
Published in Transactions on Machine Learning Research (06/2025)

Exploring and Improving Initialization for Deep Graph Neural
Networks: A Signal Propagation Perspective

Senmiao Wang∗ senmiaowang1@link.cuhk.edu.cn
The Chinese University of Hong Kong, Shenzhen, China

Yupeng Chen∗ yupengchen1@link.cuhk.edu.cn
The Chinese University of Hong Kong, Shenzhen, China

Yushun Zhang yushunzhang@link.cuhk.edu.cn
The Chinese University of Hong Kong, Shenzhen, China
Shenzhen Research Institute of Big Data

Ruoyu Sun sunruoyu@cuhk.edu.cn
The Chinese University of Hong Kong, Shenzhen, China
Shenzhen International Center for Industrial and Applied Mathematics
Shenzhen Research Institute of Big Data

Tian Ding† dingtian@sribd.cn
Shenzhen International Center for Industrial and Applied Mathematics
Shenzhen Research Institute of Big Data

Reviewed on OpenReview: https: // openreview. net/ forum? id= 6Aj0aNXfRy

Abstract

Graph Neural Networks (GNNs) often suffer from performance degradation as the network
depth increases. This paper addresses this issue by introducing initialization methods that
enhance signal propagation (SP) within GNNs. We propose three key metrics for effective
SP in GNNs: forward propagation, backward propagation, and graph embedding variation
(GEV). While the first two metrics derive from classical SP theory, the third is specifically
designed for GNNs. We theoretically demonstrate that a broad range of commonly used
initialization methods for GNNs, which exhibit performance degradation with increasing
depth, fail to control these three metrics simultaneously. To deal with this limitation, a direct
exploitation of the SP analysis–searching for weight initialization variances that optimize
the three metrics–is shown to significantly enhance the SP in deep GCNs. This approach is
called Signal Propagation on Graph-guided Initialization (SPoGInit). Our experiments
demonstrate that SPoGInit outperforms commonly used initialization methods on various
tasks and architectures. Notably, SPoGInit enables performance improvements as GNNs
deepen, which represents a significant advancement in addressing depth-related challenges
and highlights the validity and effectiveness of the SP analysis framework.

1 Introduction

Increasing depth has been a prominent trend in the development of neural networks. For instance, from
AlexNet (Krizhevsky et al., 2012), VGG19 (Simonyan & Zisserman, 2015) to ResNet (He et al., 2016), the
depth of the Convolutional Neural Network (CNN) has increased from 8, 19 to 152, and the corresponding
test accuracy on ImageNet has increased from 63.3%, 74.4% to 78.57%. Theoretically, the benefit of depth is

∗Equal contribution.
†Corresponding author.

1

https://openreview.net/forum?id=6Aj0aNXfRy

Published in Transactions on Machine Learning Research (06/2025)

often attributed to strong representation power. Research shows that a shallow network would require an
exponential increase in width to match the representational power of a deep network (Telgarsky, 2015; Eldan
& Shamir, 2016; Liang & Srikant, 2017).

In graph-related tasks like node classification, graph classification, or link prediction, graph neural networks
(GNN) (Wu et al., 2022a; 2020) are also expected to benefit from increased depth. A core concept in GNNs is
the message-passing mechanism, where each node aggregates information from its neighboring nodes.1 Deeper
GNNs have larger receptive fields, enabling nodes to gather information from broader local sub-graphs. This is
especially beneficial for capturing long-range relationships in complex graph-related tasks. For instance, GNNs
have shown great potential in solving optimization problems (Gasse et al., 2019; Nair et al., 2020; Han et al.,
2022; Li et al., 2024a). Theoretical studies demonstrate that GNNs possess universal approximation power
for solving various optimization problems, including linear programming (Chen et al., 2023) and quadratic
programming (Chen et al., 2024), but the network depth need to scale with the problem dimensions (Qian
et al., 2024; Li et al., 2024b). Thus, increasing the depth of GNNs is expected to improve their performance
in addressing large-scale optimization problems.

However, GNNs often experience performance degradation in practice when their depth increases (Li et al.,
2018; Wu et al., 2020; Zhou et al., 2020a). Consequently, most GNNs remain shallow, typically comprising
only 2 to 10 layers (Kipf & Welling, 2017; Veličković et al., 2017; Alon & Yahav, 2021). In recent years,
over-smoothing has been identified as a primary cause of this issue (Li et al., 2018; Oono & Suzuki, 2019; Cai
& Wang, 2020). Over-smoothing refers to a specific issue in GNNs where node embeddings become similar
as depth grows, reducing the distinguishability between nodes and impairing task performance. This poses
a major obstacle to the development of deeper GNNs and may hinder progress in complex graph-related
problems, particularly those involving long-range relationships.

In this paper, we show that over-smoothing can be understood as part of a broader issue known as signal
propagation (SP). SP refers to how the input data is transformed as it passes through the layers of a neural
network. For traditional neural networks like CNNs, SP analysis plays a critical role in developing initialization
strategies to maintain stable signal propagation and prevent gradients from exploding or vanishing during
training (Poole et al., 2016; Schoenholz et al., 2017; Pennington et al., 2017; 2018; Hanin, 2018). This work
extends the SP analysis framework to GNNs. We introduce a new graph-specific SP metric, graph embedding
variation (GEV), which closely relates to over-smoothing. Alongside the standard forward and backward SP
(FSP and BSP) metrics, we use GEV to evaluate signal propagation in GNNs.

Building on this framework, we focus on the family of graph convolutional networks (GCNs), one of the
most widely-used GNN architectures, to demonstrate the interplay between initialization strategies and
signal propagation. While traditional initializations such as Kaiming (He et al., 2015), Xavier (Glorot &
Bengio, 2010), and LeCun (Bottou, 1988; LeCun et al., 2002) initializations are commonly used in standard
GCN implementations (e.g., the PyTorch Geometric library PyG (Fey & Lenssen, 2019)), we theoretically
prove that these initialization methods fail to stabilize all three SP metrics concurrently, leaving deep GCNs
vulnerable to performance degradation.

Motivated by the SP framework, we propose a new initialization method, termed Signal Propagation on
Graph-guided Initialization (SPoGInit), for deep GCNs. SPoGInit consolidates the three SP metrics (FSP,
BSP, and GEV) into a unified optimization objective, where minimizing the objective leads to more stable SP.
Using an iterative algorithm, SPoGInit adjusts the weight initialization variances across layers to minimize
this objective. Thus, SPoGInit can simultaneously stabilize all three SP metrics. Furthermore, the design of
SPoGInit is independent of specific network architectures, and hence it can adapt effectively across diverse
GCN models. The effectiveness of SPoGInit verifies that stabilizing the proposed SP metric can improve the
performance of deep GCNs and mitigate the performance degradation problem.

Our contributions are as follows:

• Theoretical Analysis: We prove that traditional initialization methods for vanilla GCNs and Residual
GCNs (ResGCNs) fail to simultaneously control all three signal propagation metrics. This failure leads to
1In this paper, we refer specifically to GNNs as message-passing GNNs. We note that other network structures not based on

message-passing, such as Transformers (Wu et al., 2022b; Kong et al., 2023), are also used in graph-related tasks.

2

Published in Transactions on Machine Learning Research (06/2025)

the explosion or vanishing of one or more metrics, ultimately causing performance degradation as network
depth increases. We also present experimental evidence to validate our theoretical findings.

• Empirical Exploration. Building on the proposed SP framework, we introduce a new initialization
design method, Signal Propagation on Graph-guided Initialization (SPoGInit). SPoGInit employs
an optimization algorithm to determine initial weight variances that effectively stabilize all three signal
propagation metrics. Experimental results demonstrate that SPoGInit significantly improves signal
propagation across various architectures, enhancing the performance of deep GCNs, particularly for
graph-based tasks involving long-range relationships. The effectiveness of SPoGInit demonstrates that
improving the proposed SP metrics is instrumental in boosting deep GCNs’ performance.

2 Preliminaries and Background

For any integer N ∈ N, we define [N] := {1, 2, . . . , N}. For brevity, we use θ to denote the collection of
trainable parameters in a GNN model. For additional useful notation, see Appendix A.

2.1 Graph convolutional networks

Featured graph. Let G = (V, E) be an undirected graph, where V is the set of nodes with |V| = n,
and E is the collection of edges. Assume that each node is associated with a d0-dimensional feature and
a label belonging to the set [C], where C ≥ 2 denotes the number of possible labels. Let xi ∈ Rd0×1

and yi ∈ [C] denote the feature and the label of node i, respectively. Define the node feature matrix as
X = (x1, x2, . . . , xn)⊤ ∈ Rn×d0 . Let A = (1{(i,j)∈E})i,j∈[n] ∈ Rn×n represent the adjacency matrix and
D = diag(A1n) ∈ Rn×n represent the degree matrix. Further, Ã = A+I and D̃ = D +I denote the adjacency
matrix and the degree matrix of graph G with self-loop added to each node. Finally, the normalized adjacency
matrix is given by Â = D̃− 1

2 ÃD̃− 1
2 .

Vanilla GCN. Vanilla GCN (Kipf & Welling, 2017) stacks neighborhood aggregations and feature trans-
formations alternately. Specifically, let H(l), X(l) ∈ Rn×dl denote the pre-activation and the post-activation
embedding matrix at the l-th layer of the vanilla GCN, respectively. They are defined recursively by

H(l) := ÂX(l−1)W (l) + 1n · b(l), X(l) := σ(H(l)),

where W (l) ∈ Rdl−1×dl and b(l) ∈ R1×dl are the weight and the bias term at the l-th layer, respectively.
The input to the first layer is given by X(0) = X, and the output matrix of an L-layer vanilla GCN is
H(L) ∈ Rn×C , which is then fed into a softmax layer to obtain the predicted labels.

ResGCN and gatResGCN. Inspired by He et al. (2016), ResGCN (Kipf & Welling, 2017) combines
residual connections with vanilla GCN. An L-layer ResGCN adds skip connections to the post-activation
embeddings, i.e.,

H(l) := ÂX(l−1)W (l) + 1n · b(l), X(l) := ασ(H(l)) + βX(l−1), ∀l ∈ [L],

where W (l) ∈ Rd×d and b(l) ∈ R1×d are the weight and the bias term at the l-th layer, respectively, while
α, β ∈ R are predetermined hyper-parameters.2 Note that the above formulation requires the hidden
dimensions of ResGCN to be equal across all layers. The input of the first layer is given by X(0) = XW (0),
and the output of the network is given by Xout = X(L)W (L+1), where W (0) ∈ Rd0×d and W (L+1) ∈ Rd×C

are trainable linear transformations to ensure dimension compatability. The output Xout ∈ RN×C is then fed
into a softmax layer to obtain the predicted labels. The architecture of a gating ResGCN (gatResGCN) is
identical to that of ResGCN, with the exception that the fixed hyper-parameters α, β replaced by trainable
gating parameters α(l), β(l) for each layer l ∈ [L].

2The original version of ResGCN (Kipf & Welling, 2017) focuses on the special case (α, β) = (1, 1).

3

Published in Transactions on Machine Learning Research (06/2025)

2.2 Initialization

We consider the following class of initialization methods. At initialization, all W
(l)
k′k are i.i.d. and satisfy

E[W (l)
k′k] = 0, Var[W (l)

k′k] = σ2
w/dl−1; all b

(l)
k are initialized to be 0 for any k′ ∈ [dl−1], k ∈ [dl], l ∈ [L].

Two widely used random initialization methods, LeCun initialization (Bottou, 1988; LeCun et al., 2002) and
Kaiming initialization (He et al., 2015) fit into this framework with σ2

w = 1 and σ2
w = 2 respectively.

• LeCun: E[W (l)
k′k] = 0 and Var[W (l)

k′k] = 1/dl−1 for any k′ ∈ [dl−1], k ∈ [dl], l ∈ [L].

• Kaiming (usually for ReLU): E[W (l)
k′k] = 0 and Var[W (l)

k′k] = 2/dl−1 for any k′ ∈ [dl−1], k ∈ [dl], l ∈ [L].

In GCN models, uniform weight distribution with variance σ2
w = 1/3 is also widely used, e.g., in PairNorm

(Zhao & Akoglu, 2020), DropEdge (Rong et al., 2020), DropNode (Huang et al., 2020), SkipNode (Lu et al.,
2021), GCNII (Chen et al., 2020b). We simply refer to this initialization as “Conventional initialization” in
the rest of this paper. Xavier initialization (Glorot & Bengio, 2010) has weight variance 2/(dl−1 + dl) = 1/d
when hidden layers have the same width d.

3 Theoretical Analysis of GCN Initializations

In this section, we evaluate the quality of GCN initializations from three aspects based on the signal
propagation (SP) theory as follows.

Forward signal propagation (FSP) is responsible to extract abstract and higher-level representations
from the input data as the information flows through the network. We propose the FSP metric M(L)

FSP(σ2
w),

which is the expected output-input norm ratio Eθ[∥H(L)(θ)∥2
F/∥X∥2

F]. A proper initialization method should
prevent M(L)

FSP(σ2
w) from either vanishing or exploding as L→∞.

Backward signal propagation (BSP) is responsible for updating the weights by utilizing gradients
computed via back-propagation. In vanilla GCN, the gradient of W (l) at the l-th layer can be decomposed
as ∂ℓ/∂W (l) = σ(H(l−1))T · Â · [∂ℓ/∂H(l)] where ℓ is the training loss. A stable magnitude of ∂ℓ/∂H(l)

with respect to the layer l suggests that the gradient is less susceptible to vanishing or exploding. We
take Eθ[∥∂ℓ/∂W (1)∥2

F] at initialization as the BSP metric M(L)
BSP(σ2

w). A proper initialization method should
prevent M(L)

BSP(σ2
w) from vanishing or exploding as L→∞.

Graph embedding variation (GEV) propagation is responsible for tackling the over-smoothing issue,
a GCN-specific problem. A number of existing works (Cai & Wang, 2020; Zhou et al., 2021a) measure
over-smoothing severity by Dirichlet energy Dir(H(L)) =

∑
(i,j)∈E ∥hi/

√
1 + di − hj/

√
1 + dj∥2, where hi

is the output embedding of node i. Dirichlet energy Dir(H(L)) reveals the embedding variation with the
weighted node pair distance, and a smaller value of Dir(H(L)) is highly related to the over-smoothing. To
eliminate the influence of the embedding norm, we propose the GEV metric M(L)

GEV(σ2
w), which is the expected

of normalized Dirichlet energy Eθ[Dir(H(L))/∥H(L)∥2
F] at initialization. A proper initialization method should

prevent M(L)
GEV(σ2

w) from vanishing as L→∞.

3.1 Theoretical results for vanilla GCN

We first theoretically evaluate the signal propagation (SP) quality at initialization in vanilla GCN. Due to the
nonlinearity and high dimensionality of neural networks, the SP analysis is challenging. In order to simplify it,
we study the infinite-width limit of vanilla GCN using mean field theory (Poole et al., 2016; Schoenholz et al.,
2017). Different from traditional NNs, GNN blocks involve interactions across nodes, so we have to consider
the SP of n nodes as an integrated whole, rather than that of only one data sample in NNs. Under this
approximation, all the channels {H(l)

:,k}
dl

k=1 of each embedding at the l-th layer are i.i.d., following Gaussian
distribution N(0n, Σ(l)). The n× n covariance matrix Σ(l) recursively satisfies

Σ(l) = σ2
wÂG(Σ(l−1))Â, Σ(1) = σ2

wÂXXT Â/d0,

4

Published in Transactions on Machine Learning Research (06/2025)

where G(Σ(l)) = Eh∼N(0n,Σ)[σ(h)σ(h)T] ∈ Rn×n (see Appendix C.1 for the details). This theoretical
framework is referred to as the neural network Gaussian process (NNGP) correspondence. Under the NNGP
correspondence, the forward signal propagation (FSP) metric can be approximated by

M(L)
FSP(σ2

w) ≈ EH(L)∼N(0n,Σ(L))

[
∥H(L)∥2

F/∥X∥2
F

]
and the graph embedding variation (GEV) metric can be approximated by

M(L)
GEV(σ2

w) ≈ EH(L)∼N(0n,Σ(L))

[
Dir(H(L))/∥H(L)∥2

F

]
,

where H(L) ∼ N(0n, Σ(L)) means all columns (channels) of H(L) ∈ Rn×C are i.i.d. N(0n, Σ(L)).

Now we analyze the SP of GCN under various activation functions. We start with ReLU since it is the most
commonly used activation in popular GCN models (e.g., Zhao & Akoglu (2020); Rong et al. (2020); Huang
et al. (2020); Lu et al. (2021); Chen et al. (2020b)). The following theorem states that under ReLU activation,
if the initial weight variance σ2

w ≤ 2, which covers Conventional, Kaiming, and LeCun initialization, deep
vanilla GCNs suffer from poor FSP and GEV.
Theorem 3.1. Under the NNGP correspondence approximation, when the activation function σ is ReLU, we
have

1. If σ2
w = 2, either the limit graph embedding variation (GEV) metric limL→∞ M(L)

GEV (σ2
w) = 0 or the limit

forward signal propagation (FSP) metric limL→∞ M(L)
FSP (σ2

w) = 0;

2. When σ2
w < 2, the forward signal propagation (FSP) metric M(L)

FSP (σ2
w) ≤ 2C

d0
· (σ2

w/2)L for any L ≥ 1.

Part 1 of Theorem 3.1 shows that under Kaiming initialization in ReLU-activated vanilla GCN, either M(L)
FSP

or M(L)
GEV vanishes as L→∞. Part 2 of Theorem 3.1 characterizes the shrinkage of M(L)

FSP when σ2
w is even less

than that of Kaiming initialization. The proof of Theorem 3.1 is provided in Appendix C.3.

Theorem 3.2. Under the NNGP correspondence approximation, when the activation is ReLU, the graph
embedding variation (GEV) metric M(L)

GEV is independent of σ2
w.

Theorem 3.2 states that it is impossible to improve the GEV metric, M(L)
GEV(σ2

w), by simply refining σ2
w for

ReLU-activated vanilla GCN. In other words, the over-smoothing issue cannot be resolved by adjusting weight
variance σ2

w in ReLU-activated vanilla GCN. The proof of Theorem 3.2 is provided in Appendix C.4.

We now provide numerical evidence for Theorem 3.1 and 3.2. The purple lines in Figure 1(a)-1(c) illustrate the
shrinkage of the three SP metrics under Conventional initialization as the network depth L increases. Figure
1(a) when σ2

w presents the vanishing pattern of M(L)
FSP(σ2

w) is no greater than that of Kaiming initialization,
which validates Theorem 3.1. Figure 1(b) shows that M(L)

BSP(σ2
w) transits from vanishing to stable, and then

to exploding as σ2
w increases. Figure 1(c) shows that M(L)

GEV(σ2
w) cannot be improved via merely changing σ2

w,
which validate Theorem 3.2.3

Different from ReLU-activated GCNs, Figure 1(f) shows that GEV metric transits from vanishing to stable
for tanh-activated models as σ2

w increases. With proper σ2
w, stable propagation for all three types of signals

can be achieved; see the orange lines in Figure 1(d)-1(f). A theoretical result of the FSP for tanh-activated
vanilla GCNs is provided in Appendix C.5.

3.2 Theoretical results for ResGCN

Similarly to vanilla GCN, performance degradation has also been reported in deeper ResGCN (Huang et al.,
2020; Rusch et al., 2023a). In this subsection, we focus on the SP in ResGCN.

3In all the figures illustrating SP metrics, disappearing nodes and vertical lines are caused by surpassing the machine precision.
Specifically, the vanishing FSP result in vertical lines in the plots of the GEV metric, while the exploding FSP leads to node
disappearance in the plots of the GEV metric.

5

Published in Transactions on Machine Learning Research (06/2025)

4 8 16 32 64 128 256 512
Depths

 (a) Forward SP

10 17

10 10

10 3

104

O
ut

pu
t-i

np
ut

 N
or

m
 R

at
io

4 8 16 32 64 128 256 512
Depths

 (b) Backward SP

10 14

10 5

104

1013

G
ra

di
en

t N
or

m
 (1

-s
t l

ay
er

)

4 8 16 32 64 128 256 512
Depths

 (c) GEV

10 6

10 4

10 2

N
or

m
al

iz
ed

 D
iri

ch
le

t E
ne

rg
y

2 2
Kaiming 1.5 2

Kaiming 1 2
Kaiming 0.5 2

Kaiming 1 2
Conventional

4 8 16 32 64 128 256 512
Depths

 (d) Forward SP

10 17

10 12

10 7

10 2

O
ut

pu
t-i

np
ut

 N
or

m
 R

at
io

4 8 16 32 64 128 256 512
Depths

 (e) Backward SP

10 15

10 8

10 1

106

G
ra

di
en

t N
or

m
 (1

-s
t l

ay
er

)

4 8 16 32 64 128 256 512
Depths

 (f) GEV

10 5

10 4

10 3

10 2

N
or

m
al

iz
ed

 D
iri

ch
le

t E
ne

rg
y

2 2
Xavier 1.5 2

Xavier 1 2
Xavier 0.5 2

Xavier 1 2
Conventional

Figure 1: Plots of (a,d) forward metrics, (b,e) backward metrics, and (c,f) graph embedding variation metrics
of deep vanilla GCNs with different initialization variances and activations on Cora. (Sub-figures (a)-(c) are
for ReLU activation, while sub-figures (d)-(f) are for tanh activation.) We average the results over 20 runs.
We see that the choice of initialization variance plays a crucial role in forward and backward propagation.
The graph embedding variation propagation can be made stable with proper initialization variance for tanh
activation, but not for ReLU activation.

For simplicity, we study linear ResGCN with identity activation in the theoretical analysis. Such a simplification
is very common in NN theory (Saxe et al., 2014; Xu et al., 2021). Similar to vanilla GCN, all the channels
of H(L) are i.i.d. N(0n, Σ̃(L)) under the infinite-width limit (a.k.a. NNGP correspondence). The n × n
covariance matrix Σ̃(l) recursively satisfies

Σ̃(l) = σ2
wÂΣ̃(l−1)Â + Σ̃(l−1), Σ̃(1) = σ4

wÂXXT Â/d0, (1)

See Appendix D.1 for the details.

The following theorem implies that linear ResGCN may suffer from forward signal explosion and over-
smoothing under the NNGP approximation at initialization.
Theorem 3.3. Suppose that there exists an eigenvector u of Â corresponding to the eigenvalue 1, such that
the input feature X ∈ Rn×d0 satisfies XT u ̸= 0d0×1. Under the NNGP correspondence approximation for
linear ResGCN, if α2σ2

w + β2 > 1 and α ̸= 0, then we have

lim
L→∞

M(L)
FSP (σ2

w) =∞ and lim
L→∞

M(L)
GEV (σ2

w) = 0.

Since (α, β) = (1, 1) for the original ResGCN (Kipf & Welling, 2017), α2σ2
w + β2 > 1 and α ̸= 0 always hold

for any nonzero initialization variance, which indicates exploding M(L)
FSP(σ2

w) and shrinking M(L)
BSP(σ2

w).

6

Published in Transactions on Machine Learning Research (06/2025)

4 8 16 32 64 128 256 512
Depths

 (a) Forward SP

101

105

109

1013

O
ut

pu
t-i

np
ut

 N
or

m
 R

at
io

4 8 16 32 64 128 256 512
Depths

 (b) GEV

10 4

10 3

10 2

10 1

N
or

m
al

iz
ed

 D
iri

ch
le

t E
ne

rg
y

1 2
Kaiming 1 2

Conventional 0.5 2
Conventional 0.1 2

Conventional 0 2
Conventional

Figure 2: (a) The forward metrics and (b) the graph embedding variation metrics of ReLU-activated deep
ResGCN on Cora. We average the results over 20 runs. ResGCNs with non-zero initialization variances
always suffer from exploding forward propagation and over-smoothing.

Numerical experiments demonstrate that the consequences of Theorem 3.3 can be observed on ResGCNs with
non-linear activations. In Figure 2, we plot the FSP and the GEV of ReLU-activated ResGCN with different
initialization variances. We see that the widely used Conventional and Kaiming initialization schemes (Huang
et al., 2020; Kipf & Welling, 2017) (and essentially any non-zero initialization variance) lead to exploding
forward propagation and over-smoothing.

In summary, the discussions in Section 3.1 and 3.2 provide a theoretical guarantee that the traditional
initialization schemes utilized in both vanilla GCN and ResGCN fail to achieve proper SP. To address this
challenge, we will introduce new initialization schemes in the subsequent section.

4 SPoGInit: Initialization guided by signal propagation on graph

In this section, we propose a new initialization design method, termed Signal Propagation on Graph-guided
Initialization (SPoGInit), by enhancing the three types of signal propagation (SP) of GCNs. Through
this method, we aim to demonstrate that stabilizing SP can lead to improved performance in deep GCNs
and effectively mitigate the performance degradation problem. SPoGInit determines layer-wise initialization
variances by solving an optimization problem tailored to the SP of GCNs. To be more specific, given a GCN
with L layers, we denote the variance of the l-th layer by σ2

w,l. SPoGInit solves the following optimization
problem:

minimize
{σw,l}L

l=1

w1VFSP + w2VBSP − w3M(L)
GEV , (2)

where VFSP and VBSP respectively measure the stability for the FSP and BSP metrics across varying depths.

For vanilla GCNs, the computational graph can often be abstracted as a simple path, suggesting that the
stability of SP might be inferred by comparing the SP metrics between very shallow and very deep blocks.
Accordingly, we define VFSP := (M(1)

FSP/M(L−1)
FSP − 1)2 to encourage stable FSP across hidden layers. Similarly,

VBSP is defined as (M(2)
BSP/M(L−1)

BSP − 1)2 to encourage BSP, with the superscript numbers in parentheses
indicating the layer indices relevant to the gradient norm. We use M(2)

BSP rather than M(1)
BSP to compute VBSP

to ensure consistent dimensionality across different layers, since the weight parameters of the first layer differ
in size from those of the subsequent layers.

For GCNs with skip connections, the computational graph becomes more complex. It is challenging to directly
assess the stability of signal propagation by merely examining the SP metrics in very shallow and very deep
blocks. Instead, we replace the denominator in vanilla GCN’s VFSP formula with the smallest FSP metric
value, and the numerator with the largest FSP metric value across all the layers. Mathematically, we have

VFSP =
(

max
1≤l<L

M(l)
FSP/ min

1≤l<L
M(l)

FSP − 1
)2

.

7

Published in Transactions on Machine Learning Research (06/2025)

Similarly, we introduce the modification on VBSP for GCNs with skip connections as follows:

VBSP =
(

max
1<l<L

M(l)
BSP/ min

1<l<L
M(l)

BSP − 1
)2

.

Besides, in (2), w1, w2, w3 > 0 are pre-defined for balancing these three SP metrics. During the implementation
of SPoGInit, we adjust the weight initialization variances across layers by gradient descent algorithm. More
details about SPoGInit are in Appendix E.

5 Numerical Experiments

In this section, we examine the proposed SPoGInit initialization through a series of empirical experiments on
various GCN architectures and benchmarks. In Section 5.1, we briefly introduce the experimental settings. In
Section 5.2, we demonstrate how SPoGInit improves signal propagation (SP) in different GCN architectures.
Finally, in Section 5.3, we showcase the performance of deep GCN models equipped with SPoGInit on
mainstream datasets and graph-based tasks involving long-range relationships.

5.1 Experiments setting

Datasets. We focus on four mainstream datasets and two graph-based tasks involving long-range relationships.

The mainstream datasets include Cora, PubMed (Sen et al., 2008; Yang et al., 2016), OGBN-Arxiv (Hu
et al., 2020), and Arxiv-year (Lim et al., 2021). For these mainstream datasets, we use their default
training/validation/test splits. Statistics of these datasets are summarized in Table 1.

As for the graph-based tasks involving long-range relationships, we consider 1) the semi-supervised node
classification task under missing feature settings, and 2) solving mixed integer linear programming (MILP)
problems using GCN-based methods. Further details on these tasks will be provided in Section 5.3.

Table 1: Statistics of the mainstream datasets used in the experiments.

Dataset Nodes Features Edges Class Homophily Training/Validation/Test
Cora 2,708 1,433 10,556 7 0.81 5.2%/18.5%/36.9%

PubMed 19,717 500 88,648 3 0.80 0.3%/2.5%/5.1%
OGBN-Arxiv 169,343 128 1,166,243 40 0.66 53.7%/17.6%/28.7%

Arxiv-year 169,343 128 1,166,243 5 0.22 50%/25%/25%

Architectures and Baselines. For the GCN architectures, we consider the vanilla GCN, and the GCN
models with skip-connections: ResGCN (Kipf & Welling, 2017) and the popular MixHop (Abu-El-Haija
et al., 2019). Additionally, we examine ResGCN with trainable gating parameters, referred to as gatResGCN.
Regarding initialization baselines, we consider standard initialization methods in DNNs and GNNs, including
Xavier and Conventional initialization. Besides, we also include VirgoFor and VirgoBack, which are the
initialization techniques tailored for GCNs (Li et al., 2023), as part of our baselines. We note that since every
layer of MixHop mixes the powers (with different orders) of the adjacency matrix during its information
aggregation, VirgoFor and VirgoBack are not directly applicable to MixHop. Thus, our baselines for MixHop
only include Conventional and Xavier initializations.

Implementation. We conduct all experiments using PyTorch. To prevent out-of-memory issues with deeper
models and ensure fair comparisons, we fix the width of all models at 64. In our experiments, we use the
tanh activation function for vanilla GCNs, as Theorem 3.2 shows that the graph variation embedding of
vanilla GCNs with ReLU activation does not benefit from further optimization. For other GCN architectures,
we use the ReLU activation function. All results are averaged over at least three runs. More details of
hyperparameters are provided in Appendix G.1.

8

Published in Transactions on Machine Learning Research (06/2025)

4 8 16 32 64 128 256
Depths

 (d) Forward SP

10 4

10 2

100

O
ut

pu
t-i

np
ut

 N
or

m
 R

at
io

4 8 16 32 64 128 256
Depths

 (e) Backward SP

10 3

10 1

101

103

G
ra

di
en

t N
or

m
 (1

-s
t l

ay
er

)

4 8 16 32 64 128 256
Depths

 (f) GEV

10 4

10 3

10 2

N
or

m
al

iz
ed

 D
iri

ch
le

t E
ne

rg
y

SPoGInit Xavier Conventional VirgoFor VirgoBack

Figure 3: Plots of (a) forward metrics, (b) backward metrics, and (c) graph embedding variation metrics
of deep vanilla GCNs with different depths on Cora. SPoGInit is highly effective in stabilizing all three SP
metrics.

4 8 16 32 64 128
Depths

 (a) Forward SP

102

106

1010

O
ut

pu
t-i

np
ut

 N
or

m
 R

at
io

4 8 16 32 64 128
Depths

 (b) Backward SP

102

106

1010

1014

G
ra

di
en

t N
or

m
 (1

-s
t l

ay
er

)

4 8 16 32 64 128
Depths

 (c) GEV

10 4

10 3

10 2

10 1

N
or

m
al

iz
ed

 D
iri

ch
le

t E
ne

rg
y

SPoGInit Xavier Conventional VirgoFor VirgoBack

Figure 4: Plots of (a) forward metrics, (b) backward metrics, and (c) graph embedding variation metrics of
deep ResGCNs with different depths on Cora. SPoGInit is highly effective in stabilizing all three SP metrics.

5.2 Experiments on mainstream datasets

In this section, we illustrate how our proposed SPoGInit improves the performance of deep GCN models on
mainstream datasets. Specifically, we address the following questions:

Q1: Can SPoGInit improve the signal propagation (SP) of GCN models?

Q2: Can SPoGInit alleviate the performance degradation in deep GCNs?

Can SPoGInit improve the SP of GNN models (Q1)? On the Cora dataset, we examine the SP across
various models, including GCN, ResGCN, and MixHop, under different initializations and depths.

Figures 3, 4, and 5 respectively present the changes in three SP metrics as the depths of GCNs, ResGCN, and
MixHop models increase. The results in Figure 3 indicate that on vanilla GCN, both Conventional and Xavier
initializations cause diminishing forward SP, backward SP, and graph embedding variations (GEV), which
lead to gradient vanishing and over-smoothing issues. The VirgoFor and VirgoBack initialization methods can
stabilize the forward SP and maintain the diversity of graph features, but they result in exploding backward
SP, leading to gradient explosion. In contrast, SPoGInit is highly effective in stabilizing all three SP metrics.

Figure 4 shows that as the depth increases, ResGCNs with all baseline initializations suffer from exploding
forward-backward SP, and diminishing GEV, which lead to gradient explosion and over-smoothing problems.
In contrast, the SPoGInit method effectively stabilizes all three SP metrics in deep ResGCNs.

9

Published in Transactions on Machine Learning Research (06/2025)

4 8 16 32 64 128
Depths

 (a) Forward SP

10 4

10 2

100

O
ut

pu
t-i

np
ut

 N
or

m
 R

at
io

4 8 16 32 64 128
Depths

 (b) Backward SP

10 11

10 7

10 3

G
ra

di
en

t N
or

m
 (1

-s
t l

ay
er

)

4 8 16 32 64 128
Depths

 (c) GEV

10 4

10 3

10 2

10 1

100

N
or

m
al

iz
ed

 D
iri

ch
le

t E
ne

rg
y

SPoGInit Xavier Conventional

Figure 5: Plots of (a) forward metrics, (b) backward metrics, and (c) graph embedding variation metrics of
deep MixHop with different depths on Cora. SPoGInit is highly effective in stabilizing all three SP metrics.

Figure 5 shows that as the depth increases in the MixHop model, Conventional and Xavier initializations
succeed in maintaining forward SP and the GEV. However, the backward SP significantly diminishes, leading
to severe gradient vanishing in deep models. SPoGInit, on the other hand, effectively stabilizes all three SP
metrics.

In summary, these results demonstrate that SPoGInit is capable of finding initializations that stabilize these
three SP metrics, thereby alleviating the training difficulties associated with deep models and mitigating the
performance degradation as the networks go deeper.

Can SPoGInit Alleviate Performance Degradation in Deep GCN Models (Q2)? We present the
detailed numerical results for GCN models with varying depths and initializations across four mainstream
datasets, shown in Table 2. More details of hyperparameters are provided in Appendix G.1.

Table 2 demonstrates that SPoGInit significantly reduces performance degradation compared to baseline
initializations across various GCN models and datasets. For certain models and tasks, SPoGInit can even
enhance the performance consistently as network depth increases from 4 to 64, unleashing the potential of
deep GCNs. Specifically, in deep ResGCN and gatResGCN models, baseline initializations cause notable test
accuracy drops exceeding 30% on the OGBN-Arxiv dataset and 15% on the Arxiv-year dataset compared
to their shallow counterparts. In contrast, deep ResGCN and gatResGCN models with SPoGInit achieve
performance gains of from 1.2% to 3.0% as depth increases from 4 to 64 across all the tested datasets. For
deep vanilla GCNs and MixHop models, SPoGInit exhibits substantially less accuracy decline than baseline
initializations on most of the tested datasets. For example, SPoGInit reduces the test accuracy drop for the
64-layer MixHop by around at least 20% on both Cora and OGBN-Arxiv datasets.

Furthermore, we emphasize that SPoGInit exhibits greater robustness over various GCN models. Specifically,
we see that Xavier, VirgoFor, and VirgoBack perform well on deep vanilla GCNs, all surpassing Conventional
initialization on the four datasets. However, their performance significantly degrades on deep ResGCNs. In
contrast, SPoGInit demonstrates excellent versatility, achieving less performance degradation across models
of varying depths and architectures.

Further exploration on SPoGInit. SPoGInit, as previously introduced, begins with a given starting
initialization and searches for a more stable signal propagation (SP) by solving an optimization problem (2).
In most cases, we select Xavier initialization as the starting point for SPoGInit in the experiments above.
Now we explore the adaptability of SPoGInit by studying how it performs when starting from
different initializations.

We report the performance of vanilla GCNs on the OGBN-Arxiv dataset, with four baseline initializations,
alongside SPoGInit which is applied starting from each of these four initializations, as shown in Table 3.
The results indicate that SPoGInit can effectively incorporate different initializations, leading to better

10

Published in Transactions on Machine Learning Research (06/2025)

Table 2: Test accuracies of GCN models with varying depths and initializations. The bold figure highlights
the best performance among different initializations. "Deg" refers to the test accuracy degradation as the
depth increases from 4 to 64 layers. The smallest performance drops are highlighted in orange. The results
demonstrate that SPoGInit significantly reduces performance degradation compared to baseline initializations
and enhances the performance of deep GNN models across different architectures.

Model Init. Cora Arxiv
4 8 16 32 64 Deg. 4 8 16 32 64 Deg.

GCN

Conventional 79.3 71.2 56.6 48.5 33.3 ↓ 46.0 69.2 67.5 44.9 39.1 8.0 ↓ 61.2
Xavier 80.3 79.1 75.2 72.8 71.5 ↓ 8.8 69.6 69.3 64.1 57.9 38.1 ↓ 31.5

VirgoFor 80.4 80.0 76.7 74.3 73.4 ↓ 7.0 69.9 69.4 69.3 67.0 61.4 ↓ 8.5
VirgoBack 80.3 77.4 74.9 74.3 73.2 ↓ 7.1 69.7 69.5 69.2 67.5 60.9 ↓ 8.8
SPoGInit 79.8 79.6 78.2 75.8 73.7 ↓ 6.1 69.8 69.1 66.8 63.8 48.4 ↓ 21.4

ResGCN
Conventional 78.0 78.5 77.5 77.6 78.2 ↑ 0.2 70.3 71.6 72.0 70.4 34.8 ↓ 35.5

Xavier 78.0 79.1 77.7 76.8 71.6 ↓ 6.4 70.5 71.6 70.7 53.0 16.5 ↓ 54.0
VirgoFor 78.5 78.6 77.5 74.1 54.2 ↓ 24.3 70.5 71.0 66.4 20.3 11.3 ↓ 59.2

VirgoBack 79.3 78.2 77.8 73.9 29.2 ↓ 50.1 70.6 71.1 66.5 20.1 12.5 ↓ 58.1
SPoGInit 75.7 77.9 78.5 78.5 80.1 ↑ 4.4 70.4 71.5 72.3 71.8 71.3 ↑ 0.9

gatResGCN
Conventional 77.4 78.2 78.0 77.9 77.0 ↓ 0.4 70.7 71.8 71.6 70.0 27.9 ↓ 42.8

Xavier 77.9 78.5 76.6 77.4 73.2 ↓ 4.7 70.5 71.4 70.8 45.1 16.5 ↓ 54.0
VirgoFor 78.9 78.1 77.6 70.5 35.5 ↓ 43.4 70.4 70.7 65.7 20.4 11.3 ↓ 59.1

VirgoBack 79.0 78.3 76.2 70.5 37.9 ↓ 41.1 70.5 70.7 65.9 20.1 12.5 ↓ 58.0
SPoGInit 76.3 77.8 78.2 78.1 77.6 ↑ 1.3 70.2 71.5 72.1 72.5 72.8 ↑ 2.6

MixHop
Conventional 72.5 52.0 36.4 46.9 42.0 ↓ 30.5 68.0 64.1 59.8 52.6 38.2 ↓ 29.8

Xavier 79.3 75.1 71.6 64.3 56.3 ↓ 23.0 67.9 64.0 60.1 53.0 38.0 ↓ 29.9
SPoGInit 79.6 75.0 76.8 72.0 72.2 ↓ 7.4 69.9 70.9 70.3 68.6 61.5 ↓ 8.4

Model Init. PubMed Arxiv-year
4 8 16 32 64 Deg. 4 8 16 32 64 Deg.

GCN
Conventional 75.9 68.1 67.1 68.0 60.8 ↓ 15.1 44.1 42.7 44.2 43.6 39.9 ↓ 4.2

Xavier 78.1 76.8 76.0 77.2 75.7 ↓ 2.4 44.0 42.3 45.5 45.6 43.9 ↓ 0.1
VigorFor 78.9 78.5 78.2 77.8 75.9 ↓ 3.0 43.9 30.0 45.4 45.6 41.8 ↓ 2.1

VigorBack 78.1 75.5 76.5 76.0 74.7 ↓ 3.4 43.7 29.8 45.5 45.4 41.8 ↓ 1.9
SPoGInit 77.4 77.5 77.0 78.4 78.1 ↑ 0.7 43.9 41.9 45.2 44.9 43.9 0

ResGCN
Conventional 74.9 76.1 76.0 76.8 76.6 ↑ 1.7 48.2 49.6 49.7 43.6 32.6 ↓ 15.6

Xavier 75.8 77.5 75.7 76.5 74.8 ↓ 1.0 48.4 49.0 46.0 31.9 23.0 ↓ 25.4
VigorFor 76.2 77.6 76.6 76.1 74.5 ↓ 1.7 48.3 48.4 38.9 29.6 26.2 ↓ 22.1

VigorBack 77.0 77.6 76.9 77.0 74.9 ↓ 2.1 48.1 48.1 38.6 29.1 24.9 ↓ 23.2
SPoGInit 75.4 76.2 76.4 77.0 77.4 ↑ 2.0 47.7 49.8 50.9 51.9 49.3 ↑ 1.6

gatResGCN
Conventional 74.4 76.9 76.0 76.6 76.0 ↑ 1.6 48.7 50.5 49.5 41.6 31.8 ↓ 16.9

Xavier 76.3 77.6 75.6 77.2 75.8 ↓ 0.5 48.5 49.5 45.8 32.6 23.0 ↓ 25.5
VirgoFor 76.2 77.6 77.1 76.1 74.3 ↓ 1.9 48.5 48.4 38.9 31.5 26.2 ↓ 22.3

VirgoBack 76.6 77.9 76.8 75.8 75.0 ↓ 1.6 48.3 48.1 38.8 29.6 25.0 ↓ 23.3
SPoGInit 74.8 75.9 75.6 76.7 77.2 ↑ 2.4 47.9 49.3 50.0 50.6 51.0 ↑ 3.1

MixHop
Conventional 73.3 65.1 68.1 65.9 56.4 ↓ 16.9 47.8 48.6 49.2 47.7 42.3 ↓ 5.5

Xavier 76.6 76.4 72.5 72.4 71.1 ↓ 5.5 47.9 48.6 49.2 48.5 42.0 ↓ 5.9
SPoGInit 76.8 77.1 75.2 76.3 74.3 ↓ 2.5 48.3 50.2 51.3 52.0 50.5 ↑ 2.2

performance. Specifically, when starting from the Xavier and Conventional initializations, SPoGInit achieves
nearly 10% and 50% improvements in vanilla GCNs with 64 layers compared to these two initializations.
Furthermore, when starting from the GNN-based initializations (VirgoFor and VirgoBack), SPoGInit also
delivers better performance in deep GCNs. However, it is important to note that when using ResGCN,
VirgoFor and VirgoBack exhibit significant performance degradation. Despite this, starting from these
GNN-based initializations, SPoGInit still significantly improves performance by more than 58% in deep
ResGCNs with 64 layers.

These results demonstrate that although different GNN architectures may favor specific initializations, starting
from these initializations, SPoGInit can further enhance the performance. Its strong adaptability allows

11

Published in Transactions on Machine Learning Research (06/2025)

Table 3: Test accuracies of GCN models with varying depths and initializations on the OGBN-Arxiv dataset.
"Improv." refers to the test accuracy changes after replacing the original initializations with SPoGInit, which
starts from those initializations. The results demonstrate that SPoGInit achieves better performance across
various models by starting from different initializations.

Model Init. Arxiv
4 8 16 32 64

GCN

Conventional 69.2 67.5 44.9 39.1 8.0
+SPoGInit 69.7 69.2 68.1 63.1 56.9

Improv. ↑ 0.5 ↑ 1.7 ↑ 23.2 ↑ 24.0 ↑ 48.9
Xavier 69.6 69.3 64.1 57.9 38.1

+SPoGInit 69.8 69.1 66.8 63.8 48.4
Improv. ↑ 0.2 ↓ 0.2 ↑ 2.7 ↑ 5.9 ↑ 10.3
VirgoFor 69.9 69.4 69.3 67.0 61.4

+SPoGInit 69.6 69.6 68.7 67.2 61.4
Improv. ↓ 0.3 ↑ 0.2 ↓ 0.6 ↑ 0.2 0

VirgoBack 69.7 69.5 69.2 67.5 60.9
+SPoGInit 69.6 69.7 69.0 67.2 61.8

Improv. ↓ 0.1 ↑ 0.2 ↓ 0.2 ↓ 0.3 ↑ 0.9

ResGCN

Conventional 70.3 71.6 72.0 70.4 34.8
+SPoGInit 70.3 71.2 71.9 71.9 71.5

Improv. 0 ↓ 0.4 ↓ 0.1 ↑ 1.5 ↑ 36.7
Xavier 70.5 71.6 70.7 53.0 16.5

+SPoGInit 70.4 71.5 72.3 71.8 71.3
Improv. ↓ 0.1 ↓ 0.1 ↑ 1.6 ↑ 18.8 ↑ 54.8
VirgoFor 70.5 71.0 66.4 20.3 11.3

+SPoGInit 70.0 71.3 72.0 72.1 71.2
Improv. ↓ 0.5 ↑ 0.3 ↑ 6.4 ↑ 51.8 ↑ 59.9

VirgoBack 70.6 71.1 66.5 20.1 12.5
+SPoGInit 70.2 71.4 72.0 72.3 71.4

Improv. ↓ 0.4 ↑ 0.3 ↑ 5.5 ↑ 52.2 ↑ 58.9

SPoGInit to achieve better results across various models by effectively integrating with different initialization
techniques.

Additionally, we provide an ablation study on the SP metric components within SPoGInit in Appendix G.2.

5.3 Experiments on graph-based tasks involving long-range relationships

Missing feature settings. To investigate the performance of SPoGInit on the graph-based tasks involving
long-range relationships, we first conduct experiments on the datasets under missing feature settings following
(Zhao & Akoglu, 2020). Specifically, we construct graph datasets by zeroing out a designated proportion
of node features in the validation and test sets while preserving their corresponding labels. The details of
the missing feature settings are provided in Appendix G.1. Within the semi-supervised learning framework,
a high proportion of missing features necessitates multiple feature aggregations from the training set for
accurate label prediction in the validation and test sets. This approach effectively amplifies the challenge of
learning long-range relationships within the dataset.

We adopt the missing feature setting with different missing proportions on the Arxiv-year dataset. We
examine the performance of various GCN models with different depths and initializations over these settings.
Table 4 presents the best performance of different GCN models, ranging from 8 layers to 64 layers, along
with the optimal depth that achieves the best performance. The results indicate that under higher feature
missing proportion, the models with SPoGInit tend to achieve their best performance at larger depths.
SPoGInit demonstrates a significant improvement over baseline initializations, especially under 100% missing
proportion, i.e., where all node features in the validation and test sets are missing. Moreover, deep ResGCN

12

Published in Transactions on Machine Learning Research (06/2025)

Table 4: The optimal performance of various deep GCN models, ranging from 8 to 64 layers, with different
initializations under missing feature settings. The figures in parentheses denote the depth corresponding to
the optimal performance. Bold figures show the best performance for each model and the best performances
across all architectures are highlighted in orange. The term “optimal improvement” refers to the maximum
performance enhancements achieved by SPoGInit compared to the best performance of baseline initializations
across the various models. The results indicate that optimal performance on datasets with long-range
relationships is attained at greater depths, and SPoGInit enhances the performance of deep GCN architectures.

Model Init. Missing 50% Missing 100%

GCN

Conventional 43.1 (16) 41.6 (16)
Xavier 43.3 (16) 42.5 (16)
VirgoFor 40.1 (16) 41.9 (16)
VirgoBack 42.0 (16) 42.0 (16)
SPoGInit 43.1 (32) 42.4 (16)

ResGCN

Conventional 45.8 (16) 43.9 (16)
Xavier 45.2 (8) 43.1 (8)
VirgoFor 45.4 (8) 43.0 (8)
VirgoBack 45.2 (8) 42.9 (8)
SPoGInit 46.3 (64) 45.1 (64)

gatResGCN

Conventional 45.5 (16) 43.3 (16)
Xavier 44.7 (8) 42.2 (8)
VirgoFor 45.2 (8) 42.6 (8)
VirgoBack 45.0 (8) 42.6 (8)
SPoGInit 45.3 (16) 43.4 (32)

MixHop

Conventional 45.1 (8) 42.9 (16)
Xavier 45.1 (8) 42.8 (16)
SPoGInit 44.9 (8) 44.6 (16)

Optimal Improvements +0.5 +1.7

with SPoGInit achieves the best performance across all the tested architectures and initializations. These
findings demonstrate the potential of deep GCNs in graph-based tasks involving long-range relationships and
the effectiveness of SPoGInit in unleashing such potential.

GCNs for Combinatorial Optimization. In recent years, GNNs have emerged as a powerful tool for
addressing Combinatorial Optimization (CO) problems, which are fundamental in areas such as computer
science and operations research (Paschos, 2014). Many classical CO problems are extremely difficult to solve
due to their NP-hardness (Bomze et al., 1999; Gavish & Graves, 1978; Coffman Jr et al., 1984). To address
these difficult CO problems, expert-designed heuristic algorithms (Boussaïd et al., 2013) are developed to find
near-optimal solutions within reasonable computational limits. Over the past decade, machine learning-based
methods (Bengio et al., 2021) have gained significant interest in tackling CO problems. It has been shown
that with sufficient data and proper training, neural networks have the potential of surpassing expert-designed
methods in both performance and efficiency (Alvarez et al., 2017; Khalil et al., 2016; 2017). Given that many
CO problems naturally have a graph structure, GNNs have become a highly promising approach (Gasse et al.,
2019).

In this work, we consider the Maximal Independent Set (MIS) problem, a classic CO problem in graph theory
with significant applications in network analysis, wireless communication, etc. Given an undirected graph
G = (V, E), the objective is to find a subset S ⊆ V of vertices such that S is independent, meaning no two
vertices in S are adjacent, and S is maximal, implying that no additional vertex can be added to S without
violating its independence.

We note that MIS problems can involve inherent long-range relationships between nodes. The inclusion of
a node in the independent set may significantly affect all other nodes in the set. For example, consider a

13

Published in Transactions on Machine Learning Research (06/2025)

cycle graph G with an even number of nodes V1, V2, . . . , V4m. In this cycle, each node connects to two others,
forming a closed loop. If V1 is included in S, its adjacent nodes V4m and V2 cannot be part of S, allowing
nodes V4m−1 and V3 to potentially be included in S. This cascading effect continues around the cycle, and
it is straightforward to show that the maximal independent set is {V1, V3, . . . , V2m−1, V2m+1, . . . , V4m−1}.
Similarly, if V1 is excluded from S, the maximal independent set becomes {V2, V4, . . . , V2m, . . . , V4m−1}.
Notably, the predictions of whether V1 and V2m are in the maximal independent set depend on each other,
while the two nodes have a distance of 2m− 1.

In this work, we follow the setting in Han et al. (2022) and apply GNN to solve MIS problems. The MIS
problem is typically formulated as an Integer Linear Programming (ILP) problem:

max
x

∑
i∈V

xi

s.t. xi + xj ≤ 1, ∀(i, j) ∈ E ,

xi ∈ {0, 1}.

Based on this formulation, a variable-constraint bipartite graph representation is constructed. The set of
variable nodes V (each denoted by i) is placed on one side of the bipartite graph, while the set of constraint
nodes E (each representing an edge (i, j) in the original graph) is placed on the other side. Each variable
node i and j is connected to the corresponding constraint node (i, j). Following Han et al. (2022), we adopt
a predict and search framework. The predicting stage utilizes GNN over the bipartite graph representation
to find a good initial solution to the MIS problem, while the search stage refines this solution using the
traditional ILP solver such as SCIP or Gurobi to obtain the final result.

We investigate the power of SPoGInit in improving the performance of bipartite GCNs for solving MIS
problems. We utilize the Independent Set (IS) dataset (Bergman et al., 2016), where each instance comprises
600 constraints and 1500 binary variables. The bipartite GCN models are trained on 80 problem instances
and then applied to predict the optimal solution (0 or 1) for each node across 20 test instances. We set the
learning rates as 1e-3, 5e-4, and 5e-5, for bipartite GCN models with 2, 8, and 16 layers, respectively.

The experimental results, shown in Table 5, indicate that bipartite GCNs often achieve performance
improvements as their depths increase. With Xavier initialization, there is approximately a 4% increase in
accuracy from 2 to 16 layers. Moreover, employing SPoGInit yields greater performance enhancements, with
an approximate 7% increase in accuracy from 2 to 16 layers, and surpasses the baseline methods on the
16-layer network.

Table 5: Test accuracy of bipartite GNN models on ILP tasks across varying initializations and depths. The
results underscore the critical role of depth in solving ILP problems with Bipartite GCNs. Furthermore,
SPoGInit significantly boosts the performance of deep Bipartite GCNs, leading to optimal accuracy.

Model Init. 2 layer 8 layer 16 layer

Bipartite GCN
Conventional 78.9 82.7 84.1

Xavier 78.5 81.0 82.2
SPoGInit 78.7 83.0 85.2

Bipartite GCN with skip connection
Conventional 79.4 85.4 85.5

Xavier 79.4 82.2 48.6
SPoGInit 79.4 84.7 87.5

Further, we adopt skip connection in bipartite GCNs and train the models with various depths using the
Adam optimizer at a learning rate of 1e-3. We see that incorporating skip connections boosts the performance
of Bipartite GCNs. This enhancement is likely attributed to the reinforcement of the initial embeddings
associated with the ILP problem. However, Xavier initialization faces training failure issues and fails to
deliver substantial benefits during the deepening process, and Conventional initialization shows minimal gains
when the network depth is increased from 8 to 16 layers. Conversely, SPoGInit consistently provides ongoing

14

Published in Transactions on Machine Learning Research (06/2025)

benefits as the network depths increase. With SPoGInit, the 16-layer bipartite GCN with skip connections
achieves optimal performance across all initializations, models, and depths.

6 Related works

Over-smoothing in GCNs. The concept of over-smoothing is first introduced in Li et al. (2018) to explain
the performance degradation in deeper GCNs. This issue is later explored through both theoretical and
empirical studies (Oono & Suzuki, 2019; Cai & Wang, 2020; Yang et al., 2020; Maskey et al., 2024; Yang et al.,
2024; Chen et al., 2020a; Nguyen et al., 2023; Rusch et al., 2023b; Roth & Liebig, 2024; Roth, 2024; Luan
et al., 2020; Cong et al., 2021; Zhang et al., 2022a). While the smoothing effect of graph convolution may
benefit shallow GCNs (Keriven, 2022; Wu et al., 2023), it adversely affect the performance of deep GCNs.

To alleviate over-smoothing, various techniques have been proposed (Chen et al., 2022c; Wang et al., 2021),
including node or edge dropping (Srivastava et al., 2014; Zou et al., 2019; Rong et al., 2020; Huang et al.,
2020; Lu et al., 2021; Fang et al., 2023; Han et al., 2023a; Finkelshtein et al., 2023), normalization methods
(Ioffe & Szegedy, 2015; Zhao & Akoglu, 2020; Zhou et al., 2020b; Yang et al., 2020; Zhou et al., 2021b; Li
et al., 2020; Guo et al., 2023), and regularization strategies (Chen et al., 2020a; Yang et al., 2020; Zhou
et al., 2021a). In addition to these techniques, substantial efforts have been dedicated to modifying GCN
architectures, such as incorporating residual connections (Kipf & Welling, 2017; Jaiswal et al., 2022; Chen
et al., 2022b; Scholkemper et al., 2024), jumping connections (Xu et al., 2018; Liu et al., 2020; Zhu et al.,
2020), and other architectural modifications (Bose & Das, 2023; Di Giovanni et al., 2022; Chien et al., 2021;
Gasteiger et al., 2019; Luan et al., 2019; Chen et al., 2020b; Li et al., 2019; Yan et al., 2022; Guo et al., 2022;
Min et al., 2020; Chen et al., 2022a; Jin et al., 2022; Zheng et al., 2021; Yang et al., 2023b; Li et al., 2021;
Zhang et al., 2020; Feng et al., 2022; Dong et al., 2021; Wu et al., 2024; Choi et al., 2024; Zhang et al., 2022b;
Kelesis et al., 2023). In recent years, a line of work has proposed using negative sampling, which incorporates
non-neighboring nodes into the aggregation process, to alleviate over-smoothing in GNNs. Duan et al. (2022)
introduce determinantal point process (DPP)–based sampling to encourage diversity among selected negative
samples. To improve scalability, Duan et al. (2023) construct candidate sets using shortest-path heuristics,
significantly reducing computational cost. Building on this, Duan et al. (2024) propose layer-diverse negative
sampling, which dynamically adjusts the sampling space across layers to reduce redundancy and improve
the expressiveness of deep GNNs. These methods essentially mitigate over-smoothing by modifying the
propagation mechanism of GCNs.

Different from these works, our paper investigates the impact of weight initialization to tackle over-smoothing
(as well as gradient pathology) in GCNs, without modifying the network architecture or the message passing
mechanism. While a few recent works (Guo et al., 2022; Jaiswal et al., 2022; Li et al., 2023) have explored
initialization to improve the training of GNN, they do not explicitly treat over-smoothing as one of their
primary concerns. Although Han et al. (2023b) applies analog MLP initialization to GNNs, it does not
specifically address the performance degradation of deep GNNs.

Signal propagation. Classical signal propagation theory has built up a foundation for understanding
how information flows through deep neural networks (DNNs) and guides the random weight initialization.
At first, Glorot & Bengio (2010); He et al. (2015) study the forward-backward propagation in linear or
ReLU-activated models. Then, the mean-field theory (Neal, 1996; Lee et al., 2018; Matthews et al., 2018)
is incorporated to study the signal propagation in models with general non-linear activation. Theoretical
analysis on fully-connected neural networks (FCNNs) includes the study of Edge-of-Chaos (EOCs) (Poole
et al., 2016; Schoenholz et al., 2017; Hayou et al., 2019; 2022) and dynamical isometry (Saxe et al., 2014;
Pennington et al., 2017; 2018). Other works study the signal propagation in deep CNN (Xiao et al., 2018),
RNN (Chen et al., 2018), ResNet (Yang & Schoenholz, 2017; Hayou et al., 2022), autoencoder (Li & Nguyen,
2019), and LSTM/GRU (Gilboa et al., 2019).

In the realm of GCNs, several recent works have proposed weight initialization techniques to stabilize signal
propagation. For the forward pass, Jaiswal et al. (2022) focus on Topology-Aware Isometry, which differs from
our focus on stabilizing the output-input norm ratio. For the backward pass, they rely on gradient-guided
dynamic rewiring, modifying the model architecture itself. In contrast, we control backward signal propagation

15

Published in Transactions on Machine Learning Research (06/2025)

through the BSP metric. Moreover, their method design does not address over-smoothing, while we explicitly
incorporate the graph embedding variation (GEV) metric to do so. Kelesis et al. (2024) propose G-Init,
which extends Kaiming initialization to the graph domain by incorporating graph topology-aware scaling.
We include in Appendix F.6 a comparison experiment between G-Init and SPoGInit on vanilla GCN. The
results show that while both G-Init and SPoGInit alleviate performance degradation in deep GCNs, SPoGInit
provides more consistent results and smaller accuracy drops across datasets. In addition, Guo et al. (2022);
Li et al. (2023) also build their approaches around forward and backward signal propagation, but do not
investigate how initialization affects GEV to mitigate over-smoothing in deep GCNs. Also, we note that
Han et al. (2023b) introduce MLPInit, which is not aimed at improving signal propagation or reducing
over-smoothing. Instead, it seeks to accelerate training by initializing GNNs with the weights of a fully
trained, equivalent MLP. This is a fundamentally different motivation from ours.

Weight initialization search. In traditional deep learning, some works have explored weight initialization
search to improve training stability (Dauphin & Schoenholz, 2019; Zhu et al., 2021). However, their objectives
differ from ours. Dauphin & Schoenholz (2019) aims to minimize the curvature effects around the initial
parameters by reducing the gradient quotient, which reflects local curvature sensitivity. Zhu et al. (2021)
aims at finding an initialization that minimizes the loss after a single training step. Our proposed SPoGInit,
however, primarily targets mitigating signal propagation instability in the initialization of deep GCNs, by
addressing both forward and backward SP as well as the over-smoothing issue.

Infinite-width-limit regime. Our analysis relies on an infinite-width assumption—a common approach
in traditional theoretical analyses of neural networks (see, e.g., Lee et al. (2018); Sohl-Dickstein et al. (2020);
Yang et al. (2024)). This assumption offers the primary benefit of ensuring that the feature embeddings at
each layer follow a Gaussian distribution under random initialization, thereby simplifying the theoretical
treatment. Such a Gaussian property is not strictly guaranteed for practical, finite-width networks.

Nonetheless, we empirically demonstrate that the embeddings of a finite-width network are approximately
Gaussian, implying that the infinite-width approximation remains reasonable in practice. Specifically, we
randomly selected three node embeddings from the final convolutional layer of a 4-layer, 64-width GCN
network trained on the OGBN-Arxiv dataset. We then applied the Kolmogorov-Smirnov hypothesis test to
evaluate their distribution. In this test, a p-value below 0.05 would indicate a significant deviation from a
Gaussian distribution. The observed p-values—0.75, 0.90, and 0.73—suggest that the embeddings closely
follow a Gaussian distribution. Thus, despite the theoretical limitation, our empirical findings support the
validity of using the infinite-width approximation.

Relationship with GNTK. NNGP (Neural Network Gaussian Process) for GNNs and GNTK (Graph
Neural Tangent Kernel) are two theoretical tools used to analyze the behavior of graph neural networks.
While they share the common goal of characterizing GNNs in the infinite-width limit, they differ in focus:
NNGP primarily describes the properties of feature embeddings at initialization, whereas GNTK captures
the training dynamics of GNNs, particularly how the model converges under gradient descent. Some existing
works study graph neural tangent kernel (GNTK) (Bayer et al., 2022; Du et al., 2019; Huang et al., 2022;
Jiang et al., 2022; Sabanayagam et al., 2021; 2022; Zhou & Wang, 2022; Gebhart, 2022; Krishnagopal & Ruiz,
2023; Yang et al., 2023a). They analyze the training dynamics of GCNs under the infinite-width limit.

7 Limitations and future works

SPoGInit has been specifically designed and tested for node classification tasks within GNNs. While the
method has shown promising results in this context, its applicability to other tasks, such as edge prediction
or graph classification, remains unexplored. Adapting SPoGInit for a wider range of graph-based learning
tasks is as an important direction for future work.

Although SPoGInit is designed as a general method for GNNs, our current implementation is not entirely
plug-and-play for all GNN architectures. The integration of SPoGInit into novel or non-standard GCN
variants (e.g., GCNII (Chen et al., 2020b), GraphTransformer (Shehzad et al., 2024)) will require additional

16

Published in Transactions on Machine Learning Research (06/2025)

engineering efforts. Future work could focus on creating more robust and flexible integration methods for a
broader range of GNN models, enhancing SPoGInit’s adaptability.

As highlighted in our analysis, SPoGInit introduces an approximate 10%-20% computational overhead. While
we believe this overhead is acceptable in many practical scenarios, it could become a limiting factor in
situations where computational resources are severely constrained. Future work could explore methods to
reduce the computational cost of SPoGInit, either through more efficient optimization techniques or by
leveraging hardware acceleration.

8 Conclusion

We attempt to address the performance degradation of deep GCNs from the lens of signal propagation.
We consider three metrics: forward propagation, backward propagation, and graph embedding variation
propagation. Our theoretical analysis and empirical studies revealed that widely used initialization methods
in GCNs fail to control these metrics simultaneously, resulting in undesirable performance degradation as
depth increases. Motivated by our SP framework, a new initialization method, termed SPoGInit, is proposed.
The experiment results demonstrate that SPoGInit enhances the signal propagation of various deep GCN
architectures. Moreover, SPoGInit significantly mitigates performance degradation or enables performance
enhancement as depths increase, especially in graph-based tasks involving long-range relationships. Both
our theoretical and empirical findings underscore the importance of stabilizing these three SP metrics for
boosting the performance of deep GCNs.

Acknowledgement

The authors would like to express our sincere gratitude to Kenta Oono and the anonymous reviewers for their
insightful feedback during the discussion phase. The authors also thank Bingheng Li and Haitao Mao for their
helpful suggestions during the early stages of revision. This paper is supported in part by the National Key
Research and Development Project under grant 2022YFA1003900; Hetao Shenzhen-Hong Kong Science and
Technology Innovation Cooperation Zone Project (No.HZQSWS-KCCYB-2024016); University Development
Fund UDF01001491, the Chinese University of Hong Kong, Shenzhen; Guangdong Provincial Key Laboratory
of Mathematical Foundations for Artificial Intelligence (2023B1212010001); the Guangdong Major Project of
Basic and Applied Basic Research (2023B0303000001).

References
Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr Harutyunyan,

Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional architectures via sparsified
neighborhood mixing. In International Conference on Machine Learning, pp. 21–29. PMLR, 2019.

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications. In
International Conference on Learning Representations, 2021.

Alejandro Marcos Alvarez, Quentin Louveaux, and Louis Wehenkel. A machine learning-based approximation
of strong branching. INFORMS Journal on Computing, 29(1):185–195, 2017.

Artun Bayer, Arindam Chowdhury, and Santiago Segarra. Label propagation across graphs: Node classification
using graph neural tangent kernels. In ICASSP 2022-2022 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 5483–5487. IEEE, 2022.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimization: a
methodological tour d’horizon. European Journal of Operational Research, 290(2):405–421, 2021.

David Bergman, Andre A Cire, Willem-Jan Van Hoeve, and John Hooker. Decision diagrams for optimization,
volume 1. Springer, 2016.

Immanuel M Bomze, Marco Budinich, Panos M Pardalos, and Marcello Pelillo. The maximum clique problem.
Handbook of Combinatorial Optimization: Supplement Volume A, pp. 1–74, 1999.

17

Published in Transactions on Machine Learning Research (06/2025)

Kushal Bose and Swagatam Das. Can graph neural networks go deeper without over-smoothing? yes, with a
randomized path exploration! In IEEE Transactions on Emerging Topics in Computational Intelligence.
IEEE, 2023.

Léon Bottou. Reconnaissance de la parole par reseaux connexionnistes. In Proceedings of neuro Nimes,
volume 88, pp. 197–218, 1988.

Ilhem Boussaïd, Julien Lepagnot, and Patrick Siarry. A survey on optimization metaheuristics. Information
sciences, 237:82–117, 2013.

Chen Cai and Yusu Wang. A note on over-smoothing for graph neural networks. In International Conference
on Machine Learning. PMLR, 2020.

Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving the over-smoothing
problem for graph neural networks from the topological view. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pp. 3438–3445, 2020a.

Jialin Chen, Yuelin Wang, Cristian Bodnar, Rex Ying, Pietro Liò, and Yu Guang Wang. Dirichlet energy
enhancement of graph neural networks by framelet augmentation. 2022a.

Jie Chen, Weiqi Liu, Zhizhong Huang, Junbin Gao, Junping Zhang, and Jian Pu. Universal deep gnns:
Rethinking residual connection in gnns from a path decomposition perspective for preventing the over-
smoothing. arXiv preprint arXiv:2205.15127, 2022b.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph convolutional
networks. In International Conference on Machine Learning, pp. 1725–1735. PMLR, 2020b.

Minmin Chen, Jeffrey Pennington, and Samuel Schoenholz. Dynamical isometry and a mean field theory
of rnns: Gating enables signal propagation in recurrent neural networks. In International Conference on
Machine Learning, pp. 873–882. PMLR, 2018.

Tianlong Chen, Kaixiong Zhou, Keyu Duan, Wenqing Zheng, Peihao Wang, Xia Hu, and Zhangyang Wang.
Bag of tricks for training deeper graph neural networks: A comprehensive benchmark study. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2022c.

Ziang Chen, Jialin Liu, Xinshang Wang, and Wotao Yin. On representing linear programs by graph neural
networks. In The Eleventh International Conference on Learning Representations, 2023.

Ziang Chen, Xiaohan Chen, Jialin Liu, Xinshang Wang, and Wotao Yin. Expressive power of graph neural
networks for (mixed-integer) quadratic programs. arXiv preprint arXiv:2406.05938, 2024.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank graph
neural network. In International Conference on Learning Representations, 2021.

Yoonhyuk Choi, Jiho Choi, Taewook Ko, and Chong-Kwon Kim. Better not to propagate: Understanding
edge uncertainty and over-smoothing in signed graph neural networks. arXiv preprint arXiv:2408.04895,
2024.

Edward G Coffman Jr, Michael R Garey, and David S Johnson. Approximation algorithms for bin-packing—an
updated survey. In Algorithm design for computer system design, pp. 49–106. Springer, 1984.

Weilin Cong, Morteza Ramezani, and Mehrdad Mahdavi. On provable benefits of depth in training graph
convolutional networks. Advances in Neural Information Processing Systems, 34:9936–9949, 2021.

Yann N Dauphin and Samuel S Schoenholz. Metainit: Initializing learning by learning to initialize. Advances
in Neural Information Processing Systems, 32, 2019.

Francesco Di Giovanni, James Rowbottom, Benjamin P Chamberlain, Thomas Markovich, and Michael M
Bronstein. Graph neural networks as gradient flows: Understanding graph convolutions via energy. arXiv
preprint arXiv:2206.10991, 2022.

18

Published in Transactions on Machine Learning Research (06/2025)

Yushun Dong, Kaize Ding, Brian Jalaian, Shuiwang Ji, and Jundong Li. Adagnn: Graph neural networks with
adaptive frequency response filter. In Proceedings of the 30th ACM international conference on information
& knowledge management, pp. 392–401, 2021.

Simon S Du, Kangcheng Hou, Russ R Salakhutdinov, Barnabas Poczos, Ruosong Wang, and Keyulu Xu.
Graph neural tangent kernel: Fusing graph neural networks with graph kernels. Advances in Neural
Information Processing Systems, 32, 2019.

Wei Duan, Junyu Xuan, Maoying Qiao, and Jie Lu. Learning from the dark: boosting graph convolutional
neural networks with diverse negative samples. In Proceedings of the AAAI conference on artificial
intelligence, volume 36, pp. 6550–6558, 2022.

Wei Duan, Junyu Xuan, Maoying Qiao, and Jie Lu. Graph convolutional neural networks with diverse
negative samples via decomposed determinant point processes. IEEE Transactions on Neural Networks
and Learning Systems, 2023.

Wei Duan, Jie Lu, Yu Guang Wang, and Junyu Xuan. Layer-diverse negative sampling for graph neural
networks. Transactions on Machine Learning Research, 2024.

Ronen Eldan and Ohad Shamir. The power of depth for feedforward neural networks. In Conference on
learning theory, pp. 907–940. PMLR, 2016.

Taoran Fang, Zhiqing Xiao, Chunping Wang, Jiarong Xu, Xuan Yang, and Yang Yang. DropMessage:
Unifying random dropping for graph neural networks. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pp. 4267–4275, 2023.

Xinshun Feng, Herun Wan, Shangbin Feng, Hongrui Wang, Qinghua Zheng, Jun Zhou, and Minnan Luo.
Grato: Graph neural network framework tackling over-smoothing with neural architecture search. In
Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp.
520–529, 2022.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In ICLR
Workshop on Representation Learning on Graphs and Manifolds, 2019.

Ben Finkelshtein, Xingyue Huang, Michael Bronstein, and Ismail Ilkan Ceylan. Cooperative graph neural
networks. arXiv preprint arXiv:2310.01267, 2023.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combinatorial
optimization with graph convolutional neural networks. Advances in Neural Information Processing Systems,
32, 2019.

Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate: Graph neural
networks meet personalized pagerank. In International Conference on Learning Representations, 2019.

Bezalel Gavish and Stephen C Graves. The travelling salesman problem and related problems. 1978.

Thomas Gebhart. Graph convolutional networks from the perspective of sheaves and the neural tangent
kernel. In Topological, Algebraic and Geometric Learning Workshops 2022, pp. 124–132. PMLR, 2022.

Dar Gilboa, Bo Chang, Minmin Chen, Greg Yang, Samuel S Schoenholz, Ed H Chi, and Jeffrey Pennington.
Dynamical isometry and a mean field theory of lstms and grus. arXiv preprint arXiv:1901.08987, 2019.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural networks.
In International Conference on Artificial Intelligence and Statistics, pp. 249–256. JMLR Workshop and
Conference Proceedings, 2010.

Kai Guo, Kaixiong Zhou, Xia Hu, Yu Li, Yi Chang, and Xin Wang. Orthogonal graph neural networks. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp. 3996–4004, 2022.

19

Published in Transactions on Machine Learning Research (06/2025)

Xiaojun Guo, Yifei Wang, Tianqi Du, and Yisen Wang. Contranorm: A contrastive learning perspective on
oversmoothing and beyond. In International Conference on Learning Representations, 2023.

Jiaqi Han, Wenbing Huang, Yu Rong, Tingyang Xu, Fuchun Sun, and Junzhou Huang. Structure-aware
dropedge toward deep graph convolutional networks. IEEE Transactions on Neural Networks and Learning
Systems, 2023a.

Qingyu Han, Linxin Yang, Qian Chen, Xiang Zhou, Dong Zhang, Akang Wang, Ruoyu Sun, and Xiaodong
Luo. A gnn-guided predict-and-search framework for mixed-integer linear programming. In The Eleventh
International Conference on Learning Representations, 2022.

Xiaotian Han, Tong Zhao, Yozen Liu, Xia Hu, and Neil Shah. Mlpinit: Embarrassingly simple gnn training
acceleration with mlp initialization. 2023b.

Boris Hanin. Which neural net architectures give rise to exploding and vanishing gradients? Advances in
Neural Information Processing Systems, 31, 2018.

Godfrey Harold Hardy, John Edensor Littlewood, George Pólya, György Pólya, et al. Inequalities. Cambridge
university press, 1952.

Soufiane Hayou, Arnaud Doucet, and Judith Rousseau. On the impact of the activation function on deep
neural networks training. In International Conference on Machine Learning, pp. 2672–2680. PMLR, 2019.

Soufiane Hayou, Arnaud Doucet, and Judith Rousseau. The curse of depth in kernel regime. In I (Still) Can’t
Believe It’s Not Better! Workshop at NeurIPS 2021, pp. 41–47. PMLR, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. In Proceedings of the IEEE International Conference on
Computer Vision, pp. 1026–1034, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778, 2016.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and
Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in Neural
Information Processing Systems, 33:22118–22133, 2020.

Wei Huang, Yayong Li, Weitao Du, Jie Yin, Richard Yi Da Xu, Ling Chen, and Miao Zhang. Towards
deepening graph neural networks: A gntk-based optimization perspective. International Conference on
Learning Representations, 2022.

Wenbing Huang, Yu Rong, Tingyang Xu, Fuchun Sun, and Junzhou Huang. Tackling over-smoothing for
general graph convolutional networks. arXiv preprint arXiv:2008.09864, 2020.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International Conference on Machine Learning, pp. 448–456. PMLR, 2015.

Ajay Jaiswal, Peihao Wang, Tianlong Chen, Justin Rousseau, Ying Ding, and Zhangyang Wang. Old can be
gold: Better gradient flow can make vanilla-gcns great again. Advances in Neural Information Processing
Systems, 35:7561–7574, 2022.

Shunhua Jiang, Yunze Man, Zhao Song, Zheng Yu, and Danyang Zhuo. Fast graph neural tangent kernel
via kronecker sketching. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp.
7033–7041, 2022.

Wei Jin, Xiaorui Liu, Yao Ma, Charu Aggarwal, and Jiliang Tang. Towards feature overcorrelation in deeper
graph neural networks. 2022.

Dimitrios Kelesis, Dimitrios Vogiatzis, Georgios Katsimpras, Dimitris Fotakis, and Georgios Paliouras.
Reducing oversmoothing in graph neural networks by changing the activation function. In ECAI 2023, pp.
1231–1238. IOS Press, 2023.

20

Published in Transactions on Machine Learning Research (06/2025)

Dimitrios Kelesis, Dimitris Fotakis, and Georgios Paliouras. Reducing oversmoothing through informed
weight initialization in graph neural networks. arXiv preprint arXiv:2410.23830, 2024.

Nicolas Keriven. Not too little, not too much: a theoretical analysis of graph (over)smoothing. In Advances
in Neural Information Processing Systems, 2022.

Elias Khalil, Pierre Le Bodic, Le Song, George Nemhauser, and Bistra Dilkina. Learning to branch in mixed
integer programming. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

Elias B Khalil, Bistra Dilkina, George L Nemhauser, Shabbir Ahmed, and Yufen Shao. Learning to run
heuristics in tree search. In Ijcai, pp. 659–666, 2017.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. Interna-
tional Conference on Learning Representations, 2017.

Kezhi Kong, Jiuhai Chen, John Kirchenbauer, Renkun Ni, C Bayan Bruss, and Tom Goldstein. Goat: A global
transformer on large-scale graphs. In International Conference on Machine Learning, pp. 17375–17390.
PMLR, 2023.

Sanjukta Krishnagopal and Luana Ruiz. Graph neural tangent kernel: Convergence on large graphs. arXiv
preprint arXiv:2301.10808, 2023.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
neural networks. Advances in Neural Information Processing Systems, 25(1106-1114):1, 2012.

Yann LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient backprop. In Neural
networks: Tricks of the trade, pp. 9–50. Springer, 2002.

Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S Schoenholz, Jeffrey Pennington, and Jascha Sohl-
Dickstein. Deep neural networks as gaussian processes. In International Conference on Learning Represen-
tations, 2018.

Bingheng Li, Linxin Yang, Yupeng Chen, Senmiao Wang, Qian Chen, Haitao Mao, Yao Ma, Akang Wang, Tian
Ding, Jiliang Tang, et al. Pdhg-unrolled learning-to-optimize method for large-scale linear programming.
arXiv preprint arXiv:2406.01908, 2024a.

Guohao Li, Matthias Müller, Ali Thabet, and Bernard Ghanem. Deepgcns: Can gcns go as deep as cnns? In
Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019.

Guohao Li, Chenxin Xiong, Ali Thabet, and Bernard Ghanem. Deepergcn: All you need to train deeper
gcns, 2020.

Guohao Li, Matthias Müller, Bernard Ghanem, and Vladlen Koltun. Training graph neural networks with
1000 layers. In International Conference on Machine Learning, 2021.

Jiahang Li, Yakun Song, Xiang Song, and David Wipf. On the initialization of graph neural networks. In
International Conference on Machine Learning, pp. 19911–19931. PMLR, 2023.

Ping Li and Phan-Minh Nguyen. On random deep weight-tied autoencoders: Exact asymptotic analysis,
phase transitions, and implications to training. In International Conference on Learning Representations,
2019.

Qian Li, Tian Ding, Linxin Yang, Minghui Ouyang, Qingjiang Shi, and Ruoyu Sun. On the power of
small-size graph neural networks for linear programming. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024b.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for semi-
supervised learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

Shiyu Liang and R Srikant. Why deep neural networks for function approximation? In 5th International
Conference on Learning Representations, ICLR 2017, 2017.

21

Published in Transactions on Machine Learning Research (06/2025)

Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, and Ser Nam
Lim. Large scale learning on non-homophilous graphs: New benchmarks and strong simple methods. In
Advances in Neural Information Processing Systems, volume 34, pp. 20887–20902, 2021.

Meng Liu, Hongyang Gao, and Shuiwang Ji. Towards deeper graph neural networks. In Proceedings of the
26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 338–348,
2020.

Weigang Lu, Yibing Zhan, Ziyu Guan, Liu Liu, Baosheng Yu, Wei Zhao, Yaming Yang, and Dacheng
Tao. Skipnode: On alleviating over-smoothing for deep graph convolutional networks. arXiv preprint
arXiv:2112.11628, 2021.

Sitao Luan, Mingde Zhao, Xiao-Wen Chang, and Doina Precup. Break the ceiling: Stronger multi-scale deep
graph convolutional networks. In Advances in Neural Information Processing Systems, volume 32, 2019.

Sitao Luan, Mingde Zhao, Xiao-Wen Chang, and Doina Precup. Training matters: Unlocking potentials of
deeper graph convolutional neural networks. arXiv preprint arXiv:2008.08838, 2020.

Yuankai Luo, Lei Shi, and Xiao-Ming Wu. Classic gnns are strong baselines: Reassessing gnns for node
classification. arXiv preprint arXiv:2406.08993, 2024.

Sohir Maskey, Raffaele Paolino, Aras Bacho, and Gitta Kutyniok. A fractional graph laplacian approach to
oversmoothing. Advances in Neural Information Processing Systems, 36, 2024.

Alexander G de G Matthews, Mark Rowland, Jiri Hron, Richard E Turner, and Zoubin Ghahramani. Gaussian
process behaviour in wide deep neural networks. In International Conference on Learning Representations,
2018.

Yimeng Min, Frederik Wenkel, and Guy Wolf. Scattering gcn: Overcoming oversmoothness in graph
convolutional networks. Advances in Neural Information Processing Systems, 33:14498–14508, 2020.

Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid Von Glehn, Pawel Lichocki, Ivan Lobov, Brendan
O’Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, et al. Solving mixed integer
programs using neural networks. arXiv preprint arXiv:2012.13349, 2020.

Radford M Neal. Bayesian learning for neural networks, volume 118. Springer-Verlag, 1996.

Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions. Foundations
of Computational Mathematics, 17(2):527–566, 2017.

Khang Nguyen, Nong Minh Hieu, Vinh Duc Nguyen, Nhat Ho, Stanley Osher, and Tan Minh Nguyen.
Revisiting over-smoothing and over-squashing using ollivier-ricci curvature. In International Conference on
Machine Learning, pp. 25956–25979. PMLR, 2023.

Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node classification.
In International Conference on Learning Representations, 2019.

Vangelis Th Paschos. Applications of combinatorial optimization. John Wiley & Sons, 2014.

Jeffrey Pennington, Samuel Schoenholz, and Surya Ganguli. Resurrecting the sigmoid in deep learning
through dynamical isometry: Theory and practice. Advances in Neural Information Processing Systems,
30, 2017.

Jeffrey Pennington, Samuel Schoenholz, and Surya Ganguli. The emergence of spectral universality in deep
networks. In International Conference on Artificial Intelligence and Statistics, pp. 1924–1932. PMLR, 2018.

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova. A critical
look at the evaluation of gnns under heterophily: Are we really making progress? arXiv preprint
arXiv:2302.11640, 2023.

22

Published in Transactions on Machine Learning Research (06/2025)

Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, and Surya Ganguli. Exponential
expressivity in deep neural networks through transient chaos. Advances in Neural Information Processing
Systems, 29, 2016.

Chendi Qian, Didier Chételat, and Christopher Morris. Exploring the power of graph neural networks in
solving linear optimization problems. In International Conference on Artificial Intelligence and Statistics,
pp. 1432–1440. PMLR, 2024.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph convolutional
networks on node classification. In International Conference on Learning Representations, 2020.

Andreas Roth. Simplifying the theory on over-smoothing. arXiv preprint arXiv:2407.11876, 2024.

Andreas Roth and Thomas Liebig. Rank collapse causes over-smoothing and over-correlation in graph neural
networks. In Learning on Graphs Conference, pp. 35–1. PMLR, 2024.

T Konstantin Rusch, Michael M Bronstein, and Siddhartha Mishra. A survey on oversmoothing in graph
neural networks. arXiv preprint arXiv:2303.10993, 2023a.

T Konstantin Rusch, Benjamin P Chamberlain, Michael W Mahoney, Michael M Bronstein, and Siddhartha
Mishra. Gradient gating for deep multi-rate learning on graphs. In International Conference on Learning
Representations, 2023b.

Mahalakshmi Sabanayagam, Pascal Esser, and Debarghya Ghoshdastidar. New insights into graph convolu-
tional networks using neural tangent kernels. arXiv preprint arXiv:2110.04060, 2021.

Mahalakshmi Sabanayagam, Pascal Esser, and Debarghya Ghoshdastidar. Representation power of graph
convolutions: Neural tangent kernel analysis. arXiv preprint arXiv:2210.09809, 2022.

Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlinear dynamics of
learning in deep linear neural networks. In International Conference on Learning Represenatations, 2014.

Samuel S Schoenholz, Justin Gilmer, Surya Ganguli, and Jascha Sohl-Dickstein. Deep information propagation.
In International Conference on Learning Representations, 2017.

Michael Scholkemper, Xinyi Wu, Ali Jadbabaie, and Michael T Schaub. Residual connections and normalization
can provably prevent oversmoothing in gnns. arXiv preprint arXiv:2406.02997, 2024.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad. Collective
classification in network data. AI magazine, 29(3):93–93, 2008.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls of graph
neural network evaluation. arXiv preprint arXiv:1811.05868, 2018.

Ahsan Shehzad, Feng Xia, Shagufta Abid, Ciyuan Peng, Shuo Yu, Dongyu Zhang, and Karin Verspoor.
Graph transformers: A survey. arXiv preprint arXiv:2407.09777, 2024.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition.
In International Conference on Learning Representations, 2015.

Jascha Sohl-Dickstein, Roman Novak, Samuel S Schoenholz, and Jaehoon Lee. On the infinite width limit of
neural networks with a standard parameterization. arXiv preprint arXiv:2001.07301, 2020.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout:
A simple way to prevent neural networks from overfitting. In Journal of Machine Learning Research,
volume 15, pp. 1929–1958, 2014.

Matus Telgarsky. Representation benefits of deep feedforward networks. arXiv preprint arXiv:1509.08101,
2015.

23

Published in Transactions on Machine Learning Research (06/2025)

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio.
Graph attention networks. 2017.

Yangkun Wang, Jiarui Jin, Weinan Zhang, Yong Yu, Zheng Zhang, and David Wipf. Bag of tricks for node
classification with graph neural networks. arXiv preprint arXiv:2103.13355, 2021.

Lingfei Wu, Peng Cui, Jian Pei, and Liang Zhao. Graph Neural Networks: Foundations, Frontiers, and
Applications. Springer Nature, 2022a.

Qitian Wu, Wentao Zhao, Zenan Li, David P Wipf, and Junchi Yan. Nodeformer: A scalable graph structure
learning transformer for node classification. Advances in Neural Information Processing Systems, 35:
27387–27401, 2022b.

Xinyi Wu, Zhengdao Chen, William Wang, and Ali Jadbabaie. A non-asymptotic analysis of oversmoothing
in graph neural networks. International Conference on Learning Representations, 2023.

Xinyi Wu, Amir Ajorlou, Zihui Wu, and Ali Jadbabaie. Demystifying oversmoothing in attention-based graph
neural networks. Advances in Neural Information Processing Systems, 36, 2024.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A comprehensive
survey on graph neural networks. In IEEE Transactions on Neural Networks and Learning Systems,
volume 32, pp. 4–24. IEEE, 2020.

Lechao Xiao, Yasaman Bahri, Jascha Sohl-Dickstein, Samuel Schoenholz, and Jeffrey Pennington. Dynamical
isometry and a mean field theory of CNNs: How to train 10,000-layer vanilla convolutional neural networks.
In International Conference on Machine Learning, pp. 5393–5402. PMLR, 2018.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie Jegelka.
Representation learning on graphs with jumping knowledge networks. In International Conference on
Machine Learning, pp. 5453–5462. PMLR, 2018.

Keyulu Xu, Mozhi Zhang, Stefanie Jegelka, and Kenji Kawaguchi. Optimization of graph neural networks:
Implicit acceleration by skip connections and more depth. In International Conference on Machine Learning,
pp. 11592–11602. PMLR, 2021.

Yujun Yan, Milad Hashemi, Kevin Swersky, Yaoqing Yang, and Danai Koutra. Two sides of the same coin:
Heterophily and oversmoothing in graph convolutional neural networks. In 2022 IEEE International
Conference on Data Mining (ICDM). IEEE, 2022.

Chaoqi Yang, Ruijie Wang, Shuochao Yao, Shengzhong Liu, and Tarek Abdelzaher. Revisiting over-smoothing
in deep gcns. arXiv preprint arXiv:2003.13663, 2020.

Chenxiao Yang, Qitian Wu, Jiahua Wang, and Junchi Yan. Graph neural networks are inherently good
generalizers: Insights by bridging gnns and mlps. In International Conference on Learning Representations,
2023a.

Ge Yang and Samuel S Schoenholz. Mean field residual networks: On the edge of chaos. Advances in Neural
Information Processing Systems, 30, 2017.

Guangrui Yang, Jianfei Li, Ming Li, Han Feng, and Ding-Xuan Zhou. Bridging smoothness and approximation:
Theoretical insights into over-smoothing in graph neural networks. arXiv preprint arXiv:2407.01281, 2024.

Rui Yang, Wenrui Dai, Chenglin Li, Junni Zou, and Hongkai Xiong. Tackling over-smoothing in graph
convolutional networks with em-based joint topology optimization and node classification. In IEEE
Transactions on Signal and Information Processing over Networks, volume 9, pp. 123–139. IEEE, 2023b.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with graph
embeddings. In International Conference on Machine Learning, pp. 40–48. PMLR, 2016.

24

Published in Transactions on Machine Learning Research (06/2025)

Hongwei Zhang, Tijin Yan, Zenjun Xie, Yuanqing Xia, and Yuan Zhang. Revisiting graph convolutional network
on semi-supervised node classification from an optimization perspective. arXiv preprint arXiv:2009.11469,
2020.

Wentao Zhang, Zeang Sheng, Ziqi Yin, Yuezihan Jiang, Yikuan Xia, Jun Gao, Zhi Yang, and Bin Cui. Model
degradation hinders deep graph neural networks. In Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 2493–2503, 2022a.

Yifei Zhang, Hao Zhu, Ziqiao Meng, Piotr Koniusz, and Irwin King. Graph-adaptive rectified linear unit for
graph neural networks. In Proceedings of the ACM web conference 2022, pp. 1331–1339, 2022b.

Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in gnns. In International Conference
on Learning Representations, 2020.

Lecheng Zheng, Dongqi Fu, and Jingrui He. Tackling oversmoothing of gnns with contrastive learning. 2021.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng
Li, and Maosong Sun. Graph neural networks: A review of methods and applications. AI open, 1:57–81,
2020a.

Kaixiong Zhou, Xiao Huang, Yuening Li, Daochen Zha, Rui Chen, and Xia Hu. Towards deeper graph neural
networks with differentiable group normalization. In Advances in Neural Information Processing Systems,
volume 33, pp. 4917–4928, 2020b.

Kaixiong Zhou, Xiao Huang, Daochen Zha, Rui Chen, Li Li, Soo-Hyun Choi, and Xia Hu. Dirichlet energy
constrained learning for deep graph neural networks. In Advances in Neural Information Processing Systems,
volume 34, pp. 21834–21846, 2021a.

Kuangqi Zhou, Yanfei Dong, Kaixin Wang, Wee Sun Lee, Bryan Hooi, Huan Xu, and Jiashi Feng. Under-
standing and resolving performance degradation in deep graph convolutional networks. In Proceedings
of the 30th ACM International Conference on Information and Knowledge Management, pp. 2728–2737,
2021b.

Xianchen Zhou and Hongxia Wang. On the explainability of graph convolutional network with gcn tangent
kernel. Neural Computation, 35(1):1–26, 2022.

Chen Zhu, Renkun Ni, Zheng Xu, Kezhi Kong, W Ronny Huang, and Tom Goldstein. Gradinit: Learning
to initialize neural networks for stable and efficient training. Advances in Neural Information Processing
Systems, 34:16410–16422, 2021.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond homophily
in graph neural networks: Current limitations and effective designs. Advances in Neural Information
Processing Systems, 33:7793–7804, 2020.

Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quanquan Gu. Layer-dependent importance
sampling for training deep and large graph convolutional networks. In Advances in Neural Information
Processing Systems, volume 32, 2019.

25

Published in Transactions on Machine Learning Research (06/2025)

Appendix
A Supplemental notation

For any integer n ∈ N, we define [n] ≜ {1, 2, . . . , n}. We may denote a matrix X ∈ Rm×n by (xij)i∈[m],j∈[n],
where xij is the entry in the i-the row and the j-th column. We further use Xi,: ∈ R1×n and X:,j ∈ Rm×1

to denote the i-th row and the j-th column of X, respectively. ∥ · ∥F denotes the Frobenius norm. Given
any function f : Rm×n → R, its derivative ∂f/∂X with respect to X ∈ Rm×n is the m × n matrix with
(∂f/∂X)ij = ∂f(X)/∂xij . For any activation function σ : R → R, we use σ(X) ∈ Rm×n to denote the
output of applying σ entry-wise to the matrix X, i.e., (σ(X))ij = σ(xij). We denote ReLU activation by
ReLU(x) ≜ max(0, x) and tanh activation by tanh(x) ≜ (ex − e−x)/(ex + e−x). For brevity, we use θ to
denote the collection of all trainable parameters in a GCN model.

For any matrix X = (xij) ∈ Rm×n, the vectorizaion of X is defined by

vec(X) := (x11, . . . , xm1, x12, . . . , xm2, . . . , x1n, . . . , xmn)T ∈ Rmn×1.

For any matrix X = (xij) ∈ Rm×n and Y = (yij) ∈ Rp×q, the Kronecker product of X and Y is a mp× nq
block matrix defined by

X ⊗ Y :=

x11Y . . . x1nY
...

. . .
...

xm1Y . . . xmnY

 .

For a matrix X = (xij) ∈ Rm×n, if xij = 0 for all i ∈ [m] and j ∈ [n], we denote X = 0m×n; if xij = 1 for all
i ∈ [m] and j ∈ [n], we denote X = 1m×n. For a vector Z = (zi) ∈ Rn, if zi = 0 for all i ∈ [n], we denote
Z = 0n; if zi = 1 for all i ∈ [n], we denote Z = 1n.

26

Published in Transactions on Machine Learning Research (06/2025)

B Convolutional kernel

Suppose that graph G has M connected components. The m-th component is a subgraph denoted by
Gm = (Vm, Em) for m ∈ [M]. We present a well-known result characterizing the eigenvalues and the
eigenvectors of Â without giving proof, see, e.g., Proposition 1 in Oono & Suzuki (2019).
Proposition B.1. Suppose that G = (V, E) has M connected components {Gm = (Vm, Em)}M

m=1 and the
eigenvalues of Â are λ1 ≥ λ2 ≥ · · · ≥ λn. Then we have

• λi = 1, for any 1 ≤ i ≤M .

• λi ∈ (−1, 1), for any M + 1 ≤ i ≤ n.

Moreover, the set {v(m) = D̃
1
2 u(m) : m ∈ [M]} is a basis of the m-dimensional eigenspace of Â corresponding

to the eigenvalue 1, where u(m) = (1{i∈Vm})i∈[n] ∈ Rn×1 is the indicator vector of the m-th connected
component Gm.

Lemma B.2. Given any H ∈ Rn×C and H ̸= 0n×C , we have 0 ≤ Dir(H)/∥H∥2
F ≤ 2.

Proof. Recall that L̂ = I − Â is the normalized Laplacian of graph G. By Proposition B.1, all the eigenvalues
of L̂ belong to [0, 2).

Given any H ∈ Rn×C , we have

Dir(H) = tr(HT L̂H) =
C∑

k=1
HT

:,kL̂H:,k ≤
C∑

k=1
2 ·HT

:,kH:,k = 2∥H∥2
F.

Similarly, we have

Dir(H) = tr(HT L̂H) =
C∑

k=1
HT

:,kL̂H:,k ≥
C∑

k=1
0 ·HT

:,kH:,k = 0.

Therefore, we conclude that
0 ≤ Dir(H)/∥H∥2

F ≤ 2.

27

Published in Transactions on Machine Learning Research (06/2025)

C Signal propagation theory for vanilla GCN

C.1 NNGP correspondence for vanilla GCN

Proposition C.1 (NNGP correspondence for vanilla GCN). As the network widths d1, d2, . . . , dL−1 se-
quentially go to infinity, the l-th layer’s pre-activation embedding channels {H(l)

:,k}k∈[dl] converge to i.i.d.
n-dimensional Gaussian random variables N(0n, Σ(l)) in distribution for any l ≥ 2. The covariance matrices
are

Σ(1) = σ2
w

d0
ÂXXT Â,

Σ(l+1) = σ2
wÂG(Σ(l))Â,

(3)

where G(Σ) = Eh∼N(0n,Σ)[σ(h)σ(h)T] for any n× n positive semi-definite matrix Σ.

Proof of Proposition C.1. We will prove that {H(l)
:,k}k∈[dl] are asymptotically i.i.d. n-dimensional random

variables with mean 0n and covariance matrix Σ(l) for any l ≥ 1 under the infinite width limit by mathematical
induction. Proposition C.1, which contains a stronger claim that {H(l)

:,k} are asymptotically Gaussian for any
l ≥ 2, will be shown during the induction steps.

Base case. Since the bias terms are initialized to be zero, when l = 1, the k-th channel of the embedding is

H
(1)
:,k = ÂXW

(1)
:,k + 1n · b(1)

k = ÂXW
(1)
:,k . (4)

Since {W (1)
:,k }k∈[d1] are i.i.d. random variables, so {H(1)

:,k }k∈[d1] are also i.i.d. random variables. Taking the
expectation of (4), we get

E[H(1)
:,k] = ÂX · E[W (1)

:,k] = 0n.

Calculating the covariance matrix of (4), we have

Cov[H(1)
:,k , H

(1)
:,k] = E[H(1)

:,k ·H
(1)T
:,k] = E[ÂXW

(1)
:,k W

(1)T
:,k XT Â]

= ÂX · E[W (1)
:,k W

(1)T
:,k] ·XT Â = ÂX ·

(
σ2

w

d0
· Id0

)
·XT Â

= σ2
w

d0
ÂXXT Â.

Thus, if we define Σ(1) = σ2
wÂXXT Â/d0, then {H(1)

:,k }k∈[d1] are exactly i.i.d with mean 0n and covariance
matrix Σ(1).

Induction step. Suppose that {H(l)
:,k}k∈[dl] converge to i.i.d. n-dimensional random variables with mean 0n

and covariance matrix Σ(l) in distribution as d1, . . . , dl−1 sequentially go to infinity, we look at the (l + 1)-th
layer. Recall from the formation of the l-th layer in vanilla GCN, we have

H(l+1) = ÂX(l)W (l+1) + 1n · b(l+1),

X(l) = σ(H(l)),

for any l ≥ 1. We vectorize the first equation and get

vec(H(l+1)) = vec(ÂX(l)W (l+1)) + vec(1n · b(l+1))

=
dl∑

k=1
vec

[ÂX
(l)
:,k]︸ ︷︷ ︸

n×1

·W (l+1)
k,:︸ ︷︷ ︸

1×dl+1

 ,
(5)

because b(l+1) is initialized to be 0dl+1 . Suppose that Σ(l+1) = σ2
wÂG(Σ(l))Â, we are going to show

that vec(H(l+1)) converges to a Gaussian random variable N(0ndl+1 , Idl+1 ⊗ Σ(l+1)) in distribution as

28

Published in Transactions on Machine Learning Research (06/2025)

d1, d2, . . . , dl−1, dl sequentially go to infinity. If this claim holds, {H(l+1)
:,k } are not only asymptotically i.i.d.,

but also asymptotically Gaussian i.i.d. with N(0n, Σ(l+1)), which corresponds to the statement of this
proposition.

For brevity, we define

ω
(l+1)
kk′ :=

√
dl ·W (l+1)

kk′ , for all k ∈ [dl] and k′ ∈ [dl+1],

and
Z

(l+1)
k := vec

(
[ÂX

(l)
:,k] · ω(l+1)

k,:

)
, for all k ∈ [dl]. (6)

Then we get that {ω(l+1)
kk′ }k∈[dl],k′∈[dl+1] are i.i.d. from N(0, σ2

w) and

RHS of (5) = 1√
dl

dl∑
k=1

Z
(l+1)
k . (7)

By the induction hypothesis, as d1, d2. . . . , dl−1 sequentially go to infinity, {X(l)
:,k}k∈[dl] = {σ(H(l)

:,k)}k∈[dl]

converge to i.i.d. n-dimensional random vectors in distribution. Because X(l) can be regarded as a function
of {W (l′)}l

l′=1 at initialization, we get that X(l) and W (l+1) are independent. Thus, as d1, d2. . . . , dl−1

sequentially go to infinity, {Z(l+1)
k }k∈[dl] converge to i.i.d. random vectors in distribution. Moreover, in this

limiting case, by taking the expectation of (6), we have

E[Z(l+1)
1] = vec

([
ÂE[X(l)

:,k]
]
· E[ω(l+1)

k,:]
)

= vec
(
0n×1 · 01×dl+1

)
= 0ndl+1 .

Calculating the covariance matrix of (6), we have

Cov[Z(l+1)
1 , Z

(l+1)
1] = E[Z(l+1)

1 · Z(l+1)T
1]

= E
[
vec
(

[ÂX
(l)
:,1] · ω(l+1)

1,:

)
· vec

(
[ÂX

(l)
:,1] · ω(l+1)

1,:

)T
]

= E
[
(ω(l+1)T

1,: ⊗ ÂX
(l)
:,1) · (ω(l+1)

1,: ⊗X
(l)T
:,1 Â)

]
= E

[
ω

(l+1)T
1,: ω

(l+1)
1,: ⊗ ÂX

(l)
:,1 X

(l)T
:,1 Â

]
= E

[
ω

(l+1)T
1,: ω

(l+1)
1,:

]
⊗
{

Â · E
[
X

(l)
:,1 X

(l)T
:,1

]
· Â
}

= σ2
wIdl+1 ⊗ ÂG(Σ(l))Â

= Idl+1 ⊗ σ2
wÂG(Σ(l))Â = Idl+1 ⊗ Σ(l+1).

Here X
(l)
:,1 actually stands for the limit of true X

(l)
:,1 as d1, . . . , dl−1 sequentially go to infinity without bringing

any confusion.

By multivariate central limit theorem, 1√
dl

∑dl

k=1 Z
(l+1)
k converges to a Gaussian random variable

N(0ndl+1 , Idl+1 ⊗ Σ(l+1)) in distribution as dl → ∞. Recalling (5) and (7), we conclude that vec(H(l+1))
converges to a Gaussian random variable N(0ndl+1 , Idl+1 ⊗ Σ(l+1)) as d1, . . . , dl sequentially go to infinity.

Conclusion. By the principle of mathematical induction, we have proven this proposition.

C.2 Some discussion w.r.t. G

We claim that the function G is well-defined in Proposition C.1 on the collection of positive semi-definite
matrices

S = {Σ ∈ Rn×n : xT Σx ≥ 0 for all x ∈ Rn×1}. (8)

29

Published in Transactions on Machine Learning Research (06/2025)

Remark C.2. To show that G(Σ) = Eh∼N(0n,Σ)[σ(h)σ(h)T] is well-defined at any Σ ∈ S, we only need to
show that such Σ is always a feasible covariance matrix of Gaussian distribution. For any Σ ∈ S, there exists
P ∈ Rn×n, such that PP T = Σ. Let ξ ∼ N(0n, In) be an n-dimensional standard normal random variable,
then the random variable Pξ ∼ N(0n, Σ). Thus, all positive semi-definite matrices are feasible covariance
matrices for Gaussian distributions.
Definition C.3. Given any positive semi-definite matrix Σ ∈ S, we define

G1(Σ) := q(Σ)q(Σ)T , (9)

where q(Σ) ∈ Rn×1 is defined by

q(Σ)i :=
√

G(Σ)ii, for all i ∈ [n]. (10)

Lemma C.4. Given any positive semi-definite matrix Σ ∈ S, it holds that

G1(Σ)ij ≥ G(Σ)ij for any i, j ∈ [n]. (11)

Proof. Recalling the formation of function G in Proposition C.1 (NNGP correspondence for vanilla GCN),
for any i, j ∈ [n], we have

G(Σ)ij = Eh∼N(0n,Σ)[σ(hi) · σ(hj)].
Recalling (9) and (10) in Definition C.3, we get

G1(Σ)ij := q(Σ)i · q(Σ)j =
√

G(Σ)ii ·
√

G(Σ)jj

= Eh∼N(0n,Σ)[σ(hi)2] 1
2 · Eh∼N(0n,Σ)[σ(hj)2] 1

2

(12)

From Hölder’s inequality (Hardy et al., 1952), we get

RHS of (12) ≥ Eh∼N(0n,Σ) [|σ(hi) · σ(hj)|]
≥ Eh∼N(0n,Σ) [σ(hi) · σ(hj)] = G(Σ)ij .

Lemma C.5. Given the NNGP covariance matrices {Σ(l)}∞
l=1 defined by (3), it holds that

tr(Σ(l+1)) ≤ σ2
w tr(G(Σ(l))).

Proof. Recalling the NNGP correspondence formula for vanilla GCN (3) in Proposition C.1, we have

tr(Σ(l+1)) = tr(σ2
w(ÂG(Σ(l))Â)) = σ2

w tr(ÂG(Σ(l))Â)). (13)

Since all entries of Â are non-negative, by Lemma C.4, we have

(ÂG(Σ(l))Â)ii ≤ (ÂG1(Σ(l))Â)ii, for any i ∈ [n].

Taking the summation of w.r.t i ∈ [n], we get

tr(ÂG(Σ(l))Â) ≤ tr(ÂG1(Σ(l))Â). (14)

Recalling the definition of function G1 in (9), we get

tr(ÂG1(Σ(l))Â) = tr(Âq(Σ(l))q(Σ(l))T Â) = ∥Âq(Σ(l))∥2. (15)

By Proposition B.1, all the eigenvalues of Â belong to (−1, 1]. Recalling the definition of function q in (10),
we get

∥Âq(Σ(l))∥2 ≤ ∥q(Σ(l))∥2 =
n∑

i=1
q(Σ(l))2

i = tr(G(Σ(l))). (16)

Finally, combining (13), (14), (15), and (16), we complete the proof.

30

Published in Transactions on Machine Learning Research (06/2025)

C.3 Proof of Theorem 3.1 (Signal propagation on ReLU-like-activated vanilla GCN)

To facilitate reading and understanding, we restate Theorem 3.1 here.
Theorem 3.1. Under the NNGP correspondence approximation, when the activation function σ is ReLU, we
have
1. If σ2

w = 2, either the limit graph embedding variation (GEV) metric limL→∞ M(L)
GEV (σ2

w) = 0 or the limit
forward signal propagation (FSP) metric limL→∞ M(L)

FSP (σ2
w) = 0;

2. When σ2
w < 2, the forward signal propagation (FSP) metric M(L)

FSP (σ2
w) ≤ 2C

d0
· (σ2

w/2)L for any L ≥ 1.

We now provide a more general signal propagation analysis on vanilla GCN with ReLU-like activation.
Definition C.6 (ReLU-like activation). An activation function σ : R→ R is (α, β)-ReLU if it has the form

σ(x) =
{

αx, x ≥ 0,

βx, x < 0,
(17)

where α, β ∈ R+ and not both of them are 0. We also call such σ a ReLU-like activation function.

Next, to prove Theorem 3.1, we generalize our analysis from the standard ReLU activation to the more
general (α, β)-ReLU activation in Definition C.6. Since (α, β) = (1, 0) recovers the standard ReLU, proving
the following Theorem C.7 implies Theorem 3.1.
Theorem C.7 (The generalized version of Theorem 3.1). Under the NNGP correspondence approximation,
when the activation function σ is (α, β)-ReLU in Definition C.6, we have
1. When σ2

w = 2/(α2 + β2), either the graph embedding variation metric

lim
L→∞

M(L)
GEV (σ2

w) = lim
L→∞

EH∼N(0n,Σ(L))
[
Dir(H)/∥H∥2

F
]

= 0,

or the forward propagation metric

lim
L→∞

M(L)
FSP (σ2

w) = lim
L→∞

EH∼N(0n,Σ(L))[∥H∥2
F/∥X∥2

F] = 0.

2. When σ2
w < 2/(α2 + β2), for any L ≥ 1, the forward propagation metric satisfies

M(L)
FSP (σ2

w) = EH∼N(0n,Σ(L))[∥H∥2
F/∥X∥2

F] ≤ 2C

(α2 + β2)d0
·
(

σ2
w(α2 + β2)

2

)L

.

Lemma C.8. For any x ∈ Rn, it holds that

Dir(Âx) ≤ λ2Dir(x), (18)

where λ is the second largest absolute eigenvalue of Â, i.e.,

λ = max
i∈[n],λi ̸=1

|λi|.

Proof. Since Â is a symmetric real matrix, by Proposition B.1, it can be decomposed as Â = UΛUT , where
Λ = diag(λ1, λ2, . . . , λn) and U ∈ Rn×n is an orthogonal matrix. The i-th column ui of U is the eigenvector
corresponding to λi.

By Proposition B.1, we have λi ∈ (−1, 1] for all i ∈ [n]. Since L̂ = I − Â, we conclude that

Dir(Âx) = (Âx)T L̂Âx = xT ÂL̂Âx = zT UT (UΛU−1)(U(I − Λ)U−1)(UΛU−1)z

= zT Λ(I − Λ)Λz =
n∑

i=1
(1− λi)λ2

i z2
i ≤ λ2

n∑
i=1

(1− λi)z2
i

= λ2zT (I − Λ)z = λ2Dir(x).

31

Published in Transactions on Machine Learning Research (06/2025)

Lemma C.9. When the activation function σ is (α, β)-ReLU, it holds that

(σ(x)− σ(y))2 + (σ(−x)− σ(−y))2 ≤ (α2 + β2)(x− y)2, (19)

for any x, y ∈ R. Moreover, the inequality becomes an equality if and only if xy ≥ 0.

Proof. When x, y ≥ 0, it holds that

LHS of (19) = (αx− αy)2 + (−βx + βy)2 = RHS of (19).

Similarly, the equality holds when x, y ≤ 0. When xy < 0,

LHS of (19) = (αx− βy)2 + (−βx + αy)2

= (α2 + β2)(x2 + y2)− 4αβxy

= (α2 + β2)(x− y)2 + 2(α− β)2xy

< RHS of (19).

Lemma C.10. When the activation function σ is (α, β)-ReLU, it holds that

Dir(σ(h)) + Dir(σ(−h)) ≤ (α2 + β2)Dir(h). (20)

Proof. Since the activation function σ is (α, β)-ReLU, we have

σ(cx) = cσ(x), for any c ∈ R+, x ∈ R.

Then we get

LHS of (20) =
∑

(i,j)∈E

[
σ(hi)√
1 + di

− σ(hj)√
1 + dj

]2

+
[

σ(−hi)√
1 + di

− σ(−hj)√
1 + dj

]2

=
∑

(i,j)∈E

[
σ

(
hi√

1 + di

)
− σ

(
hj√

1 + dj

)]2

+
[

σ

(
−hi√
1 + di

)
− σ

(
−hj√
1 + dj

)]2

.

By Lemma C.9, we have

LHS of (20) ≤ (α2 + β2)
∑

(i,j)∈E

[
hi√

1 + di

− hj√
1 + dj

]2

= RHS of (20).

Lemma C.11. When the activation function σ is (α, β)-ReLU, for any feasible covariance matrix Σ ∈ Rn×n,
it holds that

Eh∼N(0n,Σ)[Dir(σ(h))] ≤ α2 + β2

2 · Eh∼N(0n,Σ)[Dir(h)].

Proof. By symmetry, for any n-dimensional random variable h ∼ N(0n, Σ), it holds that −h ∼ N(0n, Σ). By
Lemma C.10, we have

2Eh∼N(0n,Σ)[Dir(σ(h))] = Eh∼N(0n,Σ)[Dir(σ(h)) + Dir(σ(−h))]
≤ (α2 + β2)Eh∼N(0n,Σ)[Dir(h)].

32

Published in Transactions on Machine Learning Research (06/2025)

Lemma C.12. Under the NNGP correspondence approximation, suppose that the activation function σ is
(α, β)-ReLU in Definition C.6. If

σ2
w <

2
λ2(α2 + β2) ,

then we have

Eh∼N(0n,Σ(l))[Dir(h)] = O

((
λ2σ2

w(α2 + β2)
2

)l
)

, as l→∞,

where λ is the second largest non-one absolute eigenvalue of Â, i.e.,

λ = max
i∈[n],λi ̸=1

|λi|.

Proof. For any positive semi-definite matrix Σ ∈ S and any n-dimensional Gaussian random variable
h ∼ N(0n, Σ), we have

Eh∼N(0n,Σ)[Dir(h)] = Eh∼N(0n,Σ)[tr(hT L̂h)] = Eh∼N(0n,Σ)[tr(L̂hhT)] = tr(L̂Σ).

Then according the NNGP correspondence formula (3) in Proposition C.1, for any l ∈ N, we have

Eh∼N(0n,Σ(l+1))[Dir(h)] = tr(L̂Σ(l+1))

= σ2
w tr(L̂ÂG(Σ(l))Â) = σ2

w tr
(

L̂Â · Eh∼N(0n,Σ(l))[σ(h)σ(h)T] · Â
)

= σ2
wEh∼N(0n,Σ(l))

[
tr
(

L̂Âσ(h)σ(h)T Â
)]

= σ2
wEh∼N(0n,Σ(l))

[
tr
(

σ(h)T ÂL̂Âσ(h)
)]

= σ2
wEh∼N(0n,Σ(l))

[
Dir

(
Âσ(h)

)]
.

(21)

By Lemma C.8 and Lemma C.11, we get

RHS of (21) ≤ λ2σ2
w · Eh∼N(0n,Σ(l))[Dir(σ(h))] ≤ λ2σ2

w(α2 + β2)
2 · Eh∼N(0n,Σ(l))[Dir(h)]. (22)

Thus, combining (21) and (22), by induction, we have

Eh∼N(0n,Σ(l))[Dir(h)] = O

((
λ2σ2

w(α2 + β2)
2

)l
)

, as l→∞.

Proof of Theorem C.7 (the generalized version of Theorem 3.1). First of all, we will prove part 2 of this
theorem. For any positive semi-definite matrix Σ ∈ S, we have

Eh∼N(0n,Σ)[∥h∥2] = Eh∼N(0n,Σ)[tr(hT h)] = Eh∼N(0n,Σ)[tr(hhT)] = tr(Σ).

For this reason, we only need to focus on {tr(Σ(l))}∞
l=1 in the following proof.

We will show that {tr(Σ(l))}∞
l=1 is a decreasing sequence if σw ≤ 2/(α2 + β2). By Lemma C.5, we have

tr(Σ(l+1)) ≤ σ2
w tr(G(Σ(l))). (23)

When the activation function σ is (α, β)-ReLU, for any c ∈ R+, it holds that

EZ∼N(0,1)[σ(cZ)2] = EZ∼N(0,1)[α2c2Z21{Z>0}] + EZ∼N(0,1)[β2c2Z21{Z≤0}]

= α2 + β2

2 · EZ∼N(0,1)[c2Z2].

33

Published in Transactions on Machine Learning Research (06/2025)

Accordingly, for any positive semi-definite matrix Σ ∈ S and i ∈ [n], we have

G(Σ)ii = Eh∼N(0n,Σ)[σ(hi)2] = EZ∼N(0,1)

[
σ(
√

ΣiiZ)2
]

= α2 + β2

2 · EZ∼N(0,1)
[
ΣiiZ

2] = α2 + β2

2 · Σii.

(24)

Combining (23) and (24), we get

tr(Σ(l+1)) ≤ σ2
w(α2 + β2)

2 tr(Σ(l)).

Thus, we have shown that {tr(Σ(l))}∞
l=1 is a decreasing sequence if σw ≤ 2/(α2 + β2). In addition, if

σw < 2/(α2 + β2), we get

tr(Σ(L)) ≤
(

σ2
w(α2 + β2)

2

)L−1

tr(Σ(1)). (25)

By Proposition C.1, we have

tr(Σ(1)) = σ2
w

d0
tr(ÂXXT Â) = σ2

w

d0

d0∑
k=1

tr(ÂX:,kXT
:,kÂ) = σ2

w

d0

d0∑
k=1
∥ÂX:,k∥2 (26)

Since all the eigenvalues of Â belong to (−1, 1] by Propositon B.1, we get

RHS of (26) ≤ σ2
w

d0

d0∑
k=1
∥X:,k∥2 = σ2

w

d0
tr(XXT). (27)

Combining (25), (26), and (27), we have

tr(Σ(L)) ≤ σ2
w

d0
·
(

σ2
w(α2 + β2)

2

)L−1

tr(XXT).

Thus, the forward propagation metric at the L-th layer satisfies

EH∼N(0n,Σ(L))

[
∥H∥2

F
∥X∥2

F

]
= C

tr(XXT) · Eh∼N(0n,Σ(L))[∥h∥2] = C

tr(XXT) tr(Σ(L))

≤ Cσ2
w

d0
·
(

σ2
w(α2 + β2)

2

)L−1

= 2C

(α2 + β2)d0
·
(

σ2
w(α2 + β2)

2

)L

.

Then we have completed part 2 of this theorem. If σ is ReLU activation function, i.e., (1, 0)-ReLU. If
σ < 2 = 2

12+02 , we have

EH∼N(0n,Σ(L))

[
∥H∥2

F
∥X∥2

F

]
= 2C

(12 + 02)d0
·
(

σ2
w(12 + 02)

2

)L

= 2C

d0
·
(

σ2
w

2

)L

,

which coincides with part 2 in Theorem 3.1.

Next, we will prove part 1 of this theorem. Let’s study the case when σ2
w = 2/(α2 + β2). Suppose that

lim
l→∞

tr(Σ(l)) = δ0.

If δ0 = 0, then we have completed the first part of this theorem by getting

lim
L→∞

EH∼N(0n,Σ(L))[∥H∥2
F/∥X∥2

F] = lim
L→∞

C

∥X∥2
F
· Eh∼N(0n,Σ(L))[∥h∥2]

= C

∥X∥2
F
· lim

L→∞
tr(Σ(L)) = 0.

34

Published in Transactions on Machine Learning Research (06/2025)

Now we study the case when δ0 > 0. In order to show part 1 of the theorem, we only need to demonstrate
that

lim
L→∞

EH∼N(0n,Σ(L))

[
Dir(H)
∥H∥2

F

]
= 0.

Given any fixed ϵ > 0, we have

EH∼N(0n,Σ(L))

[
Dir(H)
∥H∥2

F

]
= EH∼N(0n,Σ(L))

[
Dir(H)
∥H∥2

F
1{∥H∥F≥ϵ}

]
+ EH∼N(0n,Σ(L))

[
Dir(H)
∥H∥2

F
1{∥H∥F≤ϵ}

]
.

(28)

From Lemma B.2, it holds that Dir(H)/∥H∥2
F ≤ 2, so we get

RHS of (28) ≤ 1
ϵ2 · EH∼N(0n,Σ(L))

[
Dir(H)1{∥H∥F≥ϵ}

]
+ 2 · PH∼N(0n,Σ(L)) [∥H∥F ≤ ϵ]

≤ 1
ϵ2 · EH∼N(0n,Σ(L)) [Dir(H)] + 2 · PH∼N(0n,Σ(L)) [∥H∥F ≤ ϵ] .

(29)

For any L ≥ 1, there exists i ∈ [n], such that Σ(L)
ii ≥ tr(Σ(L))/n. Then for any n × C random matrix

H ∼ N(0n, Σ(L)), we have Hi,1 ∼ N(0, Σ(L)
ii). For this reason, we have

PH∼N(0n,Σ(L)) [∥H∥F ≤ ϵ] ≤ PH∼N(0n,Σ(L)) [|Hi,1| ≤ ϵ] = PZ∼N(0,1)

[
|Z| ≤ ϵ√

Σii

]
≤ PZ∼N(0,1)

[
|Z| ≤ ϵ ·

√
n

tr(Σ(L))

]
= 2Φ

(
ϵ ·
√

n

tr(Σ(L))

)
− 1,

(30)

where Φ(x) = PZ∼N(0,1)[Z ≤ x] denotes the cumulative distribution function of the standard normal
distribution N(0, 1).

Combining (28), (29), and (30), we get

EH∼N(0n,Σ(L))

[
Dir(H)
∥H∥2

F

]
≤ 1

ϵ2 · EH∼N(0n,Σ(L)) [Dir(H)] + 4Φ
(

ϵ ·
√

n

tr(Σ(L))

)
− 2,

for any L ≥ 1.

Since
σ2

w = 2
α2 + β2 <

2
λ2(α2 + β2) ,

by Lemma C.12, we have
lim

L→∞
EH∼N(0n,Σ(L))[Dir(H)] = 0.

We let L→∞ in (28) and get

lim sup
L→∞

EH∼N(0n,Σ(L))

[
Dir(H)
∥H∥2

F

]
≤ 1

ϵ2 · lim sup
L→∞

EH∼N(0n,Σ(L)) [Dir(H)] + 4 · lim sup
L→∞

Φ
(

ϵ ·
√

n

tr(Σ(L))

)
− 2

= 1
ϵ2 · 0 + 4Φ

(
ϵ ·
√

n

δ0

)
− 2 = 4Φ

(
ϵ ·
√

n

δ0

)
− 2.

(31)

35

Published in Transactions on Machine Learning Research (06/2025)

Notice that the left hand side of (31) is independent of the choice of ϵ. Since Φ is a continuous map, we let
ϵ→ 0+ and get

lim sup
L→∞

EH∼N(0n,Σ(L))

[
Dir(H)
∥H∥2

F

]
≤ 4Φ(0)− 2 = 0.

Therefore, we have

lim
L→∞

EH∼N(0n,Σ(L))

[
Dir(H)
∥H∥2

F

]
= 0.

C.4 Proof of Theorem 3.2 (Signal propagation on ReLU-activated vanilla GCN)

To facilitate reading and understanding, we restate Theorem 3.2 here.

Theorem 3.2. Under the NNGP correspondence approximation, when the activation is ReLU, the graph
embedding variation (GEV) metric M(L)

GEV is independent of σ2
w.

Similar to Appendix C.3, to prove Theorem 3.2, we generalize our analysis from the standard ReLU activation
to the more general (α, β)-ReLU activation in Definition C.6. Since (α, β) = (1, 0) recovers the standard
ReLU, proving the following Theorem C.13 implies Theorem 3.2.

Theorem C.13 (The generalized version of Theorem 3.2). Under the NNGP correspondence ap-
proximation, when the activation is (α, β)-ReLU, the graph embedding variation metric M(L)

GEV (σ2
w) =

EH∼N(0n,Σ(L))[Dir(H)/∥H∥2
F] is independent of the choice of σ2

w.

Proof of Theorem C.13 (the generalized version of Theorem 3.2). Under the NNGP correspondence approx-
imation, we only need to prove that

Σ(l)(σ2
w)

σ2l
w

= Σ(l)(σ̃2
w)

σ̃2l
w

, for any l ≥ 1 and σ2
w, σ̃2

w > 0. (32)

If (32) holds, then H ∼ N(0n, Σ(L)(σ2
w)) implies σ̃L

wH/σL
w ∼ N(0n, Σ(L)(σ̃2

w)). In this way, we have

EH∼N(0n,Σ(L)(σ2
w))

[
Dir(H)
∥H∥2

F

]
= EH∼N(0n,Σ(L)(σ2

w))

[
Dir(σ̃L

wH/σL
w)

∥σ̃L
wH/σL

w∥2
F

]
= EH∼N(0n,Σ(L)(σ̃2

w))

[
Dir(H)
∥H∥2

F

]
.

Now we prove (32) by mathematical induction. When l = 1, by Proposition C.1, we have

Σ(1)(σ2
w)

σ2
w

= 1
d0

ÂXXT Â = Σ(1)(σ̃2
w)

σ̃2
w

, for any σ2
w, σ̃2

w > 0.

If (32) holds for L, we look at the case for L + 1. Since the activation σ is (α, β)-ReLU, for any c ∈ R+, we
have σ(cx) = cσ(x). Recalling the definition of G in Proposition C.1, for any positive semi-definite matrix
Σ ∈ S, we have

G(c2Σ)ij = Eh∼N(0n,c2Σ)[σ(hi) · σ(hj)] = Eh∼N(0n,Σ)[σ(chi) · σ(chj)]
= c2Eh∼N(0n,Σ)[σ(hi) · σ(hj)] = c2G(Σ)ij ,

36

Published in Transactions on Machine Learning Research (06/2025)

for any i, j ∈ [n] and c ∈ R+. Thus, by Proposition C.1, we have

(
σ̃2

w

σ2
w

)L+1

· Σ(L+1)(σ2
w) (a)=

(
σ̃2

w

σ2
w

)L+1

· σ2
wÂG

(
Σ(L)(σ2

w)
)

Â

= σ̃2
w ·
(

σ̃2
w

σ2
w

)L

· ÂG
(

Σ(L)(σ2
w)
)

Â

(b)= σ̃2
w · ÂG

(
Σ(L)(σ̃2

w)
)

(c)= Σ(L+1)(σ̃2
w),

where (a) and (c) are due to Proposition C.1 and (b) are from the induction hypothesis.

Therefore, (32) holds for all L ≥ 1 and we have completed the proof.

C.5 Signal propagation on tanh-activated vanilla GCN

Theorem C.14. Under the NNGP correspondence approximation, when the activation function σ is tanh,
we have

1. When σ2
w = 1, we have limL→∞ M(L)

FSP (σ2
w) = limL→∞ EH∼N(0n,Σ(L))[∥H∥2

F/∥X∥2
F] = 0.

2. When σ2
w < 1, we have M(L)

FSP (σ2
w) = EH∼N(0n,Σ(L))[∥H∥2

F/∥X∥2
F] ≤ C

d0
· σ2L

w for any L ≥ 1.

Lemma C.15. The collection of positive semi-definite matrices S defined by (8) is a closed subset of Rn×n.

Proof. We only need to show that given any convergent sequence {Q(k)}∞
k=1 ⊂ S, its limit also belongs to S.

Suppose that
lim

k→∞
Q(k) = Q∗.

Since all {Q(k)}∞
k=1 are positive semi-definite matrices, so given any x ∈ Rn×1, we have

xT Q(k)x ≥ 0, for all k ∈ N.

Then we get
xT Q∗x = lim

k→∞
xT Q(k)x ≥ 0.

Thus, Q∗ also belongs to S.

Lemma C.16. When the activation function σ is tanh, i.e., σ(x) = (ex − e−x)/(ex + e−x), then we have
|σ(x)| ≤ |x| for any x ∈ R. Moreover, the equality holds if and only if x = 0.

Proof. It is easy to verify that σ(0) = 0. Given any x ≥ 0, we have

σ(−x) = e−x − ex

e−x + ex
= −ex − e−x

e−x + ex
= −σ(x).

For this reason, we only need to prove that |σ(x)| < |x| for any x > 0. In the following part, we will show
that 0 < σ(x) < x when x > 0.

37

Published in Transactions on Machine Learning Research (06/2025)

We define f(x) := σ(x)− x for any x ≥ 0. Let’s consider the derivative of f :

f ′(x) = d

dx

(
ex − e−x

ex + e−x
− x

)
= 1

(ex + e−x)2

[
(ex + e−x) · d

dx
(ex − e−x)− (ex − e−x) · d

dx
(ex + e−x)

]
− 1

= (ex + e−x)2 − (ex − e−x)2

(ex + e−x)2 − 1

= −(ex − e−x)2

(ex + e−x)2 .

Then if x > 0, we have f ′(x) < 0; if x = 0, we have f ′(x) = 0. Thus, f(x) = σ(x)− x is a strictly decreasing
function in [0, +∞). Since f(0) = σ(0)− 0 = 0, we have

f(x) = σ(x)− x < 0, for any x > 0.

Since 0 < ex − e−x < ex + e−x for any x > 0, it holds that

σ(x) = (ex − e−x)/(ex + e−x) > 0, for any x > 0.

Therefore, we get that 0 < σ(x) < x for any x > 0 and have completed the proof of this lemma.

Now it is time for Theorem C.14.

Proof of Theorem C.14. First of all, we will prove part 2 of this theorem. For any positive semi-definite
matrix Σ ∈ S, we have

Eh∼N(0n,Σ)[∥h∥2] = Eh∼N(0n,Σ)[tr(hT h)] = Eh∼N(0n,Σ)[tr(hhT)] = tr(Σ).

For this reason, we only need to focus on {tr(Σ(l))}∞
l=1 in the following proof.

We will show that {tr(Σ(l))}∞
l=1 is a decreasing sequence if σw ≤ 1. By Lemma C.5, we have

tr(Σ(l+1)) ≤ σ2
w tr(G(Σ(l))). (33)

By Lemma C.16, we have |σ(x)| ≤ |x| for any x ∈ R. Moreover, the equality holds if and only if x = 0. For
this reason, given any positive semi-definite matrix Σ ∈ S, we have

tr(G(Σ)) =
n∑

i=1
Eh∼N(0n,Σ)[σ(hi)2] =

n∑
i=1

EZ∼N(0,1)

[
σ(
√

ΣiiZ)2
]

≤
n∑

i=1
EZ∼N(0,1)

[
(
√

ΣiiZ)2
]

=
n∑

i=1
Eh∼N(0n,Σ)[h2

i] = tr(Σ),
(34)

and the inequality becomes an equality if and only if
√

ΣiiZ = 0 holds P-a.s. for all i ∈ [n]. Since Z ∼ N(0, 1)
follows a standard normal distribution, it is equivalent to Σii = 0 for all i ∈ [n], i.e., tr(Σ) = 0.

Combining (33) and (34), we get
tr(Σ(l+1)) ≤ σ2

w tr(Σ(l)).

Thus, we have shown that {tr(Σ(l))}∞
l=1 is a decreasing sequence if σw ≤ 1. In addition, if σw < 1, we get

tr(Σ(L)) ≤ σ2(L−1)
w tr(Σ(1)). (35)

38

Published in Transactions on Machine Learning Research (06/2025)

Analogous to the proof of part 2 in Theorem C.7 for ReLU-activated model, by Proposition C.1 and Proposition
B.1, we have

tr(Σ(1)) = σ2
w

d0
tr(ÂXXT Â) = σ2

w

d0

d0∑
k=1

tr(ÂX:,kXT
:,kÂ)

= σ2
w

d0

d0∑
k=1
∥ÂX:,k∥2 ≤ σ2

w

d0

d0∑
k=1
∥X:,k∥2 = σ2

w

d0
∥X∥2

F.

(36)

Combining (35) and (36), we have

tr(Σ(1)) ≤ σ2L
w

d0
∥X∥2

F.

Then we have completed part 2 of the theorem by getting

EH∼N(0n,Σ(L))

[
∥H∥2

F
∥X∥2

F

]
= C

∥X∥2
F
Eh∼N(0n,Σ(L))[∥h∥2] = C

∥X∥2
F

tr(Σ(L))

≤ C

∥X∥2
F
· σ2L

w

d0
· ∥X∥2

F ≤
C

d0
· σ2L

w .

Next, we will prove part 1 of this theorem. Let’s study the case when σw = 1.

Since Σ(l) is a positive semi-definite matrix for any l ∈ N, we have

|Σ(l)
ij |

2 ≤ Σ(l)
ii Σ(l)

jj ≤ tr(Σ(l))2 ≤ tr(Σ(1))2, for all i, j ∈ [n].

Taking the summation of both sides w.r.t. i and j, we get

∥Σ(l)∥2
F =

n∑
i,j=1

|Σ(l)
ij |

2 ≤ n2 tr(Σ(1))2 <∞.

Thus, the matrix sequence {Σ(l)}∞
l=1 lies in

S ′ = S ∩ {Σ ∈ Rn×n : ∥Σ∥F ≤ n tr(Σ(1))}.

By Lemma C.15, S ′ is a bounded and closed subset, i.e., a compact subset, of Rn×n. By the
Bolzano–Weierstrass theorem, there exists a subsequence {Σ(lk)}∞

k=1 of {Σ(l)}∞
l=1 and Σ∗ ∈ S ′ such that

lim
k→∞

Σ(lk) = Σ∗.

Recalling (33) and that {tr(Σ(l))}∞
l=1 is a decreasing sequence, we have

tr(Σ(lk+1)) ≤ tr(Σ(lk+1)) ≤ tr(G(Σ(lk))).

Since G is a continuous function, we let k →∞ and get

tr(Σ∗) = lim
k→∞

tr(Σ(lk+1)) ≤ lim
k→∞

tr(G(Σ(lk))) = tr(G(Σ∗)).

According to (34), we have
tr(G(Σ∗)) = tr(Σ∗).

This implies tr(Σ∗) = 0 by (34).

Then, since {tr(Σ(l))}∞
l=1 is a decreasing sequence, we have

lim
l→∞

Eh∼N(0n,Σ(l))[∥h∥2] = lim
l→∞

tr(Σ(l)) = lim
k→∞

tr(Σ(lk)) = tr(Σ∗) = 0.

Consequently, we have

lim
L→∞

EH∼N(0n,Σ(L))

[
∥H∥2

F
∥X∥2

F

]
= C

∥X∥2
F

lim
L→∞

Eh∼N(0n,Σ(L))[∥h∥2] = 0.

39

Published in Transactions on Machine Learning Research (06/2025)

D Signal propagation theory for linear ResGCN

D.1 NNGP correspondence for linear ResGCN

Proposition D.1 (NNGP correspondence for linear ResGCN). As the width of the hidden layers d→∞,
the l-th layer’s pre-activation embedding channels {H(l)

:,k}k∈[d] converge to i.i.d. Gaussian random variables
N(0n, Σ̃(l)) in distribution. The covariance matrices are

Σ̃(1) = σ4
w

d0
ÂXXT Â,

Σ̃(l+1) = α2σ2
wÂΣ̃(l)Â + β2Σ̃(l).

(37)

Moreover, as d→∞, the l-th layer’s post-activation embedding channels {X(l)
:,k}k∈[d] converge to i.i.d. random

variables in distribution. The random variables have mean 0n and their covariance matrices Φ(l), which
satisfy

Φ(0) = σ2
w

d0
XXT ,

Φ(l) = α2σ2
wÂΦ(l−1)Â + β2Φ(l−1).

(38)

Proof of Proposition D.1. For Φ(l), Σ̃(l+1) defined by (38) and (37), it is easy to show that Σ̃(l+1) = σ2
wÂΦ(l)Â.

Similar to the proof of Proposition C.1, We will prove this proposition by mathematical induction.

Base case. When l = 0, the k-th channel of X(0) is

X
(0)
:,k = XW

(0)
:,k + 1n · b(0)

k = XW
(0)
:,k . (39)

According to our initialization, the weights {W (0)
:,k }k∈[d] are i.i.d. random variables, so {X(0)

:,k }k∈[d] are also
i.i.d. random variables. Taking the expectation of (39), we get

E[X(0)
:,k] = X · E[W (0)

:,k] = 0n.

Calculating the covariance matrix of (39), we have

Cov[X(0)
:,k] = E[X(0)

:,k ·X
(0)T
:,k] = E[XW

(0)
:,k W

(0)T
:,k XT]

= X · E[W (0)
:,k W

(0)T
:,k] ·XT = X

(
σ2

w

d0
· Id0

)
XT

= σ2
w

d0
XXT .

Thus, if we let Φ(0) = σ2
wXXT /d0, then we have {X(0)

:,k }k∈[d] are i.i.d. with mean 0n and covariance matrix
Φ(0).

Now we study the pre-activation embedding H(1). Since the bias term b(1) is initialized to be 0d, we have

H(1) = ÂX(0)W (1) + 1n · b(1) = ÂX(0)W (1).

Similar to the proof of Proposition C.1 for vanilla GCN, we vectorize the equation and get

vec(H(1)) =
d∑

k=1
vec

[ÂX
(0)
:,k]︸ ︷︷ ︸

n×1

·W (1)
k,:︸ ︷︷ ︸

1×d

 .

For brevity, we define
ω

(1)
kk′ :=

√
d ·W (1)

kk′ , for all k, k′ ∈ [d]

40

Published in Transactions on Machine Learning Research (06/2025)

and
Z

(1)
k := vec

(
[ÂX

(0)
:,k] · w(l+1)

k,:

)
, for all k ∈ [d].

Then we get that {ω(1)
kk′}k,k′∈[d] are i.i.d. with mean 0 and variance σ2

w, and

vec(H(1)) = 1√
d

d∑
k=1

Z
(1)
k .

Analogous to the proof of Proposition C.1, {Z(1)
k }k∈[d] are i.i.d., E[Z(1)

1] = 0nd, and

Cov[Z(1)
1] = E

[
ω

(1)T
1,: ω

(1)
1,:

]
⊗
{

Â · E
[
X

(0)
:,1 X

(0)T
:,1

]
· Â
}

= σ2
wId ⊗ ÂΦ(0)Â

= Id ⊗ σ2
wÂΦ(0)Â.

Since Σ̃(1) = σ4
wÂXXT Â/d0 = σ2

wÂΦ(0)Â, applying the central limit theorem, vec(H(1)) converges to a
Gaussian random variable N(0nd, Id ⊗ Σ̃(1)) as d → ∞. Consequently, {H(1)

:,k } converge to i.i.d. Gaussian
random variables N(0n, Σ̃(1)) in distribution.

Induction step. Suppose that {X(l−1)
:,k }k∈[d] converge to i.i.d. random variables with mean 0n and

covariance matrix Φ(l−1) in distribution. Suppose that {H(l)
:,k}k∈[d] converge to i.i.d. Gaussian random

variables N(0n, Σ̃(l)) in distribution. Now we look at X(l) first.

For the linear ResGCN at initialization, the post-activation embeddings satisfy

X(l) = αH(l) + βX(l−1) = αÂX(l−1)W (l) + βX(l−1)

We take any k-th channel X
(l)
:,k of X(l):

X
(l)
:,k = αH

(l)
:,k + βX

(l−1)
:,k

= αÂX(l−1)W
(l)
:,k + βX

(l−1)
:,k

= α
(d∑

k′=1
ÂX

(l−1)
:,k′ W

(l)
k′k

)
+ βX

(l−1)
:,k

= α√
d

(d∑
k′=1

ÂX
(l−1)
:,k′ ω

(l)
k′k

)
︸ ︷︷ ︸

(i)

+ βX
(l−1)
:,k︸ ︷︷ ︸

(ii)

,

where ω
(l)
k′k := W

(l)
k′k/
√

d has mean 0 and variance σ2
w, which does not rely on d. By the induction hypothesis,

X
(l−1)
:,k′ and X

(l−1)
:,k are independent when k′ ̸= k. Then (ii) is independent of the k′-th term αÂX

(l−1)
:,k′ ω

(l)
k′k/
√

d

in (i) when k′ ≠ k. We notice that the correlation between (i)’s k-th term αÂX
(l−1)
:,k ω

(l)
kk/
√

d and βX
(l−1)
:,k

goes to 0 as d→∞. Thus, we get that (i) and (ii) are asymptotically independent, the expectation

E[X(l)
:,k] = αE[H(l)

:,k] + βE[X(l−1)
:,k] = 0n,

and the covariance matrix

Cov[X(l)
:,k] = α2Cov[H(l)

:,k] + β2Cov[X(l−1)
:,k] = α2Σ̃(l) + β2Φ(l−1)

= α2σ2
wÂΦ(l−1)Â + β2Φ(l−1)

= Φ(l).

41

Published in Transactions on Machine Learning Research (06/2025)

By the induction hypothesis, {H(l)
:,k} are i.i.d. and {X(l−1)

:,k } are i.i.d. as d→∞, so {X(l)
:,k} are i.i.d..

Next, we look at the pre-activation embedding H(l+1). We have

H(l+1) = ÂX(l)W (l+1) + 1n · b(l+1) = ÂX(l)W (l+1).

We also vectorize it and get

vec(H(l+1)) =
d∑

k=1
vec
(
[ÂX

(l)
:,k] ·W (l+1)

k,:
)
.

Analogous to the proof of base case (or the proof of Proposition C.1), we can conclude that {H(l+1)
:,k } converge

i.i.d. to N(0n, σ2
wÂΦ(l)Â), i.e. N(0n, Σ̃(l+1)).

Conclusion. By the principle of mathematical induction, we have proven this proposition.

D.2 Proof of Theorem 3.3 (signal propagation on linear ResGCN)

To facilitate reading and understanding, we restate Theorem 3.3 here.
Theorem 3.3. Suppose that there exists an eigenvector u of Â corresponding to the eigenvalue 1, such that
the input feature X ∈ Rn×d0 satisfies XT u ̸= 0d0×1. Under the NNGP correspondence approximation for
linear ResGCN, if α2σ2

w + β2 > 1 and α ̸= 0, then we have

lim
L→∞

M(L)
FSP (σ2

w) =∞ and lim
L→∞

M(L)
GEV (σ2

w) = 0.

Proof of part 1 in Theorem 3.3. For any positive semi-definite matrix Σ ∈ S, we have

Eh∼N(0n,Σ)[∥h∥2] = Eh∼N(0n,Σ)[tr(hT h)] = Eh∼N(0n,Σ)[tr(hhT)] = tr(Σ).

Recalling the NNGP correspondence formula for linear ResGCN (37) in Proposition D.1, we have

Σ̃(1) = σ4
w

d0
ÂXXT Â,

Σ̃(l+1) = σ2
wα2ÂΣ̃(l)Â + β2Σ̃(l).

(40)

By Proposition B.1, we can assume that A = UΛUT , where Λ = diag(λ1, . . . , λn) with 1 = λ1 ≥ · · · ≥ λn > −1
and U ∈ Rn×n is an orthogonal matrix, i.e., UUT = UT U = In. Then from (40), we get

UT Σ̃(l+1)U = σ2
wα2 · UT ÂΣ̃(l)ÂU + β2 · UT Σ̃(l)U

= σ2
wα2 · ΛUT Σ̃(l)UΛ + β2 · UT Σ̃(l)U.

(41)

So for any i ∈ [n] and l ∈ N, we have

(UT Σ̃(l+1)U)ii = σ2
wα2 · λi(UT Σ̃(l)U)iiλi + β2(UT Σ̃(l)U)ii

= (α2λ2
i σ2

w + β2) · (UT Σ̃(l)U)ii.

Thus, for any i ∈ [n] and L ∈ N, we have

(UT Σ̃(L)U)ii = (α2λ2
i σ2

w + β2)L−1 · (UT Σ̃(1)U)ii.

According to the assumption on input feature X, there exists an eigenvector u of Â corresponding to the
eigenvalue 1, such that XT u ̸= 0d0×1. Suppose that u1, u2, . . . , un ∈ Rn×1 are the columns of U , then there
exists i ∈ [n] such that XT ui ̸= 0. Otherwise, suppose that u =

∑n
j=1 cjuj and XT uj = 0 for any j ∈ [n],

then XT u =
∑n

j=1 cjXT uj = 0. Contradiction!

42

Published in Transactions on Machine Learning Research (06/2025)

Without loss of generality, we suppose that Au1 = u1 and XT u1 ̸= 0d0×1. Then we have

(UT Σ̃(1)U)11 = σ4
w

d0
· uT

1 ÂXXT Âu1 = σ4
w

d0
· uT

1 XXT u1 = σ4
w

d0
· ∥XT u1∥2 > 0.

It results in
tr(Σ̃(L)) = tr(UT Σ̃(L)U) ≥ (UT Σ̃(L)U)11 = (α2σ2

w + β2)L−1 · σ4
w

d0
∥XT u1∥2. (42)

Therefore, if α2σ2
w + β2 > 1, we have

lim
L→∞

M(L)
FSP(σ2

w) = lim
L→∞

EH(L)∼N(0n,Σ̃(L))[∥H
(L)∥2

F/∥X∥2
F]

= C

∥X∥2
F

lim
L→∞

Eh∼N(0n,Σ̃(L))[∥h∥
2]

= C

∥X∥2
F

lim
L→∞

tr(Σ̃(L)) = +∞.

Proof of part 2 in Theorem 3.3. For any positive semi-definite matrix Σ ∈ S, we have

Eh∼N(0n,Σ)[Dir(h)] = Eh∼N(0n,Σ)[tr(hT L̂h)] = Eh∼N(0n,Σ)[tr(L̂hhT)] = tr(L̂Σ).

So when we want to study Eh∼N(0n,Σ)[Dir(h)], we only need to look at tr(L̂Σ) in the following of the proof.

Since ÂL̂ = Â(In − Â) = Â− Â2 = (In − Â)Â = L̂Â, we multiply L̂ on both sides of the second equation in
(40) and get

L̂Σ̃(l+1) = σ2
wα2 · L̂ÂΣ̃(l)Â + β2L̂Σ̃(l)

= σ2
wα2 · ÂL̂Σ̃(l)Â + β2L̂Σ̃(l).

Then for any i ∈ [n] and l ∈ N, we have

(UT L̂Σ̃(l+1)U)ii = σ2
wα2 · λi(UT L̂Σ̃(l)U)iiλi + β2 · (UT L̂Σ̃(l)U)ii

= (α2λ2
i σ2

w + β2) · (UT L̂Σ̃(l)U)ii.

Thus, for any i ∈ [n] and L ∈ N, we have

(UT L̂Σ̃(L)U)ii = (α2σ2
wλ2

i + β2)L−1 · (UT L̂Σ̃(1)U)ii (43)

Since UT L̂U = UT (In − Â)U = In − Λ, we get

UT L̂Σ̃(1)U = (In − Λ)UT Σ̃(1)U

We denote
ri = (UT Σ̃(1)U)ii, for any i ∈ [n].

Then by (43), we have
(UT L̂Σ̃(L)U)ii = (α2σ2

wλ2
i + β2)L−1 · (1− λi)ri,

From Proposition B.1, we have

(UT L̂Σ̃(L)U)ii ≤ (α2σ2
wλ2 + β2)L · (1− λi)ri, if λi ∈ (−1, 1);

(UT L̂Σ̃(L)U)ii = 0 = (α2σ2
wλ2 + β2)L · (1− λi)ri, if λi = 1,

where λ = maxλi ̸=1 |λi| ∈ [0, 1). Thus, we get

tr(L̂Σ̃(L)) = tr(UT L̂Σ̃(L)U) ≤ (α2σ2
wλ2 + β2)L−1 ·

n∑
i=1

(1− λi)ri.

43

Published in Transactions on Machine Learning Research (06/2025)

We conclude that

EH(L)∼N(0n,Σ̃(L))[Dir(H(L))] = C · Eh∼N(0n,Σ̃(L))[Dir(h)] = C · tr(L̂Σ̃(L))

≤ C(α2σ2
wλ2 + β2)L−1 ·

n∑
i=1

(1− λi)ri.

Then we have

EH(L)∼N(0n,Σ̃(L))[Dir(H(L))]
(α2σ2

w + β2)L−1 ≤

(
C

n∑
i=1

(1− λi)ri

)
·
(

α2σ2
wλ2 + β2

α2σ2
w + β2

)L−1

.

Since α2σ2
w + β2 > 1 and α ̸= 0 as assumed in the statement of this theorem, we have (α2σ2

wλ2 + β2)/(α2σ2
w +

β2) ∈ [0, 1). So we get that

lim
L→∞

EH(L)∼N(0n,Σ̃(L))[Dir(H(L))]
(α2σ2

w + β2)L
= 0. (44)

Recalling (42) in the proof of part 1 for Theorem 3.3, if we define

δ0 = σ4
w

d0
∥XT u1∥2 and K = α2σ2

w + β2,

then given any L ∈ N, we have
1

KL−1 · tr(Σ̃
(L)) ≥ δ0 > 0. (45)

Similar to the proof of part 2 in Theorem C.7, we have

EH∼N(0n,Σ̃(L))

[
Dir(H)
∥H∥2

F

]
= EH∼N(0n,Σ̃(L))

[
Dir(H)
∥H∥2

F
1{∥H∥2

F>ϵKL−1}

]
+ EH∼N(0n,Σ̃(L))

[
Dir(H)
∥H∥2

F
1{∥H∥2

F≤ϵKL−1}

]
≤

EH∼N(0n,Σ̃(L))[Dir(H)]
ϵKL−1 + 2 · PH∼N(0n,Σ̃(L))[∥H∥

2
F ≤ ϵKL−1].

(46)

For any L ≥ 1, there exists i ∈ [n], such that Σ̃(L)
ii ≥ tr(Σ̃(L))/n. For any n × C random matrix H ∼

N(0n, Σ̃(L)), it holds that Hi,1 ∼ N(0, Σ̃(L)
ii). By (45), we have

PH∼N(0n,Σ̃(L))
[
∥H∥2

F ≤ ϵKL−1] ≤ PH∼N(0n,Σ̃(L))
[
H2

i,1 ≤ ϵKL−1]
= PZ∼N(0,1)

[
Z2 ≤ ϵKL−1

Σ̃(L)
ii

]
≤ PZ∼N(0,1)

[
Z2 ≤ ϵnKL−1

tr(Σ̃(L))

]
≤ PZ∼N(0,1)

[
Z2 ≤ ϵn

δ0

]
= 2Φ

(√
ϵn

δ0

)
− 1,

(47)

where Φ(x) = PZ∼N(0,1)[Z ≤ x] denotes the cumulative distribution function of the standard normal
distribution N(0, 1).

Combining (46) and (47), we get

EH∼N(0n,Σ̃(L))

[
Dir(H)
∥H∥2

F

]
≤ 1

ϵKL−1 · EH∼N(0n,Σ̃(L))[Dir(H)] + 4Φ
(√

ϵn

δ0

)
− 2.

44

Published in Transactions on Machine Learning Research (06/2025)

By (44) , we let L→∞ and get

lim sup
L→∞

EH∼N(0n,Σ̃(L))

[
Dir(H)
∥H∥2

F

]
≤ 1

ϵKL−1 · lim sup
L→∞

EH∼N(0n,Σ̃(L))[Dir(H)] + 4Φ
(√

ϵn

δ0

)
− 2

= 1
ϵ
· 0 + 4Φ

(√
ϵn

δ0

)
− 2 = 4Φ

(√
ϵn

δ0

)
− 2.

(48)

Notice that the left hand side of (48) is independent of the choice of ϵ. Since Φ is a continuous map, we let
ϵ→ 0+ and get

lim sup
L→∞

EH∼N(0n,Σ̃(L))

[
Dir(H)
∥H∥2

F

]
≤ 4Φ(0)− 2 = 0.

Therefore, we have

lim
L→∞

M(L)
GEV(σ2

w) = lim
L→∞

EH∼N(0n,Σ̃(L))

[
Dir(H)
∥H∥2

F

]
= 0.

45

Published in Transactions on Machine Learning Research (06/2025)

E SPoGInit algorithm

In Section 4, SPoGInit aims to find a better initialization by minimizing

w1VFSP + w2VBSP − w3M(L)
GEV .

In the implementation of SPoGInit algorithm, we always use one random weight sample to get point estimates
V̂FSP, V̂BSP, M̂(L)

GEV of VFSP, VBSP, M(L)
GEV , respectively. We take deep vanilla GCNs as an example to showcase the

SPoGInit methodology. Given any Xavier-initialized weight {Ŵ (l)}L
l=1, SPoGInit scales the weights layer-wise

by γ = (γ(l))l∈[L] ∈ RL
>0 to yield new initialization θ(γ) = {W (l)}L

l=1 = {γ(l)Ŵ (l)}L
l=1 that achieves proper

signal propagation. To be more specific, SPoGInit algorithm solves the optimization problem

min
γ

F (θ(γ)) := w1V̂FSP(γ) + w2V̂BSP(γ)− w3M̂(L)
GEV(γ), (49)

where

V̂FSP := (M̂(1)
FSP/M̂(L−1)

FSP − 1)2 =
[
∥H(1)(θ(γ))∥F

∥H(L−1)(θ(γ))∥F
− 1
]2

,

V̂BSP := (M̂(2)
BSP/M̂(L−1)

BSP − 1)2 =
[
∥g(2)(θ(γ))∥F

∥g(L−1)(θ(γ))∥F
− 1
]2

,

M̂(L)
GEV := Dir(H(L)(θ(γ))

∥H(L)(θ(γ)∥2
F

,

with g(l)(θ(γ)) := ∂ℓ/∂W (l).

E.1 Implementation details

Now we explain SPoGInit (Algorithm 1) in detail.

In lines 2-3, we initialize the weight parameters and weight scales γ(l)(0) = 1. We iteratively update θ(γ) as
follows.

In line 5, we calculate the objective function F (θ(γ(t))) as defined in (49).

In lines 6-10, we update the weight parameters θ(γ(t)) by optimizing the objective function through the
projected gradient descent method to the scales {γ(l)(t)}L

l=1 for each layer. We adopt the projected gradient
descent method to ensure the scales {γ(l)(t)}L

l=1 remain positive.

Algorithm 1 SPoGInit: Searching for weight initialization with better Signal Propagation on Graph
1: normalized adjacency matrix Â, input X(t), label y(t), network depth L, hidden dimension d, learning

rate η, total iterations T , metric weights w1, w2, w3.
2: initialize γ(l)(0) = 1 and sample {Ŵ (l)}L

l=1 by Xavier initialization.
3: initialize θ(γ(0)) ≜ {W (l)(0)}L

l=1 by W (l)(0)← γ(l)(0) · Ŵ (l).
4: for t = 0, 1, · · · , T − 1 do
5: calculate the objective function F (θ(γ(t))) by Â, X(t), y(t) and θ(γ(t)).
6: for layers l = 1, 2, . . . , L do
7: γ(l)(t + 1)← γ(l)(t)− η∇γ(l)F (θ(γ(t))).
8: γ(l)(t + 1)← Proj[10−6,∞)(γ(l)(t + 1)).
9: W (l)(t + 1)← γ(l)(t + 1) · Ŵ (l).

10: θ(γ(t + 1)) ≜ {W (l)(t + 1)}L
l=1.

11: return θ(γ(T)).

In line 7 of Algorithm 1, unless otherwise specified, we employ the random direction finite difference method
(Equation (31) in (Nesterov & Spokoiny, 2017)) to compute the derivative of the objective function with

46

Published in Transactions on Machine Learning Research (06/2025)

respect to the scaling factor γ. Specifically, we use

Êµ

{
F (θ(γ(t) + µδ))− F (θ(γ(t)))

δ
µ

}
to approximate the gradient ∇γF (θ(γ(t))), where δ is a small scalar and µ follows the standard Gaussian
distribution N(0, IL). Here, Êµ denotes the Monte Carlo approximation of the expectation, computed by
averaging over 3 independent and identically distributed (i.i.d.) samples of N(0, IL).

For the GCNs with skip connections, we replace V̂FSP and V̂BSP with (max1≤l<L M̂(l)
FSP/ min1≤l<L M̂(l)

FSP − 1)2

and (max1<l<L M̂(l)
BSP/ min1<l<L M̂(l)

BSP − 1)2, respectively. Also, in these models, we use the same scaling
factor across all layers. We empirically find that these modifications more effectively minimize the objective
function in GCNs with skip connections.

E.2 Analysis on the coefficient w2 in SPoGInit

We analyze the effect of the coefficient w2 in SPoGInit, which controls the contribution of the backward
signal propagation (BSP) term V̂BSP in the objective function (Formula (49)). Empirically, we observe that
the initial value of V̂BSP is substantially lower than that of V̂F SP , leading to an imbalance between the two
objectives. To mitigate this discrepancy, in practice, we set a larger value for w2 than w1 in order to amplify
the role of V̂BSP during optimization.

We conduct experiments on a 32-layer GCN with tanh activation, trained on the Cora dataset. Table 7
reports the values of V̂F SP and V̂BSP under different settings of w2 ∈ {1, 10, 100}. We fix the learning rate at
0.1, use 100 optimization iterations, and set w1 = w3 = 1. We report the average result over 50 runs. The
results reveal two key trends regarding the impact of w2:

• Gradual reduction of V̂BSP as w2 increases: As w2 increases from 1 to 10 and then to 100,
V̂BSP decreases from approximately 3× 10−3 to 1.1× 10−3 and finally to 1.0× 10−3. This consistent
but diminishing improvement suggests that increasing w2 enhances backward signal propagation,
though the marginal gain becomes smaller at higher values.

• Forward signal propagation deteriorates at large w2: While V̂F SP remains stable between
w2 = 1 and w2 = 10, it increases sharply when w2 reaches 100, indicating that an overly large w2
harms forward signal preservation.

These findings suggest that w2 = 10 achieves a favorable trade-off between forward and backward signal
preservation, yielding low values for both V̂F SP and V̂BSP . Based on this analysis, we adopt w2 = 10 as the
default setting in the subsequent experiments.

Table 6: The V̂F SP and V̂BSP of 32-layer tanh-activated GCN using SPoGInit with different w2 on Cora
dataset. In SPoGInit, we set the learning rate as 0.1, total iteration as 100, w1 and w3 as 1. We report the
average result over 50 runs.

w/o SPoG SPoG using w2 = 1 SPoG using w2 = 10 SPoG using w2 = 100

V̂F SP 31.2 5.4× 10−3 6.4× 10−3 7.5× 10−2

V̂BSP 1.3× 10−1 3.0× 10−3 1.1× 10−3 1.0× 10−3

E.3 Computational efficiency of GEV in SPoGInit

In this subsection, we analyze the extra computational cost brought by introducing GEV metric in SPoGInit.
We claim that the additional cost introduced by adding the GEV term to SPoGInit’s objective is minimal,
and we believe the performance gains justify its inclusion.

Technical explanation:

47

Published in Transactions on Machine Learning Research (06/2025)

Recall that the GEV metric is computed as M̂
(L)
GEV := Dir(H(L))

∥H(L)∥2
F

, where the Dirichlet energy is given by
Dir(H) = tr(H⊤L̂H), and L̂ denotes the normalized Laplacian of the input graph G (see Appendix B for
mathematical details). Importantly, the GEV metric depends solely on the final-layer node embeddings H(L),
which are computed in a single forward pass of the network. The additional cost of computing the norm and
Dirichlet energy is negligible compared to the forward pass itself.

We note that the computation of FSP metric already requires a forward pass. Thus, the final-layer embeddings
for GEV computation can be directly obtained from this same forward pass, meaning no additional computation
is needed.

Empirical evaluation:

To evaluate the computational efficiency of incorporating GEV, we conduct experiments using a 64-layer GCN
with tanh activation on the Cora and PubMed datasets. As shown in Table 7, the runtime of the SPoGInit
algorithm with GEV is only slightly higher than that without GEV, with an increase of just about 1%–3%.
This indicates that adding GEV introduces minimal overhead to the initialization process. In practice, this
additional cost is negligible and acceptable, given the consistent performance improvements observed when
GEV is used alongside the FSP and BSP metrics.

Table 7: Initialization time (in seconds) of a 64-layer tanh-activated GCN using SPoGInit with and without
GEV on the Cora and PubMed datasets. For each case, the total number of initialization iterations is set to
40, and the results are averaged over 3 runs.

Cora PubMed
SPoGInit without GEV 6.46 9.90
SPoGInit with GEV 6.66 10.0
Relative Overhead of GEV 3.1% 1.1%

In summary, since the GEV computation utilizes existing outputs from the forward pass with minimal
overhead, its integration into SPoGInit’s objective is both computationally efficient and beneficial in practice.

E.4 Comparison of the per-layer scaling factors across different baseline initializations

By lines 9–10 of Algorithm 1, SPoGInit’s adjustment of the scaling factor γ(l) is equivalent to modifying the
initialization standard deviation σw,i. We have plotted the values of σw,i for each layer of our SPoGInit, as
well as for several baseline initialization methods, including Conventional initialization, Xavier, VirgoFor, and
VirgoBack. As shown in Figure 6, σw,i differs significantly across different initialization methods. Notably,
SPoGInit performs an adaptive variance search, which leads to a fluctuating pattern of σw,i across layers.

0 10 20 30 40 50 60
Layer

100

6 × 10 1

w
,i

SPoGInit
Xavier
Conventional
VirgoFor
VirgoBack

Figure 6: Layer-wise σw,i of a 64-layer tanh-activated GCN using different initialization methods on the Cora
datasets. In SPoGInit, we set the learning rate as 0.02, the early stop step δ as 10, and the number of total
step is set as 40.

48

Published in Transactions on Machine Learning Research (06/2025)

F Additional experiments

F.1 Experiments on additional datasets

Building upon the experimental results in Section 5, we further evaluate the performance of SPoGInit on
additional homophily and non-homophily datasets. For homophily datasets, we consider Amazon-photo and
Amazon-computers (Shchur et al., 2018), following the data splits used in Luo et al. (2024). For heterophily
datasets, in addition to the Arxiv-year dataset examined in Section 5, we incorporate Roman-empire and
Amazon-ratings (Platonov et al., 2023), using their default splits. Table 8 summarizes the dataset statistics.
Further implementation details are provided in Appendix G.1.

Table 8: Statistics of the additional homophily datasets used in the experiments.

Dataset Nodes Features Edges Class Homophily Training/Validation/Test
Amazon-photo 7,650 745 238,162 8 0.83 60%/20%/20%

Amazon-computers 13,752 767 491,722 10 0.78 60%/20%/20%
Roman-empire 22,662 300 32,927 18 0.05 50%/25%/25%
Amazon-ratings 24,492 300 93,050 5 0.38 50%/25%/25%

Evaluation on homophily datasets

We first evaluate the performance of GCN models with varying depths and initialization schemes on the two
homophily datasets, Amazon-photo and Amazon-computers. The results are summarized in Table 9. To limit
computational overhead, we enforce a maximum depth of 32 layers.

Table 9: Test accuracies of GCN models with varying depths and initializations on Amazon-photo and
Amazon-computers. The bold figure highlights the best performance among different initializations. "Deg"
refers to the test accuracy degradation as the depth increases from 4 to 32 layers. The smallest performance
drops are highlighted in orange. The results demonstrate that SPoGInit significantly reduces performance
degradation compared to baseline initializations and enhances the performance of deep GNN models across
different architectures.

Model Init. Amazon-photo Amazon-computers
4 8 16 32 Deg. 4 8 16 32 Deg.

GCN

Conventional 94.1 93.4 68.3 55.0 ↓ 39.1 91.9 84.5 56.5 55.8 ↓ 36.1
Xavier 94.1 93.6 92.1 85.9 ↓ 8.2 91.6 89.2 82.4 74.7 ↓ 16.9

VirgoFor 94.5 93.7 92.5 85.1 ↓ 9.4 91.9 89.4 82.1 79.7 ↓ 12.2
VirgoBack 94.5 93.0 92.1 85.2 ↓ 9.3 91.7 89.4 84.3 79.3 ↓ 12.4
SPoGInit 94.3 93.9 92.0 86.5 ↓ 7.8 91.8 89.3 83.9 79.7 ↓ 12.1

ResGCN

Conventional 96.2 96.4 96.2 96.5 ↑ 0.3 92.8 93.4 93.9 93.8 ↑ 1.0
Xavier 96.6 96.6 96.3 95.7 ↓ 0.9 93.2 93.6 93.5 93.1 ↓ 0.1

VirgoFor 96.4 96.2 95.5 94.1 ↓ 2.3 93.4 93.4 92.5 90.5 ↓ 2.9
VirgoBack 96.7 96.1 95.6 93.4 ↓ 3.3 93.3 93.2 92.5 90.1 ↓ 3.2
SPoGInit 96.4 96.5 96.3 96.4 0 92.7 93.2 93.8 93.9 ↑ 1.2

gatResGCN

Conventional 96.0 96.4 96.4 96.6 ↑ 0.6 92.8 92.7 93.3 93.4 ↑ 0.6
Xavier 96.4 96.6 96.5 95.4 ↓ 1.0 92.8 93.0 93.7 93.3 ↑ 0.5

VirgoFor 96.4 96.4 95.3 91.7 ↓ 4.7 92.9 93.4 92.3 87.5 ↓ 5.4
VirgoBack 96.6 96.3 95.2 91.2 ↓ 5.4 92.9 93.3 92.2 86.3 ↓ 6.6
SPoGInit 96.1 96.2 96.4 96.5 ↑ 0.4 92.5 92.7 93.3 93.7 ↑ 1.2

MixHop
Conventional 96.1 95.7 92.9 85.6 ↓ 10.4 92.7 90.6 89.3 79.7 ↓ 13.0

Xavier 96.4 95.8 94.6 91.4 ↓ 5.0 93.1 92.9 91.0 83.8 ↓ 9.3
SPoGInit 96.3 95.7 95.5 92.5 ↓ 3.9 93.3 92.6 91.6 88.4 ↓ 4.9

49

Published in Transactions on Machine Learning Research (06/2025)

Table 9 indicates that SPoGInit enables deep vanilla GCN and MixHop models to achieve better performance
than other initialization baselines. Despite the general trend that increasing depth leads to some degree
of performance degradation, models initialized with SPoGInit exhibit a more gradual decline in accuracy.
Specifically, performance degradation is most severe under the Conventional initialization, where test accuracy
can drop by over 30% when increasing the depth from 4 to 32 layers. Alternative initialization methods such as
Xavier, VirgoFor, and VirgoBack mitigate this degradation to some extent. Among all initializations, SPoGInit
consistently demonstrates the best performance in deeper models. Notably, on the Amazon-computers dataset,
SPoGInit reduces the performance drop in MixHop by 4.4% compared to the best-performing baseline, Xavier
initialization.

Additionally, Table 9 indicates that SPoGInit benefits from increased depth in ResGCN and gatResGCN,
leading to superior performance for 32-layer networks. On the Amazon-Computers dataset, it outperforms
other initialization baselines, while on the Amazon-Photo dataset, it achieves very competitive performance.
We observe that deep ResGCN and gatResGCN maintain strong performance, with test accuracy exceeding
90% under widely used initialization schemes. We hypothesize that these two datasets are relatively simple,
allowing residual connections to facilitate stable optimization during training, which in turn enhances model
performance.

These findings underscore the critical role of initialization in deep networks and demonstrate the advantages
of SPoGInit in mitigating performance degradation in deep GNN models.

Evaluation on non-homophily datasets

Amazon-ratings dataset

We evaluate SPoGInit on the heterophily dataset, Amazon-ratings, with results presented in Table 10.

As presented in Table 10, for ResGCN, gatResGCN, and MixHop models, SPoGInit outperforms other
initialization baseline methods when increasing the network depth. Conventional and Xavier initialization
lead to performance degradation as network depth increases, while VirgoFor and VirgoBack suffer even more
severe degradation. In contrast, SPoGInit significantly mitigates performance degradation of deeper networks.
Moreover, on ResGCN and gatResGCN, SPoGInit consistently improves performance as depth increases,
demonstrating its effectiveness in deep models.

For the vanilla GCN, we observe that both VirgoFor and VirgoBack successfully mitigate performance
degradation. Notably, VirgoBack achieves a 2% performance improvement as depth increases. However,
this improvement is largely due to its relatively weaker performance on shallow GCNs (4 layers). In
contrast, SPoGInit outperforms other initializations on deeper GCNs, highlighting its robustness in handling
depth-related challenges.

Roman-empire dataset

Beyond Amazon-ratings, we extend our experiments to the heterophily dataset Roman-empire. The original
paper (Platonov et al., 2023) adopts skip connections for all the tested GCN models. Empirically, we indeed
find that without skip connections, models perform severely worse. Thus, for this dataset we focus on the
performance of ResGCNs across varying depths and initializations.

Table 11 shows that all baseline initializations suffer from severe performance degradation in deep models.
In contrast, SPoGInit consistently achieves superior performance on deep GCN models and substantially
reduces performance degradation as the network depths increase.

Summary

In summary, across these additional homophily and heterophily datasets, SPoGInit consistently outperforms
baseline initializations on deep GCN models, and substantially alleviating performance degradation in deep
GCN models. These results provide robust empirical evidence for the effectiveness of SPoGInit in enhancing
the stability and performance of deep GCNs.

50

Published in Transactions on Machine Learning Research (06/2025)

Table 10: Test accuracies of GCN models on Amazon-ratings dataset with varying depths and initializations.
The bold figure highlights the best performance among different initializations. "Deg" refers to the test
accuracy degradation as the depth increases from 4 to 32 layers. The smallest performance drops are
highlighted in orange. The results demonstrate that SPoGInit significantly reduces performance degradation
compared to baseline initializations and enhances the performance of deep GNN models across different
architectures.

Model Init. Amazon-ratings
4 8 16 32 Deg.

GCN

Conventional 44.7 44.9 42.5 38.2 ↓ 6.5
Xavier 44.4 45.6 45.1 44.0 ↓ 0.4

VirgoFor 45.1 45.9 45.8 45.3 ↑ 0.2
VirgoBack 43.1 44.5 45.5 45.1 ↑ 2.0
SPoGInit 45.0 45.9 45.7 45.4 ↑ 0.4

ResGCN

Conventional 48.5 48.9 48.9 47.6 ↓ 0.9
Xavier 48.9 49.2 48.5 42.1 ↓ 6.8

VirgoFor 48.6 48.8 46.5 36.8 ↓ 11.8
VirgoBack 48.6 49.0 45.9 36.7 ↓ 11.6
SPoGInit 48.6 49.1 49.3 49.5 ↑ 0.9

gatResGCN

Conventional 48.8 48.8 49.3 47.4 ↓ 1.4
Xavier 49.0 49.2 48.9 42.3 ↓ 6.7

VirgoFor 48.4 48.6 46.3 36.8 ↓ 11.6
VirgoBack 48.3 48.5 45.6 36.7 ↓ 11.6
SPoGInit 48.4 48.9 49.1 49.2 ↑ 0.8

MixHop
Conventional 45.8 46.1 44.8 44.8 ↓ 1.0

Xavier 45.8 46.0 44.9 44.8 ↓ 1.0
SPoGInit 46.9 47.7 47.2 46.1 ↓ 0.8

Table 11: Test accuracies of ResGCN model with varying depths and initializations on the Roman-empire
dataset. The bold figure highlights the best performance among different initializations. "Deg" refers to the
test accuracy degradation as the depth increases from 4 to 32 layers. The smallest performance drops are
highlighted in orange. The results demonstrate that SPoGInit significantly reduces performance degradation
compared to baseline initializations and enhances the performance of deep networks.

Model Init. Amazon-ratings
4 8 16 32 Deg.

ResGCN

Conventional 78.9 79.4 79.2 76.9 ↓ 2.0
Xavier 78.7 79.0 78.2 42.3 ↓ 36.4

VirgoFor 78.3 78.9 64.6 15.6 ↓ 62.7
VirgoBack 78.3 78.9 66.5 15.9 ↓ 62.4
SPoGInit 78.9 79.4 79.5 79.1 ↑ 0.2

51

Published in Transactions on Machine Learning Research (06/2025)

F.2 Comparison and integration of SPoGInit with additional methods

In this subsection, we evaluate SPoGInit by comparing it with DGN (Zhou et al., 2020b), a normalization
technique designed to mitigate oversmoothing, and CO-GNN (Finkelshtein et al., 2023), a dynamic message-
passing framework. Additionally, we examine the effects of integrating SPoGInit with these methods to assess
potential performance improvements.

Comparison and integration of SPoGInit with DGN

We first evaluate SPoGInit in comparison with DGN and assess their combined effects. Since DGN (Zhou
et al., 2020b) was originally designed for GCN models without skip connections, we perform experiments
on vanilla GCN using Cora, PubMed, and the large-scale OGBN-Arxiv dataset. The detailed results are
presented in Table 12 and Table 13.

Table 12: Test accuracies of GCN models with SPoGInit or DGN technique on Cora and PubMed datasets.
The bold figure highlights the best performance among different initializations. "Deg" refers to the test
accuracy degradation as the depth increases from 4 to 32 layers. The smallest performance drops are
highlighted in orange. The results demonstrate that SPoGInit significantly reduces performance degradation
compared to DGN.

Model Method. Cora PubMed
4 8 16 32 Deg. 4 8 16 32 Deg.

GCN
DGN 80.6 79.8 75.8 72.6 ↓ 8.0 77.7 78.8 78.0 77.6 ↓ 0.2

SPoGInit 79.8 79.6 78.2 75.8 ↓ 4.0 77.4 77.5 77.0 78.4 ↑ 1.0
SPoGInit + DGN 80.4 79.2 76.8 75.0 ↓ 5.4 77.5 77.9 78.0 77.5 0

Table 13: Test accuracies of GCN models with SPoGInit or DGN technique on the OGBN-Arxiv dataset. The
bold figure highlights the best performance among different initializations. "Deg" refers to the test accuracy
degradation as the depth increases from 4 to 32 layers. The smallest performance drops are highlighted in
orange. The results demonstrate that SPoGInit combines effectively with DGN and significantly reduces its
performance degradation as the depth increases.

Model Method OGBN-Arxiv
4 8 16 32 Deg.

GCN
DGN 69.7 68.2 63.7 61.7 ↓ 8.0

SPoGInit 69.7 69.2 68.1 63.1 ↓ 6.6
SPoGInit+DGN 69.9 69.3 69.6 68.3 ↓ 1.6

Experimental results in Table 12 demonstrate that, compared to DGN, SPoGInit more effectively mitigates
performance degradation as GCN depth increases on small-graph datasets such as Cora and PubMed.
Moreover, on the Cora dataset, initializing the model with SPoGInit before applying DGN improves DGN’s
effectiveness, reducing performance degradation in deep GCNs by over 2% compared to using DGN alone,
though it remains slightly less effective than using SPoGInit alone.

Table 13 highlights the effectiveness of SPoGInit in deep GCNs on the large-scale OGBN-Arxiv dataset.
Specifically, using SPoGInit alone outperforms DGN alone by over 1% in deeper networks. Moreover,
integrating SPoGInit with DGN further enhances performance, achieving an improvement of more than 5%
compared to either method individually. This effect is particularly pronounced on large graphs, likely due to
the greater difficulty of achieving stable optimization in such settings.

Comparison and integration of SPoGInit with CO-GNN

We evaluate the performance of SPoGInit in comparison with CO-GNN—a method based on a dynamic
message-passing framework—and also investigate the benefits of integrating SPoGInit into CO-GNN. We
choose ResGCN as the backbone architecture of our SPoGInit. Our experiments are conducted on three
benchmark datasets: Cora and PubMed, which exhibit high homophily, and Amazon-ratings, which is

52

Published in Transactions on Machine Learning Research (06/2025)

characterized by heterophily. For consistency with our experimental setup, we use the dataset splits detailed
in Table 1 (instead of those in Finkelshtein et al. (2023)). Detailed performance results for Cora and PubMed
are reported in Table 14, while those for Amazon-ratings are provided in Table 15.

CO-GNN comprises two key components: an action network and an environment network. We define the
overall layer count of CO-GNN as the sum of the layers in these two networks. Specifically, for the Cora and
PubMed datasets a one-layer action network is employed, whereas for Amazon-ratings a two-layer action
network is utilized.

Experimental results indicate that CO-GNN exhibits a pattern of performance variation as network depth
increases. On datasets such as Cora and Amazon-ratings, performance initially improves with increasing
depth; however, beyond 16 layers, further deepening leads to significant degradation. We hypothesize that
this behavior arises from the need to jointly train the action and environment networks—a process that
requires greater training effort to fully converge in deeper architectures compared to conventional GCNs.

Table 14 demonstrates that as network depth increases, SPoGInit outperforms CO-GNN on homophilic
datasets such as Cora and PubMed. This indicates that SPoGInit more effectively mitigates the performance
degradation typically observed in deeper architectures. On the heterophilic Amazon-ratings dataset, Table
15 shows that while CO-GNN alone attains higher performance than SPoGInit alone, integrating SPoGInit
into CO-GNN further improves its performance, enabling deeper networks to achieve superior results while
reducing degradation. We hypothesize that this improvement stems from SPoGInit’s ability to enhance
signal propagation in deep CO-GNN architectures, thereby facilitating more effective training. Notably, our
experiments show that the training accuracy of a 32-layer CO-GNN on Amazon-ratings increases from 81.1%
to 86.7% after integration with SPoGInit. (Training accuracies are not reported in the main result tables.)

Table 14: Test accuracies of CO-GNN model and ResGCN with SPoGInit on the Cora and PubMed datasets.
The bold figure highlights the best performance among different initializations. "Deg" refers to the test
accuracy degradation as the depth increases from 4 to 32 layers. The smallest performance drops are
highlighted in orange. The results demonstrate that SPoGInit + ResGCN significantly reduces performance
degradation compared to CO-GNN and enhances the performance of deep ResGCN.

Method. Cora PubMed
4 8 16 32 Deg. 4 8 16 32 Deg.

CO-GNN 78.2 78.7 80.2 73.7 ↓ 4.5 77.2 76.2 76.0 75.7 ↓ 1.5
SPoGInit+ResGCN 75.7 77.9 78.5 78.5 ↑ 2.8 75.4 76.2 76.4 77.0 ↑ 1.6

Table 15: Test accuracies of CO-GNN, SPoGInit+ResGCN, and SPoGInit+CO-GNN on the Amazon-ratings
dataset. The bold figure highlights the best performance among different initializations. "Deg" refers to
the test accuracy degradation as the depth increases from 4 to 32 layers. The smallest performance drops
are highlighted in orange. The results demonstrate that SPoGInit combines effectively with CO-GNN and
significantly reduces its performance degradation.

Method Amazon-ratings
4 8 16 32 Deg.

CO-GNN 48.1 50.3 51.1 50.6 ↑ 2.5
SPoGInit+ResGCN 48.6 49.1 49.3 49.5 ↑ 0.9
SPoGInit+CO-GNN 47.9 49.4 50.4 51.0 ↑ 3.1

In conclusion, our experiments reveal that SPoGInit surpasses these methods or combines effectively with
them, leading to enhanced performance. This demonstrates the versatility of SPoGInit when applied alongside
advanced techniques in tackling diverse challenges in GNNs.

53

Published in Transactions on Machine Learning Research (06/2025)

F.3 More experiments on signal propagation

In this subsection, we provide additional insights into the behavior of signal propagation (SP) in deep GCNs
by visualizing activation and gradient matrices using heatmaps. Our goal is to illustrate clearly how widely
used initialization methods fail to maintain stable signal propagation and to highlight how SPoGInit addresses
these issues effectively.

Specifically, we examine a 256-layer GCN using the Tanh activation function. For each initialization, we
visualize the activation and gradient matrices at shallow (2-nd), intermediate (127-th), and deep (255-th)
layers. Each activation matrix has a shape of N × d, where N denotes the number of graph nodes, and d = 64
denotes the network width. For visualization, we select embeddings corresponding to the first 64 nodes.

We first observe that Conventional initialization (Figure 7) and Xavier initialization (Figure 8) lead to
degraded signal propagation. Specifically, activation values at deeper layers and gradients at shallower layers
become excessively small, indicative of forward and backward signal vanishing issues. By contrast, VirgoFor
initialization (Figure 9) and VirgoBack initialization (Figure 10) maintain relatively stable activation matrices
but result in gradients at shallower layers significantly exceeding acceptable thresholds, indicating slight
backward SP explosion. In comparison, as depicted in Figure 11, SPoGInit successfully maintains stable
activation and gradient matrices across all depths, effectively mitigating both SP vanishing and explosion
issues in deep GCNs.

0 3 6 9 121518212427303336394245485154576063
Firt 64 nodes

0
4

8
12

16
20

24
28

32
36

40
44

48
52

56
60

H
id

de
n

D
im

en
si

on
 In

de
x

Activation Matrix of 2-nd layer

0 3 6 9 121518212427303336394245485154576063
Firt 64 nodes

0
4

8
12

16
20

24
28

32
36

40
44

48
52

56
60

H
id

de
n

D
im

en
si

on
 In

de
x

Activation Matrix of 127-th layer

0 3 6 9 121518212427303336394245485154576063
Firt 64 nodes

0
4

8
12

16
20

24
28

32
36

40
44

48
52

56
60

H
id

de
n

D
im

en
si

on
 In

de
x

Activation Matrix of 255-th layer

10 3

10 2

10 1 A
ctivation A

bsolute V
alue

0 3 6 9 121518212427303336394245485154576063
Weight Column Index

0
4

8
12

16
20

24
28

32
36

40
44

48
52

56
60

W
ei

gh
t R

ow
 In

de
x

Gradient Matrix of 2-nd layer

0 3 6 9 121518212427303336394245485154576063
Weight Column Index

0
4

8
12

16
20

24
28

32
36

40
44

48
52

56
60

W
ei

gh
t R

ow
 In

de
x

Gradient Matrix of 127-th layer

0 3 6 9 121518212427303336394245485154576063
Weight Column Index

0
4

8
12

16
20

24
28

32
36

40
44

48
52

56
60

W
ei

gh
t R

ow
 In

de
x

Gradient Matrix of 255-th layer

10 4

10 3

10 2

10 1

G
radient A

bsolute V
alue

Figure 7: The heatmap of the activation and gradient matrix of a 256-layer tanh-activated GCN with
Conventional initialization.

54

Published in Transactions on Machine Learning Research (06/2025)

0 3 6 9 121518212427303336394245485154576063
Firt 64 nodes

0
4

8
12

16
20

24
28

32
36

40
44

48
52

56
60

H
id

de
n

D
im

en
si

on
 In

de
x

Activation Matrix of 2-nd layer

0 3 6 9 121518212427303336394245485154576063
Firt 64 nodes

0
4

8
12

16
20

24
28

32
36

40
44

48
52

56
60

H
id

de
n

D
im

en
si

on
 In

de
x

Activation Matrix of 127-th layer

0 3 6 9 121518212427303336394245485154576063
Firt 64 nodes

0
4

8
12

16
20

24
28

32
36

40
44

48
52

56
60

H
id

de
n

D
im

en
si

on
 In

de
x

Activation Matrix of 255-th layer

10 3

10 2

10 1 A
ctivation A

bsolute V
alue

0 3 6 9 121518212427303336394245485154576063
Weight Column Index

0
4

8
12

16
20

24
28

32
36

40
44

48
52

56
60

W
ei

gh
t R

ow
 In

de
x

Gradient Matrix of 2-nd layer

0 3 6 9 121518212427303336394245485154576063
Weight Column Index

0
4

8
12

16
20

24
28

32
36

40
44

48
52

56
60

W
ei

gh
t R

ow
 In

de
x

Gradient Matrix of 127-th layer

0 3 6 9 121518212427303336394245485154576063
Weight Column Index

0
4

8
12

16
20

24
28

32
36

40
44

48
52

56
60

W
ei

gh
t R

ow
 In

de
x

Gradient Matrix of 255-th layer

10 4

10 3

10 2

10 1

G
radient A

bsolute V
alue

Figure 8: The heatmap of the activation and gradient matrix of a 256-layer tanh-activated GCN with Xavier
initialization.

0 3 6 9 121518212427303336394245485154576063
Firt 64 nodes

0
4

8
12

16
20

24
28

32
36

40
44

48
52

56
60

H
id

de
n

D
im

en
si

on
 In

de
x

Activation Matrix of 2-nd layer

0 3 6 9 121518212427303336394245485154576063
Firt 64 nodes

0
4

8
12

16
20

24
28

32
36

40
44

48
52

56
60

H
id

de
n

D
im

en
si

on
 In

de
x

Activation Matrix of 127-th layer

0 3 6 9 121518212427303336394245485154576063
Firt 64 nodes

0
4

8
12

16
20

24
28

32
36

40
44

48
52

56
60

H
id

de
n

D
im

en
si

on
 In

de
x

Activation Matrix of 255-th layer

10 3

10 2

10 1 A
ctivation A

bsolute V
alue

0 3 6 9 121518212427303336394245485154576063
Weight Column Index

0
4

8
12

16
20

24
28

32
36

40
44

48
52

56
60

W
ei

gh
t R

ow
 In

de
x

Gradient Matrix of 2-nd layer

0 3 6 9 121518212427303336394245485154576063
Weight Column Index

0
4

8
12

16
20

24
28

32
36

40
44

48
52

56
60

W
ei

gh
t R

ow
 In

de
x

Gradient Matrix of 127-th layer

0 3 6 9 121518212427303336394245485154576063
Weight Column Index

0
4

8
12

16
20

24
28

32
36

40
44

48
52

56
60

W
ei

gh
t R

ow
 In

de
x

Gradient Matrix of 255-th layer

10 4

10 3

10 2

10 1

G
radient A

bsolute V
alue

Figure 9: The heatmap of the activation and gradient matrix of a 256-layer tanh-activated GCN with VirgoFor
initialization.

55

Published in Transactions on Machine Learning Research (06/2025)

0 3 6 9 121518212427303336394245485154576063
Firt 64 nodes

0
4

8
12

16
20

24
28

32
36

40
44

48
52

56
60

H
id

de
n

D
im

en
si

on
 In

de
x

Activation Matrix of 2-nd layer

0 3 6 9 121518212427303336394245485154576063
Firt 64 nodes

0
4

8
12

16
20

24
28

32
36

40
44

48
52

56
60

H
id

de
n

D
im

en
si

on
 In

de
x

Activation Matrix of 127-th layer

0 3 6 9 121518212427303336394245485154576063
Firt 64 nodes

0
4

8
12

16
20

24
28

32
36

40
44

48
52

56
60

H
id

de
n

D
im

en
si

on
 In

de
x

Activation Matrix of 255-th layer

10 3

10 2

10 1 A
ctivation A

bsolute V
alue

0 3 6 9 121518212427303336394245485154576063
Weight Column Index

0
4

8
12

16
20

24
28

32
36

40
44

48
52

56
60

W
ei

gh
t R

ow
 In

de
x

Gradient Matrix of 2-nd layer

0 3 6 9 121518212427303336394245485154576063
Weight Column Index

0
4

8
12

16
20

24
28

32
36

40
44

48
52

56
60

W
ei

gh
t R

ow
 In

de
x

Gradient Matrix of 127-th layer

0 3 6 9 121518212427303336394245485154576063
Weight Column Index

0
4

8
12

16
20

24
28

32
36

40
44

48
52

56
60

W
ei

gh
t R

ow
 In

de
x

Gradient Matrix of 255-th layer

10 4

10 3

10 2

10 1

G
radient A

bsolute V
alue

Figure 10: The heatmap of the activation and gradient matrix of a 256-layer tanh-activated GCN with
VirgoBack initialization.

0 3 6 9 121518212427303336394245485154576063
Firt 64 nodes

0
4

8
12

16
20

24
28

32
36

40
44

48
52

56
60

H
id

de
n

D
im

en
si

on
 In

de
x

Activation Matrix of 2-nd layer

0 3 6 9 121518212427303336394245485154576063
Firt 64 nodes

0
4

8
12

16
20

24
28

32
36

40
44

48
52

56
60

H
id

de
n

D
im

en
si

on
 In

de
x

Activation Matrix of 127-th layer

0 3 6 9 121518212427303336394245485154576063
Firt 64 nodes

0
4

8
12

16
20

24
28

32
36

40
44

48
52

56
60

H
id

de
n

D
im

en
si

on
 In

de
x

Activation Matrix of 255-th layer

10 3

10 2

10 1 A
ctivation A

bsolute V
alue

0 3 6 9 121518212427303336394245485154576063
Weight Column Index

0
4

8
12

16
20

24
28

32
36

40
44

48
52

56
60

W
ei

gh
t R

ow
 In

de
x

Gradient Matrix of 2-nd layer

0 3 6 9 121518212427303336394245485154576063
Weight Column Index

0
4

8
12

16
20

24
28

32
36

40
44

48
52

56
60

W
ei

gh
t R

ow
 In

de
x

Gradient Matrix of 127-th layer

0 3 6 9 121518212427303336394245485154576063
Weight Column Index

0
4

8
12

16
20

24
28

32
36

40
44

48
52

56
60

W
ei

gh
t R

ow
 In

de
x

Gradient Matrix of 255-th layer

10 4

10 3

10 2

10 1

G
radient A

bsolute V
alue

Figure 11: The heatmap of the activation and gradient matrix of a 256-layer tanh-activated GCN with
SPoGInit.

56

Published in Transactions on Machine Learning Research (06/2025)

F.4 Computation cost and scalability of SPoGInit

We provide a detailed discussion on the computational cost and scalability of SPoGInit in this subsection.

Computational cost analysis

SPoGInit is utilized as a weight initialization search method prior to the main model training process (as
described in Algorithm 1 in Appendix E). We identify two primary sources of additional computational cost:
(a) searching steps: in practice, SpoGInit typically needs 20–40 search steps, which is small relative to
the roughly 800-1500 training epochs of GNNs; (b) optimization method: SPoGInit employs a zeroth
order optimization method, which only relies on only forward propagation computations, not requiring
more computationally expensive backward passes. This analysis indicates that the computational overhead
introduced by SPoGInit is relatively minor.

Besides, we conduct an empirical study to evaluate the computation overhead brought by SPoGInit. In our
experiments, we compare the training time of a vanilla GCN architecture (without SPoGInit) against the
same architecture incorporated with SPoGInit, using 40 searching steps, on both the Amazon-ratings and
OGBN-Arxiv datasets. As shown in Table 16, SPoGInit consistently adds approximately 18% to the training
time on these two datasets. In general, incorporating SPoGInit increases the overall training computational
cost by roughly 10%–20%. Given the performance improvements observed in GNNs, we consider this
additional cost to be an acceptable trade-off.

Table 16: Comparison of total training time for 64-layer tanh-activated GCN with Xaiver initialization and
SPoGInit on the small dataset Amazon-ratings and the large dataset OGBN-Arxiv. All experiments are run
for 1000 training epochs. The searching steps of SPoGInit are set as 40.

Dataset Nodes Xavier SPoGInit Additional Time
Amazon-ratings 24,492 185.7s 220.5s 18.7%
OGBN-Arxiv 169,343 901.3s 1064.1s 18.1%

Scalability analysis

Notably, Table 16 shows that as the graph size grows larger, the proportion of SPoGInit computation (relative
to total training computation) would not increase. This implies that SPoGInit can scale effectively to large
graph datasets.

F.5 More experiments on graph attention networks

We conduct comparative experiments between SPoGInit and other baseline initialization methods on Graph
Attention Networks (GAT) (Veličković et al., 2017). Building upon the original GAT architecture, we further
investigate the performance on a residual-enhanced variant (ResGAT) by incorporating skip connections.
The results are presented in Table 17.

The experimental results show that SPoGInit significantly mitigates performance degradation on GAT and
ResGAT. Moreover, on ResGAT, while other baseline methods still suffer from severe performance drops as the
network depth increases, SPoGInit instead leads to improved performance with greater depth, demonstrating
its effectiveness in deep architectures.

F.6 Experimental comparison with G-Init

This subsection presents a comparison between SPoGInit and G-Init (Kelesis et al., 2024), an initialization
method specifically designed to alleviate over-smoothing in deep GNNs. G-Init incorporates the graph
topology into the initialization process. Specifically, G-Init scales the weight variance of the base initialization
by a factor of di.4 Following the experimental setup in the original G-Init paper, we set di = 1.6 for

4While the original paper (Kelesis et al., 2024) adopts ReLU as the activation function—typically paired with Kaiming
initialization—we use tanh activation, which is commonly initialized using Xavier.

57

Published in Transactions on Machine Learning Research (06/2025)

Table 17: Test accuracies of GAT and ResGAT with varying depths and initialization methods. The bold
figure highlights the best performance among different initializations. "Deg" refers to the test accuracy
degradation as the depth increases from 4 to 64 layers. The smallest performance drops are highlighted
in orange. We set the number of attention head to be 1. The results demonstrate that SPoGInit reduces
performance degradation compared to baseline initializations and enhances the performance of deep GAT
and ResGAT.

Model Init. Cora Arxiv
4 8 16 32 64 Deg. 4 8 16 32 64 Deg.

GAT

Conventional 79.4 73.2 50.3 37.4 31.9 ↓ 47.5 68.2 66.2 5.9 5.9 5.9 ↓ 62.3
Xavier 79.7 79.5 74.1 71.2 68.8 ↓ 10.9 68.4 68.1 61.1 43.7 14.9 ↓ 53.5

VirgoFor 79.0 78.9 74.9 74.7 74.0 ↓ 5.0 68.5 68.4 65.8 63.7 50.5 ↓ 18.0
VirgoBack 78.1 76.2 74.7 71.6 71.8 ↓ 6.3 68.5 68.4 65.8 63.7 49.5 ↓ 19.0
SPoGInit 79.4 78.8 76.2 76.3 74.5 ↓ 4.9 68.3 66.0 66.7 64.0 47.1 ↓ 21.2

ResGAT
Conventional 78.3 78.5 78.1 77.5 32.5 ↓ 45.8 70.6 71.4 71.8 69.7 21.6 ↓ 49.0

Xavier 77.6 79.3 77.8 32.3 32.0 ↓ 45.6 70.8 71.4 69.7 21.7 21.7 ↓ 49.1
VirgoFor 78.4 77.9 75.4 31.3 31.5 ↓ 46.9 70.5 70.5 21.8 21.6 21.7 ↓ 48.8

VirgoBack 79.4 77.6 76.1 26.1 33.2 ↓ 46.2 70.7 70.4 21.6 21.6 16.3 ↓ 54.5
SPoGInit 77.1 77.4 78.6 76.0 78.3 ↑ 1.2 70.7 71.3 71.9 71.8 71.4 ↑ 0.7

OGBN-Arxiv and Arxiv-year, and di = 2.0 for all other benchmark datasets. We systematically evaluate the
performance of tanh-activated GCN architectures ranging from 4 to 64 layers under different initialization
schemes.

The results, summarized in Table 18, show that while G-Init can alleviate performance degradation in deep
GCNs to some extent, SPoGInit consistently outperforms it in most cases. For instance, on the PubMed
dataset, G-Init suffers from a 4% performance drop as depth increases, whereas SPoGInit achieves stable or
improved performance. These findings highlight the effectiveness of SPoGInit’s initialization strategy, which
explicitly searches for stable signal propagation patterns, in mitigating depth-induced degradation in GCN
training.

Table 18: Test accuracies of GCN models initialized with G-Init and SPoGInit across varying depths. The
bold figure highlights the best performance among different initializations. "Deg" refers to the test accuracy
degradation as the depth increases from 4 to 64 layers. We choose the starting point of SPoGInit as VirgoFor
on the Arxiv dataset. The results show that while both initializations help alleviate degradation in deep
GCNs, SPoGInit achieves more consistent performance and smaller accuracy drops across different datasets.

Model Init. Cora Arxiv
4 8 16 32 64 Deg. 4 8 16 32 64 Deg.

GCN G-Init 79.7 78.3 76.7 75.2 73.4 ↓ 6.3 69.6 69.5 68.8 66.5 58.9 ↓ 10.7
SPoGInit 79.8 79.6 78.2 75.8 73.7 ↓ 6.1 69.6 69.6 68.7 67.2 61.4 ↓ 8.2

Model Init. PubMed Arxiv-year
4 8 16 32 64 Deg. 4 8 16 32 64 Deg.

GCN G-init 78.5 76.8 78.0 77.7 74.5 ↓ 4.0 43.8 29.9 45.5 45.6 43.4 ↓ 0.4
SPoGInit 77.4 77.5 77.0 78.4 78.1 ↑ 0.7 43.9 41.9 45.2 44.9 43.9 0

58

Published in Transactions on Machine Learning Research (06/2025)

G Supplemental experiment results

G.1 Experimental settings and hyperpameters

Settings for the experiments on mainstream datasets.

We set w1 = 1, w2 = 10, w3 = 1 for the vanilla GCN and w1 = 1, w2 = 1, w3 = 1 for other architectures
in these experiments. An early stopping criterion is also implemented for SPoGInit: if the metric fails to
decrease over δ consecutive steps, the search is terminated. Unless otherwise specified, SPoGInit is initialized
with Xavier initialization in these experiments. To guarantee that models with the same depth have the same
receptive field, we set the number of hops to 1 in the MixHop layer for the MixHop architecture.

In our experiments on the Cora and PubMed datasets,

• We perform grid searches over learning rates of 1e-3, 1e-4, 5e-5, and 1e-5.

• The training epochs and early stopping patience are listed in Table 19.

• For vanilla GCN and MixHop, we evaluate two configurations: (1) weight decay set to 5e-3 and
dropout rate set to 0.5, and (2) both weight decay and dropout rate set to 0. We report the best
performance achieved between these settings.

• For ResGCN and gatResGCN, we set the dropout rate to 0.5.

• In Table 2, the learning rate for SPoGInit is set to 0.1. The early stopping step δ is set to 20 for
ResGCN and gatResGCN, and to 10 for vanilla GCN and MixHop. In the experiments with ResGCN
and gatResGCN, SPoGInit starts with conventional initialization.

• In Figure 3, we use PyTorch’s autograd functionality to compute the gradient of the scaling factors.
In Figure 4 and 5, the learning rate for SPoGInit is set to 0.05 for ResGCN and MixHop, with the
early stopping step δ set to 10 for ResGCN.

Table 19: Hyperparameter configurations of experiments on Cora and PubMed.

GCN layers training epoch early stop patience
4/8/16 layers 800 200

32 layers 1200 300
64 layers 1500 375

In the experiments on the OGBN-Arxiv and Arxiv-year datasets,

• All models are trained for 1000 epochs.

• The learning rate is set to 5e-3 for ResGCN and gatResGCN, and 5e-4 for MixHop. For the vanilla
GCN, the learning rates are configured as follows: 5e-3 for the 4-layer and 8-layer models, 5e-4 for
the 16-layer and 32-layer models, and 5e-5 for the 64-layer model.

• For ResGCN and gatResGCN, we set the dropout rate to 0.5.

• For SPoGInit, the learning rate is set to 0.2 for ResGCN and gatResGCN, 0.1 for MixHop, 0.07 for
vanilla GCN on the Arxiv-year dataset, and 0.05 for vanilla GCN on the OGBN-Arxiv dataset. The
parameter δ in SPoGInit is set to 10 for ResGCN, gatResGCN, and MixHop, and 20 for vanilla GCN.

In the experiments on the Amazon-photo and Amazon-computers datasets,

• We perform grid searches over learning rates of 1e-3, 1e-4, 5e-5, and 1e-5.

59

Published in Transactions on Machine Learning Research (06/2025)

• All model are trained with 64 hidden units.

• The training epochs and early stopping patience are listed in Table 19. One difference is that for
32-layer model, we used 1000 epochs for training and 200 epochs for early stopping patience.

• For ResGCN, gatResGCN and vanilla GCN, we set the dropout rate to 0.5. For vanilla GCN, we set
the weight decay to be 0.00005. For MixHop, we tried two configurations: (1) dropout 0.5, weight
decay 0.00005 (2) dropout 0, weight decay 0, and we choose the best performance amoug these
configurations.

• We use the same configurations of SPoGInit in Cora and PubMed datasets. For the Amazon-computers
dataset, the starting point is set as VirgoFor.

In the experiments on the Amazon-ratings and Roman-Empire datasets. We use VirgoFor as the starting
point of SPoGInit in the experiments with vanilla GCN, and learning rate of SPoGInit is set to 0.1. The
other configurations are the same with those in the OGBN-Arxiv and Arxiv-year datasets.

In the experiments with DGN,

• In the Cora and PubMed datasets, we perform two configurations: (1) following the setting in Zhou
et al. (2020b), the dropout as 0.6, weight decay is set as 0.0005. (2) dropout and weight decay are
both set to be zero. We report the best performance amoug these two configureations. The other
configurations are the same with those in Cora and PubMed experiments.

• In the OGBN-Arixv dataset, we use the vanilla GCN with Conventional Initialization as base model.
The other configurations are the same with those in OGBN-Arxiv experiments.

• For the group number G in DGN, we set it as 10 in Cora, and 5 for other datasets.

In the experiments with CO-GNN,

• To align with the experiment settings in Section 5, we fix the width of environment network to be
64, and we set the width of action network to be 16 in Cora and PubMed dataset, and 32 in the
Amazon-ratings. And we use mean GNN as the action network.

• In the Cora and PubMed datasets, we follow the settings in Finkelshtein et al. (2023): We perform
grid searches over learning rates of 0.01, 0.05, 0.005, 0.0005. The dropout is set as 0.5 and weight
decay is set as 5e-4, and τ0 is set as 0.1. We use mean GNN as the environment network in Cora and
GCN as the environment network in PubMed. We train the model for 1000 epochs and we adopt
the skip connection in the model. The other configurations are the same with those in Cora and
PubMed experiments in our setting.

• In the Amazon-ratings datasets, we follow the settings in Finkelshtein et al. (2023): we train the
model for 3000 epochs, the learning rate is set as 3e-4. And we use mean GNN as the environment
network. We adopt the layernorm and skip connection.

Settings for the exploration of starting points in SPoGInit

In these experiments, the settings for SPoGInit are slightly different from the previous ones. To be more
specific,

• For ResGCN, the learning rate of SPoGInit is set to 0.1 when starting from VirgoFor or VirgoBack
initialization, and 0.2 in all other cases.

• For vanilla GCN, the learning rate of SPoGInit is set to 0.1 when starting from Conventional
initialization and 0.05 in all other cases.

60

Published in Transactions on Machine Learning Research (06/2025)

Settings for the missing feature experiments

To enhance the dataset’s dependence on long-range relationships, we reduce the proportion of training split
and set the train/validation/test split as 10%/25%/65%, which is generated through the implementation in
Lim et al. (2021). In this experiment, we set SPoGInit to use Conventional initialization as the starting point
when it is adopted to gatResGCN, while SPoGInit begins with Xavier initialization as the starting point in
other cases.

Settings for MILP experiment

In the MILP experiment, we train the models for 500 epochs. The batch size is set as 40 and the hidden
dimension is set as 64.

G.2 Ablation study of SPoGInit

In this subsection, we conduct the ablation study of SPoGInit by analyzing various combinations of its SP
metric components. Specifically, we reformulate the optimization problem (2) to include either one or two
of the three SP metrics. Table 20 presents the performance of a 32-layer vanilla GCN with these modified
SPoGInit variants on the Cora dataset. For this experiment, both dropout rate and weight decay are set to 0,
while all other hyperparameters follow the settings for the experiments on mainstream datasets in Appendix
G.1.

The results indicate that incorporating a single SP metric into the optimization problem slightly improves
the performance of vanilla GCNs, with the most notable enhancement observed when SPoGInit includes the
FSP metric. Incorporating two SP metrics leads to a more substantial improvement, although it still falls
short of the performance achieved by SPoGInit using all three SP measures.

These experimental results highlight the importance of combining all three SP metrics to maximize the
performance of SPoGInit.

Table 20: Test accuracies of a 32-layer vanilla GCN with modified SPoGInit variants: A "✓" indicates that a
specific metric is included in the signal propagation optimization of SPoGInit, while a "-" denotes its exclusion.
The results show that incorporating one or two SP metrics improves the performance of the deep vanilla
GCN. However, the best performance is achieved when all three SP metrics are used in SPoGInit.

Variants FSP BSP GEV Test Accuracy
GCN (Xavier) 72.83 ± 0.45
+SPoGInit

✓ - - 73.83 ± 1.72
- ✓ - 73.50 ± 0.36
- - ✓ 73.90 ± 1.56
✓ ✓ - 75.60 ± 0.16
✓ - ✓ 73.60 ± 1.72
- ✓ ✓ 73.77 ± 1.43
✓ ✓ ✓ 75.80 ± 0.16

61

Published in Transactions on Machine Learning Research (06/2025)

H Broader impact statement

In this paper, we employ signal propagation theory to analyze the performance degradations in deep GCNs.
Additionally, we propose a solution (SPoGInit) to address signal propagation issues and alleviate this problem.
This paper is a theoretical and algorithmic paper on graph neural nets, and does not seem to pose negative
social impact.

62

	Introduction
	Preliminaries and Background
	Graph convolutional networks
	Initialization

	Theoretical Analysis of GCN Initializations
	Theoretical results for vanilla GCN
	Theoretical results for ResGCN

	SPoGInit: Initialization guided by signal propagation on graph
	Numerical Experiments
	Experiments setting
	Experiments on mainstream datasets
	Experiments on graph-based tasks involving long-range relationships

	Related works
	Limitations and future works
	Conclusion
	 Appendix
	Supplemental notation
	Convolutional kernel
	Signal propagation theory for vanilla GCN
	NNGP correspondence for vanilla GCN
	Some discussion w.r.t. G
	Proof of Theorem 3.1 (Signal propagation on ReLU-like-activated vanilla GCN)
	Proof of Theorem 3.2 (Signal propagation on ReLU-activated vanilla GCN)
	Signal propagation on tanh-activated vanilla GCN

	Signal propagation theory for linear ResGCN
	NNGP correspondence for linear ResGCN
	Proof of Theorem 3.3 (signal propagation on linear ResGCN)

	SPoGInit algorithm
	Implementation details
	Analysis on the coefficient w2 in SPoGInit
	Computational efficiency of GEV in SPoGInit
	Comparison of the per-layer scaling factors across different baseline initializations

	Additional experiments
	Experiments on additional datasets
	Comparison and integration of SPoGInit with additional methods
	More experiments on signal propagation
	Computation cost and scalability of SPoGInit
	More experiments on graph attention networks
	Experimental comparison with G-Init

	Supplemental experiment results
	Experimental settings and hyperpameters
	Ablation study of SPoGInit

	Broader impact statement

