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Abstract

The goal of meta-learning is to learn to adapt001
to a new task with only a few labeled examples.002
Inspired by the recent progress in large lan-003
guage models, we propose in-context tuning004
(ICT), which recasts task adaptation and pre-005
diction as a simple sequence prediction prob-006
lem: to form the input sequence, we concate-007
nate the task instruction, labeled in-context ex-008
amples, and the target input to predict; to meta-009
train the model to learn from in-context ex-010
amples, we fine-tune a pre-trained language011
model (LM) to predict the target label given012
the input sequence on a collection of tasks.013

We benchmark our method on two collections014
of text classification tasks: LAMA and Bina-015
ryClfs. Compared to MAML which adapts the016
model through gradient descent, our method017
leverages the inductive bias of pre-trained018
LMs to perform pattern matching, and out-019
performs MAML by an absolute 6% average020
AUC-ROC score on BinaryClfs, gaining more021
advantage with increasing model size. Com-022
pared to non-fine-tuned in-context learning023
(i.e. prompting a raw LM), in-context tuning024
meta-trains the model to learn from in-context025
examples. On BinaryClfs, ICT improves the026
average AUC-ROC score by an absolute 10%,027
and reduces the variance due to example order-028
ing by 6x and example choices by 2x.029

1 Introduction030

Few-shot learning (FSL) refers to a system’s ability031

to quickly adapt to new tasks when very few labeled032

examples are available for training. FSL is a key033

feature of human learning (Lake et al., 2016), but034

current machine learning systems often rely on035

large amounts of labeled training data (Silver et al.,036

2016; He et al., 2016; Adiwardana et al., 2020).037

Recently, prompting large pre-trained language038

models (LMs) for FSL has achieved remarkable039

progress (Brown et al., 2020; Schick and Schütze,040

2021a). LM prompting with in-context learning041

reduces the “task learning and predict” process to 042

a simple sequence prediction problem. To perform 043

a new task, Brown et al. (2020) prompt a raw LM 044

(i.e., a pre-trained LM not fine-tuned on any labeled 045

data) with the concatenation of the task instruction, 046

some input-output examples, and the target input 047

to be predicted on; then they extract the answer 048

from the LM’s continuation of the concatenated 049

sequence (Figure 1 left). For example, to coax the 050

model into performing sentiment classification on 051

the target input “This movie is a waste of time”, we 052

prompt the LM with the sequence “I like the movie! 053

Positive review? Yes. Horrible Movie! Positive 054

review? No. This movie is a waste of time. Positive 055

review? ___”, and predict “positive” if the next 056

word is more likely to be “Yes” rather than “No”. 057

However, raw LMs are not optimized for in- 058

context FSL during pre-training, and exhibit unde- 059

sirable behavior when used for FSL. For example, 060

Zhao et al. (2021) observed that LMs suffer from 061

the “recency bias”, which assigns higher probabil- 062

ity to labels that appear closer to the target input. 063

As a result, the accuracy becomes extremely sen- 064

sitive to the ordering of the in-context examples. 065

Previous work has also shown that prompting raw 066

LMs is often oversensitive to example choices and 067

instruction wording (Schick and Schütze, 2021a; 068

Jiang et al., 2020; Gao et al., 2021; Liu et al., 2021). 069

We address this weakness through a meta- 070

learning lens and directly fine-tune the LM for 071

FSL. Under the meta-learning framework, we meta- 072

train a model to learn to adapt to new tasks from a 073

few examples on a wide range of tasks, so that it 074

learns to leverage the few-shot examples to adapt 075

to new tasks at test time. Since LM prompting 076

already reduces the “task learning and predict” pro- 077

cess to a simple sequence prediction problem, we 078

meta-train a LM by directly fine-tuning it to op- 079

timize for this sequence prediction problem on a 080

wide range of tasks (Figure 1 left). Since we fine- 081

tune our model to learn in-context learning, we 082
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Instruction x1 y1 x’ Y’x2 y2

Meta-Update via 
Gradient Descent

In-Context Tuning 

θ := θ−Δ
Few-shot Adaptation via 

In-context Learning

MAML  

y1x1Instruction

y2x2Instruction

θ′ := θ−Δ
y'x’Instruction

Calculate loss
with θ′ 

Meta-Update: Optimize     to 
minimize the loss.

θFew-shot Adaptation 
via Gradient Descent

Instruction: “Is the comment positive?”
x1: “Good movie!” y1: “yes”
x2: “Bad  movie!”  y2: “no”

Figure 1: MAML (right): MAML aims to learn a task-agnostic model initialization θ that can adapt fast to new
tasks. To adapt the model initialization to a new task T̃ , a task-specific model θ′ initialized with θ is updated
with gradient descent using task examples from T̃ . Meta-training of MAML involves bi-level optimization, where
the inner optimization learns a task-specific model θ′ using task examples from T̃ , and the outer optimization
learns a meta-initialization θ to minimize few-shot prediction loss of θ′ on task T̃ . In-context Tuning (ours)
(left): our approach adapts to new tasks via in-context learning, and learns a single model θ shared across all tasks
that is directly optimized with the FSL objective (Section 2.2). Because model parameters are frozen during task
adaptation, our approach does not involve bi-level optimization during meta-training.

call our approach in-context tuning (ICT). Unlike083

optimization-based meta learning approaches such084

as MAML (Finn et al., 2017), in-context tuning085

adapts to new tasks through in-context learning086

where model parameters are frozen, thus it avoids087

the challenging nested optimization problem in088

MAML (Figure 1).089

We benchmark our algorithm on LAMA (Petroni090

et al., 2019), a dataset for testing models’ factual091

knowledge, and BinaryClfs (Zhong et al., 2021),092

a wide range of binary classification tasks each093

annotated with a few language descriptions of the094

task. Compared to prompting raw LMs, in-context095

tuning improves performance by 7.6 Precision@1096

points on LAMA and 10.6% AUC-ROC score on097

BinaryClfs. In addition, in-context tuning mitigates098

the over-sensitivity of raw LM prompting, signifi-099

cantly reducing the variance of the performance100

with respect to example ordering (by 68% on101

LAMA and 83% on BinaryClfs), example choices102

(by 56% on LAMA and 40% on BinaryClfs), and103

instruction wording (by 19% on LAMA).104

Our approach also out-performs MAML, which105

adapts the model by gradient descent on a few ex-106

amples and learns an initialization that can adapt107

to a new task through a few gradient steps (Finn108

et al., 2017; Nichol et al., 2018). Since our ap-109

proach better takes advantage of the inductive bias110

of LMs to extrapolate from in-context examples,111

our approach out-performs first-order MAML by112

2.8 points on LAMA and 5.1 points on BinaryClfs,113

with increasing advantage as models become larger.114

Given the empirical effectiveness of in-context 115

tuning (Section 4.1), we conjecture that the few- 116

shot learning potential of large LMs (e.g., GPT-3) 117

may be broadly underestimated if prompted with- 118

out any direct optimization for FSL. We also con- 119

jecture that in-context tuning can mitigate vari- 120

ous undesirable properties of LM prompting, such 121

as over-sensitivity to example ordering, example 122

choices, and instruction wording (Section 4.2). 123

2 Approach 124

We introduce the problem setup (Section 2.1), de- 125

scribe our in-context tuning algorithm (Section 2.2), 126

compare our algorithm to gradient-based adapta- 127

tion methods (Section 2.3) and other baselines (Sec- 128

tion 2.4). 129

2.1 Problem Setup 130

We focus on the few-shot classification problem, 131

where the model first learns from a set of training 132

tasks T ∈ Ttrain, each associated with its natural 133

language instructions IT and a large amount of 134

task input-output examples DT = {(xiT , yiT )} (see 135

Figure 1 left for examples). At test time, we ask the 136

model to learn a new task T̃ given its instruction 137

and only a few (K) labeled examples, i.e. ST̃ ⊆ 138

DT̃ , |ST̃ | = K. We denote the task input to be 139

predicted at test time as xtarget
T̃

. 140

Note that “task input” is different from “model 141

input”. For example, on the left panel of Figure 1, 142

the task input is “Good movie!” while the model 143

input can be a concatenation of the instruction, task 144
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inputs and task outputs.145

2.2 In-context Tuning Algorithm146

In-context tuning directly optimizes pre-trained147

LMs with the few-shot in-context learning objec-148

tive (Brown et al., 2020): task-agnostic LMs are149

meta-trained to perform few-shot in-context learn-150

ing on a wide variety of training tasks. Similar to151

in-context learning, LMs trained with in-context152

tuning adapt to a new task by using few-shot train-153

ing examples as the input prefix.154

Formally, during meta-training, we build the155

model input by concatenating the task instruction156

IT , task input-output pairs ST ⊆ DT , and the task157

input xtarget
T

1 to be classified. We then fine-tune a158

pre-trained LM to predict ytarget
T and hope that the159

model learns to use the in-context examples ST .160

Here is the few-shot in-context tuning objective L:161

LT (θ) :=
∑

(x
tgt
T ,y

tgt
T )∈DT

[− log pθ(y
tgt
T |x

tgt
T , ST , IT )]

(1)

162

L(θ) :=
∑

T∈Ttrain

LT (θ) (2)163

To adapt to a new task T̃ at test time, we di-164

rectly concatenate the few-shot examples ST̃ with165

the instruction IT̃ and the target task input xtarget
T̃

166

to be classified to form the model input, and ask167

the model to predict its corresponding output. No168

gradient update is performed during adaptation.169

2.3 Gradient-based Task Adaptation170

We compare in-context tuning with two classical171

few-shot learning methods: multi-task fine-tuning172

(instruction tuning + fine-tuning) and MAML. Both173

methods adapt the model parameters to new tasks174

by gradient descent on few-shot examples.175

Instruction Tuning + Fine-tuning (InsT + FT)176

We extend the recent work on zero-shot instruc-177

tion tuning (Wei et al., 2021) to the FSL setting178

as a multi-task fine-tuning baseline. During meta-179

training, the model is optimized to predict the task180

output given the task instruction and the task in-181

put on a wide range of tasks (Zhong et al., 2021).182

Formally, we train the model parameter θ to pre-183

dict yiT given IT ◦ xiT , where θ is shared across all184

tasks and ◦ represents the concatenation operation.185

During the few-shot adaptation phase, the model is186

1We sometimes abbreviate “target” as “tgt” to save space.

presented with a new task T̃ , its natural language 187

instruction IT̃ and a small set of (K) task input- 188

output examples ST̃ = {(xi
T̃
, yi
T̃
)|i ∈ [K]}. We 189

then fine-tune the model to predict the task output 190

yi
T̃

from the new task given IT̃ ◦ x
i
T̃

and update θ 191

with a few gradient steps to get θT̃ . Finally, we use 192

the updated model θT̃ to predict the output from 193

the task input xtarget
T̃

and the instruction IT̃ under 194

the test task T̃ . 195

MAML The few-shot adaptation stage of 196

MAML is the same as instruction tuning + fine- 197

tuning, where we update the model parameters (ini- 198

tialized with θ) by gradient descent on K examples 199

ST̃ . However, during meta-training, MAML aims 200

to learn a task-agnostic model initialization θ such 201

that, θT , which is to be found by initializing with 202

θ and performing gradient descent on ST , would 203

lead to good performance (Finn et al., 2017). 204

Therefore, MAML involves two levels of opti- 205

mization, an inner optimization to learn θT given 206

θ and ST , and an outer optimization to learn θ 207

given θT . Due to the bi-level structure in this op- 208

timization problem, MAML has been found to be 209

empirically unstable, sensitive to hyperparameters, 210

and computationally expensive (Finn et al., 2017; 211

Nikolaev et al., 2020). Even worse, few-shot task 212

adaptation is known to be highly sensitive to opti- 213

mization hyperparameters (Antoniou et al., 2019), 214

while a large labeled validation set for hyperpa- 215

rameter tuning may not be available under a FSL 216

setting (Perez et al., 2021). 217

In comparison, in-context tuning simplifies the 218

two-stage process of (1) few-shot task adaptation 219

and (2) task-specific prediction as one sequence 220

prediction problem, where task-specific examples 221

are concatenated to the model input to provide in- 222

formation about the task. Hence, in-context tun- 223

ing removes the bi-level optimization during meta- 224

training, which can be empirically unstable and 225

expensive. Additionally, since model weights are 226

frozen during task adaptation, it is not sensitive to 227

adaptation hyperparameters. 228

2.4 Other Baselines 229

Raw In-context Learning (Raw IC-L) We di- 230

rectly evaluate a raw LM on a new task using the 231

same evaluation set-up for in-context tuning, with- 232

out fine-tuning the LM on any labeled data. 233

Instruction Tuning (InsT) The model learns to 234

predict the target output only based on the instruc- 235
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Method Adaptation Meta-train
In-context Tuning In-context Few-shot
MAML Gradient Few-shot
InsT None Zero-shot
InsT + FT Gradient Zero-shot
Raw IC-L In-context LM

Table 1: We categorize our approach and the baselines
according to 1) how the few-shot examples (if any) are
used for adaptation, and 2) the meta-training objective.
Ins-T refers to instruction tuning.

tion and the target input. Only the instruction236

is available during the adaptation phase, and this237

setup is also known as zero-shot learning.238

We categorize all approaches in our paper based239

on their meta-training objective and how they use240

task-specific examples in Table 1. In-context tuning241

is the only method that directly optimizes the FSL242

objective without gradient-based adaptation.243

3 Experimental Setup244

3.1 Datasets and Metrics245

We experiment with two meta-datasets that contain246

a wide range of tasks, LAMA and BinaryClfs. Each247

task is associated with several different natural lan-248

guage descriptions, and we call them instructions249

for convenience, even though some of them are250

realized as questions.251

LAMA LAnguage Model Analysis (Petroni252

et al., 2019) is a dataset that tests the factual and253

commonsense knowledge learned by LMs. In our254

experiments, we use the TREx-UHN portion of255

LAMA (Poerner et al., 2020), which consists of256

(subject, relation, object) triples from Wikidata.257

LAMA is an entity prediction task, where a model258

is asked to predict the object entity given the sub-259

ject entity and the relation. In our experiments, we260

treat one relation as a task as in Perez et al. (2021).261

Initial experiments on LAMA showed that LMs262

take significant advantage of “majority label bias”263

(Zhao et al., 2021), where they assign higher prob-264

ability to object entities that have appeared in the265

in-context examples, thus inflating the accuracy. To266

reflect the improvement due to few-shot learning267

rather than this simple heuristic to copy answers,268

for all tasks we prune the LAMA dataset so that all269

object entities appear less than 2.5% of times. Our270

final filtered LAMA dataset consists of 29 relations271

(tasks) and 12k (subject, relation, object) examples.272

We use task instructions from two datasets: 273

LAMA and LPAQA (Jiang et al., 2020). LAMA 274

contains one task instruction for each task, and the 275

auxiliary LPAQA dataset contains on average 10 276

additional instructions for each LAMA task. 277

We use the same evaluation protocol as in 278

Petroni et al. (2019): 1) the object entity is pre- 279

dicted from a pre-defined vocabulary set of 21k 280

words; 2) we compute mean precision at one (P@1) 281

for each task, and report the average across tasks. 282

We report the train-dev-test split in Appendix B. 283

BinaryClfs This dataset contains a wide range 284

of binary classification tasks, and each task can be 285

described by 1-4 “yes/no" questions, which we con- 286

catenate to the input context as instructions. There 287

are in total 204 different tasks, and 73 of them are 288

used for testing, which include sentiment classi- 289

fication, topic classification, definition detection, 290

stance classification, etc. We use the same eval- 291

uation protocol as in Zhong et al. (2021): 1) we 292

group the tasks by similarity and do not allow train- 293

ing tasks to be similar to testing tasks; 2) we treat 294

“Yes” answer as the positive class and calculate the 295

AUC-ROC score for each instruction of each task. 296

To fit model inputs (concatenation of in-context 297

examples and task input to classify) within the max- 298

imum context length (1024) of our LMs, we leave 299

out five evaluation tasks where the maximum task 300

input length exceeds 230 BPE tokens. We also 301

leave out the spam classification task due to its 302

small test set. BinaryClfs does not come with an 303

official validation set. To perform hyperparameter 304

tuning, for each testing group, we randomly sample 305

another testing group as its validation group. 306

3.2 Implementation Details 307

Architecture We use BERT models for LAMA 308

(BERT-Base [110M parameters], BERT-Large 309

[340M] and DeBERTa-XLarge-V2 [900M]) and 310

GPT2 models for BinaryClfs (GPT2-Medium 311

[345M] and GPT2-Large [774M]). We use the Hug- 312

gingface implementation (Wolf et al., 2020). 313

Hyperparameters We select hyperparameters 314

based on few-shot classification accuracy on vali- 315

dation tasks. Our validation tasks and testing tasks 316

are disjoint, so hyperparameter tuning on validation 317

tasks does not use extra labeled examples on the 318

testing tasks (Perez et al., 2021). See Appendix A 319

for the hyperparameters we tuned. 320
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LAMA BinaryClfs

BERT-Base BERT-Large DeBERTa-xlarge GPT2-M GPT2-L

0-S 1-S 2-S 5-S 0-S 1-S 2-S 5-S 0-S 1-S 2-S 5-S 0-S 5-S 0-S 5-S

Raw IC-L 10.3 8.5 10.8 14.1 12.7 12.1 15.4 18.6 11.2 12.6 20.6 23.7 50.5 57.8 51.0 58.3

InsT + FT / 17.5 18.6 20.0 / 21.6 22.6 23.9 / 24.7 25.6 27.0 / 67.0 / 69.4

ICT 14.6 16.3 17.6 19.6 18.0 21.6 23.4 24.3 21.9 26.0 27.5 28.8 62.9 67.4 66.3 69.8

Raw IC-L w/o Ins 1.5 4.9 8.7 12.3 1.4 3.5 7.0 12.5 2.7 13.0 19.5 22.6 / / / /

ICT w/o Ins 7.1 14.6 17.0 18.2 9.3 19.4 19.9 22.9 10.6 23.5 26.0 27.6 / / / /

Table 2: Few-shot learning accuracy of our in-context tuning approach (ICT) compared to in-context learning
with raw LMs (Raw IC-L) and instruction tuning + fine-tuning (InsT + FT). K-S: K-shot learning. GPT2-M:
GPT2-Medium. GPT2-L: GPT2-Large. Task instructions are used except the last two rows labeled with “w/o
Ins”. By definition, InsT + FT is the same as ICT for 0-S. We only experiment with the no-instruction setting on
the LAMA dataset. Since we modify the LAMA dataset and BinaryClfs dataset (Section 3.1, Appendix B), the
numbers reported in our work are not directly comparable to other work.

LAMA BinaryClfs
BB BL GPT2-M GPT2-L

MAML 16.9 21.4 63.3 63.9

ICT 19.6 24.3 67.4 69.8

Table 3: In-context tuning consistently out-performs
MAML on both datasets and all model sizes under
the 5-shot setting. BB: BERT-Base. BL: BERT-Large.
GPT2-M: GPT2-Medium. GPT2-L: GPT2-Large.

Sampling Different instructions and few-shot ex-321

ample choices can lead to different predictions322

(Section 2.2). At training time, we expose the323

model to diverse task instructions and few-shot324

choices by randomly sampling task instructions325

and few-shot examples for each target example.326

At test time, we report the average accuracy327

across task instructions and few-shot choices.328

Since computing the average across all few-shot329

choices is intractable (there are combinatorically330

many distinct few-shot choices), we thus calculate331

the average accuracy of multiple random samplings332

of few-shot choices as approximation.333

4 Results334

In-context tuning out-performs MAML and vari-335

ous baselines on the two text classification meta-336

datasets (Section 4.1). It also significantly reduces337

model sensitivity to instruction wording, example338

choices, and example ordering compared to prompt-339

ing raw LMs (Section 4.2).340

4.1 Few-shot Learning Performance 341

In-context tuning improves in-context learning 342

accuracy over raw LMs. We compare ICT with 343

Raw IC-L in Table 2. In-context tuning consistently 344

out-performs raw LM prompting by 7.6 points on 345

LAMA and 10.6 points on BinaryClfs (averaged 346

across model size and number of few-shots). As ex- 347

pected, directly optimizing the few-shot in-context 348

learning objective (Section 2.2) improves the few- 349

shot in-context learning accuracy. 350

Few-shot examples lead to more effective task 351

adaptation. We compare few-shot in-context 352

tuning with instruction tuning (equivalent to 0- 353

shot ICT) in Table 2. Few-shot in-context tun- 354

ing consistently out-performs instruction tuning 355

on both LAMA and BinaryClfs, with increasing 356

performance gains as number of shots increases. 357

Specifically, we observe that 5-shot in-context tun- 358

ing out-performs instruction tuning by 6.1 points 359

on LAMA and 4.0 points on BinaryClfs. Results 360

show that demonstration examples besides task in- 361

structions facilitate more effective task adaptation. 362

In-context tuning better leverages the induc- 363

tive bias for pattern matching. By comparing 364

MAML (the first row of Table 3) to instruction 365

tuning (equivalent to 0-shot ICT) of Table 2, we 366

see that MAML out-performs instruction tuning 367

in most evaluation settings, which indicates that 368

MAML is indeed able to take advantage of the 369

few-shot task examples for task adaptation. How- 370

ever, Table 3 shows that our approach of 5-shot 371

in-context tuning out-performs 5-shot MAML con- 372

sistently on both datasets with an accuracy gain 373

5



of 2.8 points on LAMA and 5.1 points on Bina-374

ryClfs (averaged across model size). We argue that375

in-context tuning out-performs MAML because376

in-context tuning better leverages the existing in-377

ductive bias of pre-trained LMs to perform pattern378

matching with in-context examples.379

We also compare in-context tuning to the380

pipeline of instruction tuning + task-specific fine-381

tuning (Table 2). Surprisingly, fine-tuning an382

instruction-tuned model on as few as one task-383

specific example significantly improves task accu-384

racy, without over-fitting to the few labeled exam-385

ples. We observe that instruction tuning + 1-shot386

fine-tuning out-performs instruction tuning (equiv-387

alent to 0-shot ICT) by 3.1 points on LAMA (Ta-388

ble 2). Our in-context tuning approach performs389

comparable or better than instruction tuning + fine-390

tuning, with increasing accuracy gains as models391

get bigger (Table 2). For DeBERTa-XLarge-v2392

(the largest models we use in this work), in-context393

tuning out-performs InsT + FT across all numbers394

of shots, achieving an accuracy gain of 1.7 points395

on LAMA (averaged across all numbers of shots).396

We conjecture that in-context tuning will be in-397

creasingly effective for bigger models that have a398

stronger inductive bias of pattern matching.399

In-context tuning reduces the need of task in-400

structions. As coming up with good task instruc-401

tions can be hard (Schick and Schütze, 2021a;402

Jiang et al., 2020), we further investigate the ef-403

fectiveness of in-context tuning without task in-404

structions (Table 2). In-context tuning is effective405

in the no-instruction setting as well, consistently406

out-performing raw in-context learning with no in-407

structions by an average margin of 9.5 points on408

LAMA. Comparing raw in-context learning with409

(Raw IC-L) and without instructions (Raw IC-L410

w/o Ins) (Table 2), we observe that task instruc-411

tions yield the most significant performance gains412

when model size is relatively small (+2.5 points on413

BERT-Base, +7.7 points on BERT-Large, only +0.6414

points on DeBERTa-xlarge). We conjecture that415

smaller models may be weaker at inferring patterns416

from in-context examples alone compared to larger417

models, which is why instructions yield larger per-418

formance gains on smaller models. On BERT-Base419

and BERT-Large models where task instructions420

are most helpful, in-context tuning reduces the im-421

provement gain from task instructions from 5.1422

points (raw in-context learning) to 1.8 points (aver-423

aged across BERT-Base and BERT-Large), which424

LAMA BinaryClfs
BB BL GPT2-M GPT2-L

Raw IC-L 1.82 2.14 9.26 8.84

ICT 0.66 0.61 1.41 1.58

Table 4: In-context tuning is significantly less sensitive
to example ordering compared to in-context learning
with raw LMs.

LAMA BinaryClfs
BB BL GPT2-M GPT2-L

Raw IC-L 3.74 6.30 18.52 20.33

ICT 1.78 2.57 11.46 11.62

Table 5: In-context tuning is significantly less sensi-
tive to example choices compared to in-context learn-
ing with raw LMs.

indicates that in-context tuning reduces the need 425

of task instructions compared to raw in-context 426

learning. However, we note that instructions still 427

yield performance improvement even if in-context 428

tuning is applied. 429

4.2 Sensitivity Analysis 430

We analyze the sensitivity of in-context tuning ac- 431

curacy with respect to example ordering, example 432

choices, and instruction wording, and compare it 433

with prompting raw LMs. Let I denote a random se- 434

lection of task instruction, ST a random unordered 435

set of few-shot training examples with size K, σ a 436

random permutation of K examples. The accuracy 437

µ is a function of these three random variables, i.e. 438

µ : (ST , σ, I) 7→ [0, 1]. We can decompose the to- 439

tal variance of µ into its variance w.r.t. each of the 440

three random variables, since they are independent: 441

VarST ,σ,I [µ] = VarI [EST ,σ[µ|I]]︸ ︷︷ ︸
instruction wording variance

442

+ EI [VarST
[Eσ[µ|I, ST ]]]︸ ︷︷ ︸

example choice variance

443

+ EI,ST
[Varσ[µ|I, ST ]]︸ ︷︷ ︸

example order variance

444

We analyze each type of variance below. 445

In-context tuning is significantly less sensitive 446

to example ordering. We compare the variance 447

with respect to example ordering for in-context 448

tuning and in-context prompting with raw LMs in 449
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BERT-Base BERT-Large

Raw IC-L ICT Raw IC-L ICT

1-shot 35.38 26.31 34.03 28.78
2-shot 33.79 25.40 17.71 19.35

5-shot 24.90 15.64 6.36 5.16

Table 6: In-context tuning is much less sensitive to
task instruction wording compared to in-context learn-
ing with raw LMs.

Table 4. Results show that in-context tuning is sig-450

nificantly less sensitive to ordering of in-context ex-451

amples compared to in-context prompting with raw452

LMs, reducing the sensitivity by 68% on LAMA453

and 83% on BinaryClfs.454

In-context tuning is significantly less sensitive455

to example choices. We compare the variance456

with respect to example choices for in-context tun-457

ing and in-context prompting with raw LMs in458

Table 5. Results show that in-context tuning is sig-459

nificantly less sensitive to selection of in-context460

examples compared to in-context prompting with461

raw LMs across both datasets and all model sizes,462

reducing the sensitivity by 56% on LAMA and 40%463

on BinaryClfs (averaged across model sizes). We464

conjecture that in-context tuning is significantly465

less sensitive to example ordering and selection466

because the model is exposed to various example467

orderings and selections during in-context tuning.468

In-context tuning is less sensitive to instruction469

wording. We report the variance with respect to470

instruction wording for in-context tuning and in-471

context prompting with raw LMs in Table 6. Re-472

sults show that in-context tuning is less sensitive to473

instruction wording compared to in-context prompt-474

ing with raw LMs in five out of six evaluation set-475

tings, reducing the variance by 19% on LAMA476

(averaged across model size and number of shots).477

We also observe that in-context tuning is espe-478

cially effective on task instructions with low accu-479

racy under raw in-context learning. For each task,480

we compute the Pearson correlation between the481

raw in-context learning accuracy and the accuracy482

gain from in-context tuning (over raw in-context483

learning) on all instructions. On the LAMA dataset,484

we see a strong negative correlation of -0.563 (aver-485

aged across all tasks), with p-value < 0.05 on 63%486

of the tasks. We conjecture that in-context tuning is487

much less sensitive to instruction wording because488

the model is exposed to a wide variety of different489

task instructions during in-context tuning. 490

In-context examples are complementary to in- 491

structions. We observe that in-context tuning is 492

especially effective on task instructions with low 493

accuracy under instruction tuning. For each task, 494

we compute the Pearson correlation between the 495

instruction tuning accuracy and the accuracy gain 496

from in-context tuning (over instruction tuning) on 497

all instructions. On the LAMA dataset, we see 498

a strong negative correlation of -0.910 (averaged 499

across all tasks), with p-value < 0.01 on 91% of 500

the tasks. We conjecture that in-context tuning is 501

much less sensitive to instruction wording because 502

few-shot in-context examples provide additional 503

task information besides the task instructions. 504

5 Related Work 505

LM Prompting for FSL Pre-trained LMs can be 506

used to perform various FSL tasks when prompted 507

with a natural language task instruction and several 508

task examples (Radford et al., 2019; Brown et al., 509

2020; Gao et al., 2021; Schick and Schütze, 2021b). 510

However, prompting pre-trained LMs directly for 511

FSL is known to be sensitive to various artifacts, 512

such as the wording of the task instruction and the 513

selection and ordering of few-shot training exam- 514

ples (Schick and Schütze, 2021a; Jiang et al., 2020; 515

Zhao et al., 2021; Gao et al., 2021; Liu et al., 2021). 516

Our work is the first to show that meta-learning 517

with an explicit FSL objective significantly reduces 518

the sensitivity of LM prompting. 519

Meta-learning for FSL Meta-learning is a 520

widely used technique in NLP to improve cross- 521

domain transfer (Yu et al., 2018; Geng et al., 2019; 522

Holla et al., 2020; Deng et al., 2020) and cross- 523

task transfer (Gu et al., 2018; Bansal et al., 2020; 524

Dou et al., 2019). Existing optimization-based 525

meta-learning methods mostly perform task adap- 526

tation by fine-tuning a task-agnostic model on task- 527

specific examples using gradient descent (Finn 528

et al., 2017; Jiang et al., 2019; Nichol et al., 2018). 529

However, fine-tuning on few-shot task examples is 530

sensitive to hyperparameters (Antoniou et al., 2019) 531

and nested optimization during meta-training is of- 532

ten unstable (Nichol et al., 2018; Antoniou et al., 533

2019; Rajeswaran et al., 2019). In contrast, our ap- 534

proach performs few-shot task adaptation by using 535

task-specific examples as part of the model input 536

while keeping the model parameters frozen. 537
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Multi-task Learning In multi-task learning, a538

single model is trained on the union of training sets539

of multiple tasks to learn a shared representation540

(Liu et al., 2019). The multi-task model is then541

fine-tuned on task-specific examples to adapt to542

new tasks. Multi-task learning is shown to improve543

performance on various downstream tasks, espe-544

cially tasks with small training sets (Khashabi et al.,545

2020; Ye et al., 2021; Aghajanyan et al., 2021).546

Compared to meta-learning, multi-task learning547

does not optimize task adaptation directly.548

Fine-tuned LMs for Instruction Learning Re-549

cent work shows that fine-tuning LMs to learn task550

instructions on a wide variety of tasks can further551

leverage the inductive bias of LMs to perform in-552

struction learning (Zhong et al., 2021; Mishra et al.,553

2021; Wei et al., 2021). Our work is partially in-554

spired by this line of work, but we work under the555

more generic few-shot meta-learning setting, and556

show that our approach out-performs both instruc-557

tion tuning and existing few-shot meta-learning558

methods (e.g., MAML). While previous work fo-559

cuses on the accuracy improvement gained from560

instruction fine-tuning, our work also looks into561

the well-known over-sensitivity issue of FSL and562

shows that in-context tuning effectively reduces the563

sensitivity of FSL with respect to various factors.564

Concurrent to our work, Min et al. (2021) also565

explores in-context tuning under more general566

Seq2Seq tasks. In comparison, our work com-567

pares in-context tuning to a meta-learning baseline568

MAML, and shows that in-context tuning mitigates569

the well-known oversensitivity issue of LM prompt-570

ing. Contrary to our paper, Min et al. (2021) finds571

that in-context tuning under-performs InsT + FT.572

This might be because they use many more shots573

(16-shot), which could give gradient-based meth-574

ods more advantage.575

6 Future Directions576

Scaling Up and Broader Applications Our577

work only considers simple binary classification578

and knowledge retrieval tasks, at most 5 in-context579

examples, and models with fewer than 1 billion580

parameters. Nevertheless, it is straightforward to581

scale up our framework to a wider and more di-582

verse range of general sequence-to-sequence tasks583

(Ye et al., 2021), more few-shot examples (which584

requires a longer context size (Dai et al., 2019;585

Wang et al., 2020)), and larger models (Brown et al.,586

2020; Kaplan et al., 2020). It is also straightfor-587

ward to apply in-context tuning to a broader range 588

of scenarios that require adapting to a new setup, 589

e.g., adapting to a new label in classification tasks 590

(Xia et al., 2021), an unseen database in semantic 591

parsing tasks (Suhr et al., 2020; Lee et al., 2021), 592

or a new language pair in machine translation (Gu 593

et al., 2018; Aharoni et al., 2019), etc. 594

Meta-learning for Robustness Our work as- 595

sumed that the few-shot training examples come 596

from the same distribution as the test examples, but 597

this assumption does not necessarily hold in prac- 598

tice. For example, the test distribution might con- 599

stitute new input compositions (Lake and Baroni, 600

2018), rare subgroups (Sagawa et al., 2019), other 601

types of distribution shifts (Hendrycks and Diet- 602

terich, 2019), or even adversarial examples (Kang 603

et al., 2019). More effective meta-learning meth- 604

ods might learn a more robust learning mechanism 605

and combat these generalization challenges. 606

Understanding In-context Learning Many 607

properties of in-context learning are still unknown. 608

Is in-context learning more robust to distribution 609

shift (Lester et al., 2021)? Can we combine 610

in-context learning and gradient learning to get the 611

benefit of both worlds (Wortsman et al., 2021)? 612

7 Conclusion 613

In this work, we propose meta-learning via in- 614

context tuning, which recasts the few-shot learn- 615

ing process of task adaptation and task-specific 616

prediction as a simple sequence prediction prob- 617

lem, where few-shot labeled examples are concate- 618

nated with the target example to form the model 619

input. In-context tuning out-performs a wide va- 620

riety of baselines in terms of accuracy, including 621

raw LM prompting, MAML and instruction tun- 622

ing. Meanwhile, sensitivity study shows that our 623

FSL approach of in-context tuning is significantly 624

less sensitive to few-shot examples and instruction 625

wording compared to raw LM prompting. 626

Given the empirical effectiveness of in-context 627

tuning, we conjecture that the few-shot learning po- 628

tential of large LMs (e.g., GPT-3) might be broadly 629

underestimated, and that in-context tuning can elim- 630

inate well-known artifacts of few-shot LM prompt- 631

ing such as over-sensitivity to example ordering, 632

example selection and instruction wording. 633
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A Hyperparameters 912

In this section, we report the hyperparameters we 913

tuned for our approach and each baseline. 914

In-Context Tuning (ours) We tune number of 915

training epochs ([10, 15, 30] for LAMA and [1e-7, 916

3e-7, 1e-6, 3e-6] for BinaryClfs) and learning rate 917

([1e-7, 3e-7, 1e-6, 3e-6] for LAMA and [3e-6, 1e-5, 918

3e-5, 1e-4] for BinaryClfs). 919

MAML We assume that inner optimization and 920

outer optimization use the same learning rate. We 921

tuned number of adapt steps ([1, 2, 4] for both 922

datasets) and learning rate ([3e-7, 1e-6, 3e-6, 1e-5, 923

3e-5, 1e-4, 3e-4, 1e-3] for LAMA and [3e-6, 1e-5, 924

3e-5, 1e-4, 3e-4, 1e-3] for BinaryClfs). 925

Instruction-Tuning + Fine-tuning For instruc- 926

tion tuning we tuned the same set of hyperparame- 927

ters as in in-context tuning. The instruction tuning 928

model with the highest validation performance are 929

used for downstream task fine-tuning. For task fine- 930

tuning, we tuned number of training epochs ([5, 931

10, 15, 30, 40] for LAMA and [5, 10, 15, 30, 40] 932

for BinaryClfs) and learning rate ([1e-7, 3e-7, 1e-6, 933

3e-6, 1e-5, 3e-5] for LAMA and [3e-6, 1e-5, 3e-5, 934

1e-4, 3e-4, 1e-3] for BinaryClfs). 935

B Dataset Split of LAMA 936

Because LAMA does not have an official train- 937

validation-test split, we use 8-fold cross-validation 938

in our experiments. We randomly partition the 29 939

tasks into 8 groups of similar sizes. For each cross- 940

validation split, we use six groups for training, one 941

group for validation, and one group for testing. 942

The test sets of the eight folds are disjoint and their 943

union is the set of all tasks. 944
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