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Abstract
Diffusion policies have achieved superior perfor-
mance in imitation learning and offline reinforce-
ment learning (RL) due to their rich expressive-
ness. However, the conventional diffusion train-
ing procedure requires samples from target dis-
tribution, which is impossible in online RL since
we cannot sample from the optimal policy. Back-
propagating policy gradient through the diffusion
process incurs huge computational costs and in-
stability, thus being expensive and not scalable.
To enable efficient training of diffusion policies
in online RL, we generalize the conventional de-
noising score matching by reweighting the loss
function. The resulting Reweighted Score Match-
ing (RSM) preserves the optimal solution and low
computational cost of denoising score matching,
while eliminating the need to sample from the
target distribution and allowing learning to opti-
mize value functions. We introduce two tractable
reweighted loss functions to solve two commonly
used policy optimization problems, policy mir-
ror descent and max-entropy policy, resulting in
two practical algorithms named Diffusion Pol-
icy Mirror Descent (DPMD) and Soft Diffusion
Actor-Critic (SDAC). We conducted comprehen-
sive comparisons on MuJoCo benchmarks. The
empirical results show that the proposed algo-
rithms outperform recent diffusion-policy online
RLs on most tasks, and the DPMD improves more
than 120% over soft actor-critic on Humanoid and
Ant.

1. Introduction
Many successes of diffusion-based generative models have
been witnessed recently (Sohl-Dickstein et al., 2015; Song &
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Ermon, 2019; Ho et al., 2020). With the iterative denoising
design, diffusion models achieved superior expressiveness
and multimodality in representing complex probability dis-
tributions, demonstrating remarkable performance in image
and video generation (Ramesh et al., 2021; Saharia et al.,
2022). The superior expressiveness and multimodality nat-
urally benefit the policies in sequential decision-making
problems. In fact, diffusion policy has been introduced in
imitation learning and offline reinforcement learning (RL),
where expert datasets are presented. Diffusion policies im-
proved significantly over previous deterministic or unimodal
policies on manipulation (Chi et al., 2023; Ke et al., 2024;
Scheikl et al., 2024) and locomotion tasks (Huang et al.,
2024).

Meanwhile, online RL has been long seeking expressive
policy families. One promising direction lies in energy-
based models (EBMs)—a class of probabilistic models that
represent distributions via unnormalized densities. When
applied to RL, energy-based policies—policies modeled as
EBMs—have been shown to arise as optimal solutions in
proximity-based policy optimization (Nachum et al., 2017;
Mei et al., 2020) and max-entropy RL (Neu et al., 2017;
Haarnoja et al., 2017). Despite their theoretical appeal,
training and sampling from such unnormalized models in
continuous action spaces are notoriously difficult due to
their intractable likelihood (Song & Kingma, 2021). To
mitigate this, a variety of probabilistic models have been
introduced for efficient sampling and learning, but with
the cost of approximation error. In practice, many algo-
rithms (Schulman, 2015; Schulman et al., 2017; Haarnoja
et al., 2018; Hansen-Estruch et al., 2023) project the energy-
based policies onto the Gaussian policies. However, this
projection severely limits the expressiveness of the origi-
nal energy-based formulations, often resulting in degraded
performance.

Diffusion models are closely related to EBMs, as they can
be regarded as EBMs perturbed by a series of noise (Song
& Ermon, 2019; Shribak et al., 2024), thus being the perfect
candidate to represent energy-based policies in RL. Unfor-
tunately, it is highly non-trivial to train diffusion policies
in online RL. The commonly used diffusion model train-
ing procedure, denoising score matching (Ho et al., 2020),
requires data samples from the target data distribution (usu-
ally a large image dataset in image generation). However,
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we cannot sample from the optimal policy in online RL,
where the policy is learned by optimizing the returns or
value functions. There exist several preliminary studies try-
ing to bypass the sampling issue (Psenka et al., 2023; Jain
et al., 2024; Yang et al., 2023; Wang et al., 2024; Ding et al.,
2024a; Ren et al., 2024), but all these methods suffer from
biased estimations and/or huge memory and computation
costs, resulting in suboptimal policies and limiting the true
potential of diffusion policies in online RL.

To handle these challenges, we propose to generalize diffu-
sion model training by reweighting the conventional denois-
ing score matching loss, resulting in two efficient algorithms
to train diffusion policies in online RL without sampling
from optimal policies. Specifically,

• Building upon the viewpoint of diffusion models as noise-
perturbed EBMs, we propose Reweighted Score Match-
ing (RSM), a family of loss functions to train diffusion
models, which generalizes the denoising score matching
by reweighting the loss function while preserving the opti-
mal solution as noise-perturbed EBMs.

• RSM leads to computationally tractable and efficient algo-
rithms to train diffusion policies in online RL. We show
that, by choosing different reweighting functions, we can
train diffusion policies to solve two policy optimization
problems, policy mirror descent and max-entropy pol-
icy, resulting in two practical algorithms named Diffu-
sion Policy Mirror Descent (DPMD) and Soft Diffusion
Actor-Critic (SDAC). Both problems are commonly seen in
theoretical studies but empirically challenging in the con-
tinuous action space, and the proposed algorithms bridge
this gap between the theory and practice of online RL.

• We conduct extensive empirical evaluation on MuJoCo,
showing that the proposed algorithms outperform recent
diffusion-based online RL baselines in most tasks. More-
over, both algorithms improve more than 100% over SAC
on Humanoid and DPMD improves more than 100% over
SAC on Ant, demonstrating the potential of diffusion pol-
icy in online RL.

2. Preliminaries
We introduce the necessary preliminaries in this section.
First, we introduce reinforcement learning and two com-
monly seen policy optimization problems in online RL.
Then we briefly recap the diffusion models and energy-
based models.

2.1. Reinforcement Learning

Markov Decision Processes (MDPs). We consider
Markov decision process (Puterman, 2014) specified by
a tupleM = (S,A, r, P, µ0, γ), where S is the state space,

A is the action space, r : S ×A → R is a reward function,
P : S × A → ∆(S) is the transition operator with ∆(S)
as the family of distributions over S, µ0 ∈ ∆(S) is the ini-
tial distribution and γ ∈ (0, 1) is the discount factor. We
consider two types of commonly seen policy optimization
problems in RL, (a) Policy mirror descent and (b) Max-
entropy policy.

Policy Mirror Descent is closely related to practical
proximity-based algorithms such as TRPO (Schulman,
2015) and PPO (Schulman et al., 2017), but with a dif-
ferent approach to enforce the proximity constraints. We
consider policy mirror descent with Kullback–Leibler (KL)
divergence proximal term (Tomar et al., 2021; Lan, 2023;
Peters et al., 2010) updates the policy with
πMD(a|s)= argmax

π:S→∆(A)

Ea∼π [Q
πold(s,a)]−λDKL (π||πold; s)

(1)
where Qπold(s, a) = Eπold

[
∑∞

τ=0 γ
τr(st,at)|s0 =

s,a0 = a] is the state-action value function and πold is
the current policy. The additional KL divergence objective
constrains the updated policy to be approximately within
the trust region. The closed-form solution of policy mirror
descent (1) satisfies

πMD (a|s) = πold (a|s)
exp (Qπold (s,a) /λ)

ZMD(s)
, (2)

and ZMD(s) =
∫
πold (a|s) exp (Q (s,a) /λ) da is the par-

tition function.

Max-entropy RL. Maximum entropy RL considers the
entropy-regularized expected return as the policy learning
objective to justify the optimal stochastic policy

argmax
π

J(π) := Eπ

[ ∞∑
τ=0

γτ (r(sτ ,aτ ) + λH(π(·|sτ )))

]
(3)

whereH (π(·|s)) = Ea∼π(·|s)[− log π(a|s)] is the entropy,
λ is a regularization coefficient for the entropy. The soft pol-
icy iteration algorithm (Haarnoja et al., 2017) is proposed to
solve the optimal max-entropy policy. Soft policy iteration
algorithm iteratively conducts soft policy evaluation and soft
policy improvement, where soft policy evaluation updates
the soft Q-function by repeatedly applying soft Bellman up-
date operator T π to current value function Q : S ×A → R,
i.e.,
T πQ(sτ ,aτ ) = r(sτ ,aτ ) + γEsτ+1∼P [V (sτ+1)] (4)

where V (sτ ) = Eaτ∼π [Q(sτ ,aτ )− λ log π(aτ | sτ )].
Then in the soft policy improvement stage, the policy is
updated to fit the target max-entropy policy

πMaxEnt(a|s) =
exp (Qπold (s,a) /λ)

Z(s)
(5)

where Qπold(s,a) is the converged result of (4) with T πold ,
Z(s) =

∫
exp(Qπold(s,a)/λ)da. Max-entropy RL shows

a foundational concept in the exploration-exploitation trade-
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off with stochastic policies, leading to practical algorithms
with strong performance even with the restrictive Gaussian
policies such as soft actor-critic (Haarnoja et al., 2018).

2.2. Energy-Based Models

The closed-form solutions of both policy mirror descent
(2) and max-entropy policy (5) have unknown normaliza-
tion constants. Such probabilistic models with unknown
normalization constants are known as energy-based mod-
els (EBMs), whose density functions can be abstracted as

p0(x) =
exp (−E(x))

Z
where Z =

∫
exp (−E(x)) dx is the unknown normaliza-

tion constant or partition function. We only know the energy
functions E(x) = − log p0(x), i.e., the negative log density.
The gradient of log density ∇x log p0(x) = −∇xE(x) is
called the score functions.

The unknown normalization constants Z raise difficulties
in training and sampling of EBMs (Song & Kingma, 2021).
One of the commonly used approaches is the score-based
methods, which first learns the score function via score
matching (Hyvärinen & Dayan, 2005; Song et al., 2020)
and then draws samples via Markov chain Monte Carlo
(MCMC) such as Langevin dynamics with the learned score
functions (Neal et al., 2011). However, the MCMC sam-
pling is inefficient due to the lack of finite-time guarantees,
preventing score-based EBMs from being widely used in
practice.

In the practice of online RL, projection onto Gaussian
policies is commonly used in policy optimization with
EBMs. For example, the well-known soft actor-critic (SAC,
Haarnoja et al., 2018) parameterize the policy as Guassian
πθ (a|s) = N

(
µθ1(s), σ

2
θ2
(s)
)

and updates the parameters
θ = [θ1, θ2] by optimizing the KL-divergence to the target
max-entropy policy minθ DKL(πθ∥πMaxEnt). However, the
projection loses expressiveness, and the resulting policies
might be sub-optimal, leaving a huge gap between theory
and practice of energy-based policies.

2.3. Denoising Diffusion Probabilistic Models

Denoising diffusion probabilistic models (DDPMs, Sohl-
Dickstein et al., 2015; Ho et al., 2020) are composed of a
forward diffusion process that gradually perturbs the data
distribution x0 ∼ p0 to a noise distribution xT ∼ pT , and
a reverse diffusion process that reconstructs the data dis-
tribution p0 from the noise distribution pT . The forward
corruption kernels are Gaussian with a variance schedule
β1, . . . , βT , resulting in the forward trajectories with joint
distributions

q0:T (x0:T ) = p0(x0)

T∏
t=1

qt|t−1 (xt|xt−1)

where qt|t−1(xt|xt−1) := N (xt;
√
1− βtxt−1, βtI), xt

is the perturbed data at t step, and p, q are probability distri-
butions1. As the perturbations at every step are independent
and additive Gaussian, we can directly sample the t−step
perturbed data xt by

xt ∼ pt(xt) =

∫
p0(x0)qt|0(xt|x0)dx0,

where qt|0(xt|x0) := N (xt;
√
ᾱtx0 (1− ᾱt) I), ᾱt =

t∏
l=1

(1− βl)

(6)
The backward process recovers the data distribution
from a noise distribution pT with a series of reverse
kernels pt−1|t(xt−1|xt). The kernel of reverse pro-
cess is also Gaussian and can be parametrized as
N
(

1√
αt

(xt + βtsθ(xt; t)) , σ
2
t I
)

with score networks

sθ(xt, t) and fixed covariance σt = 1−ᾱt−1

1−ᾱt
βt The score

network sθ(xt; t) is trained by the denoising score match-
ing to match the forward and reverse processes (Ho et al.,
2020), whose loss function is

1

T

T∑
t=0

(1− ᾱt) E
x0∼p0
xt∼qt|0

[∥∥sθ (xt; t)−∇xt
log qt|0(xt|x0)

∥∥2]
(7)

. The score function ∇xt
log qt|0(xt|x0) can be computed

from the sampled Gaussian noise perturbing a0 to be at,
thus the loss in (7) is tractable and easy to implement. After
learning the sθ via (7), we can draw samples via the reverse
diffusion process by the iterative formulation

xt−1 =
1
√
αt

(xt + βtsθ (xt, t)) +
1− ᾱt−1

1− ᾱt
βtzt (8)

for t = T, T − 1, . . . , 1 and zt ∼ N (0, I).

3. Reweighted Score Matching: A General
Loss Family for Diffusion Models

In this section, we first present the connection between
energy-based models and diffusion models, justifying the
expressiveness of diffusion policy to represent energy-based
policies such as (2),(5). Then we identify the difficulties in
training of diffusion policy in the context of online RL,
where the conventional denoising score matching is in-
tractable. To mitigate this, we propose our core contribution,
Reweighted Score Matching (RSM), by reweighting the de-
noising score matching loss.

Notation. To fit the diffusion policy context, we consider
the diffusion policy notations, where the diffusion is on
actions a conditioned on state s. The score function has
the additional input of states sθ(at; s, t). The data distribu-

1We use p and q interchangeably as density function in this
paper. Generally, p represents intractable distributions (like the
t-step marginal pt(xt)), and q represents tractable distributions
such as the Gaussian corruption qt|t−1(xt|xt−1).
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Figure 1. Diffusion model aims to match score network sθ(xt, t) with noise-perturbed score function ∇xt log pt(xt) by minimizing the
expectation of error L2-norm ∥sθ(xt, t)−∇xt log pt(xt)∥2 over distribution pt. RSM generalize to other weight function gt to enable
diffusion policy training in online RL.

tion p0(·|s) refers to the policy in (2) or (5), and we will
explicitly mention which one we refer to as p0 if needed.

3.1. Diffusion Models as Noise-Perturbed Energy-Based
Models

We first revisit the energy-based view of diffusion models,
i.e., diffusion models are noise-perturbed EBMs (Song & Er-
mon, 2019; Shribak et al., 2024), to justify that the diffusion
policy can efficiently represent the energy-based policies.

Proposition 3.1 (Diffusion models as noise-perturbed
EBMs). Consider a single term in loss function of
DDPM (7) at given state s and time t,
LDSM(θ; s, t) :=

E
a0∼p0(·|s)

at∼qt|0(·|a0)

[∥∥sθ (at; s, t)−∇xt log qt|0(at|a0)
∥∥2] (9)

We refer to it as the denoising score matching (DSM) loss.
The optimal solution θ∗ is achieved when the following holds
for all at

sθ∗(at; s, t) = ∇at
log pt(at|s)

where pt(at|s) =
∫
qt|0(at|a0)p0(a0|s)da0 is the noise-

perturbed policy with perturbation kernel qt|0(at|a0) =
N (at;

√
ᾱta0, (1− ᾱt) I), for noise schedule index t =

1, 2, . . . , T .

The connection is first revealed in Vincent (2011), and we
revisit it in this paper.

Proof. Consider the following loss function minimizing the
squared error between sθ(at; s, t) and∇at

log pt(at|s),
LVSM(θ; s, t)= E

at∼pt(·|s)

[
∥sθ(at; s, t)−∇at log pt(at|s)∥2

]
(10)

where we refer to it as vanilla score matching (VSM) loss.
It is obvious that the minimizer of LVSM is sθ∗(at; s, t) =
∇at log pt(at|s) for any at. Then we show the following
loss equivalence,
LDSM(θ; s, t) = LVSM(θ; s, t) + constant (11)

where constant is a constant irrelevant with θ. The de-
tailed derivations are deferred to Appendix B.1.

Therefore, minimizing LDSM in DDPMs is equiva-
lent to minimizing LVSM, whose optimal solution is
sθ∗(at; s, t) = ∇at

log pt(at|s) anywhere on the at

space.

Proposition 3.1 indicates that the underlying learning tar-
get of the score function sθ(at; s, t) is the noise-perturbed
score functions∇at

log pt(at|s). At the sampling stage, as
the noise gets close to zero when t goes from T to 1 in the
reverse process (8), the noise-perturbed EBMs gradually
resemble the original noiseless target data distribution p0,
Therefore, diffusion models can be regarded as a series of
noise-perturbed EBMs2, and we can use the diffusion policy
to express the energy-based policies such as (2) and (5).

Revisiting the challenges in online RL. Proposition 3.1
shows that the DSM loss (9) is a tractable and efficient way
to train the score network to match ∇at log pt when we
have access to samples from p0. However, training diffusion
policy is highly non-trivial in online RL because of two
major challenges:

• Sampling challenge: In online RL, we do not have data
samples from the policies such as (2) or (5), the DSM

2The reason to add noise perturbations in score functions is to
encourage exploration on the energy landscape, which significantly
improves the sampling quality and makes diffusion-like models
the key breakthrough in EBMs (Song & Ermon, 2019).
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loss (9) is no longer tractable.

• Computational challenge: Another possible solution is
to treat the reverse process as policy parameterizations and
backpropagate policy gradient through the whole reverse
diffusion process (8) like Wang et al. (2024); Celik et al.
(2025). However, this recursive gradient propagation not
only incurs huge computational and memory costs, making
diffusion policy learning expensive and unstable. Moreover,
this policy parametrization viewpoint is limited to the max-
entropy policy formulation (5).

These challenges hinder the feasibility and performance of
diffusion-based policies in online RL. We need a principal
way to train diffusion policies when we have the energy
function as partial or full knowledge of the data distribution,
which we reveal in the following.

3.2. Reweighted Score Matching

We develop our core contribution, Reweighted Score Match-
ing (RSM), a general loss family leading to efficient diffusion
policy learning algorithms that eliminate the aforementioned
difficulties.

A key observation from VSM loss (10) is that, integrat-
ing the square error ∥sθ(at; s, t)−∇at log pt(at|s)∥2 over
distribution pt(·|s) is not the only option to perform score
matching that matches sθ(at, s, t) with ∇at

log pt(at|s).
Our core idea is to generalize this by reweighting the VSM
loss (10), allowing integrations with respect to any strictly
positive function g(at; s) : A× S → (0,∞) as long as the
following loss function is well-defined,

Lg(θ; s, t)=

∫
g(at; s)∥sθ(at; s, t)−∇at log pt(at|s)∥2dat

(12)
where the superscript g indicates the reweighting function.
The optimal solution of minimizing Lg(θ) remains the same
as matching ∇at

log pt(at|s) everywhere on at space in
Proposition 3.1, sθ(at; s, t). (12) indicates a general loss
family, where the VSM loss in (10) lies in it as Lpt(θ; s, t).

The reweighting technique gives us more flexibility in loss
function design. We will show tractable equivalent formula-
tions in the next section.

4. Diffusion Policy Optimization using
Reweighted Score Matching

In this section, we show two different reweighting functions,
with which the loss Lg can be converted to tractable loss
functions, to train diffusion policies to represent both the
mirror descent policy (2) and softmax policy (5). We also
discuss practical issues, such as the exploration-exploitation
tradeoff, sampling distributions.

4.1. Tractable Reweighted Loss Functions

4.1.1. DIFFUSION POLICY MIRROR DESCENT

Consider the mirror descent policy πMD(·|s) in (2) and set
p0(·|s) = πMD(·|s), we define the reweighting function as

gMD = ZMD(s)pt(at|s)
where ZMD(s) =

∫
πold(a|s) exp (Q (s,a) /λ) da. Then

we can show the reweighted loss LgMD(θ; s, t) is tractable
via the following derivation,
LgMD(θ; s, t)

=

∫
gMD(at; s) ∥sθ(at; s, t)−∇at log pt(at|s)∥2 dat =

E
a0∼πold
at∼qt|0

[
exp

(
Q (s,a0)

λ

)∥∥sθ (at; s, t)−∇at
logqt|0(at|a0)

∥∥2]
︸ ︷︷ ︸

LDPMD(θ,s,t)

+ constant
(13)

where LDPMD(θ, s, t) is tractable through unbiased
sampling-based approximation. The derivation is similar
to Proposition 3.1, and we defer it to Appendix B.2.

4.1.2. SOFT DIFFUSION ACTOR-CRITIC

The max-entropy policy πMaxEnt in (5) is more challenging
as we only know the energy function. It is also closely re-
lated to the Boltzmann sampling problem (Akhound-Sadegh
et al., 2024; Midgley et al., 2022). We need a special sam-
pling protocol to handle it. First, we define the reweighting
function as

gMaxEnt = ht(at|s)Z(s)pt(at|s)
where ht(at|s) is a sampling distribution we choose. We
require ht(at|s) to have full support on at space. Then we
can show the following equivalence,
LgMaxEnt(θ; s, t)

=

∫
gMaxEnt(at; s) ∥sθ(at; s, t)−∇at log pt(at|s)∥2 dat

=constant×

E
at∼ht
ã0∼ϕ0|t

[
exp

(
Q (s, ã0)

λ

)∥∥sθ (at; s, t)−∇at
log ϕ0|t(ã0 |at)

∥∥2]
︸ ︷︷ ︸

LSDAC(θ,s,t)

+ constant
(14)

where ϕ0|t is a conditional Gaussian distribution defined as

ϕ0|t(ã0|at) := N
(
ã0;

1√
ᾱt

at,
1− ᾱt

ᾱt
I

)
. (15)

The reason we introduce ϕ0|t(ã0|at) is to use the following
reverse sampling trick.

Remark 4.1. (Reverse sampling trick.) The density func-
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tions of qt|0 and ϕ0|t are

ϕ0|t(a0|at) =

(
2π

1− ᾱt

ᾱt

)−d/2

exp

(
(at − ᾱta0)

2

−2 (1− ᾱt)

)
,

qt|0(at|a0) = (2π (1− ᾱt))
−d/2

exp

(
(at − ᾱta0)

2

−2 (1− ᾱt)

)
where these two density functions only differ by a constant.
We show an abstract example of the reverse sampling trick
here. Consider the following integral that is well-defined

J(s) :=

∫
ht(at|s)p0(a|s)qt|0(at|a0)l(at,a0; s)da0dat

= Ea0∼p0,at∼qt|0 [h(at|s)l(at,a0; s)]

where l : A × A × S → R is an integrable function. No-
tice that we can equivalently compute the integral J(s) by
another expectation,

J(s) ∝
∫

ht(at|s)p0(a|s)ϕ0|t(a0|at)l(at,a0; s)da0dat

=Eat∼h,a0∼ϕ0|t [p0(a|s)l(at,a0; s)] .

This trick helps bypass sampling from p0 and sample from
the distribution ht instead. The detailed derivations are in
Appendix B.2.

Summary. We can see both loss functions (13) and (14)
handles the aforementioned sampling and computational
challenges. First, we avoid sampling from the target policy
πMD or πsoftmax, and sampling from either the current pol-
icy πold or a distribution ht we can choose. Second, we have
a similar computation with denoising score matching (7),
avoiding extra computational cost induced by diffusion pol-
icy learning. These benefits perfectly echo the difficulties
of sampling and computations in applying vanilla diffusion
model training to online RL, enabling efficient diffusion
policy learning.
Remark 4.2 (Broader applications). We emphasize that al-
though we develop RSM with the reweighting techniques
for online RL problems, the RSM has its own merit and can
be applied to enable diffusion models on any probabilistic
modeling problem with known energy functions, such as
Boltzmann samplers (Akhound-Sadegh et al., 2024; Midg-
ley et al., 2022). We also show a toy example of Boltzmann
sampling in Section 5.1 where we use RSM to train a toy dif-
fusion model to generate samples from a Gaussian mixture
distribution with only access to the energy functions.

4.2. Practical Issues of Diffusion Policy Training

Batch action sampling. Ding et al. (2024a) revealed that
diffusion models are too random for efficient exploitation,
and proposed to sample a batch of cations and choose the
one with the highest Q-value as the behavior policy,

a = argmax
i

Q(s,a(i)). (16)

We leverage this trick in both of our algorithms and add
a Gaussian noise whose noise level is automatically tuned

to balance exploration and exploitation, similar with Wang
et al. (2024).

Log likelihood computation. The soft policy evaluation
step in SDAC requires explicit log-likelihood that is non-
trivial for diffusion policies. However, we observe that the
action after batch action sampling is of low stochasticity,
thus, we can use the log probability of the additive Gaussian
to approximate the log probability of the policy.

Numerical stability. In practice, the exponential of large Q
functions in (13) and (14) might cause the loss to explode.
We handle the numerical stabilities by (a) Normalization.
In DPMD, we normalize the Q(s,a0) with the exponen-
tial moving average (EMA) of mean and standard devia-
tion over the sampled minibatch. (b) The logsumexp
trick. In SDAC, we sample multiple ã

(i)
0 ∼ ϕ0|t, i ∈

{1, 2, . . . ,K} for every s,at and use the logsumexp trick
to avoid explosion of the weights, which means replacing
the exp(Q(s, ã0)/λ) in (14) with

exp

Q(s, ã
(i)
0 )/λ− log

∑
(i)

exp
(
Q(s, ã

(i)
0 )/λ

) ,

The trick does not conflict with our theoretical derivation,
which is another reweighting on the s space.

Reverse sampling distribution selection. In SDAC, we can
choose the sampling distribution ht. Empirically we tried
uniform distribution, last policy πold(·|s), and the perturbed
data distributions

∫
πold(a0|s)qt|0(·|a0)da0. All these dis-

tributions show similar performance.

Combining all the discussions above, we present the prac-
tical algorithm of DPMD in Algorithm 1, while SDAC are
detailed in Appendix C.2.

4.3. Comparison with Recent Diffusion-based Online
RLs

We say both proposed algorithms are efficient because of
similar computation and memory cost with denoising score
matching (7) while bypassing the sampling issues, while
recent diffusion-based online RL either incur huge com-
putational or memory cost or induce approximation errors.
Recent works on diffusion policy online RLs can be cat-
egorized into these families: i) Score-based Bolzmann
sampling. With the known energy functions in (5), Psenka
et al. (2023); Jain et al. (2024) differentiated it to get the
non-noisy score function and use Langevin dynamics or
diffusion to sample from (5). The empirical performance is
not good due to the inaccurate score function obtained by
differentiating a learned energy function. ii) Reverse diffu-
sion as policy parametrizations. The reverse process (8)
can also be directly regarded as a complex parametrization
of θ. Wang et al. (2024) backpropagate policy gradients
through the reverse diffusion process, resulting in huge com-
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Algorithm 1 Diffusion Policy Mirror Descent (DPMD)
Require: Diffusion noise schedule βt, ᾱt for t ∈
{1, 2, . . . T}, MDPM, initial policy parameters θ0, ini-
tial Q-function parameters ζ0, replay buffer D = ∅,
learning rate β, KL-divergence coefficient λ0 and target
λtarget, µQ(0) = 0.0, σQ(0) := 1.0, EMA parameter ξ

1: for epoch e = 1, 2, . . . do
2: Sample M actions with policy sθe−1

and choose one
according to (16).

3: Interact with M, store the data in update replay
buffer D.

4: Sample a minibatch of (s,a, r, s′) from D.
5: # Policy evaluation.
6: Sample a′ via reverse diffusion process (8) with

sθe−1 .
7: Update Qe by minimizing the Bellman residual (28).
8: # Diffusion Policy Mirror Descent.
9: Sample t uniformly from {1, 2, . . . , T}. Sample a0

using sθe−1
and at ∼ qt|0(·|a0).

10: Compute Qe(s,a0) and normalize Q̄e(s,a0) =
Qe(s,a0)−µQ(e−1)

σQ(e−1)

update θe with score matching
Es,t [LDPMD(θe−1; s, t)] in (13) with Qe.

11: Update KL-divergence coefficient λe ← λe−1 +
β(λe−1 − λtarget).

12: Update EMA µQ(e) = (1 − ξ)µQ(e − 1) +
ξmean(Qe), σQ(e) = (1−ξ)σQ(e−1)+ξ std(Qe)

13: end for

putation costs. Ding et al. (2024a) approximate the policy
learning as a maximum likelihood estimation for the reverse
process, which incurs approximation errors and can not
handle negative Q-values. iii) Others. Yang et al. (2023)
maintained a separate diffusion buffer to approximate the
policy distribution and fit it with the diffusion model. Ren
et al. (2024) combined the reverse process MDP with MDP
in RL and conducted policy optimizations. They all induce
huge memory and computation costs, thus being impractical
and unnecessary. More general related works can be found
in Appendix A.

5. Experimental Results
This section presents the experimental results. We first use
a toy example, generating a 2D Gaussian mixture, to verify
the effectiveness of the proposed reweighted score matching
as diffusion model training. Then we show the empirical re-
sults of the proposed DPMD and SDAC algorithms evaluated
with OpenAI Gym MuJoCo tasks.

5.1. Toy Example

We first show a toy example of generating a 2D Gaussian
mixture distribution from the known energy function (also

known as Boltzmann sampling) to verify the effectiveness
of the proposed reweighted score matching. The Gaussian
mixture model is composed of two modes whose mean
values are [3, 3] and [−3,−3] and mixing coefficients are
0.8 and 0.2 shown in Figure 2(a). The detailed training setup
can be found in Appendix C.3, while another Boltzmann
sampling task named Two Moon is shown in Appendix C.4.

As we only know the energy function, we select the SDAC-
like loss function in (14) as our training objective. We
compare three diffusion models trained with two types of
loss functions: a. proposed SDAC-like loss function in (14)
with sampling distribution h being Gaussian and uniform
distributions in Figure 2(b) and Figure 2(c), which have
access to the true energy function but cannot sample directly
from the Gaussian mixture. c. Denoising score matching
loss (9) in Figure 2(d), which has access to sample from the
Gaussian mixture. Empirical results showed that all diffu-
sion models can approximately recover both the two modes
and the mixing coefficients, which verifies the effectiveness
of the proposed RSM approach to train diffusion models.

Moreover, we also show the naive Langevin dynamics (Neal
et al., 2011) samples as a reference in Figure 2(e), which has
access to the true score function without noise perturbations.
It shows that even with the true score function, Langevin
dynamics can not correctly recover the mixing coefficient in
finite steps (20 steps in this case), demonstrating the neces-
sity of diffusion models even with given energy functions.

5.2. OpenAI Gym MuJoCo Tasks

5.2.1. EXPERIMENTAL SETUP

We implemented the proposed DPMD and SDAC algorithms
with the JAX package3 and evaluated the performance on 10
OpenAI Gym MuJoCo v4 tasks. All environments except
Humanoid-v4 are trained over 200K iterations with a total
of 1 million environment interactions, while Humanoid-v4
has five times more.

Baselines. The baselines include two families of model-
free RL algorithms. The first family is diffusion policy RL,
which includes a collection of recent diffusion-policy online
RLs, including QSM (Psenka et al., 2023), QVPO (Ding
et al., 2024a), DACER (Wang et al., 2024), DIPO (Yang
et al., 2023) and DPPO (Ren et al., 2024). The second
family is classic model-free online RL baselines including
PPO (Schulman et al., 2017), TD3 (Fujimoto et al., 2018)
and SAC (Haarnoja et al., 2018). A more detailed explana-
tion to the baselines can be found in Appendix C.5.

3The implementation can be found at
https://github.com/mahaitongdae/diffusion policy online rl.
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(a) (b) (c) (d) (e)

Figure 2. The scatter plots of generating 2D Gaussian mixture, the histograms show the partition on each axis. Figure 2(a) shows the true
data samples with mixing coefficients [0.8, 0.2]. Figures 2(b) to 2(d) show that the proposed reweighted score matching and denoising
score matching can approximately recover the true data distribution. Figure 2(e) shows the slow mixing of Langevin dynamics that the
mixing coefficients can not be correctly recovered.
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Figure 3. Average return over 20 evaluation episodes every 25k iterations (125k for Humanoid) during training. We select the top 5
baselines ranked by average performance over all tasks for clarity. The error bars are standard deviations over 5 random seeds.

5.2.2. EXPERIMENTAL RESULTS

The performance and training curves are shown in Table 1
and Figure 3, which shows that our proposed algorithm
outperforms all the baselines in all OpenAI Gym MuJoCo
environments. Especially, for those complex locomotion
tasks including the HalfCheetah, Walker2d, Ant, and
Humanoid, our top-performing algorithm variant obtained
36.0%, 41.7%, 127.3%, 143.5% performance improve-
ment compared to SAC. Specifically, DPMD achieved at
least 6.4%, 43.4%, 32.1%, 23.1% performance improve-
ment compared to other diffusion-policy online RL base-
lines (not the same for all environments), respectively, while
SDAC shows comparable performance with DPMD except
Ant. The empirical results demonstrate the superior and
consistent performance of our proposed algorithm and the
true potential of diffusion policies in online RL.

Moreover, the performance of DPMD is very stable and con-
sistently good for all the tasks. Other algorithms, including
SDAC, performed badly on one or some tasks. For example,
QSM failed the InvertedDoublePendulum, possibly because
its true value function is known to be highly non-smooth.
The non-smooth nature results in bad score function esti-

mations since QSM matches the score function by differen-
tiating the Q-functions. QVPO failed Reacher and Pusher
since it cannot handle negative Q-functions. DACER failed
InvertedPendulum despite its good performance in some
complex tasks, probably due to the gradient instability when
backpropagated recursively.

Computation and memory cost. We count the GPU mem-
ory allocations and total computation time listed in Table 2.
The computation is conducted on a desktop workstation with
AMD Ryzen 9 7950X CPU, 96 GB memory, and NVIDIA
RTX 4090 GPU. We achieve low memory consumption
and faster computations compared to other diffusion-policy
baselines. Note that the QSM essentially does not involve
the denoising process, thus has the lowest computation re-
quirements. We can still achieve a comparable computation
time and memory cost with QSM, indicating the proposed
RSM does not add much extra computational cost due to the
diffusion policies. SDAC does not need to sample from the
current policy to perform reweighted score matching, so it
runs faster than DPMD.

Sensitivity analysis. In Figure 4, we perform sensitivity
analyses of different diffusion steps and diffusion noise
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Table 1. Performance on OpenAI Gym MuJoCo environments. The numbers show the best mean returns and standard deviations over
200k iterations and 5 random seeds.

HALFCHEETAH REACHER HUMANOID PUSHER INVERTEDPENDULUM

Classic
Model-Free RL

PPO 4852± 732 −8.69± 11.50 952± 259 −25.52± 2.60 1000± 0
TD3 8149± 688 −3.10± 0.07 5816± 358 −25.07± 1.01 1000± 0
SAC 8981± 370 −65.35± 56.42 2858± 2637 −31.22± 0.26 1000± 0

Diffusion Policy RL

QSM 10740± 444 −4.16± 0.28 5652± 435 −80.78± 2.20 1000± 0
DIPO 9063± 654 −3.29± 0.03 4880± 1072 −32.89± 0.34 1000± 0
DACER 11203± 246 −3.31± 0.07 2755± 3599 −30.82± 0.13 801± 446
QVPO 7321± 1087 −30.59± 16.57 421± 75 −129.06± 0.96 1000± 0
DPPO 1173± 392 −6.62± 1.70 484± 64 −89.31± 17.32 1000± 0
DPMD 11924± 609 −3.14± 0.10 6959± 460 −30.43± 0.37 1000± 0
SDAC 12210± 964 −3.37± 0.42 6437± 177 −32.53± 5.27 1000± 0

ANT HOPPER SWIMMER WALKER2D INVERTED2PENDULUM

Classic
Model-Free RL

PPO 3442± 851 3227± 164 84.5± 12.4 4114± 806 9358± 1
TD3 3733± 1336 1934± 1079 71.9± 15.3 2476± 1357 9360± 0
SAC 2500± 767 3197± 294 63.5± 10.2 3233± 871 9359± 1

Diffusion Policy RL

QSM 938± 164 2804± 466 57.0± 7.7 2523± 872 2186± 234
DIPO 965± 9 1191± 770 46.7± 2.9 1961± 1509 9352± 3
DACER 4301± 524 3212± 86 103.0± 45.8 3194± 1822 6289± 3977
QVPO 718± 336 2873± 607 53.4± 5.0 2337± 1215 7603± 3910
DPPO 60± 15 2175± 556 106.1± 6.5 1130± 686 9346± 4
DPMD 5683± 138 3275± 55 79.3± 52.5 4365± 266 9360± 0
SDAC 1391± 202 2955± 370 119.1± 41.9 3995± 498 9360± 0

Table 2. GPU memory allocation and total compute time of 200K
iterations and 1 million environment interactions. *QSM did
not learn diffusion policies essentially thus the computation is
lightweight.

Algorithm GPU Memory (MB) Training time (min)

QSM* 997 14.23

QVPO 5219 30.90
DACER 1371 27.61

DIPO 5096 19.31
DPPO 1557 95.16

DPMD 1192 21.10
SDAC 1113 16.10

schedules on the DPMD variant. Results show that 10 and 20
diffusion steps obtain comparable results, both outperform-
ing the 30-step setting. The linear and cosine noise sched-
ules perform similarly, and both outperform the variance-
preserving schedule. Therefore, we choose 20 steps and
cosine schedules for all tasks. The results also show the
robustness to the diffusion process hyperparameters.
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Figure 4. Sensitivity analysis on diffusion steps and diffusion noise
schedule on Ant-v4.

6. Conclusion
In this paper, we proposed Reweighted Score Match-
ing (RSM), an efficient diffusion policy training algorithm
tailored for online RL. Regarding diffusion models as noise-
perturbed EBMs, we develop the reweighted score matching
to train diffusion models with access only to the energy func-
tions and bypass sampling from the data distribution. In this
way, we can train a diffusion policy with only access to the
Q-function as the energy functions in online RL. Empirical
results have shown superior performance compared to SAC
and other recent diffusion policy online RLs. Possible fu-
ture directions include improving the stability of diffusion
policies and efficient exploration scheme design.
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A. Related works
Diffusion models for decision making. Due to their rich expressiveness in modeling complex and multimodal distributions,
diffusion models have been leveraged to represent stochastic policies (Wang et al., 2022; Chen et al., 2022; Hansen-Estruch
et al., 2023), plan trajectories (Janner et al., 2022; Chi et al., 2023; Du et al., 2024) and capture transition dynamics (Rigter
et al., 2023; Ding et al., 2024b; Shribak et al., 2024). Specifically, we focus on the diffusion policies. Diffusion policies
have been primarily used on offline RL with expert datasets, where the denoising score matching (7) is still available and the
learned Q-function only provides extra guidance such as regularization (Wang et al., 2022) or multiplication in the energy
function. However, in online RL we do not have the dataset, thus denoising score matching is impossible.

Diffusion Models. Diffusion models have a dual interpretation of EBMs and latent variable models. The latent variable
interpretation is motivated by the solving reverse-time diffusion thermodynamics via multiple layers of decoder networks
(Sohl-Dickstein et al., 2015). It was later refined by Ho et al. (2020) via simplified training loss. The EBM interpretation
aims to solve pitfalls in Langevin dynamics sampling by adding progressively decreasing noise (Song & Ermon, 2019).
Then the two viewpoints are merged together with viewpoints from stochastic differential equations (Song et al., 2021),
followed by numerous improvements on the training and sampling design (Song et al., 2022; Karras et al., 2022).

Noise-conditioned score networks. A equivalent approaches developed by Song & Ermon (2019) simultaneously with
diffusion models is to fit the score function of a series of noise-perturbed data distributionN

(
xi;x, σ

2
i I
)
, i = {1, 2, . . . ,K}

with a noise schedule σ1 > σ2 > · · · > σK . The resulting models, named the noise-conditioned score networks (NCSN)
fθ (xi;σi), take the noise level into the inputs and are learned by denoising score matching (Vincent, 2011)

Ex∼p,xi∼N(x,σ2
i I)
[
∥fθ (xi;σi)−∇xi

log q(xi|x)∥2
]

(17)

Then in the sampling stage, Song & Ermon (2019) uses the Langevin dynamics xi+1 = xi + η∇xi log q(xi | x) +
√
2ηzi

to sample from energy function. Song & Ermon (2019) additionally replace the original score function ∇xi log q(xi | x) in
the Langevin dynamics with the learned noisy score function fθ(x̃;σi):

xi+1 ← xi + ηfθ(x̃;σi) +
√
2ηzi, i = 0, · · · ,K (18)

named as annealed Langevin dynamics. The scheduled noise perturbation design significantly improved the image generation
performance to match the state-of-the-art (SOTA) at that time (Song & Ermon, 2019), which is further refined by DDPM.

We can see that the annealed Langevin dynamics (18) resembles the DDPM sampling (8) with different scale factors, and the
denoising score matching loss (9) is equivalent to (7). Therefore, DDPM can be interpreted as EBMs with multi-level noise
perturbations. A more thorough discussion on their equivalency can also be found in (Ho et al., 2020; Song et al., 2021).

B. Derivations
B.1. Derivations of Proposition 3.1

We repeat Proposition 3.1 here,

Proposition B.1 (Diffusion models as noise-perturbed EBMs). Consider a single term in loss function of DDPM (7) at
given state s and time t,

LDSM(θ; s, t) :=

E
a0∼p0(·|s)

at∼qt|0(·|a0)

[∥∥sθ (at; s, t)−∇xt
log qt|0(at|a0)

∥∥2] (9)

We refer to it as the denoising score matching (DSM) loss. The optimal solution θ∗ is achieved when the following holds for
all at

sθ∗(at; s, t) = ∇at
log pt(at|s)

where pt(at|s) =
∫
qt|0(at|a0)p0(a0|s)da0 is the noise-perturbed policy with perturbation kernel qt|0(at|a0) =

N (at;
√
ᾱta0, (1− ᾱt) I), for noise schedule index t = 1, 2, . . . , T .

Proof. We first check the square error ∥sθ(at, s, t)−∇at log pt(at|s)∥2,

12
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∥sθ(at, s, t)−∇at
log pt(at|s)∥2

=

∥∥∥∥sθ(at, s, t)−
1

pt(at|s)
∇at

∫
qt|0(at|a0)p0(a0|s)da0

∥∥∥∥2
= ∥sθ(at, s, t)∥2

− 1

pt(at|s)

〈
sθ(at, s, t),

∫
∇at

log qt|0(at|a0)qt|0(at|a0)p0(a0|s)da0

〉
+ constant (19)

= ∥sθ(at, s, t)∥2
1

pt(at|s)

∫
qt|0(at|a0)p0(a0|s)da0︸ ︷︷ ︸

1

− 1

pt(at|s)

∫
qt|0(at|a0)p0(a0|s)

〈
sθ(at, s, t),∇at log qt|0(at|a0)

〉
da0 + constant

=
1

pt(at|s)

∫
qt|0(at|a0)p0(a0|s)

(
∥sθ(at, s, t)∥2 − 2

〈
sθ(at, s, t),∇at

log qt|0(at|a0)
〉)

da0 + constant

=
1

pt(at|s)

∫
qt|0(at|a0)p0(a0|s)

∥∥sθ(at, s, t)−∇at
log qt|0(at|a0)

∥∥2 da0 + constant (20)

where the constant denotes constants that are irrelevant with θ. (20) builds the foundation of transferring the intractable
vanilla score matching loss (10) to tractable denoising score matching that can be easily computed by the sampled Gaussian
noise.

Therefore, we can integrate both sides on pt(at|s),
E

a0∼p0
at∼qt|0

[∥∥sθ(at; s, t)−∇at log qt|0(at|a0)
∥∥2] = Eat∼pt

[
∥sθ(at; s, t)−∇at log pt(at|st)∥2

]
+ constant

where the LHS is LDSM(θ; s, t) and RHS is LVSM(θ; s, t) + constant defined in (10). This concludes the proof of
Proposition 3.1.

B.2. Derivations of Section 4.1

Section 4.1 shows that we can match the score network sθ(at; s, t) with noise-perturbed policy score function
∇at log pt(at|s) without sampling from p0 like denoising score matching (7).

B.2.1. DERIVATIONS OF DIFFUSION POLICY MIRROR DESCENT

First, we restate the results. Consider the mirror descent policy πMD(·|s) in (2) and set p0(·|s) = πMD(·|s), we define the
reweighting function as

gMD = ZMD(s)pt(at|s)
where Z(s) =

∫
πold(a|s) exp (Q (s,a) /λ) da. Then we can show the reweighted loss LgMD(θ; s, t) is tractable the

following derivation,

LgMD(θ; s, t) =

∫
gMD(at; s) ∥sθ(at; s, t)−∇at

log pt(at|s)∥2 dat

= E
a0∼πold
at∼qt|0

[
exp (Q (s,a0) /λ)

∥∥sθ (at; s, t)−∇at
log qt|0 (at |a0)

∥∥2]
︸ ︷︷ ︸

LDPMD(θ,s,t)

+constant (13)

where LDPMD(θ, s, t) is tractable through sampling-based approximation.

13
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Proof. (13)
LgMD(θ; s, t)

=

∫
gMD(at; s) ∥sθ(at; s, t)−∇at

log pt(at|s)∥2 dat

Sbustute in (20),

=

∫
gMD(at; s)

1

pt(at|s)

∫
qt|0(at|a0)p0(a0|s)

∥∥sθ(at, s, t)−∇at
log qt|0(at|a0)

∥∥2 da0dat + constant

=

∫
ZMD(s)

∫
qt|0(at|a0)

πold(a|s) exp(Q(s,a)/λ)

ZMD(s)

∥∥sθ(at, s, t)−∇at
log qt|0(at|a0)

∥∥2 da0dat + constant

=

∫∫
qt|0(at|a0)πold(a|s) exp(Q(s,a)/λ)

∥∥sθ(at, s, t)−∇at
log qt|0(at|a0)

∥∥2 da0dat + constant

= E
a0∼πold
at∼qt|0

[
exp (Q (s,a0) /λ)

∥∥sθ (at; s, t)−∇at
log qt|0 (at |a0)

∥∥2]+ constant

B.2.2. DERIVATIONS OF SOFT DIFFUSION ACTOR-CRITIC

We first restate the results. First, we define the reweighting function as
gsoftmax = ht(at|s)Z(s)pt(at|s)

where ht(at|s) is a sampling distribution we choose. We require ht(at|s) to have full support on at space. Then we can
show the following equivalence,

LgMaxEnt(θ; s, t) =

∫
gMD(at; s) ∥sθ(at; s, t)−∇at

log pt(at|s)∥2 dat

=constant× E
at∼ht
ã0∼ϕ0|t

[
exp (Q (s, ã0) /λ)

∥∥sθ (at; s, t)−∇at
log ϕ0|t (ã0 |at)

∥∥2]
︸ ︷︷ ︸

LSDAC(θ,s,t)

+constant

(14)
where ϕ0|t is a conditional Gaussian distribution defined as

ϕ0|t(ã0|at) := N
(
ã0;

1√
ᾱt

at,
1− ᾱt

ᾱt
I

)
(15)

Proof. First, we substitute (20) into (14) to get that

LgMaxEnt(θ; s, t) =

∫
ht(at|s)Z(s)pt(at|s) ∥sθ(at; s, t)−∇at log pt(at|s)∥2 dat

Sbustute in (20),

=

∫∫
ht(at|s)Z(s)p0(a0|s)qt|0(at|a0)

∥∥sθ (at; s, t)−∇at
log qt|0 (at | a0)

∥∥2 da0dat + constant

(21)

Then we leverage the reverse sampling trick,

There exists a reverse sampling distribution ϕ0|t satisfying

ϕ0|t(a0 | at) = N
(
a0;

1√
ᾱt

at,
1− ᾱt

ᾱt
I

)
∝ qt|0(at | a0) = N

(
at;
√
ᾱta0, (1− ᾱt) I

)
, (22)

and their score functions match

∇at log qt|0(at | a0) = ∇at log ϕ0|t(a0 | at) = −
at −

√
ᾱta0

1− ᾱt
(23)

This is achieved by examining the density function,

14



Efficient Online Reinforcement Learning for Diffusion Policy

ϕ0|t (ã0 | at) =

(
2π

1− ᾱt

ᾱt

)−d/2

exp

−
∥∥∥ã0 − 1√

ᾱt
at

∥∥∥2
2 (1−ᾱt)

ᾱt

 (24)

while

qt|0 (at | a0) = (2π(1− ᾱt))
−d/2

exp

(
−∥
√
ᾱta0 − at∥

2

2 (1− ᾱt)

)
= (ᾱt)

−d/2ϕ0|t (a0 | at) (25)

Leveraging the reverse sampling trick, we can change the weighting function in (21) to
ht(at|s)Z(s)p0(a0|s)qt|0(at|a0)

=ht(at|s)Z(s)
exp(Q(s,a0)/λ)

Z(s)
qt|0(at|a0)

=(ᾱt)
d/2 exp(Q(s,a0)/λ)ht(at|s)ϕ0|t(a0|at)

(26)

Considering the score equivalence, (21) can be further derived to
Lgsoftmax(θ)

=(ᾱt)
d/2

∫∫
ht(at|s)ϕ0|t(ã0|at) exp (Q(s, ã0)/λ)

∥∥sθ (at; s, t)−∇at
log ϕ0|t (ã0 | at)

∥∥2 dã0dat + constant

=(ᾱt)
d/2 E

at∼ht
ã0∼ϕ0|t

[
exp (Q (s, ã0) /λ)

∥∥sθ (at; s, t)−∇at
log ϕ0|t (ã0 |at)

∥∥2]
︸ ︷︷ ︸

LSDAC(θ,s,t)

+constant

(27)
.

C. Experiments
C.1. Policy Evaluation for Entropy-Regularized MDPs

C.1.1. POLICY EVALUATION FOR DPMD

The policy evaluation of DPMD minimizes the Bellman residual to learn the Q-function parameters,

LQ (ζ;π) = Es,a∼D

[(
Qζ(s,a)−

(
r(s,a) + γEs′Ea′∼π(a′|s′)

[
Qζ̄ (s

′,a′)
]))2]

. (28)

C.1.2. POLICY EVALUATION FOR SDAC

Following the soft policy evaluation (4), we learn the Q-function parameters with the Bellman residual

LQ (ζ;π) = Es,a∼D

[(
Qζ(s,a)−

(
r(s,a)− λ log π (a|s) + γEs′Ea′∼π(a′|s′)

[
Qζ̄ (s

′,a′)
]))2]

. (29)

In practice, as we sample a batch of actions and select the one with the highest Q-value like (16) and add a Gaussian noise
with tunable standard deviations, we directly select the log probability of additive noise as log π (a|s).

C.2. Algorithm Details

We show the detailed pseudocode of SDAC here in Algorithm 2.

C.3. Training Setups for the Toy Example

Consider Gaussian mixture model with density function

p0(x) = 0.8 ∗ 1

2π
exp

(
−∥x− [3; 3]∥2

2

)
+ 0.2 ∗ 1

2π
exp

(
−∥x+ [3; 3]∥2

2

)
(30)
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Algorithm 2 Soft Diffusion Actor-Critic (SDAC)
Require: Diffusion noise schedule βt, ᾱt for t ∈ {1, 2, . . . T}, MDPM, initial policy parameters θ0, initial Q-function

parameters ζ0, replay buffer D = ∅, learning rate β, KL-divergence coefficient λ0 and target λtarget

1: for epoch e = 1, 2, . . . do
2: # Sampling and experience replay.
3: Interact withM using policy sθe−1

thorough algorithm update replay buffer D.
4: Sample a minibatch of (s,a, r, s′) from D.
5: # Policy evaluation.
6: Sample a′ via reverse diffusion process (8) with sθe−1 .
7: Update Qe with soft policy evaluation (4).
8: # Policy improvement for diffusion policies.
9: Sample t uniformly from {1, 2, . . . , T}. Sample at from ht.

10: Sample K ã
(i)
0 ∼ ϕ0|t for i = 1, 2, . . . ,K.

11: Compute Qe(s, ã0) and update θe with empirical loss of

Es,t

[
1

K
exp

(
Qe

(
s, ã

(i)
0 /λe

)
− log

∑
i

exp
(
Qe

(
s, ã

(i)
0

)
/λe

))
∥sθ (at; s, t)−∇at log ϕt (ã0 |at)∥2

]
.

12: Update KL-divergence coefficient λe ← λe−1 + β(λe−1 − λtarget).
13: end for

where the RSSM optimizes

E
xt∼p̃

x0∼ϕ0|t

[
p0(x̃0)

∥∥sθ (xt; t)−∇xt log ϕ0|t(x̃0|xt)
∥∥2] (31)

for the Gaussian sampling, p̃(xt) = N (0, 4I) for all t and for uniform sampling, p̃t is a uniform distribution from [−6, 6]
on both dimensions. The score network is trained via the hyperparameters listed in Table 3. The Langevin dynamics has
direct access to the true score function∇x log p0(x).

Table 3. Hyperparameters for the toy example.

Name Value Name Value

Learning rate 3e-4 Diffusion noise schedule linear
Diffusion steps 20 Diffusion noise schedule start 0.001
Hidden layers 2 Diffusion noise schedule end 0.999
Hidden layer neurons 128 Training batch size 1024
Activation Function LeakyReLU Training epoches 300

C.4. Additional Toy Examples

Additionally, we show a more complex two-moon distribution with a known energy function as

log p(z) = −1

2

(
∥z∥ − 2

0.2

)2

+ log

(
exp

(
−1

2

(
z1 − 2

0.3

)2
)

+ exp

(
−1

2

(
z1 + 2

0.3

)2
))

(32)

We compare the proposed RSM with DDPM (Ho et al., 2020) that has access to the data samples, and two other Boltzmann
samplers that have access to the energy functions (32), iDEM (Akhound-Sadegh et al., 2024) based on diffusion with
approximated noise-perturbed score functions, and FAB (Midgley et al., 2022) based on normalizing flows. The results are
shown in Figure 5. We can see that three diffusion-based methods, RSM, DDPM, and iDEM, show similar performance.
However, the two set of data samples are not separate enough for FAB, showing the advantage of the diffusion model and
the limitations of normalizing flow from the restrictive invertible mappings.
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(a) PDF of two moon dis-
tribution.

(b) RSM Generation. (c) DDPM Generation. (d) iDEM Generation. (e) FAB Generation.

Figure 5. Results to Fit Two Moon distribution, a commonly used Boltzmann sampler benchmark. We compare RSM, DDPM, iDEM, and
FAB. RSM, DDPM, and iDEM all recover two separate modes, while FAB shows connections between the two modes.

C.5. Baselines

We include two families of methods as our baselines. For the first family of methods, we select 5 online diffusion-policy
RL algorithms: QSM (Psenka et al., 2023), QVPO (Ding et al., 2024a), DACER (Wang et al., 2024), DIPO (Yang et al.,
2023) and DPPO (Ren et al., 2024). We include both off-policy (QSM, QVPO, DACER, DIPO) and on-policy (DPPO)
diffusion RL methods among this group of algorithms. QSM uses the Langevin dynamics, one of the MCMC methods,
with derivatives of learned Q-function as the score function. QVPO derives a Q-weighted variational objective for diffusion
policy training, yet this objective cannot handle negative rewards properly. DACER directly backward the gradient through
the reverse diffusion process and proposes a GMM entropy regulator to balance exploration and exploitation. DIPO utilizes
a two-stage strategy, which maintains a large number of state-action particles updated by the gradient of the Q-function,
and then fit the particles with a diffusion model. DPPO constructs a two-layer MDP with diffusion steps and environment
steps, respectively, and then performs Proximal Policy Optimization on the overall MDP. In our experiments, we use the
training-from-scratch setting of DPPO to ensure consistency with other methods.

The second family of baselines includes 3 classic model-free RL methods: PPO (Schulman et al., 2017), TD3 (Fujimoto
et al., 2018) and SAC (Haarnoja et al., 2018). For PPO, we set the replay buffer size as 4096 and use every collected sample
10 times for gradient update. Across all baselines, we collect samples from 5 parallel environments in a total of 1 million
environment interactions and 200k epoches/iterations. The results are evaluated with the average return of 20 episodes
across 5 random seeds.

C.6. Hyperparameters

Table 4. Hyperparameters

Name Value

Critic learning rate 3e-4
Policy learning rate 3e-4, linear annealing to 3e-5
Diffusion steps 20
Diffusion noise schedules Cosine
Policy network hidden layers 3
Policy network hidden neurons 256
Policy network activation Mish
Value network hidden layers 3
Value network hidden neurons 256
Value network activation Mish
Replay buffer size (off-policy only) 1 million

where the Cosine noise schedule means βt = 1− ᾱt

αt−1
with ᾱt =

f(t)
f(0) , f(t) = cos

(
t/T+s
1+s ∗

π
2

)2
.
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