
Noisy Dual Mirror Descent: A Near Optimal
Algorithm for Jointly-DP Convex Resource Allocation

Du Chen∗ Geoffrey A. Chua
Nanyang Business School, Nanyang Technological University, Singapore, 639798

chen1443@e.ntu.edu.sg, gbachua@ntu.edu.sg

Abstract

We study convex resource allocation problems with m hard constraints under (ε, δ)-
joint differential privacy (Joint-DP or JDP) in an offline setting. To approximately
solve the problem, we propose a generic algorithm called Noisy Dual Mirror
Descent. The algorithm applies noisy Mirror Descent to a dual problem from
relaxing the hard constraints for private shadow prices, and then uses the shadow
prices to coordinate allocations in the primal problem. Leveraging weak duality

theory, we show that the optimality gap is upper bounded by O(
√

m ln (1/δ)

ε),

and constraint violation is no more than O(
√

m ln (1/δ)

ε) per constraint. When

strong duality holds, both preceding results can be improved to Õ(
√

ln (1/δ)

ε) by
better utilizing the geometric structure of the dual space, which is neglected by
existing works. To complement our results under strong duality, we derive a
minimax lower bound Ω

(
m
ε

)
for any JDP algorithm outputting feasible allocations.

The lower bound matches our upper bounds up to some logarithmic factors for
ε ≥ max{1, 1/(nγ)}, where nγ is the available resource level. Numerical studies
further confirm the effectiveness of our algorithm.

1 Introduction

The resource allocation problem is a classic optimization problem and has many applications in
machine learning, such as Internet advertising and personalized recommendation, among many others.
The problem is typically modeled as a utility maximization problem, where the central decision
maker has to properly allocate m types of limited resources to n agents in order to maximize the total
utility of all agents. Each agent’s data zi := (ui(·),ai(·),Xi) consists of three elements: (i) a utility
function ui : Rs

+ → R+ that maps an allocation xi to a utility scalar; (ii) a consumption function
ai : Rs

+ → Rm
+ that maps an allocation xi to a consumption vector; and (iii) a feasible set Xi ⊆ Rs

+
that may capture the agent’s special requirements. With a dataset D := {zi}ni=1 of n agents, the
problem is modeled as

(Resource Allocation Problem) max
{xi}n

i=1

n∑
i=1

ui(xi) (1)

s.t.
n∑

i=1

ai(xi) ≤ nγb; (2)

xi ∈ Xi, ∀i = 1, 2, . . . , n, (3)

where nγb > 0 is the available level of m types of resources. Evidently, the goal in (1) is to find
the best allocation xi for each agent subject to resource-coupling constraints (2) and to a personal

∗Corresponding author

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

requirement constraint (3). When ui(·) is concave, and ai(·), Xi are both convex, the problem
reduces to a convex constrained problem that has been widely studied in optimization literature.

However, an emerging issue in allocation problems is data privacy. Because constraint (2) couples
agents, the allocation decision to one agent would affect the allocation to another agent. When a
group of agents collude, they can infer other agents’ data by analyzing their received allocations. For
example, when allocating limited budgets among education agencies to support students in poverty,
a simple rule is to allocate budgets proportional to the number of students in poverty [SLWA22].
Agencies who notice a change in received funding may infer the financial status of students in other
agencies. Realizing this potential leakage of its students’ financial status, an agency may misreport
the number of its students in poverty, compromising the original intention of the financial support.

To overcome privacy concerns in such cases, joint differential privacy (Joint-DP or JDP, for short),
which is a relaxation of differential privacy (DP), has been adopted. It is found that JDP is more
suitable than DP for the considered allocation problems [HHR+14]. Essentially, JDP ensures agent
i’s data cannot be accurately inferred by a group of collusive agents without i. It guarantees that the
allocations received by the collusive agents are insensitive to agent i’s data. Considering that the
allocation decision xi is usually private to agent i herself, the privacy guarantee by JDP is hence
meaningful and sufficiently strong. The most handy way to achieve JDP is by the well-known
Billboard Lemma [HHR+14]: publish a DP public signal on a billboard accessible to all agents, and
compute the allocation for agent i based on the DP public signal and agent i’s own data only; then
the final allocations (x1, . . . ,xn) satisfy JDP. The Billboard Lemma has wide applications, ranging
from convex optimization [HHR+14, HHRW16, HZ18], to multi-armed bandits [SS18, HLL+22], to
reinforcement learning [VBKW20]. We also use it for privacy analysis. For clarification purposes, we
highlight that, in problem (1), dataset {zi}ni=1 := {(ui(·),ai(·),Xi)}ni=1 is the private information
to protect; resource level nγb is treated as public information.

While important and fundamental, resource allocation problems under JDP are far from being well
understood, in terms of both algorithm design and theoretical analysis. For algorithm design, most
existing works adopt a “dual decomposition” idea [HHRW16, HZ18], which dualizes the coupling
constraint (2) and iteratively seeks private minimizers of a dual problem to coordinate the allocation
process in the primal problem. However, the primal-dual relationship and the geometric structure
of the dual space are not well exploited, leaving substantial room for improvement. In terms of
theoretical analysis, both privacy accounting and optimality analysis are short of modern standard. For
privacy accounting, existing works [HHRW16, HZ18, HZ19] all use Advanced Composition, which
suggests an unnecessarily large noise to be injected, significantly hindering algorithm practicability.
For optimality analysis, [HHRW16] fails to take full advantage of strong assumptions made, and
the analysis by [HZ18] is specific to linear packing problems. More importantly, there is no formal
understanding of the fundamental trade-off between privacy and optimality in resource allocation
problems under JDP, i.e. minimax lower bounds. Motivated by these gaps in the literature, we focus
our study on the following three questions.

1. Can we design a generic algorithm for resource allocation problem (1), and provide better
privacy and optimality analysis?

2. Can we better utilize the primal-dual relationship to improve performance?

3. Is our algorithm (near) optimal? What is the minimax lower bound?

Our contributions First, we propose a generic algorithm Noisy Dual Mirror Descent, which
follows a similar dual decomposition idea. We tighten the privacy analysis through Rényi DP, and
analyze performance (both optimality and constraint violations) by better utilizing the primal-dual
relationship. Second, for many cases where strong duality holds, we further improve performance
by leveraging on the ℓ1 geometry of the dual space. Last, we complement previous analysis with
a matching minimax lower bound for ε ≥ max{1, 1/(nγ)}, suggesting near optimality of our
algorithm. We further conduct numerical experiments to show the effectiveness of our proposed
algorithm. Table 1 summarizes our contributions and compares them with results in the literature.

Our interpretation of algorithm performance Because the algorithms considered may output
infeasible solutions, when assessing their performance, we should take into account both suboptimality
in utility and constraint violations, i.e., the last two columns in Table 1. We therefore treat the sum of
them as the ultimate performance. This idea admits a social welfare interpretation: when the central

2

Table 1: Comparison of various works on resource allocation problems under (ε, δ)-JDP.

problem setup theoretical results

ui(·) ai(·) Xi

assume
strong

duality?
LB utility loss UB total

constraint violation

[HHRW16]‡ linear linear probability
simplex ✓ - Õ

(
m
√

ln (1/δ)

ε

)
Õ
(

m
√

ln (1/δ)

ε

)
(Theorem 3.3, w.h.p.) (Theorem 3.3, w.h.p.)

[HZ18]§ linear linear [0,1] ✓ - Õ
(√

m ln (1/δ)

ε

)
Õ
(

m3/2
√

ln (1/δ)

ε

)
(Theorem 1.1, w.h.p.) (section 3.2.2, w.h.p.)

This work concave convex convex ✗ - O
(√

m ln (1/δ)

ε

)
O
(

m3/2
√

ln (1/δ)

ε

)
(Theorem 3.5) (Theorem 3.6)

✓ Ω
(
m
ε

)† Õ
(√

ln (1/δ)

ε

)
Õ
(

m
√

ln (1/δ)

ε

)
(Theorem 4.3) (Theorem 3.10) (Theorem 3.10)

Notes. All results in the table are stated for ε ≤ ln (1/δ) for conciseness; m,n, T are the number of constraints, agents, and iterations,
respectively. Tilde symbol Õ hides poly-log factors in m; for results in [HHRW16, HZ18], Õ additionally hides poly-log terms in n and
T . LB=lower bound, UB=upper bound, w.h.p=with high probability. ‡ The algorithm in [HHRW16] can be practically applied to general
convex problems. But one supporting Lemma (Theorem 2.1) they used to derive analytical results is only valid for linear problems with
solutions in probability simplex. § An lower bound Ω̃(

√
m
ε) can be derived from [HZ18, Theorem 1.2]. But their original statement is for

the minimal supply, not for suboptimality as we considered. † The lower bound is for algorithms outputting feasible allocations, while upper
bounds are achieved by algorithms that may output infeasible allocations. So, the lower bound could be higher. The lower bound holds only for
ε ≥ max{1, 1/(nγ)} where γ ∈ (0, 1).

decision maker (e.g., a government) desires to implement an infeasible allocation, she may purchase
additional resources from an emergency supplier to make the allocation feasible. Then, the total loss
in social welfare is the sum of (i) the loss in utility of agents and (ii) the decision maker’s expenditure
on extra resources. If we only look at suboptimality, we may mistakenly conclude that the gap could
be arbitrarily small. Following our interpretation of performance, our proposed algorithm is near
optimal.

Related work JDP was initially proposed by [KPRU14] as a relaxation of differential privacy
[DR14], which better fits the nature of privacy issues in zero-sum games, such as allocation problems
[HHR+14, CKRW15]. Following this stream, the most relevant works to ours are [HHRW16, HZ18],
both of which designed their algorithms with a dual decomposition idea. [HHRW16] proposed the
first generic method, dual gradient descent, for solving allocation problems. For the special case of
linear packing problem, [HZ18] designed a dual multiplicative weight update algorithm, and extended
it to online setting. [GU22] further provides an economic interpretation of payoff sharing. Our work
is also closely related to Mirror Descent (MD) [NY83], a generalization of projected gradient descent
to non-Euclidean settings. Its private version, Noisy MD, has recently found many applications in
non-Euclidean DP stochastic convex optimization [AFKT21, BGN21] and saddle-point problems
[GGP24]. We further apply Noisy MD to JDP resource allocation problems.

2 Preliminaries

Definition 2.1 (Differential privacy, [DR14]). A mechanismM : Zn → P is (ε, δ)-differentially
private if, for any pair of neighboring datasets D ∼ D′ that differ in one data point, and for any
subset of output S ⊆ P , we have P [M(D) ∈ S] ≤ eε · P [M(D′) ∈ S] + δ.

Throughout the work, we use the subscript −i to indicates variables without agent i. For ex-
ample, X−i := X1 × · · · Xi−1 × Xi+1 · · · × Xn is a feasible space without i, and M(D)−i :=
(M(D)1, . . . ,M(D)i−1,M(D)i+1, . . . ,M(D)n) is the view from other agents without i.

Definition 2.2 (Joint differential privacy, [KPRU14]). A mechanismM : Zn → Xn is (ε, δ)-jointly
differentially private if for any pair of neighboring datasets D ∼ D′ that differ in datapoint i ∈ [n],
and for any subset of outputs S ⊆ X−i, we have P [M(D)−i ∈ S] ≤ eε · P [M(D′)−i ∈ S] + δ.

3

Lemma 2.3 (Billboard Lemma, [HHR+14]). SupposeM : Zn → P is (ε, δ)-DP. For any given
function f : Z ×P → X , denote the output of f on individual i’s data as fi := f(zi,M(D)). Then,
(f1, . . . , fn) is (ε, δ)-JDP.

Definition 2.4 (α-strong convexity). Let α > 0. Function ℓ : Rm → R is said to be α-strongly
convex w.r.t. ∥·∥p over setW , if ℓ(x) ≥ ℓ(y) + ⟨∇ℓ(y),x− y⟩+ α

2 ∥x− y∥2p ,∀x,y ∈ W .

Primal problem in a condensed form Let x := (x1, . . . ,xn) be the collection of allocations.
For a given dataset D, let F(x) :=

∑n
i=1 ui(xi) be the total utility when allocation is x. Let

a(x) :=
∑n

i=1 ai(xi) be the total consumed resource, and let X := X1 × · · · × Xn be the feasible
region. Then, the resource allocation problem (1), referred to as “primal problem” later, can be
written in a condensed form:

(Primal Problem) max
x∈X
{F(x) : a(x) ≤ nγb} . (4)

The optimal allocation is denoted as x∗ := argmaxx∈X {F(x) : a(x) ≤ nγb}.

Dual problem By dualizing the coupling constraint with shadow prices p ≥ 0, we get a Lagrangian
function minp≥0 maxx∈X {F(x) + ⟨p, nγb− a(x)⟩}. Thus, the Lagrangian dual problem is

(Dual Problem) min
p≥0

D(p), (5)

where D(p) := maxx∈X {F(x) + ⟨p, nγb− a(x)⟩}. It is easy to see that, given p ≥ 0, the dual
problem is decomposable across agents, i.e., D(p) =

∑n
i=1 maxxi∈Xi

{ui(x) + ⟨p, γb− ai(xi)⟩}.
Let us denote the dual problem’s minimizer by p∗ := argminp≥0 D(p).

When there are multiple x∗ and p∗, we can break ties arbitrarily. Let ∥·∥p denote the p-norm of a
vector, and let [n] := {1, . . . , n} be a running set. We impose some assumptions on dataset D to
make both primal and dual problems interesting.
Assumption 2.5 (Interesting instances). For a dataset D := {(ui(·),ai(·),Xi)}ni=1, we assume

1. Convexity: for each i ∈ [n], utility function ui is concave on Xi, consumption function ai is
convex on Xi, and Xi is a convex set;

2. Boundedness: ∃ u > 0 and bounded b > 0 with ∥b∥2 ≤ B such that ui(xi) ∈ [0, u] and
ai(xi) ∈ [0, b], ∀xi ∈ Xi, i ∈ [n]. Specially, if 0 ∈ Xi, then ui(0) = 0 and ai(0) = 0;

3. Limited resource: the constant γ in (4) is assumed to be in the interval (0, 1) . The primal
problem (4) is feasible, and optimal x∗ is attainable. Under x∗, at least one of m constraints
in (4) is binding. Moreover, the optimal shadow prices p∗ to dual problem (5) are not all
zeros, i.e., ∥p∗∥1 ̸= 0;

4. Compulsory request allowed: request i can be compulsory in the sense that Xi ̸∋ 0, only if
maxxi∈Xi {ui(xi) + ⟨p∗,−ai(xi)⟩} ≥ 0.

These assumptions are very mild. The first assumption restricts our attention to convex problems.
The second one assumes both utility and consumption functions are non-negative and bounded from
above, and are both zeros if no resource is allocated. The third one assumes the non-private problem is
indeed resource-constrained and not ill-posed. The constant γ controls available resource levels, and
nγ means the number of agents whose requests can be fully fulfilled. In practice, usually γ ≥ 1/n.
The fourth one allows agents to propose compulsory requests with minimal requirements strictly
greater than 0, as long as allocating resource to the agent is beneficial. Our assumptions are weaker
than those in the literature [HZ18, BLM20, BLM23] by allowing compulsory requests.

3 The algorithm and analysis

Our algorithm is a private version of Mirror Descent applied to the dual problem (5). Mirror Descent
(MD) [NY83] is a generalization of Projected Gradient Descent (Proj-GD) that can better cater to
the geometry of the problem at hand by the proper choice of a strongly convex potential function
Φ :W → R+. The potential function chosen should meet some conditions below.

4

Condition 3.1 (Potential Functions). The potential function Φ : W → R+ chosen should be (i)
differentiable on int(W), i.e., the interior of its domainW ⊆ Rm; and (ii) α-strongly convex with
respect to ∥·∥p on W . For a given Φ, let BΦ(x,y) := Φ(x) − Φ(y) − ⟨∇Φ(y),x− y⟩ be the
Bregman divergence between x ∈ W,y ∈ int(W).

With the primal problem (4) and dual problem (5) in mind, and a well-chosen potential function,
we are ready to present the algorithm, Noisy Dual Mirror Descent. The algorithm is an iterative

Algorithm 1 Noisy Dual Mirror Descent for Resource Allocation Problems, A
Parameters: privacy parameters (ε, δ), variance σ2; stepsizes {η(t)}Tt=1; potential function Φ(·) :

W → R+ that is α-strongly convex with respect to ℓp-norm; conjugate index q s.t. 1/q + 1/p = 1,
number of iterations T , feasible region of shadow prices P := Rm

+ .

1: Set initial point p(1) ∈ P ∩ int(W)
2: for t = 1 to T do
3: Get intermediate allocation decision x(t) ← argmaxx∈X F(x) +

〈
p(t), γnb− a(x)

〉
4: Draw a noise vector n(t) ∼ N (0, σ2Im×m)
5: Update private shadow prices according to Noisy Mirror Descent:

p(t+1) ← arg min
p∈P∩W

{
η(t) ·

〈
g(t) + n(t),p

〉
+BΦ(p,p

(t))
}
, (6)

where g(t) := nγb− a(x(t))

6: Final allocation decision xA := (xA
1 , . . . ,x

A
n)← 1

T

∑T
t=1 x

(t)

7: Output xA
i to agent i, for all i ∈ [n]

algorithm, and in each iteration, we first calculate allocation decisions based on current shadow
prices p(t), i.e. Step 3. Then, we update the shadow prices by Noisy Mirror Descent update rule (6).
The gradient g(t) used is exactly the gradient of the dual problem D(p(t)) according to Danskin’s
theorem. After T iterations, we output the averaging allocations across all iterations. In other words,
we basically apply Noisy Mirror Descent to solve the dual problem, and use the sequence of shadow
prices to coordinate allocations in the primal problem. Intuitively, the shadow prices are implicitly
pricing each resource to ensure that limited resources are allocated to agents most in need.

Recall the Billboard Lemma, if we can privatize the entire sequence of shadow prices in a DP manner,
then the final allocation decisions will be JDP. Compared to existing works invoking Advanced
Composition, we provide a tighter privacy accounting through Rényi DP.

Theorem 3.2 (JDP Guarantee). Given ε > 0, δ ∈ (0, 1) and T ≥ 1, if noise variance σ2 = T · cε,δ
with cε,δ := ∥b∥22 ·

(
2 ln (1/δ)

ε2 + 1
ε

)
, then Algorithm 1 A is (ε, δ)-JDP.

To better align with expressions in DP literature, we can assume ε ≤ ln (1/δ). Then, the magnitude
of cε,δ becomes ln (1/δ)

ε2 , a magnitude of Gaussian Mechanism that frequently appears in DP literature.
Moreover, the privacy analysis via Rényi DP significantly lowers the variance level. For example,
when ε = 1, δ = 10−3, and ∥b∥22 = 1, the variance indicated by Theorem 3.2 is 14.8T , compared to
approximately 121.6T by [HHRW16, Theorem 3.2], [HZ18, Lemma 3.1].

3.1 Performance upper bounds

We now move on to analyze the utility optimality gap F(x∗) − EA
[
F(xA)

]
. The following weak

duality lemma bridges the primal and dual problems.

Lemma 3.3 (Weak duality). For any p ≥ 0, the objective value of dual problem (5) is always greater
than or equal to that of primal problem (4), i.e., D(p) ≥ maxx∈X {F(x) : a(x) ≤ nγb} ,∀p ≥ 0.

An immediate result of weak duality is D(p(t)) ≥ F(x∗),∀t. Hence, applying weak duality and
Jensen’s inequality, the optimality gap F(x∗)− F(xA) can be upper bounded as follows, provided

5

the randomness dice of A is fixed,

F(x∗)− F(xA) ≤ 1

T

T∑
t=1

(
D(p(t))− F(x(t))

)
=

1

T

T∑
t=1

〈
p(t), nγb− a(x(t))

〉
=

1

T

T∑
t=1

〈
p(t),g(t) + n(t)

〉
− 1

T

T∑
t=1

〈
p(t),n(t)

〉
,

where the first equality is by definition of the dual problem, and the second equality is by definition of
gradient g(t). Taking expectation with respect toA removes the subtrahend, since n(t) is independent
of p(t) and zero-mean, which gives F(x∗)− EA

[
F(xA)

]
≤ EA

[
1
T

∑T
t=1

〈
p(t),g(t) + n(t)

〉]
. The

inner term is closely related to stationarity gap [GL13, ABG+23] in nonconvex optimization. It
is well-known that Proj-GD guarantees a small stationarity gap in both non-private [JNG+21] and
private [ABG+23] cases. Not surprisingly, MD can also achieve a small stationarity gap.

Lemma 3.4 (Cumulative stationarity gap of MD). Suppose stepsizes η(t) = η in MD update rule (6)
are the same for all t ∈ [T], and let {g̃(t)}Tt=1 be gradients used for update. Then the cumulative
stationarity gap

∑T
t=1

〈
p(t) − p, g̃(t)

〉
for any anchor point p ∈ P ∩W is upper bounded as

T∑
t=1

〈
p(t) − p, g̃(t)

〉
≤

η
∑T

t=1

∥∥g̃(t)
∥∥2
q

2α
+

BΦ(p,p
(1))

η
, ∀p ∈ P ∩W.

With Lemma 3.4 and proper stepsizes, we can control the optimality gap. Denote γ := max{γ, 1−γ},
G := γ2n2 ∥b∥2q , and let z ∼ N (0, Im×m) be a standard Gaussian random vector. For a given
potential function Φ and an initial point p(1), denote CΦ(p

(1)) :=
√
BΦ(0,p(1))/α.

Theorem 3.5 (Utility guarantee). Set stepsizes η(t) =

√
αBΦ(0,p(1))

T ·(G+σ2E[∥z∥2
q])

,∀t ∈ [T]. Suppose

potential function’s domain includes 0, i.e., 0 ∈ W . Then running algorithm A with iterations
T ≥ G

cε,δ·E[∥z∥2
q]

and σ2 chosen in Theorem 3.2 yields

F(x∗)− EA
[
F(xA)

]
≤ 4CΦ(p

(1))

√
E
[
∥z∥2q

]
· √cε,δ. (7)

An instantiation of the utility guarantee is by Φ(·) = 1
2 ∥·∥

2
2, which is 1-strongly convex w.r.t. ℓ2-norm

on Rm. Then, the upper bound in (7) becomes 2
√
2m
∥∥p(1)

∥∥
2
· √cε,δ , which depends on the choice

of initial point p(1). It seems the bound can be arbitrarily small if p(1) is close to 0. But in fact, the
theorem itself does not reflect the whole picture, since xA could be infeasible. Therefore, we have to
further examine A’s feasibility guarantee.
Theorem 3.6 (Feasibility guarantee). Given allocation decision xA, denote the violation levels as
vA := (a(xA)− nγb)+, where positive part operator (·)+ applies element-wisely. In addition to
Condition 3.1, additionally assume the domainW of potential function Φ contains 2 ∥p∗∥1 ej ,∀j ∈
[m]. Then, running algorithm A with the same setting as in Theorem 3.5 yields

EA
[∥∥vA∥∥

∞

]
≤

2

√
E
[
∥z∥2q

]
· CΦ,1(p

(1))

√
α · ∥p∗∥1

+ 2
√
2 lnm

 · √cε,δ, (8)

where CΦ,1(p
(1)) =

BΦ(0,p(1))+maxe∈E1
BΦ(2∥p∗∥1e,p

(1))√
BΦ(0,p(1))

, set E1 := {e ∈ {0, 1}m : ⟨1, e⟩ ≤ 1}.

The proof idea is to sandwich the cumulative stationarity gap
∑T

t=1

〈
p(t) − p, g̃(t)

〉
at a properly

chosen anchor point p := 2 ∥p∗∥1 ejA ∈ P ∩ W (the constant 2 is chosen arbitrarily, it can be
any value strictly greater than 1), and then comparing the upper bound and lower bound in the
sandwich inequality gives the desired result. The base vector ejA with a single 1 on jA-th position

6

indicates which constraint jA ∈ [m] is most severely violated. One may notice that the anchor point
p := 2 ∥p∗∥1 ejA needs to be in P ∩W , which implicitly imposes one additional condition on the
domainW of potential function Φ. While the capability of computationally calculating ∥p∗∥1 is not
needed for deriving (8), on a practical note, we may need to adjustW accordingly so thatW contains
all possible anchor points 2 ∥p∗∥1 ejA ,∀jA almost surely. When doing so, we should be very careful
because p∗ depends on dataset D and thus, such an adjustment may leak privacy.

Again, one may think Φ(·) = 1
2 ∥·∥

2
2 is the ideal potential function, because its domainW = Rm

contains all anchor points of interest, does not depend on p∗, and therefore no privacy leakage risk.
As shown in the first row of Table 2, the guarantees under squared ℓ2 are only comparable to, not
better than, those in the literature summarized in Table 1. Nevertheless, being comparable is already
a significant improvement because our results are derived from weak duality only, whereas existing
works all assume strong duality. Moreover, since anchor points p = 2 ∥p∗∥1 ejA are related to ℓ1
norm of p∗, if we can find a data-independent upper bound for the value of ∥p∗∥1, we might be able
to adjustW accordingly without privacy concerns and may further improve performance. We do so
in the next subsection.

Table 2: Examples of theoretical guarantees under specific choices of hyperparameters.

Potential Function Theoretical Guarantees

function domain strong cvx. † init. pt. opt. gap total constr. viol.

name Φ(p) W α w.r.t ∥·∥p p(1) F(x∗) − E
[
F(xA)

]
mE

[∥∥∥vA
∥∥∥
∞

]
squared ℓ2

1
2 ∥p∥2

2 Rm 1 w.r.t ∥·∥2
1√
m

· 1 O
(√

m ln (1/δ)

ε

)
O

(
m3/2

√
ln (1/δ)

ε

)
negative entropy (ne)

∑m
j=1 pj ln pj ∆K w. K = 2u

γb
1
K w.r.t. ∥·∥1

K
m · 1 KÕ

(√
ln (1/δ)

ε

)
KÕ

(
m
√

ln (1/δ)

ε

)
parameterized ne

∑m
j=1 bjpj ln (bjpj) ∆K(b) w. K = 2u

γ
b2

K w.r.t. ∥·∥1
K

mbj
, ∀j K

b Õ
(√

ln (1/δ)

ε

)
K
b Õ

(
m
√

ln (1/δ)

ε

)
Notes. Results for squared ℓ2 (negative entropy) are from Section 3.1 (Section 3.2). Strong duality is necessary for theoretical guarantees by (pa-

rameterized) negative entropy. Abbreviations in column titles: cvx.=convexity, init.pt.=initial point, opt.gap = optimality gap, contrs.viol.=constraint
violations. The (scaled) simplex set ∆K(b) with radius K is defined as ∆K(b) := {p ≥ 0 : ⟨b,p⟩ ≤ K}; the standard simplex is
∆K := ∆K(1). † Squared ℓ2 function is strongly convex on whole space Rm, while negative entropy functions only on their respective domains.
Results in the first and second rows are highlighted as the main contributions in Table 1.

3.2 Improvements by strong duality

Indeed, there exists space for improvement, if we assume strong duality holds.
Assumption 3.7 (Strong duality holds). Strong duality between primal problem (4) and dual problem
(5) holds, i.e., F(x∗) = D(p∗), where x∗ and p∗ are optimal solutions to (4) and (5), respectively.

While weak duality always holds, strong duality does not universally hold. However, there are
many applications where strong duality naturally holds. For example, when the dualized constraint
a(x) ≤ nγb is linear in x, strong duality holds. If the constraint is not linear, one can check strong
duality by Slater’s condition, which essentially says that if the primal problem (4) has strictly feasible
solutions, then strong duality holds. The strong duality assumption here is also very mild, and
all examples previously considered in the literature satisfy strong duality, for example [HHRW16,
Section 4] and [HZ18]. However, these works fail to take full advantage of strong duality. We fill the
gap by noticing that strong duality actually restricts p∗ to an ℓ1 space.
Lemma 3.8 (Strong duality implies bounded p∗). Let p∗ := argminp≥0 D(p). Then, under
assumptions 2.5 and 3.7, we have ⟨b,p∗⟩ ≤ u

γ and ⟨1,p∗⟩ ≤ u
γb with b := minj{bj}.

The above lemma indicates that p∗ lies in the interior of a scaled simplex, suggesting the best
choice of potential function could be the negative entropy function, which better fits the ℓ1 geometry.
However, negative entropy Φ(w) =

∑m
j=1 wj lnwj is widely known to be 1-strongly convex only

on the probability simplex ∆1 := {w > 0 : ⟨1,w⟩ = 1}. To tailor it for our studied problem, we
parameterize the negative entropy Φ(w;θ) :=

∑m
j=1(θjwj) ln (θjwj) with θ > 0, and show that it

is also strongly convex in a scaled simplex.
Lemma 3.9 (Strong convexity of parameterized negative entropy). Let the parameterized negative
entropy Φ(w;θ) :=

∑m
j=1(θjwj) ln (θjwj) be defined on Rm

+ , where we define 0
0 = 0 and 0 ln 0 = 0

7

by continuity. Then Φ(w;θ) is (minj{θj})2/K-strongly convex in w w.r.t. ∥·∥1 in a scaled simplex
∆int

K (θ) := {w > 0 : ⟨θ,w⟩ ≤ K}.

It is immediate to see that if we set θ = 1 and K = 1, then Lemma 3.9 recovers the well-known
result that negative entropy is 1-strongly convex. For our studied problem, we can let the negative
entropy be parameterized by b, and use Φ(w; b) =

∑m
j=1(bjwj) ln (bjwj) for the Mirror Descent

update step (6). This does not compromise privacy, since b is a universal upper bound and is not
associated with any specific agent. Now, we are ready to improve the algorithm’s performance.

Theorem 3.10 (Improved utility & feasibility guarantees). Let b := maxj{bj}, b := minj{bj}.
Under assumptions 2.5 and 3.7, running algorithm 1 A with parameterized negative entropy Φ(w; b)

with radius K := 2u/γ, p(1)j = K/(mbj),∀j ∈ [m], and same T , σ2 as in Theorem 3.5 yields

(utility guarantee) F(x∗)− EA
[
F(xA)

]
≤

8
√
2u ·

√
ln (2m)

γb
· √cε,δ;

(feasibility guarantee) EA
[∥∥vA∥∥

∞

]
≤

4u
√
2 ln (2m) ·

[
2 + b · (ln

(
mb
)
− 1)+

]
γb · ∥p∗∥1

· √cε,δ.

Compared to the results in Theorems 3.5 and 3.6 where both dependencies on number of constraints
are
√
m, the results here have better dependencies of lnm. Moreover, following our interpretation of

algorithm performance as discussed in the Introduction, Theorem 3.10 implies that the algorithm’s
ultimate performance is Õ

(√
cε,δ
)
+m · Õ

(√
cε,δ
)
= Õ

(
m
√
cε,δ
)
. The additional m factor comes

from m constraints, since the feasibility guarantee in Theorem 3.10 is for any single constraint.

4 The lower bound

Some post-processing lemmas for JDP are necessary to prove the lower bound.
Lemma 4.1 (Self post-processing for JDP). Let M : Zn → Xn be an (ε, δ)-JDP mecha-
nism and denote its output by M(D) := (M(D)1, . . . ,M(D)n). Let f : X × Z → Y be
an arbitrary (randomized) function that can be applied element-wisely to M’s output. Then,
(f(M(D)1, z1), . . . , f(M(D)n, zn)) is (ε, δ)-JDP.
Lemma 4.2 (Post-processing for JDP). LetM : Zn → Xn be an (ε, δ)-JDP mechanism and denote
its output byM(D) := (M(D)1, . . . ,M(D)n). Let f : Xn−1 → Y be an arbitrary (randomized)
function that can be applied to any collection of n− 1 elements ofM’s output. Then, for any k ∈ [n],
f(M(D)−k) and f(M(D′)−k) are (ε, δ)-indistinguishable.2

Lemma 4.1 confirms that processing each JDP output with the agent’s own data preserves JDP.
Lemma 4.2 says applying any operation to n − 1 elements of two n-length JDP outputs obtained
from a pair of neighboring datasets will be indistinguishable.

To see how these two lemmas help, we consider the allocations xA := (xA
1 , . . . ,x

A
n) outputted by a

JDP algorithm A : Zn → Xn. By Lemma 4.1, their consumptions (a1(x
A
1), . . . ,an(x

A
n)) are also

JDP. Furthermore, for any collusive group without agent k, their total consumption
∑n

i ̸=k ai(x
A
i)

should be insensitive to agent k’s allocation by Lemma 4.2. To ensure insensitivity, intuitively but
informally, any algorithm A outputting feasible allocations should reserve some resource exclusively
for agent k. But the reserved resource is wasted in some scenarios, which leads to the lower bound.
Theorem 4.3 (Minimax lower bound). For ε ≥ max{1, 1/(nγ)}, 0 < δ ≤ 1/2, there exists a
dataset D satisfying assumptions 2.5 and 3.7 such that any (ε, δ)-JDP algorithm A outputting
feasible allocations will lead to a utility loss at least m/(4ε). Therefore, the minimax lower bound is

inf
A is (ε, δ)-JDP

sup
D

{
F(x∗(D))− EA

[
F(xA(D))

]}
≥ m

4ε
.

The lower bound here nearly matches upper bounds given by Theorem 3.10 up to some logarithmic
factors in m and 1/δ. Therefore, Noisy Dual Mirror Descent is near optimal, under our interpretation

2Two random variables X,Y are (ε, δ)-indistinguishable if both Pr [X ∈ S] ≤ eεPr [Y ∈ S] + δ and
Pr [Y ∈ S] ≤ eεPr [X ∈ S] + δ hold for any subset S.

8

of algorithm performance. However, the result is limited to ε ≥ max{1, 1/(nγ)}, and it is interesting
to derive lower bounds for other ε. We provide a promising direction in the Appendix, which involves
a lower bounding optimization problem with hockey-stick divergence constraints. We conjecture that
couplings and divergences employed by [BBG18] are promising tools for this purpose.

5 Numerical experiments

5.1 Workforce scheduling

Workforce scheduling is about establishing a shift schedule for a given period to maximize workers’ to-
tal preference while meeting worker availability and shift coverage requirements. Workers’ preference
and availability are private data to protect. We consider a simple case of scheduling n = 7 workers
for m = 14 days with data publicly available [Opt24]. In this case, (i) each worker has preferences
ci ∈ Zm

+ , and utility function is ui(xi) = ⟨ci,xi⟩; (ii) shift requirement rj ∈ Z+ is imposed on each
day j ∈ [m], i.e., the number of workers needed for day j, which couples all workers; and (iii) workers’
availability and shift limits described by a polyhedral set Xi := {xi ∈ [0, 1]m : li ≤ ⟨1,xi⟩ ≤ ui}.
The problem is modeled as max {

∑n
i=1 ⟨ci,xi⟩ :

∑
i xi = r;xi ∈ Xi,∀i}. While this is a small

case, it is suitable for visualizing decisions and understanding the impact of JDP. Moreover, since the
optimal non-private p∗ = [0, 3, 1, 0, 2, 0, 0, 4, 3, 2, 3, 0, 0, 0] is a sparse vector, one can expect MD
equipped with negative entropy to perform better.

Figure 1 shows the final decisions under various ε, where the rightmost is the optimal non-private
decision where a value of 1 means arranging the person to that day. Private decisions are fractional

Femke
Marisa

Matsumi

Pauline
Siva

Vincent
Ziqiang

Day1
Day2
Day3
Day4
Day5
Day6
Day7
Day8
Day9

Day10
Day11
Day12
Day13
Day14

0.0 0.5 0.0 0.1 0.0 0.0 1.0
1.0 0.5 0.0 0.0 0.0 1.0 0.9
1.0 0.0 0.7 0.5 0.1 1.0 0.0
0.0 0.0 0.0 0.0 0.0 0.6 0.0
0.5 0.0 0.6 0.9 1.0 0.5 0.2
0.1 0.9 0.0 0.9 0.0 0.0 1.0
0.0 0.0 0.9 0.1 0.6 0.9 0.0
0.6 0.9 0.1 0.9 0.0 1.0 1.0
0.1 1.0 0.9 0.9 0.1 1.0 0.0
0.9 0.0 1.0 0.9 0.9 0.0 0.0
0.9 0.0 0.9 1.0 1.0 0.5 1.0
1.0 0.1 0.0 0.1 0.7 0.0 0.0
0.1 0.9 1.0 0.9 0.9 0.1 1.0
0.0 1.0 0.1 0.5 1.0 0.6 0.0

ε= 1

Femke
Marisa

Matsumi

Pauline
Siva

Vincent
Ziqiang

0.0 0.7 0.0 0.1 0.0 0.0 1.0
1.0 0.4 0.0 0.0 0.0 1.0 0.9
1.0 0.0 0.7 0.5 0.1 1.0 0.0
0.0 0.0 0.0 0.0 0.0 0.6 0.0
0.6 0.0 0.7 0.9 1.0 0.5 0.3
0.1 0.9 0.0 0.9 0.0 0.0 1.0
0.0 0.0 1.0 0.1 0.7 1.0 0.0
0.3 0.8 0.0 0.8 0.0 0.9 0.9
0.0 1.0 0.8 0.7 0.0 1.0 0.0
0.9 0.0 1.0 0.8 0.9 0.0 0.0
0.8 0.0 0.9 1.0 1.0 0.3 1.0
1.0 0.3 0.0 0.2 0.9 0.0 0.0
0.2 1.0 1.0 1.0 1.0 0.1 1.0
0.0 1.0 0.2 0.7 1.0 0.7 0.0

ε= 5

Femke
Marisa

Matsumi

Pauline
Siva

Vincent
Ziqiang

0.0 0.8 0.0 0.1 0.0 0.0 1.0
1.0 0.3 0.0 0.0 0.0 0.9 0.7
1.0 0.0 0.7 0.5 0.1 1.0 0.0
0.0 0.0 0.0 0.0 0.0 0.8 0.0
0.7 0.0 0.8 1.0 1.0 0.6 0.4
0.1 1.0 0.0 1.0 0.0 0.0 1.0
0.0 0.0 1.0 0.1 0.8 1.0 0.0
0.2 0.7 0.0 0.6 0.0 0.9 0.9
0.0 0.9 0.7 0.6 0.0 0.9 0.0
0.8 0.0 1.0 0.8 0.8 0.0 0.0
0.8 0.0 0.8 0.9 1.0 0.2 1.0
1.0 0.4 0.0 0.3 0.9 0.0 0.0
0.3 1.0 1.0 1.0 1.0 0.2 1.0
0.0 1.0 0.2 0.7 1.0 0.7 0.0

ε= 10

Femke
Marisa

Matsumi

Pauline
Siva

Vincent
Ziqiang

0.0 0.8 0.0 0.2 0.0 0.0 1.0
1.0 0.1 0.0 0.0 0.0 0.9 0.6
1.0 0.0 0.8 0.5 0.0 1.0 0.0
0.0 0.0 0.0 0.0 0.0 0.8 0.0
0.7 0.0 0.8 1.0 1.0 0.6 0.5
0.2 1.0 0.0 1.0 0.0 0.0 1.0
0.0 0.0 1.0 0.1 0.8 1.0 0.0
0.0 0.5 0.0 0.4 0.0 0.9 0.9
0.0 0.9 0.6 0.4 0.0 0.9 0.0
0.8 0.0 1.0 0.7 0.8 0.0 0.0
0.7 0.0 0.8 1.0 1.0 0.1 1.0
1.0 0.6 0.1 0.5 1.0 0.0 0.0
0.4 1.0 1.0 1.0 1.0 0.3 1.0
0.0 1.0 0.3 0.8 1.0 0.9 0.0

ε= 20

Femke
Marisa

Matsumi

Pauline
Siva

Vincent
Ziqiang

0 1 0 1 0 0 1
1 0 0 0 0 1 0
1 0 1 0 1 1 0
0 0 1 0 0 1 0
1 0 1 1 1 0 1
1 1 0 1 0 0 1
0 0 1 1 1 1 0
0 0 0 0 0 1 1
0 1 0 0 0 1 0
1 0 1 0 1 0 0
1 0 0 1 1 0 1
1 1 1 1 1 0 0
1 1 1 1 1 1 1
0 1 1 1 1 1 0

ε=∞

0.0

0.2

0.4

0.6

0.8

1.0

Figure 1: 7-person, 14-day rosters under various ε. Algorithms parameters: potential function is
negative entropy parameterized by b = 1; K = 1.1u/(γb), δ = .01, T = 104. Other settings follow
Theorem 3.10. Results reported are averages of 50 runs. Strong duality holds due to linearity.

and can be interpreted as probabilities. It is not hard to see that private decisions are in a similar
pattern to non-private decisions, and many private decisions are exactly the same as their optimal
non-private counterpart. Moreover, private decisions different from their non-private counterpart
converge gradually as ε→∞, see for example, the decision of (Day1, Marisa), (Day2, Marisa), and
(Day4, Vincent). Optimality gaps and constraint violations are shown in Figure 2 (left panel). For all

0 2 4 6 8 10
ε

0

5

10

15

20

25

op
tim

al
ity

 g
ap

 (%
)

K_constant=1.1

0 2 4 6 8 10
ε

K_constant=2.0

0

2

4

6

8

to
ta

l v
io

la
tio

ns

Hsu et. al (2016) MD_l2 (Ours) MD_neg.entr (Ours) Hsu et. al (2016) MD_l2 (Ours) MD_neg.entr (Ours)

Figure 2: ε v.s.optimality gaps & constraint violations. More discussions in Appendix C.

9

curves, the lower the better. It is clear that our algorithms have significantly smaller optimality gaps
at slightly higher constraint violations.

One may notice that the constant of K is 1.1 rather than 2 suggested by Theorem 3.10. This is the
consequence of parameter tuning, and we show its impact in Figure 2 (right panel). Comparing the
two plots in Figure 2, it is obvious that larger K_constant leads to conservative decisions: fewer
constraint violations but higher optimality gaps. Moreover, when K_constant is 2, our algorithms
achieve lower optimality gaps at the same level of constraint violations.

5.2 Assignment problem

We next consider three large-scale assignment problems with (m,n) = (8, 800), (15, 1500), (30,
3000), aiming to maximize aggregated utility by assigning at most one unit to each agent. The
problem is modeled as max {

∑n
i=1 ⟨ci,xi⟩ :

∑
i Im×nxi ≤ nγ1;xi ∈ Xi,∀i} with Xi := {xi ∈

[0, 1]n : ⟨1,xi⟩ ≤ 1} being a unit simplex and Im×n := [Im, . . . , Im] being a consumption matrix
concatenated from n/m identity matrices. Raw data of ci are available at [Bea04]. In this assignment
problem, p∗ > 0 is strictly non-zero. We run experiments and report results in Table 3.

Table 3: Algorithm performance, mean±sd

Optimality gap F(x∗)−F(xA)
F(x∗) × 100% Total constraint violation

∥∥vA
∥∥
1

n Alg. ε = 1 2 5 10 ε = 1 2 5 10

800 [HHRW16] -1.8±2.6 4.3±3.2 5.3±2.8 3.8±1.5 84.8±18.4 46.2±16.8 19.0±9.3 11.0±5.2
MD_l2 (ours) 1.8±3.9 1.3±2.3 0.8±0.8 0.5±0.5 27.7±12.0 12.7±8.3 5.1±2.6 2.7±1.6
MD_ne (ours) 2.1±4.0 2.0±2.2 0.7±0.9 0.4±0.5 23.9±13.3 9.2±6.7 4.7±3.4 2.6±1.5

1500 [HHRW16] -6.9±1.5 1.8±1.4 13.8±1.3 12.3±0.9 256.7±16.0 156.8±20.8 30.3±10.8 15.7±6.7
MD_l2 (ours) 4.3±3.4 2.8±2.3 1.2±0.8 0.7±0.7 54.6±18.5 35.1±14.8 12.6±4.6 7.2±3.3
MD_ne (ours) 6.0±4.1 3.0±2.1 1.1±0.9 0.6±0.6 47.8±23.0 25.8±12.0 13.4±5.9 4.5±2.5

3000 [HHRW16] -29.4±0.9 -18.9±1.2 6.9 ±1.2 8.2±1.0 > 103 > 103 743.8±25.7 680.1±29.4
MD_l2 (ours) 4.3±5.1 3.0±2.4 2.0±1.3 1.5±0.7 193.9±54.1 97.2±23.9 39.8±12.6 22.0±6.3
MD_ne (ours) 10.4±5.2 6.1±3.0 3.0±1.1 1.6±0.6 134.5±56.4 65.4±25.1 27.9±8.4 18.1±6.0

Notes. Parameters for our algorithms: K = 1.1u/(γb), δ = .01, T = 104. Other settings follow Theorem 3.10. MD_l2 and MD_ne
mean that potential function is squared ℓ2 and negative entropy, respectively. For three cases n = 800, 1500, 3000, we set resource level
γ = 0.1, 0.05, 0.02, respectively. For all values in the table, the lower the better. Bold=better. More results are deferred to Appendix C.

From the table, we observe MD_l2 has lower gaps and reasonable constraint violations for small ε;
and MD_ne almost dominates others for large ε. Both our algorithms outperform existing methods.

6 Discussion and conclusion

Limitation of our work. One significant limitation is the restriction of ε ≥ max{1, 1/(nγ)} to
make the lower bound hold. However, we identify a promising direction to overcome this limitation
in Appendix B.4. Once the limitation is overcame, the analysis may further uncover lower bounds on
online cases [SS18], a long-standing open question in private online optimization [CDE+24].

In this work, we considered convex resource allocation problems under joint differential privacy.
To solve the problem approximately, we proposed an algorithm Noisy Dual Mirror Descent, which
privatizes dual variables of hard constraints, and then uses private dual variables to coordinate
allocations. A significant merit of the algorithm is its ability to better leverage the geometric structure
of the dual space; thus, it is provably near optimal for a large range of privacy parameters. There
are many interesting directions for future study. For example, getting rid of the limitation discussed
previously is a fruitful endeavour. Identifying a proper DP manner to tune the constant of K is of
more practical interest.

Acknowledgments and Disclosure of Funding

We sincerely thank the anonymous Area Chair and reviewers for their valuable feedback that signifi-
cantly improved this work. This research is supported by the Ministry of Education, Singapore, under
its MOE AcRF Tier 1 (RG117/23).

10

References
[ABG+23] Raman Arora, Raef Bassily, Tomás González, Cristóbal A Guzmán, Michael Menart, and Enayat

Ullah. Faster rates of convergence to stationary points in differentially private optimization. In
International Conference on Machine Learning, pages 1060–1092. PMLR, 2023. 6

[AFKT21] Hilal Asi, Vitaly Feldman, Tomer Koren, and Kunal Talwar. Private stochastic convex optimization:
Optimal rates in l1 geometry. In International Conference on Machine Learning, pages 393–403.
PMLR, 2021. 3

[BBG18] Borja Balle, Gilles Barthe, and Marco Gaboardi. Privacy amplification by subsampling: Tight
analyses via couplings and divergences. Advances in neural information processing systems, 31,
2018. 9, 23

[Bea04] J E Beasley. Or-library, assignment problem. http://people.brunel.ac.uk/~mastjjb/jeb/
orlib/assigninfo.html, 2004. Accessed: 2024-May-3. 10

[Bec17] Amir Beck. First-order methods in optimization. SIAM, 2017. 14

[BGN21] Raef Bassily, Cristóbal Guzmán, and Anupama Nandi. Non-euclidean differentially private
stochastic convex optimization. In Conference on Learning Theory, pages 474–499. PMLR, 2021.
3

[BLM20] Santiago Balseiro, Haihao Lu, and Vahab Mirrokni. Dual mirror descent for online allocation
problems. In International Conference on Machine Learning, pages 613–628. PMLR, 2020. 4

[BLM23] Santiago R Balseiro, Haihao Lu, and Vahab Mirrokni. The best of many worlds: Dual mirror
descent for online allocation problems. Operations Research, 71(1):101–119, 2023. 4, 18

[CDE+24] Rachel Cummings, Damien Desfontaines, David Evans, Roxana Geambasu, Yangsibo Huang,
Matthew Jagielski, Peter Kairouz, Gautam Kamath, Sewoong Oh, Olga Ohrimenko, et al. Advanc-
ing differential privacy: Where we are now and future directions for real-world deployment. 2024.
10

[CKRW15] Rachel Cummings, Michael Kearns, Aaron Roth, and Zhiwei Steven Wu. Privacy and truthful
equilibrium selection for aggregative games. In Web and Internet Economics: 11th International
Conference, WINE 2015, Amsterdam, The Netherlands, December 9-12, 2015, Proceedings 11,
pages 286–299. Springer, 2015. 3

[DR14] Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Foundations
and Trends® in Theoretical Computer Science, 9(3–4):211–407, 2014. 3

[GGP24] Tomás González, Cristóbal Guzmán, and Courtney Paquette. Mirror descent algorithms with nearly
dimension-independent rates for differentially-private stochastic saddle-point problems. arXiv
preprint arXiv:2403.02912, 2024. 3

[GL13] Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex
stochastic programming. SIAM journal on optimization, 23(4):2341–2368, 2013. 6

[GU22] George Gilliam and Nelson A Uhan. Computing payoff allocations in the approximate core of linear
programming games in a privacy-preserving manner. Operations Research Letters, 50(1):64–71,
2022. 3

[HHR+14] Justin Hsu, Zhiyi Huang, Aaron Roth, Tim Roughgarden, and Zhiwei Steven Wu. Private matchings
and allocations. In Proceedings of the forty-sixth annual ACM symposium on Theory of computing,
pages 21–30, 2014. 2, 3, 4

[HHRW16] Justin Hsu, Zhiyi Huang, Aaron Roth, and Zhiwei Steven Wu. Jointly private convex programming.
In Proceedings of the twenty-seventh annual ACM-SIAM symposium on Discrete algorithms, pages
580–599. SIAM, 2016. 2, 3, 5, 7, 10, 24, 25, 26

[HLL+22] Yuxuan Han, Zhicong Liang, Zhipeng Liang, Yang Wang, Yuan Yao, and Jiheng Zhang. Private
streaming sco in lp geometry with applications in high dimensional online decision making. In
International Conference on Machine Learning, pages 8249–8279. PMLR, 2022. 2

[HZ18] Zhiyi Huang and Xue Zhu. Near optimal jointly private packing algorithms via dual multiplicative
weight update. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 343–357. SIAM, 2018. 2, 3, 4, 5, 7

11

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/assigninfo.html
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/assigninfo.html

[HZ19] Zhiyi Huang and Xue Zhu. Scalable and jointly differentially private packing. In 46th International
Colloquium on Automata, Languages, and Programming (ICALP 2019). Schloss-Dagstuhl-Leibniz
Zentrum für Informatik, 2019. 2

[JNG+21] Chi Jin, Praneeth Netrapalli, Rong Ge, Sham M Kakade, and Michael I Jordan. On nonconvex
optimization for machine learning: Gradients, stochasticity, and saddle points. Journal of the ACM
(JACM), 68(2):1–29, 2021. 6

[KPRU14] Michael Kearns, Mallesh Pai, Aaron Roth, and Jonathan Ullman. Mechanism design in large
games: Incentives and privacy. In Proceedings of the 5th conference on Innovations in theoretical
computer science, pages 403–410, 2014. 3

[Mir17] Ilya Mironov. Rényi differential privacy. In 2017 IEEE 30th computer security foundations
symposium (CSF), pages 263–275. IEEE, 2017. 13

[NY83] Arkadij Semenovič Nemirovskij and David Borisovich Yudin. Problem complexity and method
efficiency in optimization. 1983. 3, 4

[Opt24] Gurobi Optimization. Workforce scheduling. https://
gurobi-optimization-gurobi-optimods.readthedocs-hosted.com/en/latest/
mods/workforce.html, 2024. Accessed: 2024-April-30. 9

[SLWA22] Ryan Steed, Terrance Liu, Zhiwei Steven Wu, and Alessandro Acquisti. Policy impacts of statistical
uncertainty and privacy. Science, 377(6609):928–931, 2022. 2

[SS18] Roshan Shariff and Or Sheffet. Differentially private contextual linear bandits. Advances in Neural
Information Processing Systems, 31, 2018. 2, 10

[VBKW20] Giuseppe Vietri, Borja Balle, Akshay Krishnamurthy, and Steven Wu. Private reinforcement
learning with pac and regret guarantees. In International Conference on Machine Learning, pages
9754–9764. PMLR, 2020. 2

12

https://gurobi-optimization-gurobi-optimods.readthedocs-hosted.com/en/latest/mods/workforce.html
https://gurobi-optimization-gurobi-optimods.readthedocs-hosted.com/en/latest/mods/workforce.html
https://gurobi-optimization-gurobi-optimods.readthedocs-hosted.com/en/latest/mods/workforce.html

A Proofs for Section 3

A.1 Proof of Theorem 3.2

Proof. Since each individual’s allocation xA
i depends on all shadow prices (p(1), . . . ,p(T)) on the

training trajectory and the individual’s own data, by Billboard Lemma 2.3, it suffices to verify
the whole sequence (p(1), . . . ,p(T)) is (ε, δ)-DP. We characterize the DP guarantee through Rényi
Differential Privacy [Mir17]. Below are some useful lemmas on Rényi DP.

Definition A.1 ((α, ε)-Rényi Differential Privacy, [Mir17]). Let M : D → P be a randomized
mechanism. For any neighboring datasetsD ∼ D′, let P, P′ be the distribution ofM(D) andM(D′),
respectively. Then,M is said to be ε-Rényi differentially private of order α, or (α, ε)-RDP for short,
if it holds that

Dα(P || P′) ≤ ε, ∀D ∼ D′,

where Dα(P || Q) := 1
α−1 ln

(
EQ

[(
P(x)
Q(x)

)α])
is the Rényi divergence between P and Q.

Lemma A.2 (Gaussian Mechanism is RDP, Proposition 7 in [Mir17]). Let f : D → Z be a vector-
valued function whose global sensitivity is GS := supD∼D′ ∥f(D)− f(D′)∥2, then the Gaussian
MechanismM(D) := f(D) +N (0, σ2I) is (α, α·GS2

2σ2)-RDP, for any α > 1.

Lemma A.3 (Composition for RDP, Proposition 1 in [Mir17]). Let M1 : D → P1 be (α, ε1)-
RDP and M2 : D × P1 → P2 be (α, ε2)-RDP. Let X := M1(D) be the output of M1 and
Y :=M2(D, X) be the output ofM2, then the adaptive composition (X,Y) satisfies (α, ε1 + ε2)-
RDP.

Lemma A.4 (From RDP to DP, Proposition 3 in [Mir17]). IfM is an (α, ε)-RDP mechanism, it also
satisfies (ε+ ln (1/δ)

α−1 , δ)-DP, for any δ ∈ (0, 1).

For iteration t, we notice that data only plays a role in the gradient g(p(t);D) := nγb−a(x(p(t);D))
through intermediate allocation decision x(p(t);D) := argmaxx∈X F(x) −

〈
p(t),a(x)

〉
. It is

immediate to show that the Global Sensitivity of gradient function is

GS = sup
p,D∼D′

∥g(p;D)− g(p;D′)∥2 = sup
p;zi∼z′

i

∥ai(xi(p; zi))− a′
i(xi(p; z

′
i))∥2 ≤ ∥b∥2 , (9)

where the last inequality is by our assumption that serving one individual consumes at most b resource
(see assumption 2.5). Then, injecting a zero-mean Gaussian noise n(t) ∼ N (0, σ2I) into gradients

g(t) := g(p(t);D) can guarantee (α,
α·∥b∥2

2

2σ2)-RDP by Lemma A.2.

Moreover, the algorithm comprises T iterations, and each iteration takes as input the shadow price in
previous iteration; therefore, T -fold iterations form a sequential composition. Applying Composition
Lemma A.3, we immediately conclude that (g(1) + n(1), . . . ,g(T) + n(T)) satisfies (α, Tα·∥b∥2

2

2σ2)-
RDP. As the noisy mirror descent update step in Eq.(6) is merely post-processing after obtaining
(g(1) + n(1), . . . ,g(T) + n(T)), the sequence (p(1), . . . ,p(T)) is thus also (α,

Tα·∥b∥2
2

2σ2)-RDP. Lastly,

by Lemma A.4, (α, Tα·∥b∥2
2

2σ2)-RDP implies (Tα·∥b∥2
2

2σ2 + ln (1/δ)
α−1 , δ)-DP ∀δ ∈ (0, 1). Thus, for a given

pair of (ε, δ), if we assign privacy budget in the following way:{
Tα∥b∥2

2

2σ2 = ε/2;
ln (1/δ)
α−1 = ε/2,

we can get

σ2 = T ∥b∥22 ·
(
2 ln (1/δ)

ε2
+

1

ε

)
,

which is the desired variance level.

13

A.2 Proof of Lemma 3.4

Proof. For any gradient g̃(t) used for the mirror descent update step Eq.(6), shadow prices p(t),
and updated shadow prices p(t+1), there exists an inequality linking them together (Lemma 9.13,
[Bec17]):〈

g̃(t),p(t) − p
〉
≤

η(t)
∥∥g̃(t)

∥∥2
q

2α
+

1

η(t)

{
BΦ(p,p

(t))−BΦ(p,p
(t+1))

}
, ∀t, ∀p ∈ P ∩W.

Summing up the above inequality in a telescoping way over t = 1, . . . , T gives

T∑
t=1

〈
g̃(t),p(t) − p

〉
≤
∑T

t=1 η
(t)
∥∥g̃(t)

∥∥2
q

2α
+

BΦ(p,p
(1))

η(1)
− BΦ(p,p

(T+1))

η(T)

+

T−1∑
t=1

(
1

η(t+1)
− 1

η(t)

)
BΦ(p,p

(t+1)).

When stepsizes η(t) = η are the same for all t, the inequality becomes

T∑
t=1

〈
g̃(t),p(t) − p

〉
≤

η
∑T

t=1

∥∥g̃(t)
∥∥2
q

2α
+

BΦ(p,p
(1))

η
.

A.3 Proof of Theorem 3.5

Proof. Let us first fix a sequence of noises {n(t)}Tt=1. Recall that the final allocation decision xA is
the average over all decisions along the trajectory and the objective function is concave; therefore,
by Jensen’s inequality, F(xA) ≥ 1

T

∑T
t=1 F(x

(t)). Moreover, by weak duality, F(x∗) ≤ D(p(t)),∀t.
With the above results, the optimality gap F(x∗)− F(xA) can be upper controlled as:

F(x∗)− F(xA) ≤ 1

T

T∑
t=1

[
D(p(t))− F(x(t))

]
=

1

T

T∑
t=1

[
F(x(t)) +

〈
p(t),g(t)

〉
− F(x(t))

]
(by definition of dual problem D)

=
1

T

T∑
t=1

〈
g̃(t),p(t) − 0

〉
− 1

T

T∑
t=1

〈
n(t),p(t)

〉
.

Taking expectation with respect to noises {n(t)}Tt=1 on both sides, we can remove the second term
on the right hand side in preceding inequality, because n(t) is zero-mean and is independent of p(t).
This leads to

F(x∗)− EA
[
F(xA)

]
≤ 1

T
· EA

[
T∑

t=1

〈
g̃(t),p(t) − 0

〉]
.

The inner summation can be upper bounded by applying Lemma 3.4 with p = 0 and η(t) = η > 0,∀t;
we therefore obtain

F(x∗)− EA
[
F(xA)

]
≤ EA

η∑T
t=1

∥∥g̃(t)
∥∥2
q

2αT
+

1

ηT
BΦ(0,p

(1))

 . (10)

Here are some helpful inequalities:∥∥∥g̃(t)
∥∥∥2
q
=
∥∥∥g(t) + n(t)

∥∥∥2
q
≤ 2

∥∥∥g(t)
∥∥∥2
q
+ 2

∥∥∥n(t)
∥∥∥2
q
;∥∥∥g(t)

∥∥∥
q
=
∥∥∥γnb− a(x(t))

∥∥∥
q
≤ γn ∥b∥q .

14

Denote G := γ2n2 ∥b∥2q , and GA := 1
T

∑T
t=1

∥∥n(t)
∥∥2
q
. Using above helpful inequalities, we can

upper bound 1
T

∑T
t=1

∥∥g̃(t)
∥∥2
q

as

1

T

T∑
t=1

∥∥∥g̃(t)
∥∥∥2
q
≤ 2G+ 2GA. (11)

Plugging (11) back into (10), we further reach an upper bound:

F(x∗)− EA
[
F(xA)

]
≤ η · (G+ EA [GA])

α
+

1

ηT
BΦ(0,p

(1)).

Because GA = 1
T

∑T
t=1

∥∥n(t)
∥∥2
q

and n(t) ∼ N (0, σ2Im×m) with σ2 = Tcε,δ,∀t, direct calculation

gives EA [GA] = σ2E
[
∥z∥2q

]
with z ∼ N (0, Im×m) being a standard Gaussian random vector.

Therefore,

F(x∗)− EA
[
F(xA)

]
≤

η ·
(
G+ σ2E

[
∥z∥2q

])
α

+
1

ηT
BΦ(0,p

(1)).

Let CΦ(p
(1)) :=

√
BΦ(0,p(1))/α. Then, plugging in the stepsize η =

√
αBΦ(0,p(1))

T ·(G+σ2E[∥z∥2
q])

leads to

F(x∗)− EA
[
F(xA)

]
≤ 2

√√√√(G+ σ2E
[
∥z∥2q

])
·BΦ(0,p(1))

αT

≤ 2CΦ(p
(1)) ·

(√
G√
T

+
√
cε,δ ·

√
E
[
∥z∥2q

])
. (by σ2 = Tcε,δ) (12)

Lastly, if we run sufficiently many iterations T ≥ G

cε,δ·E[∥z∥2
q]

, we get the stated result in the theorem.

A.4 Proof of Theorem 3.6

Proof. We first briefly introduce the idea for the proof. We will find a lower bound and an upper
bound for the cumulative stationarity gap

∑T
t=1

〈
g̃(t),p(t) − p

〉
in Lemma 3.4. With a properly

chosen p ∈ Rm
+ ∩W as a bridge, comparing these two bounds leads to the desired conclusion.

For a given final allocation decision xA, we denote the resource underage level by

vA :=
(
a(xA)− nγb

)+
,

where the positive part operator (·)+ applies element-wise. It is self-evident that vA ≥ 0 by definition,
and vA = 0 implies no constraint violation. Let jA := argmaxj∈[m]∪{0}{uA

j } be the index of the
most-severely violated constraint. Specially, if jA = 0, then we know vA = 0, and we are done.
Otherwise, we let ejA be an indicator vector with 1 on its (jA)’s position and 0 on others.

Choose p := CejA ∈ Rm
+ ∩ W with a constant C to be determined later, we reformulate the

cumulative stationarity gap
∑T

t=1

〈
g̃(t),p(t) − CejA

〉
into

T∑
t=1

〈
g̃(t),p(t) − CejA

〉
=

T∑
t=1

〈
g(t),p(t)

〉
︸ ︷︷ ︸

(∗)

+

T∑
t=1

〈
g(t),−CejA

〉
︸ ︷︷ ︸

(∗∗)

+

T∑
t=1

〈
n(t),p(t) − CejA

〉
︸ ︷︷ ︸

(∗∗∗)

,

and control the three terms one by one.

15

(*): First, rewrite (∗) into a function of dual form:

(∗) =
T∑

t=1

{[
F(x(t)) +

〈
p(t),g(t)

〉]
− F(x(t))

}
=

T∑
t=1

[
D(p(t))− F(x(t))

]
≥ T ·

[
D (p∗)− F(xA)

]
,

(13)

where the last inequality is from D(p(t)) ≥ D(p∗) and applying Jensen’s inequality to F(·). Next,
we turn to control F(xA). We observe that if more resource vA becomes available for the original
allocation problem, then xA will be a feasible allocation. Hence, we can upper bound the value of
F(xA) with another problem having more resources. Denote the set of feasible allocations when b
resource available by X (b) := {x := (x1, . . . ,xn) ∈ ⊗n

i=1Xi : a(x) ≤ b}. We have

F(xA) ≤ max
x∈X (nγb+vA)

F(x) (xA is feasible)

≤ max
x∈⊗n

i=1Xi

{
F(x) +

〈
p, nγb+ vA − a(x)

〉}
(weak duality, ∀p ∈ P)

= D(p) +
〈
p,vA〉 . (dual form) (14)

Let p in (14) be p := p∗, and plug (14) back into (13), we obtain

(∗) ≥ −T ·
〈
p∗,vA〉 ≥ −T ∥∥vA∥∥

∞ · ∥p
∗∥1 .

(**): The second term (∗∗) helps characterize constraint violations:

(∗∗) = C

T∑
t=1

〈
−g(t), ejA

〉
= CT ·

〈
1

T

T∑
t=1

a(x(t))− nγb, ejA

〉
≥ CT ·

〈
a(xA)− nγb, ejA

〉
(by assumption a(·) is convex)

= CT
∥∥vA∥∥

∞ . (by definitions of vA and ejA)

(***): The third term (∗ ∗ ∗) involves zero-mean Gaussian noise vectors {n(t)}t that are in-
dependent of p(t). While ejA is dependent on noise vectors, the dependence is not a big is-
sue here, since ejA ∈ E1 := {e ∈ {0, 1}m : ⟨e,1⟩ = 1}, and the Gaussian Complexity
G(E1) := Ez∼N (0,Im×m)

[
supe∈E1

⟨e, z⟩
]

of the set E1 can be well controlled:

G(E1) = Ez∼N (0,Im×m) [max{z1, . . . , zm}] ≤
√
2 lnm.

Therefore, the term (∗ ∗ ∗) admits a lower bound in expectation w.r.t. A as shown below:

EA [(∗ ∗ ∗)] = 0− C · EA

[〈
T∑

t=1

n(t), ejA

〉]
≥ −C · EA

[
sup
e∈E1

〈
T∑

t=1

n(t), e

〉]
= −C

√
Tσ · G(E1)

≥ −C
√
Tσ ·

√
2 lnm

= −CT ·
√

cε,δ · 2 lnm. (by σ =
√

Tcε,δ)

Finally, replacing three terms back and taking expectation w.r.t. A, we obtain a lower bound on the
cumulative stationarity gap:

EA

[
T∑

t=1

〈
g̃(t),p(t) − CejA

〉]
≥ TEA

[∥∥vA∥∥
∞

]
· (C − ∥p∗∥1)− CT ·

√
cε,δ · 2 lnm. (15)

Now, we turn to another side and bound the cumulative stationarity gap from above. Suppose we
can choose a proper C > 0 such that CejA ∈ Rm

+ ∩ W almost surely, the expected cumulative
stationarity gap thus can be bounded from above by employing Lemma 3.4:

EA

[
T∑

t=1

〈
g̃(t),p(t) − CejA

〉]
≤ EA

η∑T
t=1

∥∥g̃(t)
∥∥2
q

2α
+

1

η
BΦ(CejA ,p

(1))

 .

16

Similarly, denote G := γ2n2 ∥b∥2q and GA :=
∑T

t=1

∥∥n(t)
∥∥2
q
/T . Then EA

[∑T
t=1

∥∥g̃(t)
∥∥2
q

]
≤

2T ·
(
G+ σ2E

[
∥z∥2q

])
with z being a standard Gaussian vector. Plugging these values back, we

get

EA

[
T∑

t=1

〈
g̃(t),p(t) − CejA

〉]
≤

ηT ·
(
G+ σ2E

[
∥z∥2q

])
α

+
1

η
EA

[
BΦ(CejA ,p

(1))
]
.

Lastly, using stepsize η =

√
αBΦ(0,p(1))

T ·(G+σ2E[∥z∥2
q])

results in

EA

[
T∑

t=1

〈
g(t),p(t) − CejA

〉]
≤

√
T · (G+ σ2E[∥z∥2q])

α
·
BΦ(0,p

(1)) + EA
[
BΦ(CejA ,p

(1))
]√

BΦ(0,p(1))

≤

√
T · (G+ σ2E[∥z∥2q])

α
· BΦ(0,p

(1)) + maxe∈E1
BΦ(Ce,p(1))√

BΦ(0,p(1))︸ ︷︷ ︸
=:CΦ,1(p(1))

.

(16)

Comparing the lower bound (15) with the upper bound (16) and using σ2 = Tcε,δ , we immediately
obtain

TEA
[∥∥vA∥∥

∞

]
(C − ∥p∗∥1)− CT

√
cε,δ · 2 lnm ≤

CΦ,1(p
(1))√

α
·

(
√
TG+ T

√
cε,δ ·

√
E
[
∥z∥2q

])
.

Rearranging the above inequality yields (assume C > ∥p∗∥1)

EA
[∥∥vA∥∥

∞

]
≤ CΦ,1(p

(1))√
α · (C − ∥p∗∥1)

·

(√
G

T
+
√
cε,δ ·

√
E
[
∥z∥2q

])
+

C
√
2 lnm

C − ∥p∗∥1
· √cε,δ.

(17)

When T ≥ G

cε,δ·E[∥z∥2
q]

, (17) implies

EA
[∥∥vA∥∥

∞

]
≤

2
√
E[∥z∥2q] · CΦ,1(p

(1))
√
α · (C − ∥p∗∥1)

+
C
√
2 lnm

C − ∥p∗∥1

 · √cε,δ. (18)

The inequality (18) gives an upper bound on the expected maximal constraint violation.

However, the above analysis holds only when constant C satisfies (i) C > ∥p∗∥1 and (ii) CejA ∈
Rm

+ ∩ W for any jA ∈ [m]. To this end, we can simply let C = 2 ∥p∗∥1, and replacing C with
2 ∥p∗∥1 gives the desired result:

EA
[∥∥vA∥∥

∞

]
≤

2

√
E
[
∥z∥2q

]
· CΦ,1(p

(1))

√
α · ∥p∗∥1

+ 2
√
2 lnm

 · √cε,δ. (19)

A.5 Proof of Lemma 3.8

Proof. For any agent i, the objective value of its individual dual problem is always positive, i.e.,
maxxi∈Xi

{ui(xi)− ⟨p∗,ai(xi)⟩} ≥ 0 by Assumption 2.5 part 4. With this inequality, we are ready
to show bounded shadow prices:

nγ ⟨b,p∗⟩+ 0 ≤ ⟨nγb,p∗⟩+max
x∈X
{F(x)− ⟨p∗,a(x)⟩} = D(p∗) = F(x∗)︸ ︷︷ ︸

(by strong duality)

≤ nu.

17

Dividing both sides by nγ results in ⟨b,p∗⟩ ≤ u
γ .

Similarly,

nγ ⟨1,p∗⟩ ≤ ⟨nγb,p
∗⟩+ 0

minj bj
≤ ⟨nγb,p

∗⟩+maxx∈X {F(x)− ⟨p∗,a(x)⟩}
minj bj

=
D(p∗)

minj bj
=

F(x∗)

minj bj︸ ︷︷ ︸
(by strong duality)

≤ nu

minj bj
,

which implies ⟨1,p∗⟩ ≤ u
γ minj bj

.

A.6 Proof of Lemma 3.9

Proof. By the definition of strong convexity, it suffices to show

⟨∇Φ(p;θ)−∇Φ(q;θ),p− q⟩ ≥ (minj{θj})2

K
∥p− q∥21 , ∀p, q ∈ ∆int

K (θ). (20)

According to the definition of parameterized negative entropy function, its gradient is ∇Φ(p;θ)j =
θj ln (pjθj) + θj ,∀j ∈ [m]. By the well celebrated Hermite–Hadamard inequality f(a+b

2) ≤
1

b−a

∫ b

a
f(x) dx, if we use convex function f(t) = 1

t ,∀t > 0, we immediately have 2
a+b ≤

ln b−ln a
b−a ,

which implies

(ln b− ln a) · (b− a) ≥ 2(b− a)2

b+ a
, ∀a, b ≥ 0, (21)

where the case a = 0 or b = 0, or both are obtained by continuity and the conventions that 0
0 = 0 and

0 ln 0 = 0. If we set b = pjθj and a = qjθj for (21), we can get

(ln (pjθj)− ln (qjθj)) · θj(pj − qj) ≥
2θj(pj − qj)

2

pj + qj
, ∀j ∈ [m]. (22)

Summing over j ∈ [m], we have

LHS of (20) =
m∑
j=1

(ln (pjθj)− ln (qjθj)) · θj(pj − qj) ≥
m∑
j=1

2θj(pj − qj)
2

pj + qj
. (by (22))

It remains to further lower bound the summation on the r.h.s. We follow the proof idea of Lemma 2
in [BLM23] to complete our proof:

m∑
j=1

2θj(pj − qj)
2

pj + qj
= 2 ⟨θ,p+ q⟩ ·

m∑
j=1

θj(pj + qj)

⟨θ,p+ q⟩
· |pj − qj |2

(pj + qj)2

≥ 2 ⟨θ,p+ q⟩ ·

 m∑
j=1

θj(pj + qj)

⟨θ,p+ q⟩
· |pj − qj |
pj + qj

2

(by Jensen’s inequality)

=
2

⟨θ,p+ q⟩
·

 m∑
j=1

θj |pj − qj |

2

≥ 1

K
·

 m∑
j=1

θj |pj − qj |

2

(since p, q ∈ ∆int
K (θ))

≥ (minj{θj})2

K
· ∥p− q∥21 .

18

A.7 Proof of Theorem 3.10

Proof. The proof follows the general proof of Theorem 3.5 and 3.6 for any potential function Φ. It
remains to properly modify results for the Φ chosen. When the potential function is the parameterized
negative entropy Φ := Φ(w; b) =

∑m
j=1 wjbj ln (wjbj) defined on ∆int

K (b) := {w > 0 : ⟨b,w⟩ ≤
K} with K = 2u

γ , the conjugate index q = ∞, strong convexity parameter α = b2/K. Moreover,
direct calculation gives the Bregman divergence BΦ(0,p

(1)) =
〈
b,p(1)

〉
. Because we choose

p
(1)
j = K/(mbj),∀j ∈ [m], we thus have BΦ(0,p

(1)) = K.

Utility Guarantee: It is evident that CΦ(p
(1)) :=

√
BΦ(0,p(1))/α =

√
K/(b2/K) = K/b.

Therefore, the utility upper bound (7) becomes

F(x∗)− EA
[
F(xA)

]
= 4CΦ(p

(1)) ·
√

E
[
∥z∥2∞

]
· √cε,δ

≤ 4
K

b
·
√
2 ln (2m) · √cε,δ =

8
√
2u ·

√
ln (2m)

γb
· √cε,δ.

Feasibility Guarantee: We can work from (19) and first figure out CΦ,1(p
(1)). Direct calculation

gives BΦ(Cej ,p
(1)) = BΦ(0,p

(1)) + Cbj ·
(
ln(C/p

(1)
j)− 1

)
,∀j ∈ [m]. Plugging C = 2 ∥p∗∥1,

we can upper bound CΦ,1(p
(1)) as:

CΦ,1(p
(1)) :=

BΦ(0,p
(1)) + maxj BΦ(Cej ,p

(1))√
BΦ(0,p(1))

= 2
√
K +

2 ∥p∗∥1 maxj

{
bj ·
(
ln
(

2∥p∗∥1mbj
K

)
− 1
)
, 0
}

√
K

(since p
(1)
j = K/(mbj))

≤ 2
√
K +

√
K ·max

j
{bj · (ln (mbj)− 1) , 0} (K ≥ 2 ∥p∗∥1, Lemma 3.8)

≤ 2
√
K +

√
Kb · (ln

(
mb
)
− 1)+.

Substitute CΦ,1(p
(1)) back into (19) with K = 2u

γ , we get

EA
[∥∥vA∥∥

∞

]
≤

4u
√
2 ln (2m) ·

[
2 + b · (ln

(
mb
)
− 1)+

]
γb · ∥p∗∥1

· √cε,δ.

B Proofs for Section 4

B.1 Proof of self post-processing Lemma 4.1 for JDP

Proof. The proof is for a deterministic function f . The result on randomized functions follows imme-
diately as any randomized mapping can be decomposed into a convex combination of deterministic
functions. The proof here largely follows the same idea for the proof of Billboard Lemma. For any
x ∈ Xn, let f(x−k,D−k) := (f(x1, z1), . . . , f(xk−1, zk−1), f(xk+1, zk+1), . . . , f(xn, zn)). For
any subset S ⊆ Yn−1, let f−1(S;D−k) :=

{
x−k ∈ Xn−1 : f(x−k,D−k) ∈ S

}
be the preimage

of S with respect to the mapping f(·,D−k). Then, we can show that

Pr [f(M(D)−k,D−k) ∈ S] = Pr
[
M(D)−k ∈ f−1(S;D−k)

]
≤ eε · Pr

[
M(D′)−k ∈ f−1(S;D−k)

]
+ δ (M(·) is (ε, δ)-JDP)

= eε · Pr [f(M(D′)−k,D−k) ∈ S] + δ

= eε · Pr
[
f(M(D′)−k,D′

−k) ∈ S
]
+ δ, (D−k = D′

−k)

which confirms JDP guarantee after self post-processing.

19

B.2 Proof of post-processing Lemma 4.2 for JDP

Proof. Similarly, the proof is for a deterministic function f . Let f−1(S) be the preimage of S. For
any S ⊆ Y:

Pr [f(M(D)−k) ∈ S] = Pr
[
M(D)−k ∈ f−1(S)

]
≤ eε · Pr

[
M(D′)−k ∈ f−1(S)

]
+ δ (M(·) is (ε, δ)-JDP)

= eε · Pr [f(M(D′)−k) ∈ S] + δ.

B.3 Proof of Theorem 4.3

The proof consists of several steps: (i) construct a “hard” distribution of datasets; (ii) identify
necessary conditions on the JDP algorithm A with the help of Lemma 4.1 and 4.2; (iii) reformulate
the minimax lower bound into a better form that aligns these necessary conditions; (iv) combine all
steps together. Without loss of generality, we assume b = 1.

Step 1: Construct a “hard” distribution of datasets.

Let Id(·) be the identity function, and let 1 and 0 be vectors of 1’s and 0’s whose lengths are m.
Define three types of requests:

z := (x 7→ ⟨1,x⟩ , Id(·), {1x : x ∈ [0, 1]});
z1 := (x 7→ ⟨1,x⟩ , Id(·), {1x : x = min{1, nγ}});
z0 := (x 7→ ⟨1,x⟩ , Id(·), {1x : x = 0}).

All three types of requests are the same in their utility and consumption functions, both taking linear
forms. It is also easy to verify that all three types of requests satisfy Assumptions 2.5 (part 1 and 2).
In what follows, we construct datasets that satisfy Assumption 2.5 (part 3 and 4) and Assumption 3.7
as well.

Based on these requests, we construct a pair of neighboring datasets that differ in agent n only:
D0 := (z, . . . , z,︸ ︷︷ ︸

n−1 requests

z0); D1 := (z, . . . , z,︸ ︷︷ ︸
n−1 requests

z1).

It is easy to verify that part 3 of Assumption 2.5 is also met, i.e., the primal problem is always feasible,
and the optimal shadow price is p∗ = 1, which are non-zeros. The result p∗ = 1 is by noticing that
one unit increase in available resource will increase the objective value of the primal problem by 1.
Since p∗ = 1, it immediate to see that part 4 of Assumption 2.5 also holds, because now the function
ui(xi) + ⟨p∗,−ai(xi)⟩ becomes ⟨1,xi⟩+ ⟨1,−xi⟩, which is always non-negative for any xi ∈ Xi.
Moreover, the constraint to be dualized is a linear constraint; thus Assumption 3.7 strong duality
holds.

Lastly, let dataset D be drawn from Unif{D0,D1}, i.e. uniformly distributed over these two datasets.

Step 2: Identify necessary conditions on JDP algorithm A
Let xA(D) := (xA

1 (D), . . . ,xA
n (D)) be the output of (ε, δ)-JDP algorithm A. The self post-

processing Lemma 4.1 says that if we process each xA
i with i’s own data, the resulting output

is still JDP. That implies (Id(xA
1), . . . , Id(x

A
n)) should also be (ε, δ)-JDP. Moreover, the post-

processing Lemma 4.2 indicates that the aggregated consumption, excluding agent n’s, should be
indistinguishable even if agent n’s data is changed, i.e.,

Pr

∑
i ̸=n

Id(xA
i (D)) ∈ S

 ≤ eεPr

∑
i ̸=n

Id(xA
i (D′)) ∈ S

+ δ, ∀S ⊆ [0, nγ1].

Instantiating the above inequality with D = D0, D′ = D1, and S = (nγ1 − c1, nγ1] with
c := min{1, nγ} leads to

Pr

∑
i̸=n

xA
i (D0) ∈ (nγ1− c1, nγ1]

 ≤ eεPr

∑
i ̸=n

xA
i (D1) ∈ (nγ1− c1, nγ1]

+ δ.

20

We can simplify the preceding inequality by changing decision variables from bold format xi to
normal format xi, because by construction of requests z, z1, z0, each decision vector xi := 1xi is
fully determined by a single scalar xi. This leads to the following equivalent inequality,

Pr

∑
i ̸=n

xA
i (D0) ∈ (nγ − c, nγ]

 ≤ eεPr

∑
i̸=n

xA
i (D1) ∈ (nγ − c, nγ]

+ δ. (23)

Moreover, when dataset is D1, agent n should always be assigned c unit, forcing resource available
for others to be at most nγ − c. Thus, if A is an (ε, δ)-JDP algorithm outputting a feasible allocation
with probability 1, then

∑
i ̸=n x

A
i (D1) ≤ nγ − c w.p. 1, and (23) becomes:

Pr

∑
i ̸=n

xA
i (D0) ∈ (nγ − c, nγ]

 ≤ eε · 0 + δ = δ. (24)

Therefore, we get a necessary condition (24) for any A being (ε, δ)-JDP: when dataset is D0,
Algorithm A should not assign many resources to other agents, and only with a small probability δ,
other agents can get at least nγ − c resources.

Step 3: Reformulate the minimax bound

Let ∆ ∈ [0, nγ] be a constant to be determined later, and let S+
∆ := (nγ−∆, nγ], S−

∆ := [0, nγ−∆]
be two disjoint regions partitioning the interval [0, nγ]. Let I ∈ {0, 1}m be an indicator so that
1 in j’s position implies (

∑n
i=1 x

A
i)j ∈ S+

∆; otherwise, in S−
∆. Let event EI := {(x1, . . . ,xn) :

1
{
(
∑n

i=1 xi)j ∈ S+
∆

}
= Ij ,∀j ∈ [m]}. With these notations and the law of total probability, we

first rewrite the expression of Algorithm A’s utility when dataset is D0 as:

EA
[
F(xA(D0))

]
=

∑
I∈{0,1}m

EA

[
n∑

i=1

〈
1,xA

i (D0)
〉 ∣∣∣ xA(D0) ∈ EI

]
· Pr

[
xA(D0) ∈ EI

]

=
∑

I∈{0,1}m

EA

 n∑
i=1

m∑
j=1

(
xA
i (D0)

)
j

∣∣∣ xA(D0) ∈ EI

 · Pr [xA(D0) ∈ EI
]

=
∑

I∈{0,1}m

EA

 m∑
j=1

(
n∑

i=1

xA
i (D0)

)
j

∣∣∣ xA(D0) ∈ EI

 · Pr [xA(D0) ∈ EI
]
.

We observe that when event EI happens, the resource consumed
(∑n

i=1 x
A
i (D0)

)
j

is no more than
either nγ −∆ or nγ, depending on Ij . Hence, we can reach an upper bound expressed by Ij :

EA
[
F(xA(D0))

]
≤

∑
I∈{0,1}m

EA

 m∑
j=1

[(nγ −∆)1 {Ij = 0}+ nγ1 {Ij = 1}]
∣∣∣ EI

 · Pr [xA(D0) ∈ EI
]

=
∑

I∈{0,1}m

EA

mnγ −
m∑
j=1

∆1 {Ij = 0}
∣∣∣ EI

 · Pr [xA(D0) ∈ EI
]

= mnγ −∆

m∑
j=1

∑
I∈{0,1}m

EA

[
1 {Ij = 0}

∣∣∣ EI

]
Pr
[
xA(D0) ∈ EI

]
= mnγ −∆

m∑
j=1

EA [1 {Ij = 0}]

= mnγ −∆

m∑
j=1

Pr

(n∑
i=1

xA
i (D0)

)
j

∈ S−
∆

 .

21

Due to the construction of D0 that xA
i := 1xA

i , the probability terms in the preceding inequality
should be the same among all j = 1, . . . ,m; thus, we have

EA
[
F(xA(D0))

]
≤ mnγ −m∆ · Pr

[
n∑

i=1

xA
i (D0) ∈ S−

∆

]
.

Moreover, with D0, the allocation to agent n should be xA
n (D0) = 0, modifying the preceding

inequality into

EA
[
F(xA(D0))

]
≤ mnγ −m∆ · Pr

∑
i ̸=n

xA
i (D0) ∈ S−

∆

 . (25)

We note that with either dataset D0 or D1, the optimal utility obtained in the non-private setting
is always mnγ, i.e., F(x∗(D0)) = F(x∗(D1)) = mnγ. As a result, the minimax regret is lower
bounded as follows:

inf
A is (ε, δ)-JDP

sup
D

{
F(x∗(D))− EA

[
F(xA(D))

]}
≥ inf

A is (ε, δ)-JDP
ED∼Unif{D0,D1}

[
F(x∗(D))− EA

[
F(xA(D))

]]
≥ 1

2
· inf
A is (ε, δ)-JDP

mnγ −

mnγ −m∆ · Pr

∑
i̸=n

xA
i (D0) ∈ S−

∆


=

m∆

2
· inf
A is (ε, δ)-JDP

Pr

∑
i ̸=n

xA
i (D0) ∈ [0, nγ −∆]

 ,

(26)

where the second inequality is by considering D0 and plugging in (25).

Step 4: Combine all together

Suppose ε ≥ max{1, 1/(nγ)}. If we set ∆ = 1
ε , the r.h.s. of (26) becomes m

2ε ·
infA Pr

[∑
i ̸=n x

A
i (D0) ∈ [0, nγ − 1/ε]

]
. Since 1/ε ≤ min{1, nγ} = c, it follows that

Pr

∑
i̸=n

xA
i (D0) ∈ [0, nγ − 1/ε]

 ≥ Pr

∑
i ̸=n

xA
i (D0) ∈ [0, nγ − c]


= 1− Pr

∑
i ̸=n

xA
i (D0) ∈ (nγ − c, nγ]


≥ 1− δ ≥ 1

2
. (by (24) and δ ∈ (0, 1/2))

Plugging the preceding inequality back into (26) immediately leads to

inf
A is (ε, δ)-JDP

sup
D

{
F(x∗(D))− EA

[
F(xA(D))

]}
≥ m

4ε
,

which completes the proof.

B.4 Discussion on lower bounds for general ε

The lower bound in Theorem 4.3 only holds for ε ≥ max{1, 1/(nγ)}. Intuitively, this is because we
only use feasibility of A to prove the lower bound: “we reserve some resource exclusively for agent
k.” The optimality condition of A in the minimax expression infA supD is not used. Noticing this
oversight, we provide a lower bounding problem that fills this gap.

We start with expressing DP in terms of hockey-stick divergence. Suppose µ and µ′ are two
probability measures that are absolutely continuous with respect to each other. Let Heε(X,Y) :=∫
z∈Z

(
dµ
dµ′ (z)− eε

)+
dµ′(z) be the hockey-stick divergence between two random variables X,Y .

22

LetM be an (ε, δ)-DP mechanism, and letM(D)−k := Π−kM(D) be the random vector of n− 1
elements projected to others than agent k. Here are some relationships among indistinguishability,
DP, and JDP.

• (ε, δ)-indistinguishability: if Heε(X,Y) ≤ δ, then X is said to be (ε, δ)-indistinguishable
from Y ;

• (ε, δ)-DP: for a mechanismM, if supD∼D′ Heε(M(D),M(D′)) ≤ δ, we sayM is (ε, δ)-
DP [BBG18];

• (ε, δ)-JDP: for a mechanismM, if supD∼D′,k Heε(M(D)−k,M(D′)−k) ≤ δ, we sayM
is (ε, δ)-JDP.

It is self-evident from these relationships that DP requires indistinguishability between outputs for
any pair of neighboring datasets, while JDP requires indistinguishability between projected outputs
without agent k for any pair of neighboring datasets.

To obtain another lower bound exploiting optimality of A, we can follow the idea and notation in the
proof of Theorem 4.3, but consider different neighboring datasets:

D1− := (z0, z, . . . , z︸ ︷︷ ︸
n-1 requests

), D1+ := (z1, z, . . . , z︸ ︷︷ ︸
n-1 requests

), D1+,2+ := (z1, z1, z, . . . , z︸ ︷︷ ︸
n-2 requests

).

It is obvious D1− ∼ D1+, and D1+ ∼ D1+,2+ are pairs of neighboring datasets. Let S−k(x
A) :=∑

i ̸=k x
A
i be the total consumption excluding agent k. By the definition of (ε, δ)-JDP, any JDP

algorithm A should satisfy following necessary constraints:

Heε(S−1(x
A(D1−)), S−1(x

A(D1+))) ≤ δ; (27)

Heε(S−1(x
A(D1+)), S−1(x

A(D1+,2+))) ≤ δ; (28)

Heε(S−2(x
A(D1+,2+)), S−2(x

A(D1+))) ≤ δ; (29)

Heε(S−2(x
A(D1+)), S−2(x

A(D1−))) ≤ δ. (30)

The variable xA(D1+,2+) in both constraints (28) and (29) should be the same, and thus links both
constraints. Moreover, the variable xA(D1−) in constraints (27) and (30) are the same. Therefore,
the four constraints form a loop restricting each other.

The four constraints (27)-(30) are necessary conditions for any JDP algorithm. Furthermore, the
dataset D1− here is essentially the same as D0 in the proof of Theorem 4.3; thus all analysis for
D0 can be borrowed. Consequently, following the same analysis for (26), we get a lower bound
expressed by an inf problem:

inf
A is (ε, δ)-JDP

sup
D

{
F(x∗(D))− EA

[
F(xA(D))

]}
≥ m

2ε
· inf
A s.t. (27)-(30)

Pr

[
S−1(x

A(D1−)) ∈ [0, nγ − 1

ε
]

]
.

We believe analyzing the inf problem with tools in [BBG18], such as couplings, is promising. After
this base case, one can easily extend the set of constraints (27)-(30) to take account of more loops.

C Additional results of numerical experiments

All experiments were run on a PC with an AMD 3700X CPU, 16GB memory; no GPU was used. The
algorithm was implemented in Python 3.11, and optimization was solved by scipy.optimize.minimize
method. Source code is available in supplementary materials. Datasets are publicly available as
discussed in the main text.

C.1 Workforce scheduling

When running the algorithm, the only parameter different from Theorem 3.10 is K := 1.1u/(γb),
where Theorem 3.10 suggests K := 2u/(γb). The constant factor is modified from 2 to 1.1, as a
result of hyperparameter tuning. We discuss the tuning and its impact later.

We first report optimality gaps in Table 4. It is clear that our algorithm, equipped with either potential

23

Table 4: Optimality gap (F(x∗)−F(xA))/F(x∗)×100%. mean±sd

Algorithms MD_ne MD_l2 [HHRW16], Algo 1
ε = 1 2.1±2.4 9.1±3.8 21.5±1.2
ε = 2 2.8±2.1 7.4±4.1 21.8±1.2
ε = 5 2.1±1.9 6.6±4.7 22.4±1.0
ε = 10 2.8±2.1 5.3±4.1 23.3±1.0
ε = 20 2.8±2.4 4.2±2.9 24.2±1.0

Notes. We run our algorithm A Noisy Dual MD with two potential functions:
negative entropy (abbr. ne) and squared ℓ2-norm function (abbr. ℓ2). Settings
are the same as in Figure 1. bold=better

functions, always outperform the existing method. However, the performance of “A w. neg.entr”
seems independent of ε and the performance of [HHRW16] seems worse when ε increases, both
of which are strange. The observations here are because the optimality gap itself does not reflect
the whole picture, for example, constraint violations are not reflected. We thus report constraint
violations in Table 5 below. It should be clear from Table 5 that constraint violations are reduced

Table 5: Constraint violations, mean±sd. Settings are the same as in Figure 1

Total violation Max violation
MD_ne MD_l2 [HHRW16] MD_ne MD_l2 [HHRW16]

ε = 1 7.9±1.3 6.7±1.7 4.9±0.7 2.7±0.4 2.8±0.6 2.0±0.3
ε = 2 7.0±1.2 6.7±1.8 4.6±0.7 2.4±0.5 2.7±0.7 1.9±0.4
ε = 5 6.4±1.0 5.6±1.5 4.3±0.9 2.1±0.4 2.4±0.6 2.0±0.4
ε = 10 5.1±1.2 4.1±1.5 3.4±0.8 1.8±0.4 1.7±0.5 1.6±0.4
ε = 20 3.5±1.2 2.9±1.0 2.1±0.8 1.4±0.4 1.2±0.4 1.2±0.4

when ε increases, which indicates that our algorithm can maintain a good optimality performance
while better reducing constraint violations. While [HHRW16] has the lowest constraint violations,
our algorithms’ constraint violations are only slightly worse.

Runtime For this workforce scheduling problem, the runtime of our algorithm varies from potential
function to potential function, see Table 6.

Table 6: Mean runtime (in seconds) per thousand iterations

MD_ne MD_l2 [HHRW16]
ε = 1 19.6 2.2 1.0
ε = 2 19.9 2.2 1.1
ε = 5 19.7 2.1 1.1
ε = 10 20.6 2.1 1.0
ε = 20 21.2 2.2 1.1

Impact of “K_constant” From our experiments, we found that the constant factor of K significantly
impacts algorithms’ performance. To avoid confusion, we want to point out that the algorithm by
[HHRW16] set K_constant to be 2, a fixed value. But for all results in Appendix here, we let their
K_constant change as well, in order to gain more understandings of its impact. We find that, when
the constant is close to 1, the final allocations are more likely to achieve a smaller optimality gap, but
violate constraints more severely. On the other side, when the constant increases, the final allocations
will violate fewer constraints, but end with a larger optimality gap. In other words, the constant of K
trade-offs between optimality and constraint violations. To see the trade-off more clearly, we draw
Figure 3. The x-axis represents the constant of K, the left y-axis is optimality gap, and the right
y-axis is total constraint violation; and for all curves, the lower the better. It is evident that when
K_constant is small, we get smaller gaps but higher constraint violations. Additionally, when ε takes
large values (say, ε = 5, 10), constraint violations of all algorithm are at almost the same levels,
but our algorithms have better optimality performance. One may notice that when K_constant=1,
the optimality gap is negative, which means F(xA) ≥ F(x∗). Considering xA may violate some
constraints, this phenomenon is possible.

24

1.00 1.25 1.50 1.75 2.00
K_constant

0

10

20

op
tim

al
ity

 g
ap

 (%
)

ε= 1

1.00 1.25 1.50 1.75 2.00
K_constant

ε= 2

1.00 1.25 1.50 1.75 2.00
K_constant

ε= 5

1.00 1.25 1.50 1.75 2.00
K_constant

ε= 10

0

2

4

6

8

to
ta

l v
io

la
tio

ns

Hsu et. al (2016) MD_l2 (Ours) MD_neg.entr (Ours) Hsu et. al (2016) MD_l2 (Ours) MD_neg.entr (Ours)

Figure 3: K_constant v.s. optimality & constraint violations. Settings are the same as in Figure 1
except K_constant. Shadow areas and error bars indicate 95% confidence interval.

C.2 Assignment Problems

We repeat Table 3 below for discussion convenience. When reading the table, we should keep in mind

Table 7: Algorithm performance, mean±sd (this table is a copy of Table 3)

Optimality gap F(x∗)−F(xA)
F(x∗) × 100% Total constraint violation

∥∥vA
∥∥
1

n Algo. ε = 1 2 5 10 ε = 1 2 5 10

800 [HHRW16] -1.8±2.6 4.3±3.2 5.3±2.8 3.8±1.5 84.8±18.4 46.2±16.8 19.0±9.3 11.0±5.2
MD_l2 (ours) 1.8±3.9 1.3±2.3 0.8±0.8 0.5±0.5 27.7±12.0 12.7±8.3 5.1±2.6 2.7±1.6
MD_ne (ours) 2.1±4.0 2.0±2.2 0.7±0.9 0.4±0.5 23.9±13.3 9.2±6.7 4.7±3.4 2.6±1.5

1500 [HHRW16] -6.9±1.5 1.8±1.4 13.8±1.3 12.3±0.9 256.7±16.0 156.8±20.8 30.3±10.8 15.7±6.7
MD_l2 (ours) 4.3±3.4 2.8±2.3 1.2±0.8 0.7±0.7 54.6±18.5 35.1±14.8 12.6±4.6 7.2±3.3
MD_ne (ours) 6.0±4.1 3.0±2.1 1.1±0.9 0.6±0.6 47.8±23.0 25.8±12.0 13.4±5.9 4.5±2.5

3000 [HHRW16] -29.4±0.9 -18.9±1.2 6.9 ±1.2 8.2±1.0 > 103 > 103 743.8±25.7 680.1±29.4
MD_l2 (ours) 4.3±5.1 3.0±2.4 2.0±1.3 1.5±0.7 193.9±54.1 97.2±23.9 39.8±12.6 22.0±6.3
MD_ne (ours) 10.4±5.2 6.1±3.0 3.0±1.1 1.6±0.6 134.5±56.4 65.4±25.1 27.9±8.4 18.1±6.0

Notes. Algorithm parameters: K = 1.1u/(γb), δ = .01, T = 104. Other settings follow Theorem 3.10. MD_l2 and MD_ne means potential
function is squared ℓ2 and negative entropy, respectively. For three cases n = 800, 1500, 3000, we set resource level γ = 0.1, 0.05, 0.02,
respectively. For all values in the table, the lower the better. Bold=better.

that optimality gaps should be understood together with constraint violations. Some observations
from the table are:

1. When ε is small (ε = 1, 2), while [HHRW16] achieves the lowest optimality gaps in most
instances, it achieves them at severe constraint violations, which might be not acceptable in
practice. In contrast, our algorithms have reasonably satisfying optimality performances and
much smaller constraint violations.

2. When ε gradually grows, our algorithms have a clear pattern of convergence, i.e., smaller
optimality gap and fewer constraint violations; but the pattern for [HHRW16] is not clear
enough. We conjecture that this is because of high-variance noises injected.

3. If constraint violation matters, MD_ne is most preferred.

Runtime Runtimes are reported in Table 8. Compared to existing methods, our algorithms do not
observe a significant increase in runtime. Moreover, as we set T = 104, we can in fact complete
training within one hour, even for the largest case with n = 3000.

Dual convergence Figure 4 shows the progress of dual variables convergence. The y-axis is the gap
between dual variables by our algorithms and the optimal dual variables, while x-axis is the training
progress. Shadow areas indicate standard deviations. It is evident that when ε is larger, dual variables
converge faster to optimal values, and stay around the optimal values in remaining iterations. When
ε is small, say ε = 1, dual variables still show a converging tendency. Moreover, dual variables by
MD_ne converge much faster, which further justifies its better performance observed earlier.

25

Table 8: Runtimes per thousand iterations, in seconds

n Algo. ε = 1 2 5 10

800 [HHRW16] 47.0 49.1 49.3 48.9
MD_l2 (ours) 49.2 50.6 48.7 50.0
MD_ne (ours) 52.9 54.5 56.0 52.4

1500 [HHRW16] 161.1 163.5 158.1 171.3
MD_l2 (ours) 236.0 242.6 242.3 228.1
MD_ne (ours) 248.1 227.3 250.8 249.9

3000 [HHRW16] 321.3 348.1 368.9 379.3
MD_l2 (ours) 345.6 312.9 333.6 321.0
MD_ne (ours) 335.7 331.8 326.4 326.7

0

2

4

6

8

10

12

||p
∗
−

p
A
|| 2

||p
∗
|| 2

×
1
00

%

n = 800 | vareps = 1.0 n = 800 | vareps = 2.0 n = 800 | vareps = 5.0 n = 800 | vareps = 10.0

0

2

4

6

8

10

12

||p
∗
−

p
A
|| 2

||p
∗
|| 2

×
1
00

%

n = 1500 | vareps = 1.0 n = 1500 | vareps = 2.0 n = 1500 | vareps = 5.0 n = 1500 | vareps = 10.0

0 20 40 60 80 100
training progress t/T× 100%

0

2

4

6

8

10

12

||p
∗
−

p
A
|| 2

||p
∗
|| 2

×
10

0%

n = 3000 | vareps = 1.0

0 20 40 60 80 100
training progress t/T× 100%

n = 3000 | vareps = 2.0

0 20 40 60 80 100
training progress t/T× 100%

n = 3000 | vareps = 5.0

0 20 40 60 80 100
training progress t/T× 100%

n = 3000 | vareps = 10.0

update_rule
md_l2
md_ne

Figure 4: (prefix averaging) dual variables converge.

26

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Theoretical results claimed in the abstract and introduction are summarized in
Table 1, wherein cross-references are provided to point to specific theorems and sections.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed limitations in Section 6 with a paragraph starting with Limitation
of our work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

27

Answer: [Yes]
Justification: For assumptions applied to most theorems in this paper, we give a summary
in Assumption 2.5. For theorems needing more assumptions (or specific parameters), we
clearly stated these assumptions.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In the main text, we disclosed dataset source, hyperparameter values used for
experiments, and algorithms. For the sake of limited space of the main text, we deferred more
implementation details to Appendix C, such as PC specs, coding language, environments,
and etc. Moreover, we also provide source code in supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in

28

some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Datasets used for experiments are publicly available. We pointed to these
data website with proper hyperlinks and references in the main text, see Section Numerical
experiments. Also, source code is released as part of supplementary material of this
submission.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In our case, experiment settings/details are mainly about algorithm hyperpa-
rameters. We clearly state them in captions of corresponding figures.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In all figures and tables, indications of statistical significance, such as standard
deviations and confidence intervals, are properly reported.

Guidelines:

29

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide computer resource information in Appendix C at the very begin-
ning. Also, runtimes are reported for each experiment in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics thoroughly.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

30

https://neurips.cc/public/EthicsGuidelines

Justification: This is a theory paper. It is hard to judge its societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Not applicable, as our work is a theory paper.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: Our work is a theory paper. And experiments do not need existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.

31

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Not applicable to our theory paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our work does not involve crowdsourcing nor human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our work does not involve crowdsourcing nor human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

32

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

33

	Introduction
	Preliminaries
	The algorithm and analysis
	Performance upper bounds
	Improvements by strong duality

	The lower bound
	Numerical experiments
	Workforce scheduling
	Assignment problem

	Discussion and conclusion
	Proofs for Section 3
	Proof of Theorem 3.2
	Proof of Lemma 3.4
	Proof of Theorem 3.5
	Proof of Theorem 3.6
	Proof of Lemma 3.8
	Proof of Lemma 3.9
	Proof of Theorem 3.10

	Proofs for Section 4
	Proof of self post-processing Lemma 4.1 for JDP
	Proof of post-processing Lemma 4.2 for JDP
	Proof of Theorem 4.3
	Discussion on lower bounds for general

	Additional results of numerical experiments
	Workforce scheduling
	Assignment Problems

