
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ENTP: ENCODER-ONLY NEXT TOKEN PREDICTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Next-token prediction is conventionally done using decoder-only Transformers
with causal attention, as this approach allows for efficient reuse of keys and val-
ues. What if we were not compute-limited, should we still use decoder-only
Transformers? In this work, we introduce Encoder-only Next Token Prediction
(ENTP). We use small scale experiments to explore the differences between ENTP
and decoders, highlighting potential advantages of ENTP in setting with un-
bounded compute. We introduce the Count3 task and show, both theoretically
and experimentally, that while ENTP can perform this task easily, a decoder-only
Transformer cannot. Finally, we empirically demonstrate ENTP’s superior perfor-
mance across various synthetic tasks, such as length generalization and in-context
learning. learning.

1 INTRODUCTION

Traditionally, auto-regressive language modeling has relied on decoder-only Transformers (Vaswani
et al., 2017) with causal attention, trained using the next-token prediction objective. Causal attention
ensures that each token can only attend to previous tokens, preventing future tokens from influencing
past outputs. This mechanism makes training and inference more efficient, as past keys and values
do not need to be recomputed for each token. This efficiency enables the scaling of decoder-only
Transformers, such as GPT-4 (Achiam et al., 2023) and Llama-3 (Dubey et al., 2024), up to billions
of parameters using current hardware.

However, causal attention also introduces artificial constraints. Given tokens x1, x2, ..., xn, the con-
textual embedding of xj (where j < n) can only attend to embeddings of earlier tokens, even
when predicting xn+1. While this constraint ensures a strict causal structure, it may not always be
necessary or beneficial. We investigate what happens when we remove this constraint, while still
maintaining causality externally.

Specifically, we look at Encoder-only Transformers, which are typically used for tasks like classifi-
cation, and do not impose this causality constraint. Though traditionally not used for auto-regressive
tasks, encoder-only architectures can be adapted for next-token prediction. When computing the
output at the current time step, an encoder-only Transformer, or any sequence model, can be made
causal by only providing inputs up to and including the current time step. Therefore, in this work, we
investigate the idea of using encoder-only Transformers for next-token prediction. We summarize
our findings below.

Functions expressible with Decoder-only and Encoder-only Transformers. We demonstrate
that the sets of functions expressible by decoder-only and encoder-only Transformers are not com-
parable, which goes against intuition that the expressivity of encoders would subsume that of de-
coders. Rather, there exist functions expressible with decoder-only Transformers that are not ex-
pressible with encoder-only Transformers, and vice versa, as well as functions expressible by both
architectures.

Complexity of Decoder-only and Encoder-only Transformers. Based on the minimum time and
space complexities, we give a description of the functions that can be performed by decoder-only and
encoder-only Transformers. We propose an auto-regressive task that can be performed by encoder-
only Transformers, and cannot be performed by decoder-only Transformers (given that some mild
assumptions hold). We validate our hypothesis with small experiments using small decoder-only

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Encoder-Only Next Token Prediction (ENTP)Decoder-Only Next Token Prediction

E
n
c
o
d
e
r

…
…

x1

x2

E
n
c
o
d
e
r

…
…

x1

…
…

x2

x3

E
n
c
o
d
e
r

…
…

x1
…

…

x2

…
…

x3

x4

D
e
c
o
d
e
r

…
…

x1

…
…

x2

…
…

x3

x4x2 x3

… …

Figure 1: An overview of decoder-only vs. encoder-only Transformers in next token prediction.
Decoders use a causal attention, ensuring that each token attends only to the preceding tokens. In
contrast, encoders allow all tokens to attend to each other by performing attention computation from
scratch for each token prediction.

and encoder-only Transformers, as well as experiments fine-tuning GPT-4o (Achiam et al., 2023)
and Llama3-8B (Dubey et al., 2024).

Additional Experiments. We compare the performance of decoder-only and encoder-only Trans-
formers on a range of more realistic tasks. We test the sample complexity and length generalization
capabilities of decoders and encoders using addition tasks (Lee et al., 2023). We also train both
architectures to perform in-context learning (Garg et al., 2022) on various simple functions, such
as linear functions and two-layer neural networks. Additionally, we train small decoder-only and
encoder-only Transformers on a large text dataset (Gokaslan et al., 2019) to assess their performance
in language modeling tasks.

2 RELATED WORK

Expressive Power of Transformers. There have been various literature exploring the expressive
power of Transformers. From the lens of universal approximation, Yun et al. (2020) showed that any
continuous sequence-to-sequence function over a compact set can be approximated arbitrary close
by a Transformer (of finite albeit very large size). Other works approach expressiveness from the
perspective of computability and complexity such as Pérez et al. (2021) which showed Transformers
are Turing complete and Merrill et al. (2022); Merrill & Sabharwal (2024); Li et al. (2024) which
use circuit complexity to characterize the languages recognizable by Transformers of fixed depth.
Giannou et al. (2023) presents a framework for Transformers as universal computers by placing
them in a loop. Communication complexity has also been used to show the impossibility of one-layer
Transformers of expressing certain functions e.g. induction head, without the model size being linear
in the length of the input (Sanford et al., 2024b;a). We modify functions introduced in (Sanford et al.,
2024b) to compare the expressive power decoder-only Transformers against ENTP. We note that the
existing bounds (Sanford et al., 2024b;a) are highly related, but they do not directly imply the relative
expressive power of encoder and decoder (and specifically of the same fixed model size).

Transformer Architectures for Next Token Prediction. Transformers have become the de facto
backbones for next-token prediction tasks, leading to several variants such as encoder-decoder,
causal decoder-only, and prefix decoder-only models. In the encoder-decoder model (Lewis et al.,
2019; Chung et al., 2024), similar to the vanilla Transformer (Vaswani et al., 2017), the encoder
transforms the input tokens into conditioning features, and the decoder auto-regressively predicts
the target tokens by using cross-attention over the encoded representation and causal attention over
the output tokens. In contrast, the causal decoder-only model (Brown et al., 2020; Chowdhery et al.,
2023) uses only the Transformer decoder and applies causal attention to all tokens to perform next-
token prediction, ensuring that each token attends only to previous tokens. The prefix decoder-only
model (Raffel et al., 2020; Wu et al., 2021) is similar to the causal decoder-only model but differs
in that it applies non-causal attention (i.e., full self-attention) to the input sequence (see Figure 8 for
visualizations of the attention patterns in these variants).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

With the development of these models, recent studies have investigated the performance of each
variant across various tasks. Notably, Wang et al. (2022) examined the zero-shot generalization
performance of each model along with various objectives, and Ding et al. (2024) analyzed the per-
formance of causal decoder-only and prefix decoder-only models in in-context learning. However,
despite these diverse studies, there is a lack of research on encoder-only models that do not im-
pose the constraint of causal attention for every next-token prediction. Therefore, in this work,
we analyze the characteristics of encoder-only next token prediction (ENTP), comparing them with
decoder-only models.

3 PRELIMINARIES

Sequence-to-Token Functions and Autoregression. Given a vocabulary V (which we tradi-
tionally think of as some finite set, but could in general be any arbitrary perhaps uncountable
set e.g. Rd), we can define a sequence over V as (x1, . . . , xn) where x1, . . . , xn ∈ V. Let
V ∗ = {(x1, . . . , xn) : n ∈ N;xi ∈ V } be the set of all sequences generated by V . Then, we
say that f : V ∗ → V is a sequence-to-token function.

We can view a causal model as a map from an input sequence to an output sequence with the
causality constraint that the i’th ouput token depends only on the first i input tokens. Mathematically,
we enforce this causality contraint by characterizing our causal model, Tf : V ∗ → V ∗, with some
sequence-to-token function f where on input sequence (x1, . . . , xn) we have that

Tf (x1, x2, . . . , xn) := (f(x1), f(x1, x2), . . . , f(x1, x2, . . . , xn)). (1)

Observe that a sequence-to-token function f can be used auto-regressively to generate tokens from
some initial sequence (x1, . . . , xn) via the following update rule:

xn+i := f(x1, . . . , xn+i−1). (2)

This can also be viewed as a special case of the causal model, where the input sequence is chosen
so that

Tf (x1, x2, . . . , xn) = (x2, x3, . . . , xn+1). (3)

Hence, if we are trying to learn a causal or auto-regressive model, it suffices to learn the sequence
function that generates it. Thus in this paper, we focus on the type of sequence functions that
encoders versus decoders can learn and express.

Encoders and Decoders. We will use the letters E and D respectively to refer to encoders and
decoders. In this paper, both models refer to variants of the Transformer architecture introduced in
Vaswani et al. (2017), where the only difference lies in the masking used on the attention scores
(decoder uses a causal mask while encoder allows full attention, as illustrated in Figure 1). The
model size of a Transformer is determined by two parameters:

• L: number of Transformer blocks.
• D: embedding dimension.

As Transformers are sequence-to-sequence maps, we will use subscript notation where
T (x1, . . . , xn)i denotes the i’th value in the output sequence. We also allow our models the op-
tion to use positional embeddings. Tilde-notation i.e. Ẽ and D̃ will denote models that do not use
positional embeddings. For token embeddings x1, . . . , xn and positional embeddings p1, . . . , pn:

E(x1, . . . , xn) := Ẽ(x1 + p1, . . . , xn + pn).

In our experiments, we will use encoder and decoder models that have access to trainable positional
embeddings.

Encoder and Decoders as Causal Models. Given encoder E and decoder D, we can associate
them with sequence-to-token functions as follows:

fE : (x1, . . . , xn) 7→ E(x1, . . . , xn)n

fD : (x1, . . . , xn) 7→ D(x1, . . . , xn)n.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

We then have TE and TD as the causal models of E and D when used as sequence functions fE
and fD respectively.1 Under this characterization, we make two observations. Firstly, we can view
TE as an explicit and necessary way to introduce causality to the encoder E since there is nothing
implicit to the encoder that forces causality. Secondly, in juxtaposition to the previous statement,
the causal model TD is exactly equivalent to just using D, that is TD = D. This is because D
enforces causality implicitly via the attention mask (see Appendix A.2 for formal proof). Therefore
the explicit enforcement becomes redundant.

4 EXPRESSIVE POWER OF ENCODER-ONLY VS. DECODER-ONLY
TRANSFORMERS

Given that we can learn causal functions (defined as causal model in preliminary) using either
encoders and decoders, the natural question to ask is how the expressive power of each model is
related, i.e. can the encoder express more causal functions than a decoder of the same model size?
Or perhaps they express the exact same class of causal functions? Towards answering this ques-
tion, one trivial observation is that one-layer decoders and encoders are equivalent (formal proof in
Appendix A.3) which directly implies the existence of causal functions2 that both architecture can
model exactly.

Now, what about causal functions that a decoder can model but not encoder, or vice versa — that
encoder can model but not decoder? These functions exist too, as we show in the following two
theorems:
Theorem 1. For any L ≥ 2 and D ≥ 1, there exists a position-free decoder D̃ that has L-layers and
embedding dimension D, such that for any encoder E , there exists some input sequence (x1, x2, . . .)
with x1, x2, · · · ∈ RD, and TD̃(x1, x2, . . .) ̸= TE(x1, x2, . . .).

Theorem 2. For any L ≥ 2 and D ≥ 1, there exists a position-free encoder Ẽ that has L-layers and
embedding dimension D, such that for any decoder D with positional embeddings satisfying p1 ̸=
p2, there exists some input sequence (x1, x2, . . .) with x1, x2, · · · ∈ RD, and TẼ(x1, x2, . . .) ̸=
TD(x1, x2, . . .).

The above two theorems are existential in nature. Informally, Theorem 1 says that if we consider
causal model defined over the entirety of RD as its vocabulary, we can find some decoder, for
which any encoder will differ from it on some input sequence. Theorem 2 makes a similar (albeit
weaker statement) in the other direction; namely the existence of a causal function computable by
an encoder, but not by any decoder that uses “non-trivial” positional embeddings (e.g. embeddings
for different positions are unique). Detailed proof of both theorems are deferred to Appendix A.

Of course, the setting and assumptions of the above two statements are not necessarily very real-
istic. For one, they focus on general class of causal models rather than only auto-regressive ones.
Furthermore, the results only pertain to exact realization and say nothing about approximation. The
assumption of unbounded domain is also not realistic as in practice decoders are trained and used
over a finite domain of tokens, each with some fixed embeddings. And specific to Theorem 2, no
claim is made about decoders that do not use positional embeddings. But despite the limitations,
these theorems give an indication that the expressive power of encoder and decoder model are dif-
ferent — despite the almost identical description modulo the attention mask. Changing the mask on
the attention scores causes significant changes to the properties of the model. Thus, in the following
sections we propose an auto-regressive tasks and run experiments comparing encoders and decoders
that corroborates this view.

5 TIME AND SPACE COMPLEXITY COMPARISONS

Inspired by the different computational models of encoder-only and decoder-only Transformers,
we characterize the causal sequence functions learnable by encoders and decoders based on their

1To be fully consistent with notation in equation 1, we should denote them as TfE and TfD respectively.
However we abuse notation and use TE and TD for sake of simplicity.

2Here causal function refers to sequence-to-sequence function where the outputs are only determined by
current and previous inputs, i.e. F(x1, x2, ..., xn)i only depends on x1, x2, ..., xi, and not xj for any j > i.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

required computational complexity. We give an informal comparison of encoders and decoders in
terms of their required time and space complexities — both over the entire sequence and for each
additional token. We propose Count3, which is closely related to Match3 (Sanford et al., 2024b),
to highlight the “gap” between the complexity of encoders and decoders. Count3 is feasible for an
encoder but challenging for a decoder due to its limited computation complexity.

Time Complexity Comparison. Decoder-only Transformers, using KV-Cache, take O(n) time
to generate each token, and O(n2) time to generate an entire sequence. Because an ENTP has to
compute the entire attention matrix for every token, it takes O(n2) time to generate each token. Thus,
it takes O(n3) time to generate the entire sequence. While this implies that ENTP is more compute-
intensive (i.e., ENTP will be slower than decoder-only Transformer), this also implies that ENTP
can express more compute-intensive functions than decoders. Specifically, since the total amount of
compute that decoders use for generating n tokens is O(n2), they cannot run any algorithm whose
runtime is ω(n2) (strictly greater than quadratic time).

Space Complexity Comparison. Both encoder-only and decoder-only use O(n) space complex-
ity to generate an entire sequence. Although the standard implementation of attention uses O(n2)
space, attention can be implemented using only O(n) space. For details of algorithmic implementa-
tions of attention using O(D) memory, refer to Algorithm 3 in the appendix. Thus, we need a more
detailed approach to find a difference between the space complexity of the two models.

Towards this end, we classify memory used for the computation over the current token as either
precomputed or additional. Precomputed memory stores values from computation over past tokens.
Values stored in precomputed memory persist, and are used for computation over current and future
tokens, e.g. the keys and values of previous tokens for a decoder. Additional memory stores values
that depend on the current token, e.g. keys and values of the current token.

When generating the nth token, a decoder uses O(n) precomputed memory to store keys and values
of previous tokens and O(1) additional memory to compute results over the current token. An
encoder computes everything from scratch for each token, so it uses O(n) additional memory and
no precomputed memory. Under this view, there is a space complexity gap between encoder and
decoder.

Table 1: Complexity for next token inference.

Complexity Encoder-only Decoder-only

Additional Time Complexity O(n2DL) O(nDL)

Precomputed Space Complexity N/A O(nDL)

Additional Space Complexity O(nD) O(D)

Most of our complexity analysis focuses on Transformers with fixed sizes, so we primarily consider
complexity with respect to the sequence length n. However, we also account for the embedding
dimension D and the number of layers L in Table 1. Both encoder-only and decoder-only Trans-
formers use O(LD) time because the attention operation is performed O(L) times, and computing
each query, key, and value vector is O(D). In the case of multi-head attention, we assume D = hd,
where h is the number of heads and d is the dimension of the query, key, and value vectors. A
decoder uses O(nhdL) = O(nDL) precomputed space because it stores nhL query, key, and value
d-dimensional vectors. Both encoders and decoders use O(D) additional space for current token’s
embedding vector — and we specifically note that there is no dependence on L as Transformer do
computation sequentially on the layer (i.e. all the additional computation required for layer ℓ is done
before all the additional computation required for layer ℓ + 1). Thus, we can do the computation
over L layers using O(D) space by overwriting computation over previous layers.

5.1 Count3 DEFINITION AND COMPLEXITY

Consider the sequence function that maps an input sequence of positive integers x1, x2, . . . , xn to
the number of pairs xi, xj where the modulo-n sum of xi, xj and xn is equal to 0. More formally,

Count3(x1, x2, . . . , xn) :=
∣∣∣{(i, j) ∈ [n]2 : xi + xj + xn ≡ 0 (mod n)

}∣∣∣ (mod n). (4)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 Algorithm to compute Count3 in O(n2) time and O(1) space
Require: length n sequence of integers (x1, . . . , xn)

1: count← 0
2: for i = 1, . . . , n do
3: for j = 1, . . . , n do
4: if (xi + xj + xn) ≡ 0 (mod n) then
5: count← count + 1
6: return count (mod n)

Algorithm 2 Algorithm to compute Count3 in O(n) time and O(n) space
Require: length n sequence of integers (x1, . . . , xn)

1: count← 0
2: table← zero-indexed length-n array of 0’s
3: for i = 1, . . . , n do
4: k ← −xi mod n
5: table[k]← table[k] + 1
6: for i = 1, . . . , n do
7: k ← (xi + xn) mod n
8: count← count + table[k]
9: return count (mod n)

Count3 is an augmented version of Match3 (Sanford et al., 2024b). As shown in (Sanford et al.,
2024b), the triple-wise relationships, used in both Match3 and Count3, are difficult for Transform-
ers to represent, because of the pairwise nature of self-attention.

Note that there exists algorithms that can compute Count3 on some length-n input sequence
x1, x2, . . . , xn in either O(n2) time and O(1) space or in O(n) time and O(n) space. See Al-
gorithm 1 and Algorithm 2 for exact pseudocode implementations. In brief, Algorithm 1 iterates
through all n2 pairs checking if they meet the modulo-n sum requirement. Algorithm 2 uses the
fact that xi + xj + xn ≡ 0 (mod n) is equivalent to xi + xn (mod n) ≡ −xj (mod n). In two
linear passes, it counts each −xj (mod n) and stores each count in a table, then sums the values
in the table for each xi + xn (mod n). Now, given these two algorithms, we make the following
conjecture:

Conjecture 1. Given an algorithm A that computes Count3(x1, x2, . . . , xn), at least one of the
following must hold true:

(i) A requires Ω(n2) time with access to xn

(ii) A requires Ω(n) space storing values unique to n.

This conjecture seems plausible given that both Algorithm 1 and Algorithm 2, which we consider
to be optimal, adhere to it. Algorithm 1 uses O(n2) time after accessing xn (line 4 of Algorithm 1)
and Algorithm 2 requires O(n) memory, where the stored values are a function of n (line 4 of
Algorithm 2). Given this conjecture, we can show the following lemma:

Lemma 1. Given that Conjecture 1 holds and assuming O(log n) precision, any decoder-
only Transformer with fixed embedding dimension D satisfying D(x1, . . . , xm)m =
Count3(x1, . . . , xm) for all sequences of length m ≤ n must have L = Ω(n). 3

Proof. LetD be a decoder with L layers and embedding dimension D satisfyingD(x1, . . . , xm)m =
Count3(x1, . . . , xm) for all sequences of length m ≤ n. We can use D as an algorithm to compute
Count3(x1, . . . , xn), by outputting D(x1, . . . , xn)n on input (x1, . . . , xn). Thus either condition
(i) or (ii) of Conjecture 1 must hold when D computes the output sequence over (x1, . . . , xn).

3O(logn) precision is not required for Lemma 1, but it is included to be consistent with Lemma 2.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Full Sequence : [4, 41, 1, 40, 44, 26, 38, 34, 44, 0, 58, 46, 10, 10, 24, 49, 6, 3, 8, 10, 0, 18, 12, 2, 6, 1,
12, 18, 4, 20, 13, 2, 6, 18, 1, 16, 22, 33, 30, 6, 2, 21, 22, 1, 24, 35, 42, 12, 16, 27, 40, 15, 34, 48, 16, 40,
15, 16, 17, 14, 20, 58, 60, 8]

: Seed : Auto-regressively generated sequence using Count3

Example of 17th element🔍
6 pairs : (𝑥!, 𝑥") (𝑥", 𝑥!) (𝑥#, 𝑥$!) (𝑥$!, 𝑥#) (𝑥$!, 𝑥$%) (𝑥$%, 𝑥$!)

→ (41 + 38 + 49) mod 16 = 0 → (1 + 46 + 49) mod 16 = 0 → (46 + 49 + 49) mod 16 = 0

Figure 2: An example of a sequence used in a Count3 experiment.

Case 1: (i) is true. In this case D requires Ω(n2) time with access to xn, i.e. D uses Ω(n2) time
for the last token. From Table 1, we know thatD uses O(nLD) time for each token. Thus condition
(i) is true only if we have that nLD = Ω(n2). Since D is fixed, it follows that L = Ω(n).

Case 2: (ii) is true. In this case, D requires Ω(n) space storing values unique to n. Because
decoders are causal, we have D(x1, . . . , xn)i = Count3(x1, . . . , xi) for all i ∈ [n]. Then since
we assume (ii) is true, computing D(x1, . . . , xn)i requires Ω(i) space for each i ∈ [n]. Fur-
thermore by the uniqueness assumption of (ii), for i ̸= j, the values stored when computing
Count3(x1, . . . , xi) are different from the values stored when computing Count3(x1, . . . , xj).
Since decoders are causal, the space used to compute D(x1, . . . , xn)i cannot be overwritten when
computing D(x1, . . . , xn)j , for j > i. Hence, when D computes Count3(x1, . . . , xn), it uses Ω(i)

space to compute Count3(x1, . . . , xi), for each i ∈ [n]. Thus, D uses Ω
(∑

i∈[n] i
)
= Ω(n2) space

to compute Count3(x1, . . . , xn). From Table 1, we know that D uses O(nLD) space for the entire
sequence. Then nLD = Ω(n2). Since D is fixed, it follows that L = Ω(n).

Finally, as L = Ω(n) is a necessary condition for both conditions (i) and (ii), Lemma 1 follows.

Lemma 2. Assuming O(log n) precision, there exists an encoder E with L = O(1) and D = O(1)
such that E(x1, . . . , xm)m = Count3(x1, . . . , xm) for all sequences of length m ≤ n. 4

Proof of Lemma 2 is in Appendix A.6.

Remark 1. With linear chain-of-thought (generating O(n) tokens before answering), a decoder
would be able to perform Count3. We provide a RASP5 (Weiss et al., 2021) program, Algorithm 6,
to demonstrate this.

5.2 SMALL-SCALE EXPERIMENT

We train small decoder-only and encoder-only Transformers on auto-regressive sequences generated
from Equation (4). To generate unique sequences, we start each sequence with a seed containing 16
random integers between 0 and 63. Then we extend the sequence to 64 integers using Equation (4)
(see Figure 2). Seeds are generated randomly during training. The seed portion of the sequence was
not used to compute the loss during training, so the model was only trained on the deterministic part
of the sequence. As shown in Figure 3, the decoder-only Transformers demonstrate some ability to
learn patterns related to the distribution of numbers in Count3 sequences, but they completely fail
to learn the task. In contrast, the encoder successfully learns the task with near-perfect accuracy.

5.3 Count3 WITH LARGE LANGUAGE MODEL

Furthermore, we investigate the performance of decoder-only large language models (LLMs) on the
Count3 task. We fine-tune Llama-3 (Dubey et al., 2024) and GPT-4o (Achiam et al., 2023) using
sequences of 64 integers, including 16 seeds, as introduced in Section 5.2. To enable the LLMs to
leverage their knowledge, we also include the code for Algorithm 1 in the prompt, asking the models
to provide the result after executing the code (see Table 4 for the full prompt). As shown in Figure 4,

4We assume x1, ..., xm < m.
5RASP (Weiss et al., 2021) is a programming language that describes Transformer computations, by map-

ping attention and feed-forward computation into simple primitives.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 25000 50000 75000 100000 125000 150000

Training step

0.00

0.25

0.50

0.75

1.00

Se
qu

en
ce

ac
cu

ra
cy

Large Decoder
Medium Decoder
Medium ENTP

0 25000 50000 75000 100000 125000 150000

Training step

0

1

2

3

L
os

s

Large Decoder
Medium Decoder
Medium ENTP

Figure 3: Training loss and sequence accuracy curve for the Count3. The ENTP successfully
learns to perform the Count3 task, but the decoder-only models struggle to learn it.

the LLMs struggle with the Count3 task, which is consistent with our small-scale experiment. It
demonstrates that the suggested characteristics of causal decoder-only models hold true even at
large scales. We provide the validation of the prompt design used, as well as details about the LLM
fine-tuning, in the Appendix C.1.

(b) GPT-4o fine-tuning results(a) Llama3-8B fine-tuning results

Figure 4: Results of LLM fine-tuning on Count3.

Count3 sequences have very small Kolmogorov complexity i.e., the size of the smallest program
that can generate this data, as Algorithm 1 (which uses only six lines of pseudocode) serves as an
upper bound. However, as shown by Lemma 1 and the experiments in Section 5.3, a decoder, no
matter how large, cannot efficiently learn the task.

We fine-tune BERT (Devlin et al., 2019) as an ENTP model, and it successfully learns Count3 faster
than small-scale ENTP models. See Figure 11 for details.

5.4 SIMILAR FUNCTION LEARNABLE BY DECODER

Motivated by the question of how we need to change Count3 so that it can be learned by a decoder,
we examine a modified version of Match3 (Sanford et al., 2024b). 6

Match3′(x1, x2, . . . , xn) :=

{
1 ∃ (i, j) : x1 + xi + xj = 0 (mod 128)

0 otherwise
(5)

There are several key differences between Count3 and Match3′:

(i) Match3′ uses a fixed modulus, whereas Count3 employs the sequence length as the mod-
ulus. This simplifies the decoder’s task, as the modulus remains constant across all tokens,
enabling reuse of intermediate values from previous tokens.

(ii) Match3′ operates on triplets (x1, xi, xj) rather than (xi, xj , xn). By using x1 instead of
xn, it becomes easier for the decoder since x1 remains unchanged for different tokens,
facilitating the reuse of intermediate values across tokens.

(iii) Match3′ checks for the existence of a condition rather than counting occurrences. Counting
is challenging to implement within the attention mechanism without scaling values by the

6The main difference between Match3 and Match3′ is that Match3′ operates on triplets (x1, xi, xj).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

sequence length. Due to the causal mask, scaling value vectors by sequence length is not
straightforward.

We provide RASP (Weiss et al., 2021) program, Algorithm 5 that satisfies D(x1, x2, ..., xn)n =
Match3′(x1, x2, ..., xn) for sequences of any length, assuming O(log n) precision. We train small
Transformers to verify that both decoders and encoders can perform Match3′, and find that both
models can perform Match3′ with high accuracy.

Table 2: Match3′ performance.

Model Min Loss Individual Token Accuracy Full Sequence Accuracy

Medium Decoder (6 layer) 0.0001 99.99% 99.92%
Medium Encoder (6 layer) 0.0016 99.97% 99.50%

6 ADDITIONAL EXPERIMENTS

6.1 GENERALIZATION ON ADDITION

We test the sample complexity and length generalization capabilities of decoders and encoders us-
ing addition tasks. We use the reversed addition format ($123+456=975$) from Lee et al. (2023).
We find that encoders exhibit lower sample complexity compared to decoders, as seen in Figure 5,
meaning they require fewer training examples to achieve similar performance. Additionally, en-
coders demonstrate superior ability to generalize to longer sequences, as shown in Figure 6. We
provide more experimental details and results in Appendix C.3.

1250 2500 3750 5000 10000 15000 20000

Number of Training Examples

10−2

10−1

100

Te
st

E
rr

or
R

at
e

Decoder
ENTP

Figure 5: Addition Sample Complexity. The
train and test datasets include numbers with up
to 3 digits.

≤ 10 11 12 13 14 15

Number of Digits (> 10 is OOD)

0.00

0.25

0.50

0.75

1.00

Te
st

E
rr

or
R

at
e

Decoder
ENTP

Figure 6: Addition Length Generalization.
The train dataset includes numbers with up to 10
digits, and the test dataset has numbers with up
to 15 digits.

6.2 IN-CONTEXT LEARNING

We consider the problem of learning a function classF using in-context example (Garg et al., 2022).
In this problem, a function f ∈ F is sampled from a distribution DF , and a sequence of random in-
puts is sampled i.i.d. fromDX , forming a prompt P : (x1, f (x1) , x2, f (x2) , . . . , xN , f (xN)). The
objective is for the model to in-context learn the function f from the prompt P and predict f(xquery)
for a new input xquery. To this end, we train the model Mθ, parameterized by θ, by minimizing the
expected loss over random sampled prompts as follows:

min
θ

EP

[
1

N

N−1∑
i=1

ℓ
(
Mθ

(
P i

)
, f (xi+1)

)]
, (6)

where ℓ(·, ·) is loss function and P i refers to the partial prompt containing i in-context examples
with (i+ 1)th input (i.e., (x1, f (x1) , . . . , xi, f (xi) , xi+1)).

In this work, we examine four types of function classes: linear function, sparse linear function,
two-layer neural network and decision tree. For all function classes, we sample xi from a Gaussian

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

distribution N (0, Id) where d represents the dimension of xi, and utilize the squared error as loss
function. Detailed descriptions for each function class are provided in Appendix C.2.

We provide the in-context-learning results according to the number of in-context examples for each
function class in Figure 7. The encoder-only models demonstrate better performance compared to
the decoder-only models in linear regression and sparse linear regression, while exhibiting compet-
itive performance in two-layer NN regression and decision tree.

(a) Linear Regression (b) Sparse Linear Regression (c) Two-layer NN Regression (d) Decision Tree

Figure 7: Results of in-context learning experiment. The encoder-only models demonstrate su-
perior or competitive performance across all function classes compared to the decoder-only models.

6.3 OPENWEBTEXT

We train Transformers on the OpenWebText dataset (Gokaslan et al., 2019), an open-source repli-
cation of the WebText dataset used to train GPT-2 (Radford et al., 2019), with the next-token pre-
diction objective. We use medium models, described in Table 5, and hyperparameters from Table 6.
As shown in Table 3, encoder-only Transformer slightly outperforms decoder-only Transformer.

Table 3: Minimum values of training and validation loss, as well as perplexity, for decoder-only and
encoder-only Transformers on the OpenWebText dataset.

Model Train Loss Validation Loss Train Perplexity Validation Perplexity

Decoder-only 4.694 4.705 109.3 110.5
Encoder-only 4.643 4.650 103.9 104.6

7 CONCLUSION AND FUTURE WORK

In this work, we present theoretical and novel experimental results suggesting that, assuming com-
pute is unlimited, decoder-only Transformers are not the ideal model for sequence modeling. We
show that ENTP is more expressive without compromising generalization. Using Theorem 1 and 2,
we find that the classes of functions encoder-only and decoder-only Transformers can exactly learn
are different. We introduce the Count3 task and demonstrate, both theoretically (assuming Conjec-
ture 1) and experimentally, that while encoders can perform this task easily, decoders cannot. We
also find that encoders outperform decoders on a variety of auto-regressive tasks, including length
generalization and in-context learning. However, the expressivity gained by removing the causal
mask comes at the expense of efficiency.

Future Work. Several open avenues for further research remain in ENTP theory, such as proving
Lemma 1 without relying on Conjecture 1 (or providing a counterexample) and generalizing Count3
to a broader class of tasks where encoders perform well but decoders do not. Further investigation
into length generalization across tasks beyond addition is valuable to confirm the findings of this
paper. Another natural extension of our work would be to explore whether we can further enhance
expressivity past ENTP. In a more practical direction, as both training and inference with ENTP are
compute-intensive, future work may focus on reducing computational costs. For instance, could we
first train a decoder and then efficiently convert it to ENTP? Is it possible to combine decoders with
ENTP? More broadly, are there better methods for efficiently training ENTP models?

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners. In H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems,
volume 33, pp. 1877–1901. Curran Associates, Inc., 2020.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):
1–113, 2023.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li,
Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned lan-
guage models. Journal of Machine Learning Research, 25(70):1–53, 2024.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding, 2019. URL https://arxiv.org/
abs/1810.04805.

Nan Ding, Tomer Levinboim, Jialin Wu, Sebastian Goodman, and Radu Soricut. CausalLM is not
optimal for in-context learning. In The Twelfth International Conference on Learning Represen-
tations, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Shivam Garg, Dimitris Tsipras, Percy Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. In Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022.

Angeliki Giannou, Shashank Rajput, Jy-Yong Sohn, Kangwook Lee, Jason D. Lee, and Dim-
itris Papailiopoulos. Looped transformers as programmable computers. In Andreas Krause,
Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett
(eds.), Proceedings of the 40th International Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pp. 11398–11442. PMLR, 23–29 Jul 2023. URL
https://proceedings.mlr.press/v202/giannou23a.html.

Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Stefanie Tellex. Openwebtext corpus. http:
//Skylion007.github.io/OpenWebTextCorpus, 2019.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022.

Nayoung Lee, Kartik Sreenivasan, Jason D Lee, Kangwook Lee, and Dimitris Papailiopoulos.
Teaching arithmetic to small transformers. In The Twelfth International Conference on Learn-
ing Representations, 2023.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdel rahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-
training for natural language generation, translation, and comprehension. In Annual Meeting
of the Association for Computational Linguistics, 2019.

11

https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://proceedings.mlr.press/v202/giannou23a.html
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transformers to
solve inherently serial problems. arXiv preprint arXiv:2402.12875, 2024.

William Merrill and Ashish Sabharwal. A logic for expressing log-precision transformers. Advances
in Neural Information Processing Systems, 36, 2024.

William Merrill, Ashish Sabharwal, and Noah A Smith. Saturated transformers are constant-depth
threshold circuits. Transactions of the Association for Computational Linguistics, 10:843–856,
2022.

Jorge Pérez, Pablo Barceló, and Javier Marinkovic. Attention is turing-complete. Journal of Ma-
chine Learning Research, 22(75):1–35, 2021.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. 2019. URL https://api.
semanticscholar.org/CorpusID:160025533.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Clayton Sanford, Daniel Hsu, and Matus Telgarsky. One-layer transformers fail to solve the induc-
tion heads task. arXiv preprint arXiv:2408.14332, 2024a.

Clayton Sanford, Daniel J Hsu, and Matus Telgarsky. Representational strengths and limitations of
transformers. Advances in Neural Information Processing Systems, 36, 2024b.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

Thomas Wang, Adam Roberts, Daniel Hesslow, Teven Le Scao, Hyung Won Chung, Iz Beltagy,
Julien Launay, and Colin Raffel. What language model architecture and pretraining objective
works best for zero-shot generalization? In International Conference on Machine Learning, pp.
22964–22984. PMLR, 2022.

Gail Weiss, Yoav Goldberg, and Eran Yahav. Thinking like transformers. In International Confer-
ence on Machine Learning, pp. 11080–11090. PMLR, 2021.

Shaohua Wu, Xudong Zhao, Tong Yu, Rongguo Zhang, Chong Shen, Hongli Liu, Feng Li, Hong
Zhu, Jiangang Luo, Liang Xu, et al. Yuan 1.0: Large-scale pre-trained language model in zero-
shot and few-shot learning. arXiv preprint arXiv:2110.04725, 2021.

Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank Reddi, and Sanjiv Kumar. Are
transformers universal approximators of sequence-to-sequence functions? In International Con-
ference on Learning Representations, 2020.

Hattie Zhou, Arwen Bradley, Etai Littwin, Noam Razin, Omid Saremi, Joshua M. Susskind, Samy
Bengio, and Preetum Nakkiran. What algorithms can transformers learn? a study in length
generalization. In The Twelfth International Conference on Learning Representations, 2024.

12

https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A NOTATION AND DEFERRED PROOFS

A.1 NOTATION

• E , D: Encoder/Decoder with positional embeddings.

• Ẽ , D̃: Encoder/Decoder without positional embeddings (with same model weights as E ,D)
(which we call position free).

• L: number of Transformer blocks.
• D: embedding dimension.
• pi: The i’th positional embedding where pi ∈ RD.
• Wi

Q/K/V : The weight matrix of the Query, Key and Value respectively of the i’th attention
block.

• I: The identity matrix.
• 0: The zero matrix.
• (x1, x2, x3, . . .): A sequence of values/tokens.
• TE(x1, x2, x3, . . .) := (E(x1)1, E(x1, x2)2, E(x1, x2, x3)3, . . .).

For convention, we will use bold capital letters X to denote matrices, and unbold lowercase letters
x to denote vectors.

For theorem 1 and theorem 2, our model of Transformers will use single-head attention and assume
the dimension of the Query and Key are equal to the embedding dimension D. We also omit layer
normalization and scaling of attention scores by 1/

√
D.

A.2 TD = D

Proof. The main observation is that the the MLP layers of a decoder are element-wise, and the
attention layers of a decoder are causal (i.e. the contextual embedding of the i’th token is computed
only using the tokens j ≤ i). We thus have that

D(x1, . . . , xi, . . . , xn)i = D(x1, . . . , xi)i

for any i ∈ [n]. As a result,

D(x1, . . . , xi, . . . , xn)i = D(x1, . . . , xi)i

= fD(x1, . . . , xi)

= TD(x1, . . . , xi, . . . , xn)i,

for all i ∈ [n], i.e. D(x1, . . . , xn) = TD(x1, . . . , xn).

A.3 ONE-LAYER ENCODER AND DECODER ARE EQUIVALENT

Proof. Let D and E have the same parameters. Then the query key, and value vectors for the atten-
tion layer (denoted qi, ki, vi for each xi respectively) will be the same for both models.

For one-layer decoder: D(x1, ..., xn)i = MLP
(∑i

j=1 Softmax(qi, kj)vj

)
.

For one-layer encoder: E(x1, ..., xn)i = MLP
(∑n

j=1 Softmax(qi, kj)vj

)
.

If i = n, then D(x1, ..., xn)i = E(x1, ..., xn)i. Thus, TD(x1, x2, . . . , xn) = TE(x1, x2, . . . , xn).

A.4 PROOF OF THEOREM 1

Proof. We first provide a construction for D̃. For the attention-block of the first two layers, we use
the same weight matrices. Namely, we set W1

K = W2
K = W1

Q = W2
Q = 0 and W1

V = W2
V = I.

For every other attention block, we set them to the constant zero function by setting Wi
V = 0 for

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

i ≥ 3. We similarly set the weights and biases of every MLP block to zero. Thus, in essence D̃ is
just two duplicate attention blocks stacked on top of each other with a skip connection after each
attention block.

Now consider three arbitrary vectors x1, x2, x3 ∈ RD and its corresponding sequence (x1, x2, x3).
Let us first compute the output of D̃ on (x1, x2, x3). The first attention block and skip connection
will map the input sequence to the sequence(

2x1, x2 +
x1 + x2

2
, x3 +

x1 + x2 + x3

3

)
.

The second attention block and skip connection will then map to the following:(
4x1,

7x1 + 9x2

4
,
23x1 + 17x2 + 32x3

18

)
.

Our first observation from this mapping is that there clearly exists x̃1, x̃2, x̃3 ∈ RD such that
D̃(x̃1, x̃2, x̃3)3 ̸= D̃(x̃2, x̃1, x̃3)3. Our second observation is that

4x1 =
7x1 + 9x2

4
⇐⇒ x1 = x2,

which follows from simplifying the left hand equation.

Now, let us for sake of contradiction assume the existence of some encoder E such that TE exactly
replicates D̃ on every input sequence. We first claim that the first two positional embeddings p1, p2
of E must differ. This follows by our first observation and thus the requirement that E(x̃1, x̃2, x̃3)3 ̸=
E(x̃2, x̃1, x̃3)3 — which can only happen if p1 ̸= p2 due to the permutation invariance of encoders
when there are no positional embeddings. Now as p1 ̸= p2, there exists vectors y1, y2, c ∈ RD such
that y1 ̸= y2 and y1 + p1 = y2 + p2 = c. It follows immediately that

E(y1)1 = Ẽ(y1 + p1)1

= Ẽ(c)1
= Ẽ(c, c)2
= Ẽ(y1 + p1, y2 + p2)2

= E(y1, y2)2.

But since y1 ̸= y2, by the second observation we made, it must be that D̃(y1)1 ̸= D̃(y1, y2)2. Since
we assumed that TE exactly replicates D̃ on every input sequence, it thus follows that E(y1)1 ̸=
E(y1, y2)2 — a contradiction. Hence, no such encoder E exists, which directly implies that we can
always find some sequence (x1, x2, . . .) where D̃(x1, x2, . . .) ̸= TE(x1, x2, . . .).

A.5 PROOF OF THEOREM 2

Proof. We first provide a construction for Ẽ . For the attention-block of the first two layers, we use
the same weight matrices. Namely, we set W1

K = W2
K = W1

Q = W2
Q = W1

V = W2
V = I. For

every other attention block, we set them to the constant zero function by setting Wi
V = 0 for i ≥ 3.

We similarly set the weights and biases of every MLP block to zero. Thus, in essence Ẽ is just two
duplicate attention blocks stacked on top of each other with a skip connection after each attention
block.

Now consider two arbitrary vectors x1, x2 ∈ RD and its corresponding sequence (x1, x2). A brief
inspection will reveal that

TẼ(x1, x2) = (4x1, αx1 + βx2), (7)

where α, β > 0.

Next, we assume the existence of some D where p1 ̸= p2 and exactly replicates Ẽ . We fix x1 = 0
and let x2 = p1 − p2. Observe that x2 ̸= 0 as p1 ̸= p2. It follows that there is some constant vector

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

c ∈ RD where

D(x1, x2) = D̃(x1 + p1, x2 + p2)

= D̃(p1, p1)
= (c, c).

Now from equation 7, we have that TẼ(x1, x2) = (0, βx2) for some β > 0. As x2 ̸= 0, it follows
that βx2 ̸= 0 and hence (0, βx2) is not a constant sequence — contradicting the output of the
decoder. Hence, no D where p1 ̸= p2 can exactly replicates Ẽ .

A.6 PROOF OF LEMMA 2

Proof. Lemma 2 follows from Algorithm 4. From Weiss et al. (2021), a RASP program can be
compiled to a Transformer, with a fixed number of Transformer-layers and attention heads. However,
it assumes that the MLPs can perform any element-wise operation. Thus, it suffices to show that
each MLP needs O(1) layers with respect to sequence length n.

We first observe that the largest internal value possible within Algorithm 4 is n2, so there are n2 +1
distinct internal values including 0. Using ⌊2 log2 n⌋ + 1 bits, we can represent all of these values
as unsigned integers. Using floating-point numbers we would also need Θ(log n) bits.

All linear element-wise operations in Algorithm 4 can be implemented trivially, since an MLP can
perform arbitrary linear transformations. Therefore, we focus on the only nonlinear element-wise
function g : [2n− 1]× [n]→ [n− 1]:7

g(a, b) =

{
a, a < b

a− b a ≥ b.

Using a constant number of linear operations and ReLU functions, g can be constructed as follows:

g(a, b) = ReLU(a−M ReLU(a− b+ ϵ)) + ReLU(a− b),

where 0 < ϵ < 1 and M ≥ 2n
ϵ .

Because g can be implemented using a constant number of linear operations and ReLU functions, it
can be implemented by an MLP with ReLU activation functions and O(1) depth.

Because of skip-connections, we can concatenate MLPs by zeroing out attention. Then we can
create any MLP of O(1) depth.

Thus, it is possible to construct an encoder E with L = O(1) and D = O(1) such that
E(x1, . . . , xm)m = fTC(x1, . . . , xm) for all sequences of length m ≤ n.

B ATTENTION PATTERNS OF DIFFERENT TRANSFORMER ARCHITECTURES

In Figure 8, we provide the visualization of attention patterns of encoder-only, decoder-only, prefix
decoder-only, and encoder-only models.

C EXPERIMENT DETAILS

In all experiments, we train encoders in the same manner as decoders, processing entire sequences
in each batch with a single gradient optimization step. Although this approach does not offer the
same efficiency benefits for encoders as it does for decoders, we adopt it to maintain consistency
between the training processes of both models.

C.1 Count3 WITH LLM

In the main paper, we fine-tuned two LLMs for Count3: Llama3-8B (Dubey et al., 2024) and GPT-
4o (Achiam et al., 2023). Here, we provide the details about the fine-tuning of each model. For

7This function implements modular division for a bounded range. g(a, b) = a mod b, when 0 ≤ a < 2b.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Encoder Only Next Token

En
co
de
r

O
nl
y

N
ex
t

To
ke
n

Prompt : “Encoder only next token prediction”
(Input/Prefix is “Encoder only” in encoder-decoder model and prefix decoder-only model)

Encoder Only Next Token

En
co
de
r

O
nl
y

N
ex
t

To
ke
n

Encoder Only Next Token

En
co
de
r

O
nl
y

N
ex
t

To
ke
n

Encoder-Decoder Decoder-Only Prefix Decoder-Only Encoder-Only (ENTP)

Encoder Decoder

E
nc
od
er

D
ec
od
er

Decoder

D
ec
od
er

Decoder

D
ec
od
er

Figure 8: Attention patterns of different Transformer architectures in next token prediction.
Encoder-decoder and prefix decoder-only models first perform full attention on the input (prefix),
and then use causal attention to predict subsequent tokens. In contrast, decoder-only models apply
causal attention to all tokens, without distinguishing between input and output. Encoder-only models
also do not separate input and output, but they recalculate attention from scratch for each token
prediction, performing full attention on all tokens.

GPT-4o, we used the official API, setting the batch size to 4 and the learning rate multiplier to
10. For Llama3-8B, we employed LoRA fine-tuning Hu et al. (2022) with a batch size of 16 and a
learning rate of 1.4×10−4. Regarding prompt design, we included the algorithm code in the prompt
so that the LLMs could leverage its knowledge of natural language (see Table 4). We note that the
loss was applied only to the answer part of the prompt.

Additionally, we verify the validity of the prompt design used for LLM fine-tuning. To this end, we
modify the task from Count3 to Count28 and fine-tune the Llama3-8B using prompts that include
algorithmic code, as in the main experiment. As shown in Figure 9, the model successfully learns
Count2 with the proposed prompt design, achieving high sequence accuracy. This demonstrates
that the model’s difficulty in learning Count3 is due to the characteristics of causal decoder-only
architecture, rather than an issue with the training strategy, such as the prompt design.

Figure 9: Results of LLM fine-tuning on Count2. The Llama3-8B successfully learns Count2
when using the same prompt format as Count3. This demonstrates that the reason LLMs struggle
with Count3 is not due to the complexity of the prompt, but rather the characteristics of the decoder-
only model.

C.2 IN-CONTEXT LEARNING

As introduced in the main paper, four types of function classes are considered in the in-context
learning experiment (Garg et al., 2022): linear function, sparse linear function, two-layer neural net-
work, and decision tree. For all function classes, the input xi is drawn from a Gaussian distribution

8Count2(x1, x2, . . . , xn) :=
∣∣∣{i ∈ n : xi + xn ≡ 0 (mod n)

}∣∣∣ (mod n).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 4: Example of prompt used for LLM experiments. We include the code for the algorithm
in the prompt to leverage the knowledge of the LLMs.

Prompt:
def f(x: list[int]) -> int:

n = len(x)
count = 0
for i in range(n):

for j in range(n):
if (x[i] + x[j] + x[-1]) % n == 0:

count += 1
return count % n

x = [52, 14, 22, 48, 28, 37, 3, 28, 14, 1, 12, 20, 38, 48, 51, 41]
for in range(48):

x.append(f(x))
print(x)
What is the output of this code ?

Output: [52, 14, 22, 48, 28, 37, 3, 28, 14, 1, 12, 20, 38, 48, 51, 41, 0, 13, 14, 17, 12, 20, 17, 2, 10,
0, 6, 25, 26, 1, 28, 29, 22, 20, 19, 3, 22, 8, 4, 21, 24, 4, 39, 41, 36, 38, 40, 44, 16, 34, 7, 0, 5, 10, 1,
46, 5, 51, 8, 1, 32, 15, 44, 54]

N (0, Id) where d represents the dimension of xi. We provide detailed descriptions of each function
class below.

Linear function. We consider the class of linear functions F =
{
f | f(x) = w⊤x,w ∈ Rd

}
where w is drawn from a Gaussian distribution N (0, Id). Following previous work (Garg et al.,
2022), we set d = 20 and the number of data points N to 40.

Sparse linear function. We also consider a sparse linear function, which is similar to a linear
function setup. The difference is that after drawing w from N (0, Id), only k randomly selected
coordinates are kept, while the remaining ones are set to zero. Following previous work (Garg et al.,
2022), we set k = 3.

Two-layer neural network We examine the class of two-layer ReLU neural networks F ={
f | f(x) = W(2)σ

(
W(1)x

)
,W(2) ∈ R1×h,W(1) ∈ Rh×d

}
where σ(·) = max(0, ·) (i.e., ReLU

function). We set h = 100, d = 20, and the number of data point N to 100.

Decision tree We consider the class of decision trees represented by full-binary trees of fixed
height. In these trees, the leaf node values are drawn from N (0, 1), and the non-leaf nodes are
sampled from random integers between 0 and d, indicating an index of the input x. At each non-leaf
node, if the value of the input at the specified index is positive, we move to the right; otherwise, we
move to the left. Given an input, we start at the root node and repeat this process until reaching a
leaf node. The value of the leaf node becomes the output of the function.

C.3 ADDITION

We test the sample complexity of encoder-only and decoder-only Transformers using addition tasks,
with up to 3-digit numbers. We sample the dataset of all possible 3-digit addition examples using
a method similar to the method described in Lee et al. (2023). We start with all 1,000,000 3-digit,
2-digit, and 1-digit addition examples. Then we randomly remove 90% of the 3-digit addition
examples, adjusting the ratio of 3-digit to 2-digit examples from around 100:1 to around 10:1. Next
we split the data into training, testing, and validation splits, stratified by the number of digits and

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

carries in each addition example. All 1-digit addition examples were put into the training split. Since
our models tend to over fit the training dataset, we save the model with the lowest loss on a validation
dataset. We test decoder-only and encoder-only Transformers on plain and reversed addition tasks,
using between 1.25k to 20k training examples. All sample complexity tests are run with at least 5
different seeds. We test small models, described in Table 5.

1250 2500 3750 5000 10000 15000 20000

Number of Training Examples

10−2

10−1

100

Te
st

E
rr

or
R

at
e

Decoder
ENTP

Figure 10: Addition Sample Complexity. The train and test datasets include numbers with up
to 3 digits. The dataset uses the plain addition format ($123+456=579$), unlike the results in
Figure 5.

We train Transformers to add larger numbers and evaluate their ability to perform length general-
ization. Training is performed on numbers with up to 10 digits, while testing extends to numbers
with up to 15 digits. Each model is trained on 100,000 examples using the reversed addition format
(Lee et al., 2023). The numbers are sampled to ensure equal probability for each length, without
duplicates. Consequently, in larger datasets, there are fewer 1-digit addition examples compared to
10-digit ones, as the total number of possible 1-digit examples is smaller. All length generalization
tests are run with 3 different seeds. We test Small-Deep models described in Table 5.

C.4 MODEL SIZES

In Table 5, we provide the configurations of the Transformer architectures used in the experiments
from the main paper.

Table 5: Model specifications.

Name Number of Layers Number of Heads Embedding Dimension

Small 3 3 192
Medium 6 6 384

Large 12 12 768
Small-Deep 8 2 128

C.5 OPENWEBTEXT

Table 6: OpenWebText Hyperparameters

Parameter Value
warmup iters 2000
lr decay iters 600,000
min lr 0.00006
max lr 0.0006
beta1 0.9
beta2 0.95
weight decay 0.1
block size 128
batch size 32

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

D ADDITIONAL EXPERIMENTAL RESULTS ON Count3

In this section, we conducted Count3 experiments with additional Transformer variants. First, we
evaluated the performance of Prefix decoder-only models (Raffel et al., 2020; Wu et al., 2021),
which perform non-causal attention for the prefix portion. Using the same experimental setup, we
initiated sequences with 16 random seeds, which were used as the prefix. As shown in Figure 11,
while the Prefix decoder-only model slightly outperforms the decoder-only model, it also fails to
learn the triplet counting task. This demonstrates that performing full attention to certain parts of a
sequence in a decoder-only model is insufficient to solve tasks requiring Count3-level complexity.

Next, we conducted experiments on the Count3 task using BERT (Devlin et al., 2019), a represen-
tative encoder-only architecture. Specifically, we fine-tuned BERT using the ENTP approach under
the same experimental conditions. As shown in Figure 11, BERT combined with ENTP successfully
learned triplet counting. Notably, as BERT is pre-trained and larger compared to the medium trans-
former used in the paper, it converged more quickly. This result indicates that ENTP is effective not
only for the model configurations specified in the main paper but also for larger pre-trained models.

Figure 11: The performance of the Prefix decoder-only model and BERT combined with ENTP on
the Count3 task.

E IMPLEMENTATION OF ATTENTION USING O(D) MEMORY

Algorithm 3 Implementation of Attention Using O(D) Memory

Require: q ∈ Rn×d, k ∈ Rn×d, v ∈ Rn×D

1: yn ← 0D

2: a← 0D

3: b← 0
4: for j = 1, . . . , n do
5: c← exp(qTn kj)
6: a← a+ cvj
7: b← b+ c
8: yn ← a

b
9: return yn

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

F RASP ALGORITHMS

In Algorithm 4, 5, and 6, we provide the Python RASP implementation (Zhou et al., 2024) for
Count3 and Match3′.

Algorithm 4 Count3 RASP Encoder Implementation

def g(a, b):
return a if a < b else a - b

def count_triplets(x):
idxs = indices(x)

set n[i] = len(x) and last_x[i] = x[-1] for all i (only possible with encoder)
n = sel_width(select(k=x, q=x, pred=true))
last_x = kqv(k=idxs, q=n - 1, v=x, pred=equals, reduction="mean")

g(a, b) is equivalent a % b if 0 <= a < 2 * b
y = seq_map(n - x, n, g) # y[i] = -x[i] % n
z = seq_map(x + last_x, n, g) # z[i] = (x[i] + x[-1]) % n

conut the number of (i, j) such that y[i] == z[j]
c = sum(A), where A[i, j] = 1 if y[i] == z[j] else 0
c = kqv(

k=full(x, 1),
q=full(x, 1),
v=sel_width(select(k=z, q=y, pred=equals)) * n, # sum(v) = mean(v * n)
pred=equals,
reduction="mean",

)

conpute count % n
c -= idxs * n
because count <= nˆ2, there exists i such that c[i] = count % n or c[i] = n
the case c[i] = n is handled by the default value (0) when no keys are selected
return kqv(k=c, q=n, v=c, pred=lambda a, b: 0 <= a and a < b, reduction="mean")

Algorithm 5 Match3′ RASP Decoder Implementation

def has_triplet(x):
idxs = indices(x)
first_x = kqv(k=idxs, q=full(x, 0), v=x, pred=equals, reduction="mean", causal=True)

use bitmask to compute mod
y = -x & 127 # y[i] = -x[i] % 128
z = (first_x + x) & 127 # z[i] = (x[0] + x[i]) % 128

max_count[-1] > 0 if there exists (i, j) such that y[i] == z[j]
max_count = kqv(

k=full(x, 1),
q=full(x, 1),
v=sel_width(select(k=y, q=z, pred=equals)),
pred=equals,
reduction="max",

)

return tok_map(max_count, lambda a: min(a, 1)) # return 0 or 1

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Algorithm 6 Count3 RASP Decoder COT Implementation

def count_triplets(x):
idxs = indices(x)
n = kqv(k=x, q=full(x, EOS), v=idxs, pred=equals, reduction="min", causal=True)
n = tok_map(n, lambda a: a if a else -2)
last_x = kqv(k=idxs, q=n - 1, v=x, pred=equals, reduction="mean")
seq_len = kqv(k=x, q=x, v=idxs, pred=true, reduction="max", causal=True)

i = seq_len - n
j = seq_len - 2 * n
xi = kqv(k=idxs, q=i, v=x, pred=equals, reduction="max", causal=True)
xj = kqv(k=idxs, q=j, v=x, pred=equals, reduction="max", causal=True)

y = (n - xi) % n + 1
z = (last_x + xj) % n + 1

y_mask_write = (n <= idxs) & (idxs < 2 * n)
z_mask_write = (2 * n <= idxs) & (idxs < 3 * n)
y_mask_read = (n < idxs) & (idxs <= 2 * n)
z_mask_read = (2 * n < idxs) & (idxs <= 3 * n)

z_count = sel_width(
select(

k=x * y_mask_read,
q=z,
pred=lambda a, b: a == b and a != 0,
causal=True,

)
)

count = kqv(
k=z_mask_read,
q=z_mask_read,
v=n * x * z_mask_read,
pred=lambda a, b: a & b,
reduction="mean",
causal=True,

)
ans = count % n

ans_mask_write = idxs == 3 * n
eos_mask_write = idxs > 3 * n

return (
y * y_mask_write
+ z_count * z_mask_write
+ ans * ans_mask_write
+ EOS * eos_mask_write

)

21

	Introduction
	Related Work
	Preliminaries
	Expressive Power of Encoder-only vs. Decoder-only Transformers
	Time and Space Complexity Comparisons
	Count3 Definition and Complexity
	Small-Scale Experiment
	Count3 with Large Language Model
	Similar Function Learnable by Decoder

	Additional Experiments
	Generalization on Addition
	In-Context Learning
	OpenWebText

	Conclusion and Future Work
	Notation and Deferred Proofs
	Notation
	TD = D
	One-layer Encoder and Decoder are Equivalent
	Proof of thm:dyen
	Proof of thm:eydn
	Proof of lem:enc-bound

	Attention patterns of different Transformer architectures
	Experiment Details
	Count3 with LLM
	In-context Learning
	Addition
	Model Sizes
	OpenWebText

	Additional Experimental Results on Count3
	Implementation of Attention Using O(D) Memory
	RASP Algorithms

