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ABSTRACT

Conventional deep learning methods for fault detection often assume that the train-
ing and the testing sets share the same fault pattern spaces and domain spaces.
However, some fault patterns are rare, and many real-world faults have not ap-
peared in the training set. As a result, it’s hard for the trained model to achieve de-
sirable performance on the testing set. In this paper, we introduce a novel domain
generalization, Load-Domain (LD) domain generalization, which is based on the
analysis of the CWRU bearing dataset and its domain division method. For this
scenario, we propose a feature shift model called FSN (Feature Shift Network). In
the bearing dataset, domains are divided based on different operating conditions
which have specific loads, so it’s equivalent to load-based domain division. More-
over, the domain label corresponds to the actual load magnitude, making it unique
as it contains physical information, which can boost detection accuracy on un-
known domain beyond the training set. According to the knowledge above, FSN
is trained for feature shift on adjacent source domains, and finally shifts target do-
main features into adjacent source domain feature space to achieve the purpose of
domain generalization. Extensive experiments on CWRU demonstrate that FSN
is better than the existed models in the LD domain generalization case. Further-
more, we have another test on MNIST, which also shows FSN can achieve the best
performance.

1 INTRODUCTION

The complexity of machinery has been increasing over the past few years, and the traditional method
of mechanical fault detecting cannot keep up with the level of automation of machinery. This paper
focuses on exploring the mechanical faults in rotating machinery, and bearing failure detection is
the primary focus of research on real-time rotating machinery detection.

Deep learning is undoubtedly the most widely used method for data-driven fault diagnosis. Deep
neural network algorithms have achieved remarkable success in a variety of fields since the theory
of Deep Learning was established(LeCun et al., 2015). Although it is typically assumed that the
training set and the testing set share the same fault pattern space while training neural networks,
this simply means that the feature data used for training contains all potential operating conditions.
Despite our greatest efforts in dataset collecting, there are still undiscovered faults in actual industrial
manufacturing. Models trained on existing operating conditions may not necessarily perform well
in diagnosing faults in different operating conditions(Li et al., 2021). Therefore, to address the issue
of real-world operating conditions that may not be included in the training set, this paper introduces
domain generalization into the fault diagnosis model and makes improvement to commonly used
adversarial domain generalization models.

Additionally, in order to achieve the goal of domain generalization, this paper introduces a special
scenario for domain generalization called Load-Domain(LD) domain generalization and proposes a
feature shift model FSN for it. In this scenario, features are shifted from the target domain into the
source domain to achieve domain generalization. In conclusion,our contributions:

• Section 2 analyses the using traditional methods at home and abroad, the machine learn-
ing method, deep learning approach, and generalization method for fault diagnosis in the
domain of the research status.
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• Section 3 and 4 introduces a special domain generalization scenario called Load-Domain
domain generalization, also known as LD domain generalization, and proposes a feature
shift model (FSN) for this scenario.

• Section 5, experiments are conducted on the CWRU bearing dataset and compared with the
classical fault diagnosis methods and domain generalization methods. The results demon-
strate the superiority of the suggested method by analysing the benefits and drawbacks of
the proposed FSN and the conventional methods. Additionally, experiments are performed
on the MNIST dataset to evaluate several domain generalization methods. The compari-
son shows that FSN, which is the solution suggested in this paper, performs the best in the
specific scenarios.

2 RELATED WORK

In genuine industrial production, fault diagnosis is a very real challenge. After more than 60 years
of development, there are many mature methods for mechanical fault diagnosis thanks to the estab-
lishment of numerous international research facilities in the 1960s and afterward.

Domain generalization has become one of the current research hotspots in the field of deep learning
in order to enhance the generalization capability of fault diagnosis models on datasets with unknown
working conditions.

Traditional methods such as Cui et al. (2021) used the Seagull optimization algorithm (SOA) to de-
termine the system parameters, input the signal into their proposed first-order multistable stochastic
resonance system (CMSR), and then used Fourier transform on the output and obtained the fault
diagnosis results. Video methods mainly include wavelet transform (Zhao et al., 2018; Peng & Chu,
2004), short-time Fourier transform (Wang et al., 2013; Karlsson et al., 2000) and other methods.
Based on the Case Western Reserve bearing data set with Gaussian noise, Chen et al. (2022) orga-
nized its data points into grayscale images, and then used wavelet transform to process and input
them into the neural network with Row Average Pooling (ARP) to obtain classification information,
and achieved good anti-noise effect.

Traditional fault diagnosis methods require not only manual feature extraction, but also specific pro-
fessional knowledge, so the methods are not adaptable and robust. Machine learning algorithms can
automatically generate method models through iteration based on selected features, which greatly
reduces labor costs . For example, Support Vector Machine (SVM) is a supervised learning method
(Cortes & Vapnik, 1995). In classification, the dimension of the classification vector does not affect
the performance of the model classification, which makes support vector machine better general-
ization in the domain of fault diagnosis, so SVM is one of the important tools for fault diagnosis.
Fernández-Francos et al. (2013) input the vibration fault features extracted by the envelope spec-
trum into the support vector machine to classify the health data and fault data, and then perform
fault diagnosis on the fault data to determine the fault mode. Aishwarya & Brisilla (2023) used var-
ious machine learning techniques (like SVM, K-nearest neighbors (k-NN),ML perceptron (MLP),
Random Forest (RF), Decision Tree (DT), etc.) to implement a fault detection strategy in the de-
signed induction motors under variable load conditions.Dutta et al. (2023)presents a case study of
a machinelearning (ML)-based computational technique for automatic fault detection in acascade
pumping system based on variable frequency drive. These studies have improved the correct rate of
fault diagnosis.

Although traditional machine learning methods can be trained automatically, features still need to
be manually extracted, which may have the problem of incomplete feature selection and slow speed.
Deep learning has completely solved this shortcoming, and has become the most popular and best
tool in the domain of fault diagnosis. The first paper using convolutional neural networks(CNN)
to detect bearing faults was published in 2016(Janssens et al., 2016), and since then, papers using
CNN for bearing fault diagnosis have continued to appear. Guo et al. (2017); Chen et al. (2018);
Qian et al. (2018) have done a lot of work in the domain of fault diagnosis, which provides new
ideas for using CNN for fault diagnosis.

Recurrent neural Network (RNN) is suitable for processing sequence data, so it can be used for
fault diagnosis. In 2015, Abed et al. (2015) applied recurrent neural networks to fault diagnosis. In
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their paper, firstly, discrete wavelet transform was used to extract features, then the features were
analyzed and selected, and finally RNN was used for classification.

Based on the idea of Adversarial, Xie & Zhang (2018) proposed a fault diagnosis method based
on confrontation. In the model, an adversarial network was used to balance unbalanced signals.
Experiments show that the classification performance of this method is better than other data balance
methods in the case of imbalanced data sets.

Domain generalization belongs to transfer learning, which is a data-based method that mainly maps
data belonging to different domains using a specific method, calculates the difference in distribu-
tion between data in different domains after mapping, and reduces the difference between domains
after mapping by training the mapping method, so as to find a mapping method that minimizes the
difference in the distribution of different domains to achieve domain generalization.

The domain generalization problem was first introduced as a machine learning problem by Blan-
chard et al. (2011) to solve cell classification problems in medicine, and has since been applied
to transfer models between multiple domains. Muandet et al. (2013) used a complex nonlinear
neural network to minimize the variance between the source and target domain features , and Li
et al. (2018) made the source and target domain feature distributions more similar by minimizing
the MMD distance between the source and target domain feature distributions and using adversar-
ial learning. Without using distance methods, Motiian S achieved the domain generalization task
using minimized contrastive loss (Motiian et al., 2017). In autopilot scenarios, the model does not
change accordingly to real-world domain changes, which hinders the generalization of object detec-
tion across different real-world domains, and normalization perturbations are proposed to cope with
classification domain generalizationFan et al. (2022). Bai et al. (2022) proposed a Temporal Do-
main Generalization with Drift-Aware Dynamic Neural Network to learn models under temporally
changing data distributions and generalize to unseen data distributions following the trends of the
change.

3 PROBLEM DEFINITION AND DESCRIPTION

We start by introducing some of the symbols used to describe problems. The input space should be
X, and the label space should be Y. Then a domain can be introduced as a joint distribution PXY

in X × Y . For a specific domain PXY , PX presents marginal distribution in X , PY |X denotes the
posterior distribution of Y given X , and PX|Y denotes the class-conditional distribution of X given
Y .

In the scenario described in this section, we can obtain K similar but different source domains S,
where each source domain S corresponds to a joint distribution P

(k)
XY . S ought to be the source

domain space, i.e., S =
{
Sk =

{(
x(k), y(k)

)}}K

k=1
.It should be noted that for k ̸= k

′
and k, k

′ ∈

{0, . . . ,K} in the source domain, we have P
(k)
XY ̸= P

(
k
′)

XY . For the scenario described in this
section, the goal is to get a predictive model f : X → Y on the source domain data, and to
achieve the minimum prediction error on the unknown target domain data T =

{
xT

}
. The joint

distribution corresponding to the target domain is denoted as PT
XY , and similarly, PT

XY ̸= P
(k)
XY ,

∀k ∈ {0, . . . ,K}.

The most important difference between the fault diagnosis scenario described in this paper and the
common domain generalization situation is that for ∀k ∈ {0, . . . ,K}, the domain number 1·· · · k has
physical meaning. In the example shown in Figure 1, the domain transfer dataset used in Figure 1(a)
is a collection of images in different styles, the domain labels contain no information only a tag.
But for the CWRU bearing dataset shown in Figure 1(b), the domain labels in the bearing dataset
represent the rotor load of the bearing during operation. Therefore, we can obtain some additional
information from the domain number of the source domain data and the target domain data, and use
it in the domain generalization. As a result, we introduces a new domain generalization scenario
called Load-Domain(LD) domain generalization, to describe this special scenario.
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Figure 1: Domain label with or without physical information. (a)For these four styles. The domain
labels contain no information except that they can be used to distinguish between different domains.
(b)For these four styles. The domain labels contain no information except that they can be used to
distinguish between different domains.

4 FEATURE SHIFT NETWORKS

In last section, a special domain generalization scenario is introduced, and in this section, a feature
shift model based on the inter-domain relationship will be proposed for this scenario. When the
model is trained in the source domain, it can also achieve good fault diagnosis performance on
unknown domains that have a specific relationship with the source domain. We call this model
feature shift networks(FSN);

4.1 THEORETICAL ANALYSES

The design of FSN is based on two ideas, namely domain alignment idea and domain distribution
regularity idea.

Domain Alignment Conjecture. The solution proposed in this section is based on the idea of
domain alignment. For a domain, it can be modeled as a joint distribution P (X,Y ) (for ease
of exposition in this section, we consider P (X,Y ) as PXY ). Then we can decompose this joint
distribution as

P (X,Y ) = P (Y |X)P (X) (1)
= P (X|Y )P (Y ) (2)

A common assumption in domain generalization is that shifts in the data distribution occur only at
the edges P (X), with the posterior P (Y |X) remaining relatively stable. From the perspective of
deep learning, if the marginal distributions of two domains can be aligned, then a predictive model
trained on one domain can perform effectively as well on the other domain. In this case, the two
domains can be viewed as having the same distribution. From the perspective of causal learning,
if the assumption in the previous paragraph holds, then aligning the marginal distribution P (X) is
only valid when X is the cause of Y, because in this case, P (Y |X) is not coupled with P (X),
and therefore P (Y |X) can always remain stable when P (X) changes. Of course, there is also a
possibility that Y may be the cause of X , in which case the shift of P (X) will also affect P (Y |X).

One of the theoretical bases of the solution proposed in this section is based on the above assumption,
that is, X is the cause of Y , P (Y |X) is not coupled with P (X), and therefore the data distribution
shift only occurs on the marginP (X). In this case, as long as the margin P (X) is aligned, the
model can be transferred from one distribution to another.

Distribution Law Conjecture. Besides the posterior stability idea mentioned above, the model
proposed in this section is also based on another idea: When the domain labels correspond to phys-
ical meanings in reality, if there are two pairs of domain labels with identical internal relationships,
then the internal domain feature distributions of the two pairs of domain data corresponding to these
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two pairs of domain labels are also identical. More precisely, if we denote the K domain labels
as D1, D2, · · · , DK , which correspond to domains P (1) , P (2) , . . . , P (K), if there exists a rela-
tionship mapping Fd, such that Fd (Dk′) = Dk, and Fd (Dk′′) = Dk′ , k, k′ ∈ {0, . . . ,K}, then
there exists a relationship Fp, when the relationship mapping between the domain features f

(
P (k)

)
,

f
(
P (k′)

)
is Fp, that is, Fp

(
f
(
P (k′)

))
= f

(
P (k)

)
, then Fp

(
f
(
P (k′′)

))
= f

(
P (k′)

)
.
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Figure 2: Visualizations of mapping relations and design idea of FSN. (a) shows Fp and Fd how to
map labels(features) to another. (b) clarifies domain labels that have a physical meaning and have
simple relationships may have simple relationships between their domain feature distributions.(c) is
the design idea of FSN.

As shown in Figure 2(a), within the domain labels, there is a mapping relationship Fd that can
map one label to another label, and then there is a mapping relation Fp exist between the labels
corresponding to these relationships, which can map the distribution of domain features to another
domain features.

To illustrate the above more clearly in a diagram, let’s take a simple example. For the source domain
labels 0,1,2 of the CWRU dataset, it follows a linear distribution on the number line. We assume
that the distribution of the domain features corresponding to the current domain labels is a kind
of ”linear” distribution in a certain dimension space. Figure 2(b) shows that these domain feature
spaces visually appear to have a ”linear” relationship. Because the source domain in the domain of
tag actually corresponds to the bearing load in the running process, and is directly corresponding
to the load size code size (not random number), so if domain label there is a relatively simple
relations hip between (used in this dataset is linear relationship), so we have reason to believe that,
the relationship between the feature Spaces of multiple domains corresponding to its labels can
also be obtained by some means. If the mapping between these domains can be obtained, the data
in the feature space of one domain can be completely mapped to the feature space of the other
domain. Even if the mapping does not fit the real mapping well, as long as it can fit the mapping
between the existing domain feature Spaces reasonably well, it is considered to be better than domain
generalization without any additional information to guide it.

4.2 TRANSFER METHODS BETWEEN DIFFERENT DISTRIBUTIONS

One of the most popular approaches is Domain Alignment, which aligns the feature distributions
across the source domains in order to better apply predictive models trained on the source domain to
the unknown target domain. The reasoning behind this approach is as follows: if a feature learned on
the source domain is insensitive to distributional offsets between the source domains, then for that
feature, its is also relatively robust to distributional offsets on the unseen target domain. Currently,
most of the methods related to domain generalization are developed based on the idea of domain
alignment, and such methods are generally based on aligning the edge distribution P (X), aligning
the class-conditional distribution P (X|Y ), or aligning the posterior distribution P (Y |X).

A general approach, in the scenarios discussed in this section, leads to a waste of information.
Therefore, new domain generalization methods and processes are needed to retain and learn these
regularities when we have seen the actual regularities between domains.

New Approach In the scenario discussed in this section, each source domain and target domain label
correspond to an actual working condition of the bearing, and its numbers 0, 1, 2. . . correspond to
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the actual physical meaning. Thus, an increase in the numbering of domain labels numbered 0,
1, and 2 represents an increase in their corresponding bearing loads, and with a linear relationship
between the numbers, it is natural to expect that the feature spaces of their corresponding domains
also have some relationship with each other. Extending this to unseen domains, if the target domain
numbers also have actual physical meaning accordingly, then the target domain feature space should
also have some kind of relationship with certain source domain feature spaces. The fact that the
domain numbering adds physical meaning and that the target domain domain numbering is known is
the biggest difference between the scenarios in this chapter and the domain generalization problem.
Therefore, the traditional method of domain generalization through domain feature space alignment
does not make any use of this added information, resulting in a waste of information. In order
to make full use of the regular information between domains, this chapter proposes a new feature
transformation model FSN, which is optimized for this special domain generalization scenario with
additional information, and improves the practical effect of domain generalization.

4.3 DESIGN OF FSN
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Figure 3: FSN generalization of the results

Design Idea FSN based on the assumption that
features from different domains can be con-
verted to each other as long as a pattern can
be found. The design thought of its sources as
shown in Figure 2(c).Since all tags in the la-
bel space of the source domain correspond to
the actual working condition, and the load size
in the working condition is the domain num-
ber, the number is practically meaningful in this
scenario. There is a very simple mapping rela-
tionship between the numbers, showing a linear
0,1,2,3, which is evenly distributed on the num-
ber line shown on the right of the Figure 2(c).
The domain numbers 0,1, and 2 are the source
domain numbers, which correspond to the data
generated by the bearing under 0HP load, the data generated under 1HP load, and the data generated
under 2HP load. These data belong to three domains, which together constitute all the source domain
data. The domain number 3 is the data number of the target domain, which corresponds to the data
generated by the bearing under 3HP load. These domain numbers correspond to the domain feature
space on the left side of the figure. These domain feature Spaces are arranged in a row according to
the domain label order, indicating that there is a certain pattern between these feature spaces.

Network Structure FSN consists of a feature extractor, a feature shift network, a relation classifier,
and a label classifier. Both the feature extractor and the feature shift network are implemented by
ResNet. The feature shift network receives the output feature of a feature extractor as input, outputs
a feature of the same form, and expects this feature to be mapped to features in adjacent domains.
The relation classifier is implemented in the same way as in Section 3 and is used for classification.

FSN structure is shown in Figure 3. During training, the input data are organized into the form of
1-9, i.e., 1 data of source domain a+1 and 9 data of source domain a, where these 9 data are derived
from the 0 n classifications in domain a, and n denotes the number of classifications in the task. In
the actual training, domain a may be domain 0, 1, and the corresponding domain a+1 is domain 1,
2. The data of domain a is changed into features after ResNet, and the extracted features of the data
of domain a+1 have to go through a feature transformation network to get the transformed output,
and it is expected that this output can be aligned with the features of the data with the same labels
in domain a through the relation module, and the output is the relation of 1 Score. Eventually,
the target domain 3 is taken as domain a+1, and the target domain 2 is domain a. At this point,
the data in domain 3 is subjected to feature extraction as well as feature transformation, and the
relationship scores are calculated with the features of each category in domain 2, and it is expected
that the category with the highest relationship scores will be the real category of the data in the target
domain.
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5 EXPERIMENT

We conducted experiments for FSN on the CWRU dataset and the rotated MNIST dataset in LD
domain generalization.

5.1 EVALUATION IN CWRU

Setup Datasets are used in this paper from western reserve university (CWRU) dataset of bear-
ing, commonly referred to as CWRU bearing dataset. The dataset is an open-source dataset, made
and released at case western reserve university, has been widely applied in the fault diagnosis and
analysis.For more information refer to appendix A.

Classical Model Contrast In order to prove the effectiveness of FSN proposed in this section, FSN
is compared with a variety of classical domain generalization methods.

The empirical risk minimization-based method (ERM) is first used for comparison. Although many
methods have been proposed for domain generalization, which are intuitively reasonable and tech-
nically feasible, most of them can only achieve a small performance improvement (Zhu et al., 2022;
Gulrajani & Lopez-Paz, 2020; Koh et al., 2021).So in this thesis, the ERM method as one of the
methods compared with FSN .

In addition, DANN, which is adjusted for domain generalization, is also used as a comparison
method. The domain adversarial neural network was actually proposed to solve the domain adap-
tation problem, and it was quickly applied to the domain generalization task similar to domain
adaptation. Adaptive method is adjusted at the same time, a lot of areas, can also be used in do-
main generalization(Sicilia et al., 2023). This thesis DANN domain adaptive network adjustment,
will source areas of these two classification networks adjustment for the source domain classifica-
tion, generalization tasks make it can be used for domain, used in contrast experiment. The DANN
adjusted for domain generalization will be directly denoted by DANN in the following.

On the basis of the above, in order to prove that FSN takes advantage of the features that domain
labels have actual physical meaning, both single-source method and multi-source method experi-
ments are carried out on the networks used in the experiment. Due to their high FSN need to train
a can features to the nearest low domain shift in the domain of network, thus, FSN does not ex-
ist monophyletic method, it need at least two adjacent areas of tags. Again due to the need to put
when generalization features into the adjacent areas of space, so FSN must use when double source
domain experimental areas 1 and 2. For comparison, a l the models are trained on domain 1 and
domain 2, and then the generalization test is performed on domain 3. In the multi-source domain
experiment, all source domains 0-2 are used during training, and the domain generalization test is
performed on the target domain 3. In addition, the relation classifier proposed in Section 3 is used
to enhance the generalization ability during training.

Table 1: Performance of the multi-source domain
approaches

No. Model Generalization accuracy
FC Relation

0 Double ERM 75 71.4
1 Double DANN 76.3 78
2 Double FSN 75.2 72
3 Multi ERM 82.5 82.1
4 Multi DANN 83.3 82.6
5 Multi FSN 83 84.1

Table 1 shows several ways of using multiple
source domain in the domain of 3 generaliza-
tion of results. Among them, the ERM said
empirical risk minimization method, namely
model training in the source domain, direct
test on the target domain. As can be seen
from the table, the multi-source domain model
generalizes significantly better than the dual-
source domain model. In the experiment of
dual-source domain, FSN performs poorly, be-
cause the feature shift network is only trained
on source domain 2�1, and the lack of domain
makes the feature shift network unable to learn
a good feature shift. In the multi-source domain
experiment, FSN achieves the best generalization performance. Explain FSN is very good use of
the target domain number to carry in the domain of information, found the relationship between the
features of adjacent areas.
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In Table 1 at the same time shows each model use FC classifier’s generalization effect and the
relationship between generalization effect of classifier. We can see that the multi-source method is
significantly better than the dual-source method, and FSN has the largest performance improvement
when moving from dual-source to multi-source domains.

Visual Analysis Figure 4 shows that FSN is still 100% can be obtained in most of the failure mode
of classification performance. For B021 and IR014 faults(more information rafer to Table A.1), the
error of FSN is very serious, and only half of them is correctly classified. Among them, 27.02% of
IR014 faults are identified as B021 faults, and 18.91% are identified as IR021 faults. For B021 fault,
40.54% of the data were identified as IR014 fault.

Figure 5(a) shows the t-SNE method to visualize the data. The failure mode names are represented
by the corresponding numbers in Table A.1. When the test set data is in the original grayscale
image state, many data of the same type are connected with each other, and have initially shown
the features of locality. For example, most data of the same type are roughly connected together,
and some data, such as fault No. 1 and fault No. 8, have been centrally distributed. Still mixed,
however, other types of fault data, such as fault 3 scattered on the upper portion of the figure, fault
2 as a half ring scattered around the fault 1;fault 7,fault 0 are almost evenly mixed distribution. In
the subsequent experiments, fault 1 and fault 8 show 100% classification accuracy when the model
generalizes to the test set, which not only indicates that fault and fault 8 are easy to classify, but also
indirectly proves the effectiveness of t-SNE plot in observing data distribution.
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Figure 4: FSN generalization of the
results

In addition, Figure 5(a) also shows that the clusters of fault
classes 4 and 8 are close to each other, indicating that fault
classes 4 and 8 May be difficult to separate in the classifica-
tion. This is confirmed in the confusion matrix, where 20%
of fault 4 is classified as fault 8. Nearly 25% of the classified
results for fault 8 were incorrectly classified as fault 4, which
was the only way to confuse fault 8.

The features output by the feature extractor of FSN are repre-
sented in Figure 5(b), and the feature output of the features
in the figure after the feature shift network is shown in Fig-
ure 5(c). As you can see, to convert the area in front of the
features and domain features after the shift, the intensity is
roughly the same. However, in the experiment, use the con-
verted classify the features of the test, the result is better than
before the conversion feature. This indicates that the trans-
formed feature space is closer to the source domain feature
space.

Generally speaking, the features of the unseen target domain obtained by the trained FSN are more
concentrated before and after the shift, which theoretically also shows that FSN method can have a
good baseline domain generalization performance.

(a) t-SNE distribution of grayscale
features

(b) Model generalization results
before shift

(c) Model generalization results
after using adversarial

Figure 5: t-SNE method to visualize the data. (a) shows distribution of grayscale features. (b)and(c)
use t-SNE to show features performance model 5 before and after features shift.
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5.2 DISCUSS ON OTHER DATASETS

We design and develop FSN for LD domain generalization, a novel domain generalization task.
Compared with the ordinary domain generalization task, LD domain generalization has two special
features: one is that its label number corresponds to some physical meaning, and the other is that the
domain number of the target domain is known. We find that in addition to the CWRU bearing dataset
used in this paper, there are some other datasets that also satisfy this characteristic. Therefore, we
add a generalization experiment on the MNIST dataset for FSN to show its excellent performance
in this specific scenario.

Setup In the domain generalization experiment conducted on the MNIST dataset, three domains
in the training set 0-2 are used as the source domain, and the corresponding rotation angles are
0 degrees, 30 degrees, and 60 degrees. Wi l test 3 concentration domain as target domain, the
corresponding rotation Angle of 90 degrees. The training process of the model was the same as the
experimental process in 5.3.1. FSN was trained on the source domain, and then the model was used
on the target domain to test the generalization effect.

Table 2: Generalization effect of each model on MNIST dataset
Models KDA UB DICA SCA MATE ERM DANN DeepC DeepN CIDDG FSN

Acc 72.81 69.39 72.05 73.43 78.34 79.56 82.95 80.08 83.99 84 85.22

Comparison with Classical Models Table 2 shows FSN and the comparison of several other model.
KDA, UB, DICA, SCA, MATE, ERM, DANN, DeepC, DeepN, CIDDG generalization accuracy of
the model comes from Li et al. (2018) in the experiment, the experiment used the same as the
experiment in this section in the process of the MNIST dataset, the standard of the same domain as
we l as the same source domain and target domain, Therefore, the comparison can be made directly.
The results show that our proposed FSN (which uses FC classifier for inference) achieves 1.5%
higher generalization effect than CIDDG model in this scenario, which proves the effectiveness of
FSN in the LD domain generalization task.

6 CONCLUSION

This study proposes LD domain generalization as a specific example of domain generalization, fully
uses the particularity of the bearing dataset used for fault diagnosis, and implements FSN in this
scenario. The domains in LD domain generalization correspond to the actual physical meaning.
FSN learns the relationship between these domains, and finally shifts the data features in the target
domain into the source domain for classification. Experiments reveal that FSN outperformed the
comparison model’s generalization performance by 1% to 2% on the CWRU dataset and reached
85.22% accuracy on the MNIST dataset.

However, the application of FSN is more restrictive. How to eliminate one or more of these limita-
tions is also the goal of future research.

• Firstly, The model is only tested on the CWRU bearing dataset and the MNIST dataset. If
the more dataset were tested, the more efficiency of model can be illustrated.

• Secondly, the proposed FSN requires at least three source domains, and the domain number
is required to correspond to the actual physical information. In order to make other datasets
meet this requirement, the datasets need to be selected carefully, and the appropriate domain
partition method should be selected.

• Last, under the premise that the domain number corresponds to the actual physical infor-
mation, the source domain numbering needs to be consecutive during the training process
and can only be generalized relatively well from the target domain to the adjacent source
domains. If the target and source domain numbers are not adjacent, then according to the
idea on which the operation of this network is based, a better generalization cannot be
achieved.

Therefore, the application of FSN model still is restrictive. How to eliminate one or more of these
limitations is also the goal of future research.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Wathiq Abed, Sanjay Sharma, Robert Sutton, and Amit Motwani. A robust bearing fault detec-
tion and diagnosis technique for brushless dc motors under non-stationary operating conditions.
Journal of Control, Automation and Electrical Systems, 26:241–254, 2015.

M Aishwarya and RM Brisilla. Design and fault diagnosis of induction motor using ml-based
algorithms for ev application. IEEE Access, 11:34186–34197, 2023.

Guangji Bai, Chen Ling, and Liang Zhao. Temporal domain generalization with drift-aware dynamic
neural networks. In The Eleventh International Conference on Learning Representations, 2022.

Gilles Blanchard, Gyemin Lee, and Clayton Scott. Generalizing from several related classification
tasks to a new unlabeled sample. Advances in neural information processing systems, 24, 2011.

Heng Chen, Lei Shi, Shikun Zhou, Yingying Yue, and Ninggang An. A multi-source consistency
domain adaptation neural network mcdann for fault diagnosis. Applied Sciences, 12(19):10113,
2022.

Yuanhang Chen, Gaoliang Peng, Chaohao Xie, Wei Zhang, Chuanhao Li, and Shaohui Liu. Acdin:
Bridging the gap between artificial and real bearing damages for bearing fault diagnosis. Neuro-
computing, 294:61–71, 2018.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning, 20:273–297,
1995.

Hongjiang Cui, Ying Guan, Huayue Chen, and Wu Deng. A novel advancing signal processing
method based on coupled multi-stable stochastic resonance for fault detection. Applied Sciences,
11(12):5385, 2021.

Nabanita Dutta, Palanisamy Kaliannan, and Paramasivam Shanmugam. Svm algorithm for vibration
fault diagnosis in centrifugal pump. Intelligent Automation & Soft Computing, 35(3), 2023.

Qi Fan, Mattia Segu, Yu-Wing Tai, Fisher Yu, Chi-Keung Tang, Bernt Schiele, and Dengxin Dai. To-
wards robust object detection invariant to real-world domain shifts. In The Eleventh International
Conference on Learning Representations, 2022.

Diego Fernández-Francos, David Martı́nez-Rego, Oscar Fontenla-Romero, and Amparo Alonso-
Betanzos. Automatic bearing fault diagnosis based on one-class ν-svm. Computers & Industrial
Engineering, 64(1):357–365, 2013.

Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization. arXiv preprint
arXiv:2007.01434, 2020.

Liang Guo, Yaguo Lei, Naipeng Li, and Saibo Xing. Deep convolution feature learning for health
indicator construction of bearings. In 2017 prognostics and system health management conference
(phm-harbin), pp. 1–6. IEEE, 2017.

Olivier Janssens, Viktor Slavkovikj, Bram Vervisch, Kurt Stockman, Mia Loccufier, Steven Ver-
stockt, Rik Van de Walle, and Sofie Van Hoecke. Convolutional neural network based fault de-
tection for rotating machinery. Journal of Sound and Vibration, 377:331–345, 2016.

Stefan Karlsson, Jun Yu, and Metin Akay. Time-frequency analysis of myoelectric signals during
dynamic contractions: a comparative study. IEEE transactions on Biomedical Engineering, 47
(2):228–238, 2000.

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Bal-
subramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, et al. Wilds: A
benchmark of in-the-wild distribution shifts. In International Conference on Machine Learning,
pp. 5637–5664. PMLR, 2021.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,
2015.

10



Under review as a conference paper at ICLR 2024

Haoliang Li, Sinno Jialin Pan, Shiqi Wang, and Alex C Kot. Domain generalization with adver-
sarial feature learning. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 5400–5409, 2018.

Xudong Li, Yang Hu, Jianhua Zheng, Mingtao Li, and Wenzhen Ma. Central moment discrepancy
based domain adaptation for intelligent bearing fault diagnosis. Neurocomputing, 429:12–24,
2021.

Saeid Motiian, Marco Piccirilli, Donald A Adjeroh, and Gianfranco Doretto. Unified deep super-
vised domain adaptation and generalization. In Proceedings of the IEEE international conference
on computer vision, pp. 5715–5725, 2017.

Krikamol Muandet, David Balduzzi, and Bernhard Schölkopf. Domain generalization via invariant
feature representation. In International conference on machine learning, pp. 10–18. PMLR, 2013.

Zhi Ke Peng and FL Chu. Application of the wavelet transform in machine condition monitoring
and fault diagnostics: a review with bibliography. Mechanical systems and signal processing, 18
(2):199–221, 2004.

Weiwei Qian, Shunming Li, Jinrui Wang, Zenghui An, and Xingxing Jiang. An intelligent fault di-
agnosis framework for raw vibration signals: adaptive overlapping convolutional neural network.
Measurement Science and Technology, 29(9):095009, 2018.

Anthony Sicilia, Xingchen Zhao, and Seong Jae Hwang. Domain adversarial neural networks for
domain generalization: When it works and how to improve. Machine Learning, pp. 1–37, 2023.

Dong Wang, W Tse Peter, and Kwok Leung Tsui. An enhanced kurtogram method for fault diagnosis
of rolling element bearings. Mechanical Systems and Signal Processing, 35(1-2):176–199, 2013.

Yuan Xie and Tao Zhang. Imbalanced learning for fault diagnosis problem of rotating machinery
based on generative adversarial networks. In 2018 37th Chinese Control Conference (CCC), pp.
6017–6022. IEEE, 2018.

Minghang Zhao, Myeongsu Kang, Baoping Tang, and Michael Pecht. Multiple wavelet coefficients
fusion in deep residual networks for fault diagnosis. IEEE Transactions on Industrial Electronics,
66(6):4696–4706, 2018.

Wei Zhu, Le Lu, Jing Xiao, Mei Han, Jiebo Luo, and Adam P Harrison. Localized adversarial
domain generalization. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 7108–7118, 2022.

A CWRU DATASET

Datasets are used in this paper from case western reserve university (CWRU) dataset of bearing,
commonly referred to as CWRU bearing dataset. The dataset is an open-source dataset, made and
released at case western reserve university, has been widely applied in the fault diagnosis and analy-
sis. In order to facilitate the experiment, this paper takes the load as a field (0 3HP in total 4 fields).
Under each load, three fault sizes are selected for the three fault locations: sphere, inner race, and
6 o ’clock of outer race. Therefore, there are 9 fault modes under each load. The data acquisition
frequency of 12,000 Hz was chosen because some data was missing.
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(a) B007 0 (b) B014 0 (c) B021 0 (d) IR007 0 (e) IR014 0

(f) IR021 0 (g) OR007 0 (h) OR014 0 (i) OR021 0

Figure A.1: The wavelet time-frequency diagram of 10 fault modes under working condition 0.

Table A.1: CWRU bearing dataset

Fault number Fault location Fault size Lodd horsepower(HP)
0 1 2 3

0
Ball

0.007 B007 0 B007 1 B007 2 B007 3
1 0.014 B014 0 B014 1 B014 2 B014 3
2 0.021 B021 0 B021 1 B021 2 B021 3
3

Inner race
0.007 IR007 0 IR007 1 IR007 2 IR007 3

4 0.014 IR014 0 IR014 1 IR014 2 IR014 3
5 0.021 IR021 0 IR021 1 IR021 2 IR021 3
6

6 o’clock of outer race
0.007 IR007 0 IR007 1 IR007 2 IR007 3

7 0.014 IR014 0 IR014 1 IR014 2 IR014 3
8 0.021 IR021 0 IR021 1 IR021 2 IR021 3

Each load (field) below has 9 kinds of failure mode, by different fault location and size. When num-
bering each load condition, for each load number, the value directly corresponds to the horsepower
value of the load (0 to 3), and for the fault mode number, the details are given in Table A.1.

For bearing signal processing, normalized firstly, then the size of 784, sliding step length is 200
overlap sampling window., and will be one dimensional signal is converted to gray image. In this
case, there are about 600 grayscale images of 28*28 size in each fault mode of each domain. Taking
the fault image under domain 0 data generated by condition 0 as an example, the corresponding
grayscale images for each fault mode are shown in Figure A.1.

(a) B007 0 (b) B014 0 (c) B021 0 (d) IR007 0

Figure A.2: Cases 0 of 10 kinds of failure mode of the wavelet time-frequency diagrams.
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It can be seen that the grayscale images of different fault modes under the same working condition
are quite different. Taking the first fault mode B007 0 under four working conditions as an example,
the grayscale diagram is shown in Figure A.2.

It can be seen that even the grayscale images of the same fault mode have different features if their
working conditions are different.

B TRAINING DETAILS

In the FSN experiment, taking bearing load as the domain, the model is trained in multiple source
domains to classify nine fault modes, and then the model is applied to the target domain data for
generalization test. The number of samples is still about 600 samples for each fault mode, and each
domain contains data for 9 fault modes.

The data with load of 0-2HP is taken as the three source domains with field number 0-2, and the data
with load of 3HP corresponding to field number 3 is taken as the target domain, that is, the test set.
The Epoch was set to 20, and 1200 iterations were carried out in each Epoch. After 50 iterations,
model will be tested on the test set, to obtain the real-time effect of generalization. In order to reduce
the randomness of the final results, a list is used to store the accuracy of the last 30 tests, and the
average of the last 30 tests is given.

Before experiment, first describe the training process feature shift model. The FSN model is trained
in stages to achieve better performance, and the training process of each stage is shown in Algorithms
1 2 3.

Algorithm 1 Trains the feature extractor and the relation classifier
Input: x0, x1, . . . , x9 //x1, . . . , x9 are grayscale image with labels 0-8 from the source domain
Output: θf , θr // are the parameters of feature extractor and relation module respectively

1: x0, x1, . . . , x9 = get()
2: feature0 = Gf (x0)
3: for i = 1 → 9 do
4: featurei = Gf (xi)
5: featurei,0 = concatenate(featurei, feature0)
6: relation score = Gr (featurei,0) //Grrepresents relation module
7: if label (x0)! = label (xi) then
8: loss+ = loss func(relation score, 0)
9: else

10: loss+ = loss func(relation score, 1)
11: end if
12: end for

Algorithm 1 is the first stage in the three stages of FSN training, which uses the method of relation
classifier for classification training to obtain the parameters of feature extractor and relation module.

Algorithms 2, the second stage of FSN training, add a fully connected classifier to the model and
train it while updating the parameters of all components.

Algorithm refalg3 is the third stage of FSN training, which mainly trains the feature transformation
network. It should be noted that in Algorithm 3, x1, . . . , x9not only correspond to labels 0 8,
but also their domain numbers are always 1 smaller than x0. By this setting, we can promote the
alignment of features from high domains with features from low domains with the same label during
training.

In general, FSN hopes to achieve better results through the above staged training process. In the
training process, the network parameters trained in the previous stages will be used as the input
for the subsequent stages, indicating that the network used in the subsequent stages is trained by

the previous stages. By learning the transformation of domain features1
shift→ 0 and 2

shift→ 1
on the source domain, we expect to learn a feature transformation network that can achieve the

transformation of target domain 3 features to source domain 2 features 3
shift→ 2, thereby achieving

the purpose of generalization.
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Algorithm 2 Train fully connected classifier
Input: x0, x1, . . . , x9, θf , θr
Output: θf , θr, θc //θcis the parameters of the fully connected classifier

1: x0, x1, . . . , x9 = get()
2: feature0 = Gf (x0)
3: loss+ = loss func(Gc (feature0) , label (x0))
4: for i = 1 → 9 do
5: featurei = Gf (xi)
6: featurei,0 = concatenate(featurei, feature0)
7: relation score = Gr (featurei,0)
8: if label (x0)! = label (xi) then
9: loss+ = loss func(relation score, 0)

10: else
11: loss+ = loss func(relation score, 1)
12: end if
13: end for

Algorithm 3 Train fully connected classifier
Input: x0, x1, . . . , x9, θf , θr, θc
Output: θf , θr, θc, θs //θsis the parameter of FSN

1: x0, x1, . . . , x9 = get different domain() //x0from domain n, x1, . . . , x9 doman n-1
2: feature0 = Gf (x0)
3: featureshift = Gs (feature0) //Gsis FSN
4: for i = 1 → 9 do
5: featurei = Gf (xi)
6: featurei,shift = concatenate(featurei, featureshift)
7: relation score = Gr (featurei,shift)
8: if label (x0)! = label (xi) then
9: loss+ = loss func(relation score, 0)

10: else
11: loss+ = loss func(relation score, 1)
12: end if
13: end for
14: loss+ = loss func(Gc (featurei,shift) , label (x0))
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