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Abstract

Forecasting irregular time series presents significant challenges due to two key
issues: the vulnerability of models to mean regression, driven by the noisy and
complex nature of the data, and the limitations of traditional error-based evaluation
metrics, which fail to capture meaningful patterns and penalize unrealistic forecasts.
These problems result in forecasts which are often misaligned with human intuition.
To tackle these challenges, we propose an adversarial learning framework with a
deep analysis of adversarial components. Specifically, we emphasize the importance
of balancing the modeling of global distribution (overall patterns) and transition
dynamics (localized temporal changes) to better capture the nuances of irregular
time series. Overall, this research provides practical insights for improving models
and evaluation metrics, and pioneers the application of adversarial learning in the
domain of irregular time-series forecasting.

1 Introduction

Irregular time series, characterized by significant variations in inter-arrival times and quantities,
pose unique challenges in analysis and forecasting. Unlike stationary and regular time series, which
have seen substantial advancements in both methodologies and applications [1], the exploration
of irregular time series remains limited due to their inherent low interpretability. Forecasting such
data is particularly challenging for two primary reasons—one stemming from the inadequacies of
evaluation metrics and the other from the limitations of models, with both factors compounding
each other. The first challenge lies in the widespread reliance on error-based metrics in forecasting,
such as MAPE (mean absolute percentage error), which are ill-suited for capturing the unique
characteristics of lumpy or intermittent patterns [2, 3]. These metrics fail to penalize the unrealistic
forecasts often produced by statistical models, while simultaneously overlooking the potential of
models that accurately identify underlying patterns but exhibit minor temporal shifts. The second
challenge stems from the mean regression problem faced by forecasting models. This issue primarily
arises due to the inherently noisy nature of irregular time series, which often lack clear trends or
seasonality, making them especially prone to this problem. Paradoxically, under commonly used
metrics like MAPE, the mean regression problem is not penalized but often rewarded, leading to
models that fail to align with human intuition. Fig. 1 provides a clear example where statistical
models or models with mean regression problem deviate notably from intuitive expectations, despite
achieving high scores with MAPE-based evaluations. Similar cases in real world datasets are detailed
in Appendix A. While fields such as large language models and image generation have made
significant strides in producing outputs that align with human intuition, traditional forecasting models
and evaluation metrics lag behind, especially in irregular time-series. To address this issue, we
propose an adversarial learning framework aimed at bridging the gap between forecasting outputs
and intuitive expectations. Adversarial learning, widely recognized for its applications in time-series
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Figure 1: Problems. MAPE, where lower values indicate better performance, is highly unsuitable
for evaluating the quality of irregular time-series forecasting. The true sequence (a) exhibits an
irregular pattern. (b) matches the total quantity but reflects the monotonous tendencies common in
many statistical models. (c), despite experiencing a slight temporal shift, receives the worst score. (d)
provides a plausible result, capturing the correct entry point, yet it achieves the same MAPE as (b).

generation and forecasting, is predominantly inspired by generative adversarial networks (GANs)
[4]. While GANs have demonstrated strong capabilities in generating realistic and detailed outputs,
their application to time-series forecasting remains underexplored particularly in the context of
irregular data. In the domain of time-series forecasting, discriminators typically fall into one of two
architectural paradigms: recursive layers, which align with conventional methods for sequential data
processing [5, 6, 7], and non-recursive layers integrated with activation functions [8, 9]. Despite
their widespread use, a comprehensive analysis of the role and effectiveness of these architectures
in time-series forecasting remains limited. To address this, we reexamine adversarial components
and their impact on forecasting performance for irregular time-series data. To further tackle the
limitations of traditional evaluation metrics which often neglect forecast plausibility, we propose
novel qualitative approaches for analyzing irregular time-series forecasting. Our findings indicate that
the architectural design of the adversarial components should align with the characteristics of the time
series, balancing the capture of global style and transition dynamics. Finally, our research provides
actionable insights into improving the models and the evaluation metrics for irregular time-series
data. To our best knowledge, this is the first use of adversarial approaches in irregular time-series
forecasting. We applied our approach to three real-world datasets, and our implementation is available
at Hazel-Heejeong-Nam/adversarial-intermittent-lumpy-forecasting

2 Related Works
Adversarial learning in time series forecasting. Adversarial learning is often adopted in time
series generation and forecasting [7, 8, 6, 9, 10, 5, 11]. However, despite its widespread use, a
thorough analysis of the role of adversarial learning in the time-series domain remains lacking. The
unidirectional nature of sequential data introduces unique challenges, particularly in forecasting
rather than in generation. Hence, it is crucial to revisit the objective of using adversarial components
in forecasting, given the differing nature of these tasks. The earlier works including C-RNN-GAN [5]
simply replaced the generator and discriminator with LSTM networks. On the other hand, RCGAN
[12] conditioned on additional input instead of previous outputs, while it still utilized recurrent units
for both the generator and discriminator. TimeGAN [6] employed both supervised and adversarial
objectives to address the mean regression problem and the lack of temporal dynamic consideration,
respectively. Alongside other works [13, 14], TimeGAN integrated recurrent networks into both the
generator and discriminator. GT-GAN [7], while not focused on forecasting, employs GRU-ODE [15]
to construct the discriminator for generative purposes. AST [8] is the first adversarial model designed
for forecasting, and it incorporates adversarial learning to prevent error accumulation from the
autoregressive nature of predictions. Thus, the discriminator module consists of non-recursive layers
and competes with the forecaster, which is expected to eliminate error accumulation. TrendGCN
[9] employs a Graph Convolutional Network as a forecaster and utilized two discriminators, one for
capturing spatial relations and the other for temporal relations.

Irregular time series forecasting. Irregular and sparse time-series forecasting is challenging as
it is often characterized by multiple inter-arrival times, with some additionally distinguished by
significant variations in quantity between these intervals. Although statistical methods (e.g., Croston
[16]), machine learning approaches (e.g., SVR [17]), and deep learning techniques (e.g., LSTM
[18]) have been applied to these problems [3], it remains unclear which method is the most suitable.
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Figure 2: Overall frameworks. (a) Simple encoder-discriminator framework of adversarial learning.
(b) Concept of dr(·) (recursive discriminator) and dnr(·) (non-recursive discriminator).

This ambiguity arises not only due to insufficient investigation [1] but also because of the lack of
appropriate metrics [2, 3]. Statistical methods like Croston [16], Holt-Winters [19], and ARIMA [20]
have shown strong performance in M4 forecasting competitions [21]. Among these, Croston remains
particularly effective for forecasting intermittent and lumpy data. In machine learning, SVR [22]
has been identified as a strong performer; for example, Hua et al. [17] combined SVR with logistic
regression. In deep learning, LSTM [18] models have shown promise, although their performance
can vary. While neural networks may underperform compared to statistical methods on metrics like
RMSE (root mean squared error) and MAPE, they may outperform in terms of service-level quality.
For example, MAPE and RMSE have been criticized for their inability to account for shifts and
temporal interactions [3], which are strengths of neural networks.

3 Rethinking Adversarial Components in Irregular Time-Series Forecasting
3.1 Problem Formulation
Let’s assume we have M distinct time series, each spanning a time period indexed by t = 1, . . . , T . To
forecast, models utilize historical data of length P, represented by {xim}Pm=1 for each ith time series.
The forecasting horizon is set to L, and our objective is to accurately predict the values {yin}Ln=1.
Given a forecasting model F : RP → RL, we express our forecasting process as {ŷin}Ln=1 =
F({xim}Pm=1). In this paper, we only considered a global forecasting model across the different
time series i = 1, . . . ,M within the same dataset, i.e., the observational space is X ∈ RM×T while
X = {xi,1:P }Mi=1 and Y = {yi,1:L}Mi=1 represent the sets of historical data and corresponding target
values, respectively. Below, we specify the meaning of irregular time-series in our work.

Definition 3.1 (Irregular Time-Series) We define irregular time series by their characteristic
variability in inter-arrival times and further subcategorize them based on variability in quantity,
drawing on the work of Syntetos et al. [23]. Irregular time series are identified by using the ADI
(Average Demand Interval), a metric that quantifies regularity over time by calculating the average
interval between successive non-zero entries. Following established conventions [3, 23, 24], we adopt
a threshold of 1.32 for ADI (ADI ≥ 1.32). Irregular time series can be further classified into two
subcategories—intermittent and lumpy—based on the CV 2 metric, which measures the variability in
non-zero quantities. We use a threshold of 0.49 for CV 2, as suggested in previous studies [3, 23, 24].

3.2 Adversarial Components
Non-recursive Discriminator Discriminators with non-recursive layers treat irregular time-series
as vectors without considering temporal relationships, similar to the approach used in image transfer
or generation [25, 26]. For a fixed forecaster F , the non-recursive discriminator Dnr(y, θd) outputs
a scalar which indicates the probability of input vector y originating from X . We expect Dnr to
operate as discribed in (1), and the global minimum is achieved if and only when pF = pX .

Dnr(y1:L) =
pX (y1:L)

pX (y1:L) + pF (y1:L)
(1)

Recurvise Discriminator A discriminator with recursive layers Dr functions similarly to a chain
of multiple PCL modules [27]. The PCL framework constructs two samples of vectors as shown in
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Table 1: Summary of the key statistics for each
dataset. For calculating CV2 of demand size, the
number of lumpy time-series and intermittent
time-series, we follow SBC [23]

AUTO M5 RAF

Number of Time-Series (M) 1227 30489 5000

Time Series Length (T) 24 182 84

Mean Demand Interval 1.29 4.212 10.02

CV2 4.38 2.91 10.67

Lumpy 286 5964 2403

Intermittent 941 23040 2597 Figure 3: Illustration of irregular time-series

(2). Here, v(n) intuitively provides a minimal description of the temporal dependencies in the data.
For comparison, a fake data (in the context of adversarial learning) is sampled (forecasted in our
case), and the objective is to learn to discriminate between v(n) and v∗(n) using logistic regression
as expressed in (3), where hn are scalar-valued functions that provide representation.

v(n) =

(
yn−1

yn

)
and v∗(n) =

(
yn−1

y∗n

)
(2)

Dr(v) =
1

L

L∑
n=1

Bn(hn(v
1), hn(v

2)) (3)

It has been theoretically proven [27] that if the underlying sources of the time-series are 1) mutually
independent, 2) temporally dependent, and 3) stationary, then hn(yn−1) can recover the underly-
ing sources up to permutation and component-wise transformation. However, in our Def.3.1, it is
challenging to assume stationary sources : for example, one might intuitively model one of the
nonstationary sources as active and inactive phases, as proposed by Song et al .[28], given that
our dataset is characterized by varying inter-arrival times. Nevertheless, incorporating Dr could
significantly enhance the model’s ability to capture and adapt to the underlying transition dynamics,
providing a more robust framework for modeling the temporal shifts in the data.

4 An adversarial approach to irreuglar time-series forecasting

4.1 Dataset
All experiments in this paper were evaluated on three real-world datasets. Following Def.3.1, we
only include time-series classified as irregular according to the Syntetos-Boylan Classification [23].
AUTO dataset includes monthly demand data for 3,000 items over 24 months. Among these, we are
able to get 1,227 irregular time-series. RAF dataset comprises aerospace parts demand data from the
Royal Air Force and it covers 84 months of data for 5,000 parts. Lastly, M5 dataset includes daily
unit sales per product and store at Walmart over 5 years and we used last 182 timestamps for our
experiment. When comparing these datasets, the RAF dataset has the highest ADI and CV 2 values,
making it the most challenging for traditional forecasting methods. The AUTO dataset, while having
fewer zero entries, exhibits greater variation in demand size. In contrast, the M5 dataset has less
demand size variability but a higher number of zero entries compared to the AUTO dataset. Further
details about these datasets are provided in Table 1.

4.2 Evaluation
Conventional evaluation metrics. We first employed four metrics that are widely used. MAPE
(Mean Absolute Percentage Error) is commonly used metric although there is ongoing debate [3, 2, 9]
regarding the suitability, as discussed in Fig. 1. Since MAPE has a fundamental limitation due to its
asymmetry between predictions and true values, we also adopted sMAPE (Symmetric Mean Absolute
Percentage Error) to mitigate this issue. Another widely used metric, RMSE (Root Mean Square
Error), can effectively compare the similarity between vectors or matrices. However, it lacks the
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Table 2: The forecasting results based on layer changes in the encoder and discriminator.

AUTO RAF M5

F MLP LSTM MLP LSTM MLP LSTM

D MLP LSTM MLP LSTM MLP LSTM MLP LSTM MLP LSTM MLP LSTM

MSTD 2.403 2.464 1.897 2.356 2.955 3.487 2.790 5.75 0.743 1.053 0.671 0.512
V-Recall 0.350 1.000 0.454 0.350 0.874 0.972 0.902 0.692 0.861 0.896 0.799 0.661

V-F1 0.373 0.551 0.419 0.373 0.896 0.945 0.911 0.788 0.742 0.764 0.728 0.672

RMSE 7.822 9.728 7.922 7.608 16.855 20.399 16.609 27.485 2.693 2.575 2.317 3.145
MAPE 0.478 0.687 0.443 0.524 0.944 0.978 0.953 0.722 0.827 0.855 0.814 0.799
sMAPE 1.139 1.315 1.11 1.165 1.968 1.963 1.966 1.914 1.61 1.677 1.568 1.539
SPEC 2.005 2.05 1.517 1.926 1.534 0.348 0.803 0.72 24.144 30.644 18.25 26.949

Figure 4: Visualization of three proposed metrics along different cofigurations.

ability to account for temporal shifts often observed in time-series data. Furthermore, we include
SPEC (Stock-keeping-oriented Prediction Error Cost) [2], a metric designed for demand forecasting
which incorporates penalties for overstock and understock situations balanced by parameters α1 and
α2 (we set both to 0.5). All equations are provided in Appendix B.

Evaluation beyond error. To address the limitations of existing metrics, we adopted several
alternative approaches. The first metric, MSTD (Mean Standard Deviation), measures the alignment
between the forecasts ˆyi,1:L and the actual values yi,1:L. This metric evaluates how well the forecasting
results capture the marginal distribution of the training dataset. Achieving a desirable MSTD indicates
robustness against minor shifts in values (e.g., Fig. 1 (c)) and focuses on reflecting the inherent
patterns and statistical properties of the dataset, thus mitigating the mean regression problem. The
second approach evaluates the ability to realistically represent void spaces, specifically the intervals
in irregular time series where no entries exist. To assess how accurately these intervals are forecasted,
we used the recall (V-Recall) and the F1 score (V-F1). A high V-Recall indicates that the model
successfully predicts the absence of values in areas where no data is expected, while a strong V-F1
score demonstrates this capability while minimizing errors in interval predictions.

4.3 Adversarial Components in Irregular Time-Series Forecasting

We first conduct experiments to assess the roles of adversarial components, specifically the encoder
and discriminator, each of which can be configured in one of two ways: recursive and non-recursive.
The simple framework is illustrated in Fig. 2 (a). The encoder takes an input x1:P and produces an
output ˆy1:L. In the recursive configuration, the encoder is implemented using two layers of LSTM
[18] and fully-connected layer, while in the non-recursive one consists of four linear layers. Similarly,
the discriminator is implemented using either two layers of LSTM in the recursive case or a four
linear layers in the non-recursive case. For the non-recursive discriminator, a single logit is directly
produced by the successive linear layers to determine whether the input is real or fake. In contrast, in
the recursive discriminator, the LSTM generates a logit at each state which comes from each hidden
states, then the average of these logits is computed after after passing through the final fully-connected
layer. This approach can be interpreted as evaluating the realisticity of the transition at each step,
given the history. The basic training method follows the approach used in GANs [4]. For details,
please refer to the Appendix D.
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Table 3: Comparison results between the adversarial approach and other baselines.

AUTO RAF M5

MSTD V-Recall V-F1 MAPE MSTD V-Recall V-F1 MAPE MSTD V-Recall V-F1 MAPE

Croston [16] 2.403 0.027 0.049 0.507 2.653 0.520 0.663 0.844 1.270 0.580 0.661 0.637
ARIMA [20] 2.294 0.228 0.285 0.557 2.661 0.748 0.827 0.926 1.198 0.845 0.766 0.786
ADIDA [29] 2.403 0.039 0.069 0.477 2.653 0.706 0.798 0.919 1.270 0.646 0.702 0.676

MLP 2.273 0.421 0.411 0.404 2.664 0.845 0.881 0.982 1.072 0.895 0.766 0.844
RNN [30] 2.223 0.000 0.000 0.425 2.711 0.904 0.912 0.955 1.220 0.880 0.764 0.838

LSTM [18] 2.208 0.483 0.432 0.465 2.692 0.865 0.891 0.942 1.107 0.881 0.770 0.859

R-NR 1.897 0.454 0.419 0.443 2.79 0.902 0.911 0.953 0.671 0.799 0.728 0.814
NR-R 2.464 1.000 0.551 0.687 3.487 0.972 0.945 0.978 1.053 0.896 0.764 0.855

Across all datasets, the results in 2 emphasize the effectiveness of combining recursive and non-
recursive architectures for irregular time series forecasting, enabling better modeling of both temporal
dependencies and the marginal distribution. LSTM encoders paired with MLP discriminators tend
to produce lower MSTD values, indicating better alignment with the marginal distribution of the
data set. For V-Recall and V-F1, the opposite configurations consistently outperform, highlighting
that LSTM discriminators excel at recognizing void intervals. Although the use of non-recursive
MLP forecasters may seem unconventional in regular time series, they are particularly effective for
irregular time series due to the absence of trends and seasonality. For conventional metrics, RMSE
and MAPE generally favor configurations with LSTM encoders, although the effect of discriminator
architecture appears less pronounced. Additionally, sMAPE and SPEC do not show consistent trends
and appear to be more dataset-dependent.

4.4 Comparison with Baseline Models
For the baseline models, we selected three statistical models (Croston [16], ARIMA [20], and ADIDA
[29]) and three neural network models (MLP, RNN [30], and LSTM lstm). Each baseline models are
either known for their strong performance on irregualr patterns or demonstrating simple architecture
but showing strong performance. More detailed information about the baseline models can be found
in the Appendix C. The results in Table 3 show that, in terms of MSTD, statistical models generally
underperformed, while simpler neural networks such as MLP, RNN, and LSTM exhibited moderate
success. The best performance was achieved with adversarial learning, which closely matches the
true variation in the dataset. Although the RAF dataset displayed an opposite trend, configurations
of LSTM with non-recursive discriminator outperformed a pure LSTM by a significant margin
in the other two datasets. Furthermore, V-Recall and V-F1 scores improved significantly with the
adversarial approach, especially compared to other baseline models. This highlights the limitations of
statistical models in irregular time series forecasting, emphasizing their unsuitability for capturing
the complexities of such data. Table 3 presents results for the four primary metrics of interest, while
the full results, including RMES, SPEC and sMAPE, are provided in Appendix E.

5 Conclusion
In conclusion, this study represents the first application of adversarial learning for forecasting
irregular time series. Our findings reveal that while existing methods often perform well according to
conventional metrics, they frequently produce results that are overly simplistic or unrealistic. Through
experiments, we demonstrate that adversarial learning can effectively address this issue, offering a
more sophisticated approach for forecasting irregular time series. Although traditional error-based
metrics tend to favor conservative forecasting models that prioritize accuracy, we argue that it is
crucial to also assess forecasting quality through the lens of capturing the unique characteristics
and marginal distribution of the data. The introduction of adversarial learning may lead to increased
variation in forecasting values, which could result in a loss of accuracy in error-based metrics,
yet we view this as an important step towards more flexible and realistic forecasting. This work,
despite its limitations, lays the foundation for future research aimed at developing new metrics and
methodologies that better capture the nuances of irregular time series data and more closely align
with human intuition in forecasting tasks.
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A Real-world Examples of Mean Regression Problem and MAPE in
Irregular time Series

Figure 5: Real-world examples that demonstrate the existence of the problem we are addressing.

Table 4: Calculated MAPE in each example.

OURS CROSTON ADIDA LSTM MLP

(a) 0.45 0.2 0.9 0.75 0.75

(b) 1 0.8 0.05 0.85 0.85

(c) 0.75 0.75 0.25 1 1

(d) 1 0.875 0.125 1 1

(e) 0.06 0.05 0.01 0.06 0.06

B Conventional Evaluation Metric
The following equations represent the methods used to evaluate our experimental results. The notation
is consistent with that in Section 3.1.

MAPE =
1

LM

M∑
i=1

L∑
n=1

|yin − ŷin|
yin

) =
1

M

M∑
i=1

(
1∑L

n=1 I[yin > 0]

L∑
n=1

I[yin > 0]
|yin − ŷin|

yin
)

(4)
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sMAPE =
2

LM

M∑
i=1

L∑
n=1

|yin − ŷin|
yin + ŷin

=
2

M

M∑
i=1

(
1∑L

n=1 I[yin + ŷin > 0]

L∑
n=1

I[yin + ŷin > 0]
|yin − ŷin|
yin + ŷin

) (5)

SPEC =
1

ML

M∑
i=1

L∑
n=1

n∑
m=1

((n−m+ 1) ·max(0;α1 ·min(yim;

m∑
k=1

yik −
n∑

j=1

fij);

α2 ·min(fim;

m∑
k=1

fik −
n∑

j=1

yij))) (6)

RMSE =
1

M

M∑
i=1

√√√√ L∑
n=1

(yin − ŷin)2

n
(7)

C Baseline models

• Croston [16]: A method specifically designed for intermittent and lumpy time series forecasting.
It decomposes demand into occurrence and size, making it effective for irregular patterns in
time-series data.

• ARIMA [20]: A widely-used statistical model that combines autoregressive (AR) and moving
average (MA) components with differencing to handle non-stationarity. It is effective for
capturing linear temporal dependencies in regular time series but struggles with highly
irregular patterns.

• ADIDA (Aggregate-Disaggregate Intermittent Demand Approach) [29]: A technique tailored
for intermittent time series. It aggregates demand over fixed intervals to smooth irregular
patterns and then applies standard forecasting methods to generate predictions.

• MLP (Multilayer Perceptron): A feedforward neural network model that learns non-linear
relationships between input and output. While flexible, it may require careful tuning for
effective performance on time series with irregular patterns.

• RNN (Recurrent Neural Network) [30]: A neural network model with feedback connections
that capture temporal dependencies in sequential data. RNNs are powerful for regular time
series but can struggle with long-term dependencies or highly intermittent patterns.

• LSTM (Long Short-Term Memory) [18]: A specialized type of RNN designed to overcome
the vanishing gradient problem, making it suitable for learning long-term dependencies
in sequential data. LSTM can handle some degree of irregularity but requires significant
computational resources.

D Experiment details

We first set look-back period and forecasting horizon for each dataset. We follow setting of kaggle
competition for M5 dataset, thus both P and L are set to 28. AUTO and RAF are having L of 6,
while P is set to 6 and 18 respectively. AUTO is having shorter look-back period due to the lack of
historical data, as we only have 24 timestamp through out whole dataset.

In our experiments, we train encoder and discriminator jointly. Throughout all configurations, we
trained for 100 epochs and hyperparameter tuning has been done in logarithmic scale. We selected
our best model by using MAPE which can be considered as convention, and we observed how the
models behave throughout in other metrics. All seeds in the experiment is set to 0 and we set a batch
size to 256. During training, we first update parameters in encoder followed by discriminator.

E Additional Experiment Results
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AUTO RAF M5

MAPE RMSE sMAPE SPEC MAPE RMSE sMAPE SPEC MAPE RMSE sMAPE SPEC

Croston [16] 0.507 8.790 1.109 2.831 0.844 24.672 1.949 6.562 0.637 2.288 1.425 18.796
ARIMA [20] 0.557 7.543 1.288 1.872 0.926 16.193 1.967 1.915 0.786 2.204 1.551 0.718
ADIDA [29] 0.477 7.838 1.122 2.074 0.919 16.483 1.966 2.172 0.676 2.268 1.445 17.375

MLP 0.404 7.879 1.068 1.802 0.982 16.284 1.986 0.906 0.844 2.421 1.664 29.477
RNN [30] 0.425 7.911 1.089 1.632 0.955 16.623 1.974 1.189 0.838 2.253 1.647 25.398

LSTM [18] 0.465 8.020 1.129 1.904 0.942 16.649 1.973 1.680 0.859 2.422 1.691 31.623

R-NR 0.443 7.922 1.110 1.517 0.953 16.609 1.966 0.803 0.814 2.317 1.568 18.250
NR-R 0.687 9.728 1.315 2.050 0.978 20.399 1.963 0.348 0.855 2.575 1.677 30.644
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