mean Attention) generally outperforms the ablation variants.

LLM Turbo Baichuan2-7B-Chat Baichuan2-13B-Chat Qwen-1.5-7B-Chat
Metric BLEU-1 BLEU-4 ROUGE | BLEU-1 BLEU-4 ROUGE | BLEU-1 BLEU-4 ROUGE
Without Stage 1 17.01 38.52 19.39 14.13 29.60 16.19 15.50 31.94 15.88
Without Stage 2 21.29 55.74 27.62 20.56 46.86 21.83 21.55 47.39 21.55
Stage 2 Collapsed into Stage 1 | 22.71 60.13 29.46 21.48 50.16 22.69 21.73 52.27 23.41
3DS-MeanAtten 22.61 64.57 32.11 24.15 63.51 31.50 24.40 60.32 28.07

Table 9: Win-rates (%) of GPT-4 judgment on CMB-Clin, comparing 3DS-M ean Attention with ablation variants.

LLM Turbo Baichuan2-7B-Chat | Baichuan2-13B-Chat | Qwen-1.5-7B-Chat
Metric Win Tie Lose | Win Tie Lose Win Tie Lose
vs Without Stage 1 655 125 220 |66.5 9.0 24.5 705 3.0 265
vs Without Stage 2 655 11.0 235 66.0 15.5 28.5 66.0 55 285
vs Stage 2 Collapsed into Stage 1 | 62.0 9.5 28.5 | 63.5 18.0 18.5 545 25 430

Table 10: Performance comparisons with models trained on data selected using Qwen2.5-7B as the quality evaluator

Dataset CMB-Exam MMCU-Medical
Model QwenRate 3DS | QwenRate 3DS
Baichuan2-7B 28.55 31.84 25.90 29.37
Baichuan2-13B 46.82 47.37 50.55 51.08
Qwenl.5-7B 60.67 61.96 64.17 66.09

Table 11: Performance comparisons with existing medical LLMs.

Model CMB-Exam MMCU-Medical
Baichuan2-7B-3DS 31.84 29.37
Baichuan2-13B-3DS 47.37 51.08
Qwen1.5-7B-3DS 61.96 66.09
Meditron-7B 11.20 12.16
Huatuo-7B 27.69 47.18
Huatuo-34B 59.54 66.10

Table 12: Performance comparison of models trained on different data budgets.

Model Dataset 3k 4k 5k 6k 7k
CMB-Exam 29.38 30.64 31.84 31.50 31.54
MMCU-Medical | 27.67 28.52 29.37 28.77 29.01
CMB-Exam 46.87 4730 47.37 4695 46.98
MMCU-Medical | 48.67 4991 51.08 50.16 50.27
CMB-Exam 60.47 6045 61.96 60.78 60.53
MMCU-Medical | 63.64 63.92 66.09 64.49 64.10

baichuan2-7B

baichuan2-13B

Qwenl.5-7B
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