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Hierarchical VectorQuantized Graph Autoencoder with
Annealing-Based Code Selection

Anonymous Author(s)

ABSTRACT
Graph self-supervised learning has gained significant attention
recently. However, many existing approaches heavily depend on
perturbations, and inappropriate perturbations may corrupt the
graph’s inherent information. The Vector Quantized Variational
Autoencoder (VQ-VAE) is a powerful autoencoder extensively used
in fields such as computer vision; however, its application to graph
data remains underexplored. In this paper, we provide an empirical
analysis of vector quantization in the context of graph autoencoders,
demonstrating its significant enhancement of the model’s capac-
ity to capture graph topology. Furthermore, we identify two key
challenges associated with vector quantization when applying in
graph data: codebook underutilization and codebook space sparsity.
For the first challenge, we propose an annealing-based encoding
strategy that promotes broad code utilization in the early stages of
training, gradually shifting focus toward the most effective codes
as training progresses. For the second challenge, we introduce a
hierarchical two-layer codebook that captures relationships be-
tween embeddings through clustering. The second layer codebook
links similar codes, encouraging the model to learn closer embed-
dings for nodes with similar features and structural topology in the
graph. Our proposed model outperforms 16 representative baseline
methods in self-supervised link prediction and node classification
tasks across multiple datasets. Our implementation is available at
https://anonymous.4open.science/r/hqa-gae-D2F4.
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1 INTRODUCTION
Graphs are prevalent in the real world, which are widely used to
model the complex relationships between entities in systems like
social networks and the web. However, the non-Euclidean nature
and the scarcity of labeled data pose significant challenges in graph
analysis. Recently, graph self-supervised learning (SSL) has been
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proposed to address these issues by uncoveringmeaningful patterns
from massive unlabeled data through pretext tasks. Graph SSL has
been demonstrated to be useful in a wide range of downstream
applications, such as social recommendation [42] and molecular
property prediction [17].

Recently, graph contrastive learning (GCL) has been a dominant
approach for self-supervised learning on graphs. Existing studies
on GCL mainly rely on perturbing the original graph information
to generate new views. However, it has been pointed out in [51]
that inappropriate perturbations could disrupt the graph’s inherent
structure, leading to information loss or noise corruption. In other
words, poorly-designed view generation strategies could degrade
model performance, resulting in learned embeddings that lack se-
mantic consistency. Therefore, the design of suitable perturbation
techniques is crucial for these models, adding difficulty to their
development.

Another prominent approach for implementing SSL on graphs is
graph autoencoding. One popular and effective variant is masked
graph autoencoding, which utilizes masked node features [15] or
graph topology [22] to learn robust node representations. How-
ever, similar to contrastive learning, these masking methods can
also introduce inappropriate perturbations, risking the loss of the
graph’s inherent information. Beyond perturbation-based methods,
Vector Quantized Variational Autoencoders (VQ-VAE) [38] have
emerged as an alternative approach, which encodes input features
into discrete latent embeddings by mapping them into a quantized
codebook and decodes by retrieving corresponding codebook en-
tries to reconstruct the raw input features. It offers significant data
compression capabilities that enable the model to be easily applied
to large-scale data. Despite the success, its application to graph
data remains underexplored. Existing works either focus on limited
downstream tasks like molecular graph classification [6, 43], or
rely on supervised training [45], falling far short in fully leveraging
VQ-VAE for graph SSL.

In this paper, to bridge the gap, we extend VQ-VAE to graph SSL.
We first empirically analyze VQ-VAE when applied to graph data,
showing how well vector quantization can enhance the model’s
capability in capturing the underlying graph topology. Then we
identify two key challenges when applying VQ-VAE to graph:

The first issue is codebook space underutilization arising from the
“winner-take-all” principle in competitive learning [1, 9], where
many discrete codes within the codebook remain unused during
the training process. This insufficiency limits the model’s capacity
to represent diverse feature patterns in the graph. While Gumbel-
Softmax [18] has been explored as a potential solution to improve
codebook utilization by enabling more flexible sampling, our ex-
periments on graph data indicate that it produces less satisfactory
results, possibly due to the randomness introduced by reparame-
terization, which increases the instability of gradient updates. To
address this limitation, we propose an annealing-based encoding
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strategy, which dynamically selects code embeddings in the code-
book. Specifically, in the early stage, the model is encouraged to
explore a wide range of available code vectors, which forces the
model to utilize more codes. With training epochs, the probability
of selecting useless codes decreases and the model will concentrate
more on the effective ones.

The second challenge is codebook space sparsity, which refers
to the fact that in traditional VQ-VAE, individual code vectors are
treated as independent entities with no regard for the inherent
relationships between nodes in the graph. This may lead to the pro-
jection of similar nodes into different code vectors. To overcome the
issue, we introduce a second layer on top of the first one, developing
a two-layer codebook with a hierarchical structure that reflects the
relationships between codes. The second layer can connect codes
with similar embeddings, which can be used to further promote
close embedding learned for similar nodes in the graph. Finally, our
main contributions in this paper are summarized as follows.

• We propose a novel graph SSL method HQA-GAE, which is a
Hierarchical vector Quantized and Annealing code selection
based Graph Auto-encoder.

• We qualitatively analyze the effectiveness of vector quantization
in utilizing graph topology and experimentally verify our claim.

• We present two key challenges in applying VQ-VAE to graph
SSL: codebook space underutilization and codebook space spar-
sity. We further put forward an annealing-based code selection
strategy and a hierarchical codebook mechanism to solve the
issues, respectively.

• We conduct extensive experiments to demonstrate the superior
performance of HQA-GAE over 16 other state-of-the-art methods
on both node classification and link prediction tasks.

2 RELATEDWORK
This section reviews recent advances on graph SSL, with a focus on
two primary approaches: graph contrastive learning and autoen-
coding techniques.

Graph Contrastive Learning (GCL) has emerged as a promising
approach for SSL on graph-structured data. It aims to learn robust
node or graph-level representations by maximizing the agreement
between different augmented views of the same node/graph, while
minimizing that with views of other nodes/graphs. Although early
works [25, 35, 41, 46, 47, 50] have demonstrated their efficacy, a
key limitation of GCL lies in the reliance on manually designed
augmentations that are often task-specific and may disrupt the
structural integrity of graphs, leading to suboptimal performance
in certain domains [47]. Further, poorly designed augmentation
schemes can inadvertently introduce noise, diminishing the seman-
tic consistency of the learned embeddings [51].

Graph auto-encoding is another technique for graph SSL, which
learns node embeddings by reconstructing the given input graph.
In addition to graph auto-encoders [20, 27] and variational graph
auto-encoders [12, 20, 23, 27], some advanced models have recently
been proposed. For example, Masked Graph Autoencoders (MGAE),
such as GraphMAE [15] and MaskGAE [22], have drawn significant
attention. These methods [14, 36, 49] introduce masking strategies
for graph features or edges, followed by reconstruction, and have
shown promising results. Despite the success, the effectiveness of

masked autoencoding heavily relies on the choice of masking strate-
gies. Inappropriate masking can lead to significant information loss,
which degrades the model performance.

Further, Vector Quantized Variatinal Autoencoders (VQ-VAE) have
demonstrated notable success in the fields of computer vision
[7, 30, 38] and computer audition [5, 48] by discretizing latent
spaces, enhancing robustness and efficiency. They also hold po-
tential for self-supervised learning on graphs; however, existing
applications remain limited and often fail to fully leverage the VQ-
VAE framework. The early attempt VQ-GNN [6] explores the use
of vector quantization as a dimensionality reduction tool in GNNs,
which deviates significantly from the original VQ-VAE training
scheme. Mole-BERT [43] and DGAE [4] apply VQ-VAE for molec-
ular graph classification but restrict its scope to specific domains,
lacking generalizability to broader graph tasks like node classi-
fication and link prediction. VQ-Graph [45], on the other hand,
adopts the VQ-VAE training approach but introduces labeled data
rather than pursuing SSL. Moreover, key challenges, such as code-
book underutilization and space sparsity, have not been adequately
addressed in previous works, which hinder model performance.
Instead, our work aims to directly tackle these issues by exploring
the capabilities of VQ-VAE in graph data, thereby enhancing the
effectiveness of graph representation learning.

3 PRELIMINARIES
3.1 Graph Self-supervised Learning
A graph G = (V, E) consists of a set of nodes V and edges E,
where |V| = 𝑁 and each node 𝑣𝑖 ∈ V can be associated with a fea-
ture vector x𝑖 ∈ R𝐷 . The adjacency matrix A ∈ R𝑁×𝑁 encodes the
connectivity of the graph, where A𝑖 𝑗 = 1 if an edge exists between
nodes 𝑣𝑖 and 𝑣 𝑗 , and 0 otherwise. Self-Supervised Learning (SSL) on
graphs [24, 44] aims to learn useful representations without requir-
ing labeled data. By leveraging pretext tasks, such as node feature
reconstruction or contrastive learning, the model is encouraged to
learn semantic embeddings h𝑖 ∈ R𝑑 for each node, which capture
key graph properties.

3.2 Graph Neural Network
Graph Neural Networks (GNNs) are powerful tools for learning
from graph-structured data. A widely used GNN framework is the
Message Passing Neural Network (MPNN) [3, 19], which iteratively
updates node representations based onmessages passed from neigh-
boring nodes. In the 𝑘-th message-passing iteration, a node 𝑣𝑖 ’s
representation h(𝑘 )

𝑖
is updated by aggregating the features of its

neighbors N(𝑖), starting from an initial representation h(0)
𝑖

= x𝑖 .
This process can be described by:

h(𝑘 )
𝑖

= 𝜎
©­«h(𝑘−1)𝑖

,
⊕
𝑗∈N(𝑖 )

𝜙 (𝑘 )
(
h(𝑘−1)
𝑖

, h(𝑘−1)
𝑗

)ª®¬ , (1)

where
⊕

is a permutation-invariant aggregation function (e.g.,
mean, sum, or max), 𝜙 denote differentiable functions like linear
projections, and 𝜎 is a non-linear function. The output after 𝐾
layers of message passing, h(𝐾 )

𝑖
, serves as the final representation

for node 𝑣𝑖 .
2
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Figure 1: The schematic diagram of HQA-GAE, including graph encoding and decoding, annealing-based code selection,
hierarchical codebook learning.

3.3 VQ-VAE
VQ-VAE offers a perturbation-free autoencoder for learning dis-
crete representations, which encodes input features into discrete
latent embeddings by mapping them into a quantized codebook
and decodes by retrieving corresponding codebook entries to re-
construct the raw input features. Specifically, the encoder 𝐸 maps
input x𝑖 to a latent vector 𝐸 (x𝑖 ), which is then quantized to the
most similar code embedding e𝑖 , where 𝑖 = argmax𝑗 sim

(
𝐸 (x𝑖 ), e𝑗

)
,

and the function sim
(
𝐸 (x𝑖 ), e𝑗

)
denotes the similarity between the

latent vector 𝐸 (x𝑖 ) and the codebook embedding e𝑗 . This similarity
can be quantified using various metrics, such as cosine similarity
or negative Euclidean distance.

The total loss of VQ-VAE comprises three terms: (1) reconstruc-
tion loss, ensuring that the decoder 𝐷 accurately reconstructs the
original input x𝑖 ; (2) commitment loss, which forces the encoder
to stabilize by minimizing the gap between 𝐸 (x𝑖 ) and the selected
codebook embedding e𝑖 ; and (3) codebook loss, updating the code-
book entries to align with the encoder’s output. Formally, we have:

L =
1
𝑁

𝑁∑︁
𝑖

(
∥x𝑖 − 𝐷 (e𝑖 )∥22

+ ∥sg(𝐸 (x𝑖 )) − e𝑖 ∥22 + 𝜂∥e𝑖 − sg(𝐸 (x𝑖 ))∥22
)
,

(2)

where sg(·) is the stop-gradient operator, 𝜂 is a balance weight, and
𝑁 is the number of training samples. In VQ-VAE, during the gradi-
ent descent optimization of the reconstruction loss, the encoder’s
gradients are directly copied from the decoder. From a clustering
view, VQ-VAE inherently facilitates grouping similar data points
by quantizing them to the same codebook entries. Each codebook
entry acts as a cluster center for hidden embeddings of data points.

4 METHOD
In this section, we first introduce VQ-GAE as the starting point of
our approach, highlighting the role of vector quantization in en-
hancing the model’s capacity to capture graph topological structure.
Building on VQ-GAE, we next incorporate annealing-based code
selection and hierarchical codebook design, which together
form the core of our HQA-GAE. Finally, we elaborate on the en-
coder and decoder models, as well as the training objectives. The
overall framework of HQA-GAE is illustrated in Figure 1.

Cora CiteSeer PubMed Photo Computers CS Physics arxiv
Dataset
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) GAE VQ-GAE

Figure 2: The performance of node classification tasks for
both normal GAE and VQ-GAE, where an MLP is used as the
encoder and the decoder remains unchanged as a GNN.

4.1 Starting with VQ-GAE
The vanilla Vector Quantized Graph Autoencoder (VQ-GAE) first
encodes node 𝑣𝑖 ’s feature vector x𝑖 into a continuous representation
h𝑖 via an encoder. Let the embedding space be further represented
by a set of code embeddings {e𝑗 }𝑀𝑗=1 in a codebook, where𝑀 ≪ 𝑁

and 𝑁 denotes the number of nodes in the graph. The continuous
representation h𝑖 is then quantized by selecting the most appropri-
ate code embedding by:

e𝑖 = lookup
(
h𝑖 , {e𝑗 }𝑀𝑗=1

)
, (3)

where lookup(·) denotes the function that retrieves the code em-
bedding with the highest similarity to h𝑖 . A detailed discussion on
the lookup function will be provided in Section 4.2. The quantized
representation e𝑖 is subsequently utilized to reconstruct the raw
node feature x𝑖 , while the hidden representation h𝑖 is used to recon-
struct the adjacency matrix A. In typical VQ-VAE methods applied
to image data, an image is represented by multiple code embed-
dings, where the space is geometrically divided into patches, each
of which is represented by a separate code embedding. However, in
VQ-GAE, each node is represented by a single code embedding, due
to the lack of a spatial structure in a single node feature. Note that
since the codebook size is much smaller than the number of
nodes, we can only use the output of encoder h𝑖 instead of
the code embedding e𝑖 as the final node representation.

While the code embedding e𝑖 is not the final representation, vec-
tor quantization still plays a crucial role in enhancing the model’s
capability to capture the graph’s topology. Specifically, for nodes
with similar features that are encoded into the same codebook

3
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embedding, vector quantization forces the model to leverage the
structural difference when reconstructing their raw features. This in
turn positively affects the encoder to inject more useful topological
information into the learned representations for nodes. In the case
of VQ-GAE, the optimization process employs the straight-through
gradient propagation mechanism1, which allows the gradient to
be directly passed from the decoder to the encoder. This process
encourages the encoder to integrate more relevant topological in-
formation, which is conveyed by the decoder, into the learned
representations.

To verify the claim, we conduct a preliminary series of exper-
iments by comparing the performance of the VQ-GAE with that
of a normal GAE, which removes the vector quantization mod-
ule between the encoder and decoder. In both models, we use a
simple Multi-Layer Perceptron (MLP) as encoder that only takes
node features as input to prevent explicitly learning graph struc-
tural information in node embeddings. As depicted in Figure 2, VQ-
GAE performs better than GAE across various benchmark datasets,
which shows that incorporating a codebook into GAE can signif-
icantly improve the model performance, even when the encoder
does not explicitly capture topological information.

4.2 Annealing-based Code Selection
Typically, VQ-GAE uses an argmax-based lookup function when
selecting the code with the highest similarity to the input node
embedding. The selected embedding e𝑖 from the codebook becomes
increasingly closer to input h𝑖 over iterations, which increases
its probability to be selected in the future. This phenomenon re-
sults in a "winner-take-all" effect, where selection bias amplifies,
exacerbating the codebook space underutilization problem. The
underutilization leads to over-reliance on a few frequently used
code embeddings, which hinders generalization to diverse data
distributions and results in the loss of certain detailed information.

To mitigate the problem, we replace the argmax-based lookup
function with a softmax-based probabilistic function. Specifically,
for each node 𝑣𝑖 , we first compute the similarity 𝑠𝑖, 𝑗 = sim(h𝑖 , e𝑗 )
between h𝑖 and code embedding e𝑗 , and then use softmax to calcu-
late the probability 𝑝𝑖, 𝑗 of selecting e𝑗 :

𝑝𝑖, 𝑗 =
exp(𝑠𝑖, 𝑗/𝑇 )∑
𝑖 exp(𝑠𝑖, 𝑗/𝑇 )

, (4)

where𝑇 is the temperature parameter that controls the smoothness
of the distribution. A higher value of 𝑇 leads to a smoother, more
uniform distribution, while a lower𝑇 sharpens the selection. Fixing
the temperature 𝑇 throughout this process, like Gumbel-Softmax,
may restrict the model’s capability to explore diverse solutions dur-
ing training [21], potentially leading to trapping into local patterns
too early. To address the problem, we adopt an annealing-based
update strategy, where 𝑇 starts from an initial temperature 𝑇0 and
decays exponentially over iterations:

𝑇𝑘 = max(𝛾𝑇𝑘−1, 𝜖). (5)

Here 𝛾 ∈ (0, 1) is the decay factor, and 𝜖 is a small positive constant
that prevents numerical instability as 𝑇 approaches zero. During

1As mentioned in Section 3.3, since the process of selecting the appropriate embedding
from the codebook is non-differentiable, during optimization, the gradient of the
encoder in VQ-VAE is directly copied from the decoder.

early training, a higher 𝑇 promotes exploration of a wide range
of code embeddings, encouraging the model to utilize more codes
and avoid the winner-take-all problem. As training progresses and
𝑇 decreases, the probability of selecting less useful codes reduces,
allowing the model to focus more on the effective ones.

4.3 Hierarchical Codebook Design
In VQ-GAE, individual codebook entries are treated as independent
entities, disregarding the inherent relationships between codebook
embeddings. This often leads to codebook space sparsity, where sim-
ilar features are not sufficiently close in the representation space.
To address the issue, we aim to interconnect codes in the code-
book rather than treat them independently, aligning better with
the characteristics of graph data. Specially, we introduce a second-
layer codebook, which we refer to as a codebook of the codebook, to
establish relationships among the codes.

Let the embedding of the 𝑖-th code in the first-layer codebook be
denoted by e1,𝑖 ∈ {e1,𝑘 }𝑀𝑘=1, where𝑀 is the total number of codes
in the first-layer codebook. The embedding of the 𝑗-th code in the
second-layer codebook is represented by e2, 𝑗 ∈ {e2,𝑘 }𝐶𝑘=1, where
𝐶 < 𝑀 and represents the number of codes in the second-layer
codebook. The optimization objective, similar to k-means clustering
[2], is then defined as:

𝑂 = max
𝐶∑︁
𝑗=1

∑︁
𝑖∈𝑆 𝑗

sim
(
e1,𝑖 , e2, 𝑗

)
, (6)

where 𝑆 𝑗 represents the set of codes e1,𝑖 that are assigned to the
second-layer code e2, 𝑗 . The function sim(e1,𝑖 , e2, 𝑗 ) measures the
similarity between the first-layer code e1,𝑖 and the second-layer
code e2, 𝑗 . The optimization strategy for this training objective is to
simultaneously update both codebook embeddings, encouraging
similar embeddings in the first-layer codebook to cluster closely,
while ensuring that dissimilar embeddings are split farther apart,
thus reducing codebook space sparsity. The detailed optimization
procedure will be discussed in Section 4.5.

4.4 Encoder and Decoder Models
For the encoder, our method allows for the use of various architec-
tures, such as GCN [19], GraphSAGE [10], and GAT [40]. Further,
the decoder is divided into two components: one for reconstructing
node features and the other for reconstructing edges. For node
feature reconstruction, we employ GAT as in [15]. For edge recon-
struction, we adopt a methodology similar to MaskGAE [22], where
a MLP and the dot product between node embeddings are used.
Specifically, we define the structural decoder 𝐷edge as follows:

𝐷edge
(
h𝑖 , h𝑗

)
= Sigmoid

(
MLP

(
h𝑖 ◦ h𝑗

) )
, (7)

where h𝑖 and h𝑗 are node representations for 𝑣𝑖 and 𝑣 𝑗 respectively
from the encoder, and ◦ denotes the vector dot product.

4.5 Training Objective
Our loss function consists of both reconstruction loss and vector
quantization loss (VQ loss). The reconstruction loss has two com-
ponents: node reconstruction loss and edge reconstruction loss. For
node reconstruction, we employ the scaled cosine error [15] to cap-
ture the difference in node features. Unlike VQGraph [45], which

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Hierarchical Vector Quantized Graph Autoencoder with Annealing-Based Code Selection Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

reconstructs the entire adjacency matrix, we use negative sampling
to compute the edge reconstruction loss due to the sparsity of edges.
Specifically, the loss can be formulated as:

LNodeRec =
1
𝑁

𝑁∑︁
𝑖=1

(
1 −

x𝑇
𝑖
x̂𝑖

∥x𝑖 ∥ ∥x̂𝑖 ∥

)𝜆
, where x̂𝑖 = 𝐷node (e1,𝑖 ),

LEdgeRec = − 1
|E+ |

∑︁
(𝑣𝑖 ,𝑣𝑗 ) ∈E+

log𝐷edge
(
h𝑖 , h𝑗

)
− 1

|E− |
∑︁

(𝑣𝑖′ ,𝑣𝑗 ′ ) ∈E−
log

(
1 − 𝐷edge

(
h𝑖′ , h𝑗 ′

) )
,

(8)
where𝑁 is the total number of nodes in the graph, and x̂𝑖 represents
the reconstructed feature vector, obtained by decoding the code
embedding e1,𝑖 from the first-layer codebook through the node
decoder 𝐷node. The scaling factor 𝜆 controls the sensitivity of the
node reconstruction loss to feature discrepancies. E+ refers to the
set of observed (positive) edges in the graph, while E− represents a
set of negative edges generated through negative sampling [22, 26].
The structural decoder is parameterized denoted as 𝐷edge (·).

In addition to the reconstruction loss, the VQ loss comprises two
components corresponding to the two layers of codebooks used in
the vector quantization process:

Lvq1 =
1
𝑁

𝑁∑︁
𝑖=1

(

sg [
e1,𝑖

]
− h𝑖



2
2 +



sg [h𝑖 ] − e1,𝑖


2
2

)
,

Lvq2 =
1
𝑁

𝑁∑︁
𝑖=1

(

sg [
e2,𝑖

]
− e1,𝑖



2
2 +



sg [
e1,𝑖

]
− e2,𝑖



2
2

)
,

(9)

where e1,𝑖 is the code embedding obtained by querying the first-
layer codebookwith the latent representation h𝑖 , and e2,𝑖 is obtained
by querying the second-layer codebookwith e1,𝑖 . The operator sg[·]
denotes the stop-gradient operation. The terms Lvq1 and Lvq2
represent the vector quantization losses for the first and second
layers, respectively. Finally, the total loss function is given as:

L = LNodeRec + LEdgeRec + 𝛼Lvq1 + 𝛽Lvq2, (10)

where 𝛼 and 𝛽 are the scaling factors that control the relative contri-
butions of the VQ losses for the first and second layers, respectively.

Complexity Analysis. Assume a model depth of 𝐿, a codebook
size of 𝐾 , feature dimensions of 𝑑 , and the numbers of nodes and
edges denoted by |V| and |E |, respectively. The time complexity
and space complexity for the encoder are 𝑂 (𝐿𝑑2 |V| + 𝐿𝑑 |E |) and
𝑂 (𝐿𝑑2 + 𝐿𝑑 |V| + |E|) respectively, which are the same as those
for the node decoder. The time complexity and space complexity
for the edge decoder are 𝑂 (𝐿𝑑2 |E |) and 𝑂 (𝑑 |E |). For the vector
quantization component, the time complexity and space complexity
are 𝑂 (𝐾𝑑2 |V|) and 𝑂 (𝑑 |V| + 𝐾𝑑). Therefore, the total time com-
plexity and space complexity are 𝑂

(
(𝐾 + 𝐿)𝑑2 |V| + 𝐿𝑑2 |E |

)
and

𝑂
(
(𝐾 + 𝐿)𝑑2 + 𝑑 |E | + 𝐿𝑑 |V|

)
respectively. Thus, when parameters

are fixed, the complexity is linear to the number of nodes and edges,
enabling the model to scale effectively to larger datasets. To further
facilitate scalability, we adopted the sampling strategy used in [10]
for large graph datasets. This strategy divides the graph into multi-
ple batches for training, ensuring that the model can handle larger
datasets efficiently.

5 EXPERIMENTS
5.1 Experimental Settings

Datasets. We evaluate HQA-GAE on eight undirected and un-
weighted graph datasets, including citation networks: Cora, Cite-
Seer, PubMed [33]; co-purchase networks: Computers, Photo [34];
co-author networks: CS, Physics [34]; and an OGB network: ogbn-
arxiv [16]. These datasets present distinct structural characteris-
tics and feature distributions, providing a robust evaluation of our
model’s generalization.

Baselines. We compare HQA-GAE against two major categories
of self-supervised graph learning approaches: (i) contrastive learn-
ing methods, including DGI [50], GRACE [50], GIC [25], GCA [51],
MVGRL [13], and BGRL [37]; (ii) autoencoding-based methods, in-
cluding GAE [20], VGAE [20], SeeGera [23], ARGA [27], AGVGA
[27], GraphMAE [15], GraphMAE2 [14], MaskGAE [22], S2GAE
[36], and Bandana [49].

Reproducibility. All results are reported as the mean and stan-
dard deviation over 10 independent runs. Further details on dataset
statistics, runtime environments, hyperparameter configurations,
and baseline result sources are provided in Appendix A.

5.2 Link Prediction
Link prediction is a common downstream task in graph SSL, aiming
to predict the existence or likelihood of edges between node pairs.
We adopt a dot-product probing approach as Bandana [49], where
the dot-product operator 𝑝edge = 𝜎 (hh⊤) is applied to estimate
edge probabilities. This form can be integrated with any graph SSL
method without requiring an additional edge prediction model.

Table 1 presents the Area Under the ROC Curve (AUC) and Av-
erage Precision (AP) scores, showing that HQA-GAE surpasses all
baselines across both metrics. Notably, on the Photo and Comput-
ers datasets, HQA-GAE exhibits nearly 20% higher performance
compared to S2GAE and MaskGAE. We attribute this superior-
ity to our use of vector quantization, which effectively compresses
information, enabling more precise and robust modeling of relation-
ships. In contrast, some autoencoder-based baselines may struggle
with optimizing overly complex representation patterns, making
them more prone to overfitting. Additionally, when comparing
HQA-GAE to contrastive-based baselines, the absence of explicit
topological learning objectives may limit their effectiveness. By
leveraging a reconstruction loss that incorporates both node fea-
tures and edge connections, our method fully captures the graph
structural information, resulting in more distinct representations.

5.3 Node Classification
For the node classification task, we utilize the Support Vector Ma-
chine (SVM) on the learned node representations to predict labels.
Instead of relying on a fixed public split, we adopt a 5-fold cross-
validation approach, as followed in S2GAE [49]. This choice is
motivated by our observation that different data splits can lead to
significantly varying results, introducing high randomness2.

2In experiments with MaskGAE and Bandana, we find that results from a single public
split are notably affected by software versions, CUDA environments, and random
seeds, which compromises reproducibility.
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Table 1: AUC (%) and AP (%) scores for link prediction across various methods. The best results for each dataset are highlighted
in bold. “-” denotes unavailable results due to out-of-memory error.

Type Method Metric Cora CiteSeer PubMed Photo Computers CS Physics Avg. Rank

Contrastive
Learning

DGI AUC 82.60 ± 1.51 73.36 ± 3.10 78.24 ± 1.50 84.30 ± 0.58 85.18 ± 0.67 89.53 ± 0.42 89.38 ± 0.64 12.64AP 85.80 ± 1.39 80.89 ± 2.04 84.46 ± 0.57 81.50 ± 1.06 82.14 ± 1.23 89.63 ± 0.38 88.72 ± 0.50

GIC AUC 91.81 ± 0.59 94.34 ± 0.74 91.89 ± 0.36 92.07 ± 0.37 82.87 ± 4.23 91.94 ± 0.57 91.44 ± 0.34 9.50AP 91.60 ± 0.54 94.08 ± 0.87 91.30 ± 0.39 91.06 ± 0.44 83.43 ± 2.81 90.70 ± 0.90 90.43 ± 0.50

GRACE AUC 81.80 ± 0.45 84.78 ± 0.38 93.11 ± 0.37 88.64 ± 1.17 89.97 ± 0.25 87.67 ± 0.10 - 11.00AP 82.02 ± 0.50 82.85 ± 0.36 92.88 ± 0.30 83.85 ± 4.15 92.15 ± 0.43 94.87 ± 0.02 -

GCA AUC 81.91 ± 0.76 84.72 ± 0.28 94.33 ± 0.67 89.61 ± 1.46 90.67 ± 0.30 88.05 ± 0.00 - 10.50AP 80.51 ± 0.71 81.57 ± 0.22 93.13 ± 0.62 86.53 ± 3.00 90.50 ± 0.63 94.94 ± 0.37 -

MVGRL AUC 91.10 ± 1.24 92.41 ± 1.66 93.40 ± 1.64 77.13 ± 3.28 87.25 ± 1.32 92.56 ± 0.61 91.77 ± 0.22 9.93AP 91.51 ± 1.31 93.59 ± 1.48 93.22 ± 1.55 69.83 ± 3.42 84.41 ± 1.75 91.43 ± 0.88 90.64 ± 0.30

BGRL AUC 93.79 ± 0.79 91.36 ± 1.06 95.93 ± 0.93 74.97 ± 6.86 91.43 ± 5.61 75.28 ± 1.51 75.14 ± 0.94 12.00AP 89.85 ± 1.47 85.44 ± 1.53 94.04 ± 2.13 67.22 ± 5.86 87.68 ± 8.62 66.97 ± 1.37 66.83 ± 0.85

Autoencoding

GAE AUC 94.66 ± 0.26 95.19 ± 0.45 94.58 ± 1.12 71.45 ± 0.95 70.99 ± 1.03 93.78 ± 0.36 88.88 ± 1.11 10.43AP 94.22 ± 0.39 95.70 ± 0.31 94.26 ± 1.65 65.99 ± 0.96 67.88 ± 0.82 89.87 ± 0.59 82.45 ± 1.59

ARGA AUC 94.76 ± 0.18 95.68 ± 0.35 94.12 ± 0.08 85.42 ± 0.79 67.09 ± 3.93 95.49 ± 0.17 90.70 ± 1.08 8.14AP 94.93 ± 0.20 96.34 ± 0.25 94.19 ± 0.08 80.58 ± 1.40 62.53 ± 3.17 92.56 ± 0.33 89.37 ± 1.16

VGAE AUC 91.24 ± 0.48 94.55 ± 0.48 95.46 ± 0.04 95.61 ± 0.05 92.69 ± 0.03 87.34 ± 0.43 89.27 ± 0.83 8.14AP 92.27 ± 0.43 95.34 ± 0.37 94.29 ± 0.07 94.63 ± 0.06 88.27 ± 0.08 80.24 ± 0.55 82.79 ± 1.14

ARVGA AUC 91.35 ± 0.87 94.47 ± 0.33 96.17 ± 0.21 95.44 ± 0.14 92.38 ± 0.15 87.39 ± 0.37 88.96 ± 0.96 8.29AP 91.98 ± 0.85 95.21 ± 0.33 94.81 ± 0.41 94.49 ± 0.12 88.49 ± 0.33 80.31 ± 0.49 82.38 ± 1.31

SeeGera AUC 95.49 ± 0.70 94.61 ± 1.05 95.19 ± 3.94 95.25 ± 1.19 96.53 ± 0.16 95.73 ± 0.70 - 4.50AP 95.90 ± 0.64 96.40 ± 0.89 94.60 ± 4.17 94.04 ± 1.18 96.33 ± 0.16 93.17 ± 0.53 -

GraphMAE AUC 93.02 ± 0.53 95.21 ± 0.47 87.54 ± 1.06 75.08 ± 1.24 71.27 ± 0.89 92.45 ± 4.18 85.03 ± 7.16 11.86AP 91.40 ± 0.59 94.42 ± 0.67 86.93 ± 1.01 70.04 ± 1.12 66.84 ± 1.10 91.67 ± 4.17 82.46 ± 9.33

GraphMAE2 AUC 93.26 ± 1.00 95.26 ± 0.14 90.85 ± 0.91 73.03 ± 2.24 72.20 ± 2.09 94.57 ± 0.32 94.56 ± 0.81 9.71AP 91.65 ± 0.98 94.36 ± 0.20 90.37 ± 0.92 68.77 ± 1.50 67.97 ± 1.52 92.76 ± 0.54 93.86 ± 1.09

S2GAE AUC 89.27 ± 0.33 86.35 ± 0.42 89.53 ± 0.23 86.80 ± 2.85 84.16 ± 4.82 86.60 ± 1.06 88.92 ± 1.24 12.65AP 89.78 ± 0.22 87.38 ± 0.29 88.68 ± 0.33 80.56 ± 3.74 78.13 ± 6.58 82.93 ± 1.63 88.20 ± 1.34

MaskGAE AUC 95.66 ± 0.16 97.21 ± 0.17 97.19 ± 0.18 81.12 ± 0.45 76.23 ± 3.13 92.41 ± 0.44 91.94 ± 0.37 7.43AP 94.65 ± 0.24 97.02 ± 0.32 96.69 ± 0.19 77.11 ± 0.40 71.71 ± 2.90 87.16 ± 0.69 86.33 ± 0.55

Bandana AUC 95.71 ± 0.12 96.89 ± 0.21 97.26 ± 0.16 97.24 ± 0.11 97.33 ± 0.06 97.42 ± 0.08 97.02 ± 0.04 2.14AP 95.25 ± 0.16 97.16 ± 0.17 96.74 ± 0.38 96.79 ± 0.15 96.91 ± 0.09 97.09 ± 0.15 96.67 ± 0.05

HQA-GAE AUC 96.02 ± 0.11 97.41 ± 0.48 97.87 ± 0.08 97.91 ± 0.16 97.60 ± 0.20 97.76 ± 0.10 98.37 ± 0.06 1.00AP 96.45 ± 0.16 97.65 ± 0.61 97.40 ± 0.11 97.42 ± 0.20 97.18 ± 0.25 97.64 ± 0.15 98.22 ± 0.08

Table 2 shows that HQA-GAE achieves superior node classifica-
tion performance, outperforming baselines on 6 out of 8 datasets,
demonstrating its strong generalization capability across various
graph structures and domain-specific features. Even on more com-
plex or large-scale datasets like CS and ogbn-arxiv, where our
method positions as the runner-up, it still maintains strong com-
petitiveness, further highlighting its robustness and adaptability in
various graph learning tasks.

5.4 Analysis of Core Designs
We investigate the impact of the annealing-based code selection on
codebook utilization and its efficacy on downstream tasks. Addition-
ally, we examine how the integration of the hierarchical codebook
influences the quality of node representations.

5.4.1 Effects of Annealing-Based Code Selection. We propose this
selection strategy to mitigate codebook underutilization problem
caused by the argmax-based lookup function. The decayed temper-
ature parameter shifts the code selection distribution from smooth
to sharp, with the rate of this change controlled by the decay factor
𝛾 . Therefore, we vary the decay factor across {0, 0.3, 0.6, 0.9, 0.99,
0.999, 0.9999}, tracking its codebook utilization and node classifica-
tion performance on three datasets. Note that a decay factor of 0
corresponds to using the conventional argmax selection without
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Figure 3: The effect of annealing-based code selection.

annealing. As shown in Figure 3(a), codebook utilization increases
as the decay factor rises, eventually reaching saturation. This is
expected, as a higher decay factor slows the annealing process, al-
lowing for more exploration and leading to a more diverse use of the
codebook space. For node classification performance, as depicted in
Figure 3(b), it follows a similar upward trend, peaking around a de-
cay factor of 0.9 before declining. This suggests that an appropriate
codebook utilization, driven by the decay rate, alleviates selection
bias and enhances downstream performance, whereas an overly
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Table 2: Accuracy (%) for node classification across various methods. The best result for each dataset is highlighted in bold. “-”
denotes unavailable results due to out-of-memory error.

Type Method Cora CiteSeer PubMed Computers Photo CS Physics ogbn-arxiv Avg. Rank

Contrastive
Learning

DGI 85.41 ± 0.34 74.51 ± 0.51 85.95 ± 0.66 84.68 ± 0.39 91.57 ± 0.25 92.77 ± 0.38 94.55 ± 0.13 67.08 ± 0.43 10.60
GIC 87.70 ± 0.01 76.39 ± 0.02 85.99 ± 0.13 82.50 ± 0.22 90.65 ± 0.47 91.33 ± 0.30 93.49 ± 0.42 64.00 ± 0.22 9.88

GRACE 86.54 ± 1.50 73.85 ± 1.73 86.91 ± 0.81 80.75 ± 0.88 91.68 ± 0.93 92.72 ± 0.35 95.96 ± 0.13 - 8.86
GCA 84.19 ± 1.85 73.81 ± 1.63 86.99 ± 0.68 88.28 ± 0.82 93.08 ± 1.24 93.66 ± 0.43 95.83 ± 0.16 - 7.57

MVGRL 85.86 ± 0.15 73.18 ± 0.22 84.86 ± 0.31 88.70 ± 0.24 92.15 ± 0.20 92.87 ± 0.13 95.35 ± 0.08 68.33 ± 0.32 9.50
BGRL 86.16 ± 0.20 73.96 ± 0.14 86.42 ± 0.18 90.48 ± 0.10 93.22 ± 0.15 93.35 ± 0.06 96.16 ± 0.09 71.77 ± 0.19 6.38

Autoencoding

GAE 81.81 ± 1.72 59.34 ± 4.75 83.30 ± 0.77 88.64 ± 0.80 92.59 ± 0.85 85.54 ± 2.59 93.93 ± 0.83 - 13.10
ARGA 80.76 ± 1.52 66.76 ± 1.64 79.88 ± 0.58 80.19 ± 0.96 88.76 ± 0.70 91.86 ± 0.50 95.03 ± 0.16 58.13 ± 0.78 14.10
VGAE 83.48 ± 1.55 67.56 ± 2.03 81.34 ± 0.97 90.35 ± 0.75 93.28 ± 0.76 83.96 ± 1.75 94.90 ± 0.58 - 12.10
ARVGA 85.86 ± 0.72 73.10 ± 0.86 81.85 ± 1.01 83.36 ± 0.43 86.55 ± 0.31 84.68 ± 0.26 92.89 ± 0.11 50.06 ± 1.21 13.80
SeeGera 87.70 ± 1.13 75.82 ± 1.67 85.36 ± 0.69 87.95 ± 1.39 91.88 ± 0.53 94.69 ± 0.21 88.25 ± 2.58 - 8.14

GraphMAE 85.45 ± 0.40 72.48 ± 0.77 85.74 ± 0.14 88.04 ± 0.61 92.73 ± 0.17 93.47 ± 0.04 96.13 ± 0.03 71.86 ± 0.00 8.63
GraphMAE2 86.25 ± 0.78 74.68 ± 1.88 86.94 ± 1.49 74.48 ± 0.66 85.88 ± 0.51 90.59 ± 0.60 86.30 ± 0.15 72.46 ± 0.28 10.60

S2GAE 86.15 ± 0.25 74.60 ± 0.06 86.91 ± 0.28 90.94 ± 0.08 93.61 ± 0.10 91.70 ± 0.08 95.82 ± 0.03 72.02 ± 0.05 6.25
MaskGAE 87.31 ± 0.05 75.20 ± 0.07 86.56 ± 0.26 90.52 ± 0.04 93.33 ± 0.14 92.31 ± 0.05 95.79 ± 0.02 70.99 ± 0.12 6.13
Bandana 88.59 ± 1.35 74.85 ± 1.51 88.16 ± 0.57 91.52 ± 0.83 93.64 ± 0.83 93.57 ± 0.12 96.48 ± 0.12 73.87 ± 0.18 2.50
HQA-GAE 88.78 ± 1.03 76.76 ± 1.24 88.49 ± 0.53 91.79 ± 0.88 93.84 ± 0.75 94.25 ± 0.28 96.81 ± 0.23 72.93 ± 0.65 1.25

Table 3: Comparison of hierarchical codebook and single-
layer codebook on node clustering.

Dataset 2-layer Codebook 1-layer Codebook
NMI ARI SC NMI ARI SC

Cora 0.544 0.501 0.189 0.529 0.442 0.184
CiteSeer 0.423 0.423 0.130 0.418 0.415 0.079
Pubmed 0.271 0.254 0.263 0.268 0.258 0.260

Computers 0.435 0.257 0.120 0.422 0.256 0.113
Photo 0.620 0.529 0.338 0.603 0.505 0.305
CS 0.734 0.612 0.257 0.722 0.571 0.253

Physics 0.642 0.607 0.177 0.642 0.587 0.180

high decay factor introduces excessive randomness, disrupting the
convergence of the code embedding space.

5.4.2 Role of the Hierarchical Codebook. Our hierarchical code-
book design aims to promote the correlation between codes, reflect-
ing the interconnected nature of nodes in graph data. To evaluate
its effectiveness, we compare the clustering capability of the hi-
erarchical (two-layer) codebook against a single-layer codebook
on seven datasets. Specifically, node representations learned from
both codebook designs are subjected to k-means clustering [2, 11],
and clustering quality is measured by Normalized Mutual Infor-
mation (NMI) [32], Adjusted Rand Index (ARI) [29], and Silhouette
Coefficient (SC) [31]. Table 3 shows that our hierarchical codebook
generally outperforms the single-layer version, demonstrating su-
perior clustering performance. This indicates that the hierarchical
structure brings similar nodes closer together while increasing the
separation between dissimilar ones, providing a more informative
representation foundation for downstream tasks.

We further visualize the embeddings from both layers of the hi-
erarchical codebook, along with the node representations from the
encoder using t-SNE [39] in Figure 4. We observe that the second-
level codes serve as cluster centers for the first-level ones, and the
node representations from different classes are more clearly sepa-
rated after training. This highlights that the hierarchical codebook’s
ability to learn expressive representations.

1st level code 2nd level code Node representation

Figure 4: Visualization of node representations and codebook
embeddings on CiteSeer by t-SNE.
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Figure 5: Comparison of performance, model size, and pre-
training time for link prediction on the Physics dataset. Each
point’s size represents the model size.

5.5 Efficiency Analysis
To evaluate the balance between performance, model size (num-
ber of parameters), and pre-training time, we compare the top six
performing models for link prediction on the Physics dataset. As
illustrated in Figure 5, HQA-GAE achieves the highest performance
while maintaining a relatively small size compared to competitors.
In terms of pre-training time, although GraphMAE2 and MaskGAE
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train faster, GraphMAE2 has more than twice the number of param-
eters as ourmodel, whileMaskGAE lags behind ours in performance
by nearly 10%. These results demonstrate that HQA-GAE strikes a
balance between performance, model size, and runtime, offering an
efficient solution without compromising effectiveness.

5.6 Sensitivity Analysis
5.6.1 Codebook size. The size of the codebooks in both layers de-
termines the exploration space for code embeddings, thus affecting
the quality of node representations.

For the first-layer codebook, we vary its size from 21 to 212 across
three datasets for node classification. As shown in Figure 6, perfor-
mance generally improves with increasing codebook size until it
stabilizes. Datasets with more node types, like Cora and CiteSeer, re-
quire a larger codebook size (28) for optimal performance, whereas
PubMed only requires 24. This indicates that larger codebook sizes
provide sufficient embedding space to accommodate nodes with
greater label diversity, whereas datasets with fewer node types
necessitate less space.

For the second-layer codebook, we fix the first-layer codebook
size at 210 and vary the second-layer size from 21 to 28 for cluster-
ing tasks. K-means is applied to the learned node representations,
with performance measured by NMI, ARI, and SC. As shown in
Figure 7, performance drops when the codebook size is smaller than
the number of classes in the dataset, as nodes with different labels
are forced to share the same code embedding, disrupting the inde-
pendence of representations between classes. As the size becomes
excessively large, although unnecessary, it does not significantly
impair performance.

5.6.2 Scaling factors 𝛼 and 𝛽 . 𝛼 and 𝛽 control the contributions
of the VQ losses for the first and second layers, respectively. We
conduct node classification experiments by varying 𝛼 in {0, 0.5, 1.0,
1.5, 2.0} and 𝛽 in {0, 0.001, 0.01, 0.1, 1.0}. As shown in Figure 8, the
optimal 𝛼 value is 1, which is used across all datasets, indicating that
the reconstruction loss and the first VQ loss hold similar importance.
For 𝛽 , node classification performance remains nearly unchanged
across different values. Nevertheless, in clustering tasks, as shown
in Figure 9, relatively small 𝛽 values (0.001, 0.01, 0.1) significantly
improve clustering performance, since the second-layer codebook
mitigates codebook space sparsity and enhances the quality of node
representations.

Due to space limitations, we relocate the discussion on the impact
of encoder design to Appendix B.

6 CONCLUSION
In this work, we investigate the potential of self-supervised learning
with VQ-VAE applied to graph data and observe the unique advan-
tages of vector quantization in effectively enhancing the model’s
ability to capture graph topology in representation learning. To
better adapt VQ-VAE to graph data, we propose HQA-GAE, which
employs an annealed-based code selection design to alleviate the
issue of codebook space underutilization, thereby improving its
generalization to diverse data distributions. Moreover, we introduce
a hierarchical codebook mechanism to address the problem of code-
book space sparsity, ensuring that similar embeddings are closer
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Figure 9: The effect of 𝛽 on clustering task.

in the representation space and exhibit improved clustering prop-
erties. Our extensive experiments and analyses demonstrate that
HQA-GAE significantly outperforms all competitors on the link pre-
diction and shows comparable performance in node classification,
emphasizing the effectiveness and robutness of HQA-GAE.
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A MORE CONFIGURATIONS
In this section, we provide a detailed description of our experimen-
tal setup, including the dataset statistics, hardware and software
environments, and hyperparameter configurations used in the ex-
periments.

A.1 Data Statistics

Table 4: Dataset statistics

Dataset #nodes #edges #features #classes

Cara 2,708 10,556 1,433 7
CitrSeer 3,327 9,104 3,703 6
PubMed 19,717 88,648 500 3
Photo 7,487 119,043 745 8

Cumputers 13,381 245,778 767 10
CS 18,333 81,894 6,805 15

Physics 34,493 247,962 8,415 5
ogbn-arxiv 169,343 2,315,598 128 40

We use a total of 8 undirected and unweighted graph datasets, in-
cluding citation networks: Cora, CiteSeer, PubMed [33]; co-purchase
networks: Computers, Photo [34]; co-author networks: CS, Physics
[34]; and an OGB network: ogbn-arxiv [16]. Please refer to Table 4
for detailed statistics of these datasets.

A.2 Hardware and Software Environments
HQA-GAE is built upon PyTorch [28] 2.3.0 and PyTorch Geometric
(PyG) [8] 2.5.3. The latter provides all 7 datasets used throughout
our experiments except ogbn-arxiv, which is from the OGB 1.3.6
package [16]. All experiments are conducted on an 80GB NVIDIA
A800 GPU with CUDA 12.1.

A.3 Baselines
In the case of link prediction, the results for GRACE [50], GCA [51],
GraphMAE [15], GraphMAE2 [14], GAE [20], VGAE [20], ARGA
[27], AGVGA [27], MaskGAE [22], S2GAE [36], and Bandana are
taken from Bandana [49]. Specifically, MaskGAE includes results
for two variants, MaskGAE-edge and MaskGAE-path. We report
the best-performing variant for comparison. For methods with-
out published results, such as DGI [50] and GIC [25], we conduct
experiments using the same evaluation setup.

Regarding node classification, the results for DGI [50], GIC [25],
MVGRL [13], BGRL [37], ARVGA [27], GraphMAE [15], MaskGAE
[22], and S2GAE [49] are obtained from the S2GAE paper. For
methods not covered in that work, such as VGAE [20] and SeeGera
[23], we conduct our own experiments using the same settings to
obtain their results.

A.4 Hyperparameter Settings
We use a GCN model with the dropout rate of 0.2 across all datasets
and experiments in practice. Note that the encoder in HQA-GAE can
be implemented by any GNN, we conduct an experiment to analyze
the effect of different encoder models, as detailed in Appendix B.
For optimization, we use the Adam optimizer with a learning rate of

Table 5: Impact of encoder design on representations

Readout Model Cora CiteSeer PubMed

Concat

GCN 88.62 ± 1.51 76.84 ± 1.65 88.26 ± 0.68
GAT 88.34 ± 1.07 76.42 ± 1.52 87.07 ± 0.66
SAGE 88.34 ± 1.46 76.85 ± 1.83 87.36 ± 0.61
GIN 87.31 ± 1.62 76.55 ± 1.61 87.11 ± 0.68

Last

GCN 88.29 ± 1.18 76.21 ± 1.57 87.26 ± 0.67
GAT 88.20 ± 1.25 75.39 ± 1.57 85.93 ± 0.66
SAGE 88.00 ± 1.08 75.88 ± 1.65 85.81 ± 0.52
GIN 86.34 ± 1.54 75.02 ± 2.28 85.37 ± 0.75

1e-2, except for the ogbn-arxiv dataset, where the learning rate is set
to 1e-5. The edge decoder is a 2-layer MLP with a hidden size of 32.
For all datasets, the scaling factor of Lvq1 is set to 1. The annealing
code selection strategy is applied only to the first-layer codebook,
as the second-layer codebook already achieves sufficiently high
utilization. The remaining hyperparameter settings are detailed in
Table 6.

B IMPACT OF ENCODER DESIGN
We examine how the architecture of the encode influences the
quality of representations.

We employ various encoders, including GCN, GAT, GraphSAGE,
and GIN, across the Cora, PubMed, and CiteSeer datasets. Each
encoder’s output strategy is assessed by concatenating represen-
tations from all intermediate layers versus utilizing only the final
layer’s representation. The results are summarized in Table 5. We
observe that the concatenation strategy consistently outperformed
the final-layer-only strategy, likely due to the richer semantic in-
formation encapsulated in the concatenated representation, which
alleviates the oversmoothing problem associated with GNNs. Fur-
thermore, the choice of GNN as the encoder significantly influences
the results, with GCN generally demonstrating superior represen-
tation capabilities.
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Table 6: Detailed hyperparameters of HQA-GAE.

Dataset Cora CiteSeer PubMed Photo Computers CS Physics ogbn-arxiv

Hidden size 512 256 256 256 256 64 256 1024
Embedding size 256 128 256 128 256 64 128 512
Number of layers 2 2 2 2 2 2 2 3
VQ-2 loss factor 𝛽 0.1 0.1 0.01 0.01 0.01 0.01 0.01 0.01
Initial temperature 𝑇0 1 1 0.1 0.1 0.1 0.1 0.1 1
Decay factor 𝛾 0.9 0.9 0.9 0.9 0.3 0.3 0.3 0.99
The 1st layer codebok size 256 256 256 128 128 512 128 2048
The 2nd layer codebok size 16 32 8 16 16 64 32 128
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