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Abstract

Many modern probabilistic models rely on SDEs, but their adoption is hampered by instability, poor inductive bias
outside bounded domains, and reliance on restrictive dynamics or training tricks. While recent work constrains
SDEs to compact spaces using reflected dynamics, these approaches lack continuous dynamics and efficient
high-order solvers, limiting interpretability and applicability. We propose a novel class of neural SDEs on compact
polyhedral spaces with continuous dynamics, amenable to higher-order solvers, and with favorable inductive bias.

1. Introduction and Related Work
Stochastic differential equations (SDEs) have enabled the development of a large class of expressive probabilistic models,
including models for continuous-time time series (e.g. Archambeau et al. (2007); Li et al. (2020)), diffusion models (Song
et al., 2021), infinitely deep models (e.g. Xu et al. (2022)), and more. SDEs take the form, dzt = h(t, zt) ·dt+ g(t, zt) ·dBt,
wherein the change in state, dzt, is modeled as a sum of deterministic and stochastic components. The “drift,” h, represents
a deterministic change to the state, and the “diffusion,” g, represents the magnitude of stochasticity affecting the state. The
stochasticity is given by the time-derivative Brownian motion, Bt.

While expressive, SDEs are notoriously unstable, especially when their dynamics, h and g, are non-linear. Their adoption so
far often hinges on simplified dynamics (e.g. Ansari et al. (2023); Oh et al. (2024)) and training tricks (like KL-annealing,
e.g. Li et al. (2020)). These approaches broadly have two shortcomings: (1) simplified dynamics and low-order solvers
prevent scientific interpretation of the learned dynamics, and (2) the necessity of training tricks reduces their practicality.

Recent work on diffusion models observed that parameterizing SDEs on compact/bounded state spaces can improve their
performance (Saharia et al., 2022; Lou & Ermon, 2023; Fishman et al., 2023a; Christopher et al., 2024). This is because
many data sets (e.g. images) lie on compact Euclidean subspaces. In early-stage training, SDE trajectories often leave the
compact region, requiring a large number of gradient steps just to return to it (while not necessarily fitting the data well),
causing optimization to get stuck in poor local optima. In late-stage training, small perturbations to the dynamics may, again,
yield trajectories that lie outside the region. Dynamics that respect the natural (compact) region of the data encode a stronger
inductive bias towards admissible models, improving the stability of training and test-set generalization.

Of these recent works, SDEs with reflected (or clipped) dynamics are most promising because they apply to all SDE-based
models. Reflected SDEs (RSDEs) augment the original SDE equation with a second process as follows:

dzt = h(t, zt) · dt+ g(t, zt) · dBt + v(t, zt) · dCt, dCt = I(zt ∈ ∂K) · dt,

where I(·) is an indicator function. Here, dCt “flips on” when zt hits the boundary of the space, ∂K, allowing v to neutralize
the outward-pointing component of the forward step (Pilipenko, 2014). Thus, RSDEs behave like SDEs on the interior of
the space, but are reflected inwards at the boundary.

Despite their rich theory, RSDEs have two shortcomings. First, while RSDE trajectories are continuous (Skorokhod, 1961),
their dynamics are not. As such, they may not faithfully describe many natural phenomena in physics, biology, engineering,
and medicine (e.g. d’Onofrio (2013); Rohanizadegan et al. (2020)). Second, RSDEs lack efficient, high-order solvers
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(e.g. Ding & Zhang (2008); Fishman et al. (2023b)). These challenges bar their use when model interpretation is important,
for example, when modeling irregularly sampled healthcare time series.

Contributions. In this paper, we propose a novel class of expressive (neural) SDEs on compact polyhedral spaces using
insights from stochastic viability theory (Aubin, 1991). Polyhedra represent a large class of useful spaces, including bounded
rectangular spaces and simplexes, both of which are useful for a variety of temporal natural phenomena (e.g. Cresson et al.
(2016)) as well as diffusion models (e.g. Lou & Ermon (2023)). Our contributions are: (1) We explain why chain-rule
based approaches to SDEs on compact state-spaces struggle theoretically and empirically (Section 2). (2) We prove
constraints on the drift/diffusion that ensure both stationary and non-stationary SDEs have an inductive bias for compact
state spaces (Section 3). (3) We propose a neural SDE parameterization that provably satisfies these constraints. Since
our parameterization is continuous, it captures a different class of natural phenomena than RSDEs and allows us to use
higher-order solvers (Section 4). (4) Finally, we empirically demonstrate our parameterization has favorable inductive bias
than baselines (Section 5).

Impact. We anticipate that our proposed method will benefit a wide range of models based on stochastic differential
equations (SDEs). Importantly, our approach is fully compatible with established inference techniques (e.g. Archambeau
et al. (2007); Kidger et al. (2021); Issa et al. (2023); Zhang et al. (2025)), as well as with standard training heuristics
for mitigating numerical instability. While broadly applicable, our primary motivation for this work is to advance our
understanding of suicide and related behavior. In particular, we work with data from intensive longitudinal studies, consisting
of patient self-reports of affect and suicidal ideation, to gain a deeper understanding of how suicide risk develops over time.
This data is irregularly sampled, partially observed, and lies a compact, rectangular state-space.

2. Challenges with Transforming SDEs on Euclidean State Spaces to Compact State Spaces
Notation. Consider the following Ito SDE:

dzt = h(t, zt) · dt+ (diag ◦ g)(t, zt) · dBt. (1)

Here, t ≥ 0 is time, zt ∈ K is the SDE’s solution, which lies on a compact subset of Euclidean space, K ⊂ RDz . Next,
h : R≥0 ×K → RDz and g : R≥0 ×K → RDz

≥0 are the drift and diffusion, respectively. We overload diag(·) to transform
a vector into a diagonal matrix or to extract the diagonal vector from a matrix. Finally, we use ed for the dth standard basis
vector, ∇ for the Jacobian, ⟨·, ·⟩ for inner products, and zdt , hd, and gd for the dth dimension of zt, h and g, respectively.

Goal. Our goal is to find an expressive, continuous parameterization of h and g so that the SDE in Eq. 1 is viable:
Definition 2.1 (Milian (1995)). A stochastic process, zt, is viable in K if, for every t ∈ [0,∞), P (zt ∈ K) = 1.

Transforming SDE solutions on RDz to solutions on K. The simplest way to ensure zt lies on a compact space K is to
derive a closed-form SDE for f(zt), where f : RDz → K. This is achieved with Ito’s lemma for Ito SDEs and with the
standard chain-rule for Stratonovich SDEs. While simple, however, this approach presents several challenges.

Challenge 1: Theory. There does not exist a continuous, surjective map, f , from an open set, RDz , to a closed set, K.
Practically, we may be willing to overlook this, mapping RDz to the interior of K instead. This is standard practice with
simpler models, like classification models, using a sigmoid/softmax transform. But even with these simpler models, we
may run into undesirable behavior. For example, given separable classes, the maximum likelihood estimator (MLE) for
logistic regression is unbounded and the parameters tend towards infinity (Santner & Duffy, 1986), presenting challenges
for model interpretation. This is because when the classes are separable, the MLE can continue to increase by pushing the
classes away from each other, maximizing their probability under the sigmoid. Similar challenges may arise with SDEs, for
example, when using them to parameterize a time-varying Bernoulli probability for forecasting.

Challenge 2: Numerical Stability. If we’re willing to overlook Challenge 1, we find ourselves with numerically unstable
dynamics. To see this, suppose we have a 1D SDE, yt ∈ R, with drift and diffusion h̃ and g̃, and our goal is to model an
SDE zt ∈ (0, 1)Dz by transforming yt into zt; that is, zt = f(yt), where f is a sigmoid. We begin with Ito’s lemma:

dzt =

[
h̃(t, yt) ·

∂f(yt)

∂yt
+

1

2
· g̃(t, yt) ·

∂2f(yt)

∂2yt

]
· dt+

[
1

2
· g̃(t, yt) ·

∂f(yt)

∂yt

]
· dBt.
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Since we’d like to model dzt as a function of zt, we plug in yt = f−1(zt) = sigmoid−1(zt):

dzt =
[
h̃(t, f−1(zt)) · (zt − z2t ) + g̃(t, f−1(zt)) · (2z3t − 3z2t + zt)/2

]
· dt+

[
g̃(t, f−1(zt)) · (zt − z2t )

]
· dBt. (2)

Here, f−1 is unbounded and may lead to unbounded dynamics, leading to numerical instability. Moreover, proofs of SDE
existence and uniqueness often require linearly bounded drift and diffusion (e.g. Theorem 5.2.1, Oksendal (2013)).

Challenge 3: Inductive Bias. If we’re willing to overlook Challenge 1, we can overcome Challenge 2 as follows. We
observe that arbitrarily expressive h̃ and g̃ can “undo” f−1 by internally composing it with f . Thus, we can define
h(t, zt) = h̃(t, f−1(zt)) and g(t, zt) = g̃(t, f−1(zt)) and parameterize h and g directly, e.g. via neural networks (NNs):

dzt =
[
h(t, zt) · (zt − z2t ) + g(t, zt) · (2z3t − 3z2t + zt)/2

]
· dt+

[
g(t, zt) · (zt − z2t )

]
· dBt. (3)

So long as h and g are bounded, this SDE has bounded dynamics, overcoming Challenge 2. But, this brings about yet
another challenge: the inductive bias of this equation is suitable for few phenomena. As we show empirically in Section 5,
samples from Eq. 3 tend to “stick” to the boundaries of the state space. This is undesirable, for example, in intensive
longitudinal of mental health, when trajectories tend to oscillate rapidly (e.g. Wang et al. (2024)). This is because both
zt − z2t and 2z3t − 3z2t + zt vanish at the boundaries, and so does dzt. We may hope to learn h and g that can compensate
for this behavior by growing rapidly near the boundaries, but empirically, this is unlikely. This is because h and g would
need to grow super-cubically near the boundaries, and NNs can struggle to learn polynomials (Cardell et al., 1994).

3. Constraints on Dynamics for SDEs on Compact Polyhedral State Spaces
Motivated by the challenges from Section 2, we prove necessary constraints on the drift/diffusion to ensure that both
stationary and non-stationary SDEs have an inductive bias for compact polyhedral state spaces. Our approach leverages
insights from stochastic viability theory (Aubin, 1991). To begin, we define polyhedral subspaces as follows:

Definition 3.1. Let u, v ∈ RDz and H(u, v) = {z ∈ RDz : ⟨z − u, v⟩ ≥ 0} denote a closed half-space. A set K ⊂ RDz is
a polyhedron if it is a finite intersection of closed half-spaces: K =

⋂
s∈{1,··· ,S} H(us, vs).

In Theorem 3.2, Milian (1995) shows that, with linearly-bounded, Lipschitz continuous drift and diffusion, an Ito SDE is
viable in a polyhedral subspace, K, if and only if (a) the drift pushes the trajectory towards the interior of K when zt ∈ ∂K,
and (b) the diffusion vanishes when zt ∈ ∂K. Thus, at the boundary, the trajectory is deterministically pushed inwards.
While Theorem 3.2 also holds for non-compact polyhedra, we focus on compact polyhedra from here on. In Appendix A,
we extend this result to Stratonovich SDEs on compact polyhedra.

Theorem 3.2 (Milian (1995)). Suppose that the drift and diffusion, h(t, zt) and g(t, zt), of an Ito SDE, defined for t ≥ 0
and zt ∈ RDz , satisfy three conditions: (i) For each T > 0, there exists CT > 0 such that for all zt ∈ K and t ∈ [0, T ],
∥h(t, zt)∥2 + ∥g(t, zt)∥2 ≤ CT · (1 + ∥zt∥2). (ii) For all T > 0, zt, z′t ∈ K, and t ∈ [0, T ], ∥h(t, zt) − h(t, z′t)∥ +
∥g(t, zt)− g(t, z′t)∥ ≤ CT · ∥zt − z′t∥. (iii) For each zt ∈ K, h(t, zt) and g(t, zt) are continuous. Then zt is viable in K
if and only if: for all s ∈ [1, . . . , S] and zt ∈ K such that when ⟨zt − us, vs⟩ = 0, we have (a) ⟨h(t, zt), vs⟩ ≥ 0 and (b)
⟨g(t, zt)⊙ ed, vs⟩ = 0 for t ≥ 0 and d ∈ [1, . . . , Dz].

We now extend this theorem to stationary SDEs on compact polyhedra by selecting a diffusion, g, that satisfies (i)-(iii) and
(b) from Theorem 3.2, deriving a closed-form equation for the drift h as a function of g that ensures stationarity, and proving
that h also satisfies all conditions from Theorem 3.2 (see proof in Appendix B).

Theorem 3.3. Let K be a compact polyhedron, and h(zt) and g(zt) be the drift and diffusion, respectively, of an autonomous
Ito SDE, defined for t ≥ 0 and zt ∈ RDz . Suppose that for all T > 0, zt, z′t ∈ K, and t ∈ [0, T ], there exists CT > 0 such
that: (i) ∥g(zt)∥2 ≤ CT · (1 + ∥zt∥2). (ii) ∥g(zt)− g(z′t)∥ ≤ CT · ∥zt − z′t∥ and ∥diag(∇ztg(zt))− diag(∇z′

t
g(z′t))∥ ≤

CT · ∥zt − z′t∥. (iii) The unnormalized time-marginal, p̃(t, zt) satisfies ∥log p̃(t, zt)− log p̃(t, z′t)∥ ≤ CT · ∥zt − z′t∥. (iv)
g(zt) and p̃(t, z′t) are differentiable with continuous partials. Then zt is a solution to a stationary SDE with time-marginal,
p(t, zt) = p(zt), viable in K if: (a) h(zt) = 1

2 · diag
(
∇zt [g(zt)

2]
)
+ 1

2 · g(zt)2 ⊙∇zt log p̃(zt). (b) For all s ∈ [1, . . . , S]
and zt ∈ K such that when ⟨zt − us, vs⟩ = 0, we have ⟨g(zt)⊙ ed, vs⟩ = 0 for t ≥ 0 and d ∈ [1, . . . , Dz].

The parameterization of h(zt) in Theorem 3.3 is easily implemented in auto-differentiation frameworks with g(zt) and
log p̃(zt) (“score function”) as NNs. We note that assumptions (i)-(iv) are easily satisfiable—see discussion in Appendix D.
We will next describe a novel parameterization to satisfy conditions (a) and (b) from Theorem 3.2 and (b) from Theorem 3.3.
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Figure 1. Intuition behind WSP for different polyhedra. Top left: w(z) from Eq. 4, approaching 0 at the boundaries and 1 in the interior.
Top right: ch(z) from Eq. 5, pointing towards the Chebyshev center ⋆. Bottom left: solutions to WSP SDE, successfully remaining in K.
Bottom right: some unconstrained drift h̃ vs. WSP drift h (Eq. 5) matching in the interior of K, but differing near the bounds.

4. Parameterization of Expressive SDEs on Compact Polyhedral State Spaces
We propose a flexible, constraint-satisfying parameterization of drifts and diffusions from Theorems 3.2 and 3.3 that
transforms any unconstrained SDE dynamics, whether NN-based or expert given, to lie on a target compact polyhedron.

Weighted Sums Parameterization (WSP). We observe that we can satisfy both constraints on the drift and diffusion
using the same mechanism: WSP(f, c, t, z) = w(z) · f(t, z) + (1− w(z)) · c(z), using a different choice of c(z) for each.
Here, f(·) is the original, unconstrained dynamics, given by domain experts or by some flexible function class, like NNs;
c(·) is a simple function that satisfies the constraints; finally, w(z) ∈ [0, 1] weighs the of sum f(·) and c(·), approaching 0 at
∂K to favor c(·), and approaching 1 at the interior of K to favor f(·). Of many possible choices, we define w(z) as:

w(z) = tanh

(
β ·
∏
s

e−d(us,vs,z)∑
s′ e

−d(us′ ,vs′ ,z)
· tanh (α · d(us, vs, z))

)
, d(u, v, z) =

⟨z − u, v⟩
∥v∥

. (4)

Here, d(u, v, z) ≥ 0 is the shortest distance from z to the boundary of H(u, v), and α, β > 0 are constants that determine
how quickly to transition between f(z) and c(z). They can be learned jointly with the model parameters. The intuition
behind Eq. 4 is that w(z) should approach 1 as z approaches the closest of the S boundaries. As such, we take a convex
combination of distances from z to each boundary, weighted by a softmin; this, in a sense, “selects” the closest distance. By
taking a product of these weighted distances, we obtain a function that is 0 at all boundaries and positive elsewhere, using
tanh to ensure w(z) ∈ [0, 1]. Fig. 1 (top-left) visualizes w(z) for different polyhedra.

WSP-based SDEs. Given any unconstrained drift and diffusion, h̃ : R≥0 ×K → RDz and g̃ : R≥0 ×K → RDz

≥0 , we use
WSP to obtain new drift and diffusion, h ans g, that satisfy (a)-(b) from Theorem 3.2:

h(t, zt) = WSP(h̃, ch, t, zt), ch(zt) = γ · z∗ − zt
∥z∗ − zt∥+ ϵ

, where z∗ = argminz̄maxz∈K∥z − z̄∥2,

g(t, zt) = WSP(g̃, cg, t, zt), cg(zt) = 0.

(5)

Here, z∗ is the Chebyshev center of K, easily computed via linear programming once per polyhedron (Boyd, 2004). ch(zt)
is therefore a push towards the center of K, with magnitude controlled by γ > 0 and ϵ > 0, learned jointly with the other
model parameters. We note that there are many possible choices of ch(zt); we selected this one for its simplicity. Fig. 1
visualizes ch(z) and h for different polyhedra, showing WSP SDEs remain viable in K.

Next, we prove that, under Lipschitz continuity and linear boundedness of h̃ and g̃, WSP dynamics satisfy conditions of
Theorem 3.2 (implying the diffusion g also satisfies conditions for Theorem 3.3)—see proof in Appendix C.

4



Neural SDEs on Compact State-Spaces

Figure 2. Top: WSP exhibits better inductive bias than baselines. Left: unconstrained SDE (Eq. 1) with NN quickly leaves K = [0, 1].
Middle: SDE transformed via sigmoid (Eqs. 2 and 3) sticks to the boundary. Right: SDE with WSP (Eq. 5) successfully remains in
K. Bottom: Stationary WSP exhibits favorable inductive bias. Given a target time-marginal and WSP diffusion, drift derived from
Theorem 3.3 yields an SDE viable in K with target stationary distribution.

Theorem 4.1. Let K be a compact polyhedron. Suppose that h̃ and g̃, defined above, satisfy three conditions: (i) For each
T > 0, there exists CT > 0 such that for all zt ∈ K and t ∈ [0, T ], ∥h̃(t, zt)∥2 + ∥g̃(t, zt)∥2 ≤ CT · (1 + ∥zt∥2). (ii) For
all T > 0, zt, z′t ∈ K, and t ∈ [0, T ], ∥h̃(t, zt)− h̃(t, z′t)∥+ ∥g̃(t, zt)− g̃(t, z′t)∥ ≤ CT · ∥zt − z′t∥. (iii) For each zt ∈ K,
h̃(t, zt) and g̃(t, zt) are continuous. Then the solution zt to the SDE with drift and diffusion, h(t, zt) and g(t, zt), defined
in Eq. 5, is viable in K.

5. Experiments, Results, and Future Work
Experiments: comparing the inductive biases of WSP vs. baselines. As discussed in Section 1, initialization plays a
crucial role in the success of expressive SDE-based models. Thus, to empirically compare the inductive bias of WSP (Eq. 5)
against baselines (Eqs. 1–3), we solve SDEs given by NN drifts and diffusions with randomly sampled weights, and with z0
near the boundary to compare their inductive biases. While simple, these preliminary experiments already show a stark
improvement in inductive bias of WSP compared to baselines. Details on setup in Appendix E.

Results: WSP has favorable inductive bias relative to baselines. Fig. 2 (top) shows WSP ensures SDE samples are
viable in K = [0, 1]. In contrast, unconstrained SDEs quickly leave K, and SDEs based on Ito’s lemma stick to the boundary
(as explained in Section 2), limiting their expressivity. In Appendix F.1, we demonstrate WSP’s favorable inductive bias also
when Brownian motion is replaced with a smooth, pathwise expansion, which allows us to replace the SDE solver with a
fast, adaptive ODE solver. Finally, in Fig. 2 (bottom), we show that the stationary SDE from Theorem 3.3 boasts the same
favorable inductive bias, allowing us to match any target time-marginal. For additional results, see Appendix F.2.

Future Work. While our specific parameterization of WSP (i.e. choice of w(z) and ch(z)) shows favorable inductive bias
over baselines, we do not yet know how amenable it is to gradient-based optimization, for example when used in a latent
SDE or diffusion model. Thus, in future work, we will conduct empirical comparisons of WSP with baselines to determine
whether it enables better model fit and more stable training dynamics.

5



Neural SDEs on Compact State-Spaces

Acknowledgments
The authors are grateful for funding from NIMH (U01MH116928) and from the Fuss Family Research Fund and the Chet
and Will Griswold Suicide Prevention Fund. The authors are grateful to the Wellesley College Science Center Summer
Research Program for supporting YL in the summer of 2025.

References
Anil, C., Lucas, J., and Grosse, R. Sorting out lipschitz function approximation. In International conference on machine

learning, pp. 291–301. PMLR, 2019.

Ansari, A. F., Heng, A., Lim, A., and Soh, H. Neural continuous-discrete state space models for irregularly-sampled time
series. In Krause, A., Brunskill, E., Cho, K., Engelhardt, B., Sabato, S., and Scarlett, J. (eds.), Proceedings of the 40th
International Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research, pp. 926–951.
PMLR, 23–29 Jul 2023.

Archambeau, C., Opper, M., Shen, Y., Cornford, D., and Shawe-Taylor, J. Variational inference for diffusion processes.
Advances in neural information processing systems, 20, 2007.
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A. Extending Theorem 3.2 to Stratonovich SDEs on Compact Polyhedra
Corollary A.1. Suppose that the drift and diffusion, h(t, zt) and g(t, zt), of a Stratonovich SDE, defined for t ≥ 0 and
zt ∈ RDz , satisfy conditions (i)-(iii) from Theorem 3.2. Suppose further that for all T > 0, zt, z′t ∈ K, and t ∈ [0, T ],
∥diag(∇ztg(t, zt))−diag(∇z′

t
g(t, z′t))∥ ≤ CT · ∥zt− z′t∥. Then zt is viable in compact polyhedron K if and only if (a)-(b)

from Theorem 3.2 hold.

Proof. Given the Stratonovich interpretation of the SDE in Eq. 1,

dzt = h(t, zt) · dt+ (diag ◦ g)(t, zt) ◦ dBt, (6)

we can write the equivalent Ito SDE as follows:

dzt = ĥ(t, zt) · dt+ (diag ◦ g)(t, zt) · dBt, (7)

where,

ĥ(t, zt) = h(t, zt) +
1

2
· diag(∇ztg(t, zt))⊙ g(t, zt). (8)

Since in Eq. 7, the diffusion is unchanged, we only need to show that when h satisfies (i)-(iii) and (a), so does ĥ.

Proof that h̃ satisfies (i) from Theorem 3.2. We prove that for each T > 0, there exists CT > 0 such that for all zt ∈ K
and t ∈ [0, T ], ∥h̃(zt)∥2 ≤ CT · (1 + ∥zt∥2). We do this as follows:

∥h̃(zt)∥ =

∥∥∥∥h(t, zt) + 1

2
· diag(∇ztg(t, zt))⊙ g(t, zt)

∥∥∥∥ (9)

≤ ∥h(t, zt)∥+
1

2
· ∥diag(∇ztg(t, zt))⊙ g(t, zt)∥ (10)

≤ ∥h(t, zt)∥+
1

2
· ∥diag(∇ztg(t, zt))∥ · ∥g(t, zt)∥ (11)

≤
√

C ′
T · (1 + ∥zt∥2)︸ ︷︷ ︸

bounded via condition (i)

+
1

2
· ∥diag(∇ztg(t, zt))∥︸ ︷︷ ︸

bounded by const. via condition (ii)

·
√
C ′

T · (1 + ∥zt∥2)︸ ︷︷ ︸
bounded via condition (i)

(12)

The above line can be written in the form (1 +B) ·
√
C ′

T · (1 + ∥zt∥2), which, when squared, gives us an inequality of the
form, ∥h̃(zt)∥2 ≤ CT · (1 + ∥zt∥2).

Proof that h̃ satisfies (ii) from Theorem 3.2. Here, we prove that for all T > 0, zt, z′t ∈ K, and t ∈ [0, T ], ∥h̃(zt) −
h̃(z′t)∥ ≤ CT · ∥zt − z′t∥:

∥h̃(zt)− h̃(z′t)∥ =

∥∥∥∥h(t, zt) + 1

2
· diag(∇ztg(t, zt))⊙ g(t, zt)− h(t, z′t)−

1

2
· diag(∇z′

t
g(t, z′t))⊙ g(t, z′t)

∥∥∥∥ (13)

=

∥∥∥∥h(t, zt)− h(t′, z′t) +
1

2
· diag(∇ztg(t, zt))⊙ g(t, zt)−

1

2
· diag(∇z′

t
g(t, z′t))⊙ g(t, z′t)

∥∥∥∥ (14)

≤ ∥h(t, zt)− h(t′, z′t)∥+
∥∥∥∥12 · diag(∇ztg(t, zt))⊙ g(t, zt)−

1

2
· diag(∇z′

t
g(t, z′t))⊙ g(t, z′t)

∥∥∥∥ (15)

Using the trick by Esmayli (2017), we have

∥h̃(zt)− h̃(z′t)∥ ≤ ∥h(t, zt)− h(t′, z′t)∥︸ ︷︷ ︸
≤C′

T ·∥zt−z′
t∥

(16)

+
1

2
·
∥∥diag(∇ztg(t, zt))− diag(∇z′

t
g(t, z′t))

∥∥︸ ︷︷ ︸
≤C′

T ·∥zt−z′
t∥

· ∥g(t, zt)∥

+
1

2
·
∥∥diag(∇z′

t
g(t, z′t))

∥∥ · ∥g(t, zt)− g(t, z′t)∥︸ ︷︷ ︸
≤C′

T ·∥zt−z′
t∥

Finally, since both g(t, zt) and diag(∇z′
t
g(t, z′t)) are Lipschitz on a bounded domain, they can be bounded by a constant.
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Proof that h̃ satisfies (iii) from Theorem 3.2. Since h̃ is comprised of addition and scaling operations on continuous
functions, it is also continuous.

Proof that h̃ satisfies (a) from Theorem 3.2. When ⟨zt − us, vs⟩ = 0, we show (a) holds for h̃ as follows:

⟨ĥ(t, zt), vs⟩ = ⟨h(t, zt), vs⟩︸ ︷︷ ︸
≥0

+
1

2
·
Dz∑
d=1

∂gd(t, zt)

∂zdt︸ ︷︷ ︸
bounded

· gd(t, zt) · vds︸ ︷︷ ︸
=0

≥ 0. (17)

The first term is non-negative. The second term is 0 since ⟨g(t, zt)⊙ ed, vs⟩ = 0 when condition (b) holds for g, and when
0 is multiplied by the partial (bounded thanks to condition (ii) for g), we get 0. Thus, ⟨ĥ(t, zt), vs⟩ ≥ 0.

B. Proof of Theorem 3.3
Proof. To prove Theorem 3.3, we will show that the form for the drift listed in condition (a) results in a stationary SDE.
Then, we will prove that this stationary SDE satisfies all conditions from Theorem 3.2, implying it is viable in K.

We find h by drawing inspiration from the derivation Cai & Lin (1996), which sets the Fokker-Planck-Kolmogorov (FPK)
equation to 0 to obtain stationarity and then solves for the dynamics. In contrast to Cai & Lin (1996), instead of solving for
the diffusion, which, in general, requires us to compute an intractable integral with no closed-form, we solve for the drift.
This part of the proof is similar in spirit to the derivation of the stationary SDE used for stochastic gradient MCMC (Ma
et al., 2015; Ormandy, 2019).

We begin by setting FPK equation equal to 0 to obtain stationarity for general SDEs of the form, dzt = h(zt)·dt+g(zt)·dBt,
where g(zt) ∈ RDz×Dz is a full matrix. We will then adapt it to our case. As such, we denote G(zt) = g(zt) · Σ · g(zt)⊺,
where Σ is the covariance of the Brownian motion.

0 =
∂

∂t
p(t, zt) =

∂

∂t
p(zt) (simplified notation) (18)

= −
Dz∑
d=1

∂

∂zdt

[
hd(zt) · p(zt)

]
+

1

2

Dz∑
d=1

Dz∑
d′=1

∂2

∂zdt ∂z
d′
t

[
Gd,d′

(zt) · p(zt)
]

(19)

=

Dz∑
d=1

∂

∂zdt

(
−hd(zt) · p(zt) +

1

2

Dz∑
d′=1

∂

∂zd
′

t

[
Gd,d′

(zt) · p(zt)
])

(20)

For this theorem, we only concern ourselves with identity covariance Brownian motion and diagonal diffusion; that is, we
set Σ = I and g(zt) ∈ RDz to be a vector. As such, the above equation simplifies to:

0 =

Dz∑
d=1

∂

∂zdt

(
−hd(zt) · p(zt) +

1

2
· ∂

∂zd
′

t

[
gd(zt)

2 · p(zt)
])

(21)

One way to solve this equation for the drift is to ensure that for every d ∈ [1, Dz].

hd(zt) · p(zt) =
1

2
· ∂

∂zd
′

t

[
gd(zt)

2 · p(zt)
]
. (22)
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We can then solve for the drift:

hd(zt) =
1

2 · p(zt)
∂

∂zdt

[
gd(zt)

2 · p(zt)
]

(23)

=
1

2 · p̃(zt)/A
· ∂

∂zdt

[
gd(zt)

2 · p̃(zt)/A
]

(A is the normalizing const.) (24)

=
1

2 · p̃(zt)
· ∂

∂zdt

[
gd(zt)

2 · p̃(zt)
]

(25)

= gd(zt) ·
∂

∂zdt
gd(zt) +

1

2
· gd(zt)2 ·

∂
∂zd

t
p̃(zt)

p̃(zt)
(26)

= gd(zt) ·
∂

∂zdt
gd(zt) +

1

2
· gd(zt)2 ·

∂

∂zdt
log p̃(zt) (log derivative trick) (27)

=
1

2

∂

∂zdt
[gd(zt)

2] +
1

2
· gd(zt)2 ·

∂

∂zdt
log p̃(zt) (28)

This gives us:

h(zt) =
1

2
· diag

(
∇zt [g(zt)

2]
)
+

1

2
· g(zt)2 ⊙∇zt log p̃(zt)︸ ︷︷ ︸

score function

. (29)

Now that we have derived a closed-form equation for the drift, we will prove it satisfies all conditions of Theorem 3.2,
thereby proving Theorem 3.3.

Proof that h satisfies (i) from Theorem 3.2. Here, we prove that for each T > 0, there exists CT > 0 such that for all
zt ∈ K and t ∈ [0, T ], ∥h(zt)∥2 ≤ CT · (1 + ∥zt∥2). We do this as follows:

∥h(zt)∥ =
1

2
·
∥∥diag (∇zt [g(zt)

2]
)
+ g(zt)

2 ⊙∇zt log p̃(zt)
∥∥ (30)

≤ 1

2
·
∥∥diag (∇zt [g(zt)

2]
)∥∥+ 1

2

∥∥g(zt)2 ⊙∇zt log p̃(zt)
∥∥ (31)

≤ 1

2
·
∥∥diag (∇zt [g(zt)

2]
)∥∥︸ ︷︷ ︸

2

+
1

2
∥g(zt)∥2︸ ︷︷ ︸

1

· ∥∇zt log p̃(zt)∥︸ ︷︷ ︸
bounded by const. via (ii)

(32)

Since K is compact and g(zt) is continuous and linearly bounded (i.e. ∥g(zt)∥2 ≤ CT (1 + ∥zt∥2)), we know that there
exists some maximal value, M , that bounds g on K:

1 = ∥g(zt)∥ ≤ max
zt∈K

∥g(zt)∥ = M. (33)

11



Neural SDEs on Compact State-Spaces

Next, we bound the gradient of g using condition (ii):

2 =
∥∥diag (∇zt [g(zt)

2]
)∥∥ (34)

=

∥∥∥∥∥∥∥∥limϵ→0


g1(zt+ϵ·e1)2−g1(zt)

2

ϵ
...

gD(zt+ϵ·eD)2−gD(zt)
2

ϵ


∥∥∥∥∥∥∥∥ (35)

= lim
ϵ→0

∥∥∥∥∥∥∥∥


g1(zt+ϵ·e1)2−g1(zt)
2

ϵ
...

gD(zt+ϵ·eD)2−gD(zt)
2

ϵ


∥∥∥∥∥∥∥∥ (by continuity of the norm) (36)

≤
D∑

d=1

lim
ϵ→0

∥∥∥∥gd(zt + ϵ · ed)2 − gd(zt)
2

ϵ

∥∥∥∥ (since the ℓ2-norm is upper bounded by the ℓ1-norm) (37)

=

D∑
d=1

lim
ϵ→0

1

ϵ
·
∥∥gd(zt + ϵ · ed)2 − gd(zt)

2
∥∥ (38)

≤
D∑

d=1

lim
ϵ→0

1

ϵ
·
∥∥g(zt + ϵ · ed)2 − g(zt)

2
∥∥ (39)

=

D∑
d=1

lim
ϵ→0

1

ϵ
· ∥(g(zt + ϵ · ed)− g(zt))⊙ g(zt + ϵ · ed)− g(zt)⊙ (g(zt)− g(zt + ϵ · ed))∥ (40)

≤
D∑

d=1

lim
ϵ→0

1

ϵ
· ∥(g(zt + ϵ · ed)− g(zt))⊙ g(zt + ϵ · ed)∥+

1

ϵ
· ∥g(zt)⊙ (g(zt)− g(zt + ϵ · ed))∥ (41)

≤
D∑

d=1

lim
ϵ→0

1

ϵ
· ∥g(zt + ϵ · ed)− g(zt)∥ · ∥g(zt + ϵ · ed)∥+

1

ϵ
· ∥g(zt)∥ · ∥g(zt)− g(zt + ϵ · ed)∥ (42)

≤
D∑

d=1

lim
ϵ→0

M

ϵ
· ∥g(zt + ϵ · ed)− g(zt)∥+

M

ϵ
· ∥g(zt)− g(zt + ϵ · ed)∥ (43)

≤
D∑

d=1

lim
ϵ→0

2 ·M
ϵ

· CT · ∥ϵ · ed∥ (44)

= 2 ·D ·M · CT · ∥ed∥ (45)

where, in Eq. 40, we use the trick from Esmayli (2017). Putting all of this together, we have that ∥h(zt)∥ is bounded by
some constant, for which we can always find a new constant CT to further bound it: ∥h(zt)∥2 ≤ CT · (1 + ∥zt∥2).

Proof that h satisfies (ii) from Theorem 3.2. Here, we prove that for all T > 0, zt, z′t ∈ K, and t ∈ [0, T ], ∥h(zt) −
h(z′t)∥ ≤ CT · ∥zt − z′t∥.

We begin as follows:

∥h(zt)− h(z′t)∥ ≤ 1

2
·
∥∥diag (∇zt [g(zt)

2]
)
− diag

(
∇z′

t
[g(z′t)

2]
)∥∥︸ ︷︷ ︸

3

+
1

2
·
∥∥g(zt)2 ⊙∇zt log p̃(zt)− g(z′t)

2 ⊙∇z′
t
log p̃(z′t)

∥∥︸ ︷︷ ︸
4

.

(46)
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Using the trick by Esmayli (2017) again, we bound 3 as follows:

3 =
∥∥diag (∇z′

t
[g(z′t)

2]
)
− diag

(
∇zt [g(zt)

2]
)∥∥ (47)

=
∥∥g(z′t)⊙ diag

(
∇z′

t
g(z′t)

)
− g(zt)⊙ diag (∇ztg(zt))

∥∥ (48)

=
∥∥(g(z′t)− g(zt))⊙ diag

(
∇z′

t
g(z′t)

)
− g(zt)⊙

(
diag (∇ztg(zt))− diag

(
∇z′

t
g(z′t)

))∥∥ (49)

≤
∥∥(g(z′t)− g(zt))⊙ diag

(
∇z′

t
g(z′t)

)∥∥+ ∥∥g(zt)⊙ (diag (∇ztg(zt))− diag
(
∇z′

t
g(z′t)

))∥∥ (50)

≤ ∥g(z′t)− g(zt)∥ ·
∥∥diag (∇z′

t
g(z′t)

)∥∥+ ∥g(zt)∥ ·
∥∥diag (∇ztg(zt))− diag

(
∇z′

t
g(z′t)

)∥∥ (51)

≤ CT · ∥zt − z′t∥ ·
∥∥diag (∇z′

t
g(z′t)

)∥∥︸ ︷︷ ︸
bounded by const. via (ii)

+M ·
∥∥diag (∇ztg(zt))− diag

(
∇z′

t
g(z′t)

)∥∥︸ ︷︷ ︸
≤CT ·∥zt−z′

t∥ via (ii)

(52)

We similarly bound 4 as follows:

4 =
∥∥diag (∇zt [g(zt)

2]
)
− diag

(
∇z′

t
[g(z′t)

2]
)∥∥ (53)

=
∥∥(g(zt)2 − g(z′t)

2)⊙∇zt log p̃(zt)− g(z′t)
2 ⊙

(
∇z′

t
log p̃(z′t)−∇zt log p̃(zt)

)∥∥ (54)

≤
∥∥(g(zt)2 − g(z′t)

2)⊙∇zt log p̃(zt)
∥∥+ ∥∥g(z′t)2 ⊙ (∇z′

t
log p̃(z′t)−∇zt log p̃(zt)

)∥∥ (55)

≤
∥∥g(zt)2 − g(z′t)

2
∥∥︸ ︷︷ ︸

5

· ∥∇zt log p̃(zt)∥︸ ︷︷ ︸
bounded by const. via (iii)

+
∥∥g(z′t)2∥∥︸ ︷︷ ︸

≤M2

·
∥∥∇z′

t
log p̃(z′t)−∇zt log p̃(zt)

∥∥︸ ︷︷ ︸
≤CT ·∥zt−z′

t∥ via (iii)

(56)

Finally, This leaves us to bound terms 5 by a function of the form, CT · ∥zt − z′t∥:

5 =
∥∥g(zt)2 − g(z′t)

2
∥∥ (57)

= ∥(g(zt)− g(z′t))⊙ g(zt)− g(z′t)⊙ (g(z′t)− g(zt))∥ (58)
≤ ∥(g(zt)− g(z′t))⊙ g(zt)∥+ ∥g(z′t)⊙ (g(z′t)− g(zt))∥ (59)
≤ ∥g(zt)− g(z′t)∥ · ∥g(zt)∥+ ∥g(z′t)∥ · ∥g(z′t)− g(zt)∥ (60)
≤ 2 ·M · CT · ∥zt − z′t∥ (61)

Proof that h satisfies (iii) from Theorem 3.2. Here, we prove that for each zt ∈ K, h(zt), defined for t ≥ 0, is continuous.

Since continuous functions are closed under all operations used to define h(zt), and since h(zt) is defined in terms of other
continuous functions, it is also continuous.

Proof that h satisfies (a) from Theorem 3.2. Here, we prove that, for all s ∈ [1, . . . , S] and zt ∈ K such that when
⟨zt − us, vs⟩ = 0, we have ⟨h(zt), vs⟩ ≥ 0. We start as follows:

⟨h(zt), vs⟩ =
1

2
· ⟨diag

(
∇zt [g(zt)

2]
)
, vs⟩+

1

2
· ⟨g(zt)2 ⊙∇zt log p̃(zt), vs⟩ (62)

=
1

2
· ⟨diag

(
∇zt [g(zt)

2]
)
, vs⟩+

1

2
· v⊺s ·

(
g(zt)

2 ⊙∇zt log p̃(zt)
)

(63)

=
1

2
· ⟨diag

(
∇zt [g(zt)

2]
)
, vs⟩+

1

2
· v⊺s ·

(
Dz∑
d=1

(g(zt)⊙ ed) · gd(zt) · ∇zd
t
log p̃(zt)

)
(64)

=
1

2
· ⟨diag

(
∇zt [g(zt)

2]
)
, vs⟩+

1

2
·

(
Dz∑
d=1

v⊺s · (g(zt)⊙ ed) · gd(zt) · ∇zd
t
log p̃(zt)

)
(65)

=
1

2
· ⟨diag

(
∇zt [g(zt)

2]
)
, vs⟩ (since ⟨g(zt)⊙ ed, vs⟩ = 0) (66)

≥ 0 (67)

We arrive at the last line because (1) when ⟨zt − us, vs⟩ = 0, zt is on the boundary of K, and (2) in the interior of K, g(zt)
is non-negative. As such, diag

(
∇zt [g(zt)

2]
)

does not point towards the exterior of K, giving us that ⟨h(zt), vs⟩ ≥ 0.
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C. Proof of Theorem 4.1
Proof. To prove Theorem 4.1, we will show that h(t, zt) and g(t, zt), defined in Eq. 5, satisfy (i)-(iii) and (a)-(b) in
Theorem 3.2.

Proof that WSP satisfies (i) from Theorem 3.2. Here, we prove that for each T > 0, there exists CT > 0 such that for
all zt ∈ K and t ∈ [0, T ], ∥h(t, zt)∥2 + ∥g(t, zt)∥2 ≤ CT · (1 + ∥zt∥2).

First, we show that w(zt), defined in Eq. 4, lies in [0, 1]. Since α > 0, and for any zt ∈ K, d(us, vs, zt) ≥ 0 (since distances
are non-negative), we have,

0 ≤ tanh (α · d(us, vs, zt)) ≤ 1. (68)

Next, since β > 0, we know that:

0 ≤ β ·
∏
s

e−d(us,vs,zt)∑
s′ e

−d(us′ ,vs′ ,zt)︸ ︷︷ ︸
∈[0,1]

· tanh (α · d(us, vs, zt))︸ ︷︷ ︸
∈[0,1]

(69)

This then gives us,

0 ≤ tanh

(
β ·
∏
s

e−d(us,vs,zt)∑
s′ e

−d(us′ ,vs′ ,zt)
· tanh (α · d(us, vs, zt))

)
︸ ︷︷ ︸

≥0

≤ 1, (70)

thereby showing that w(zt) ∈ [0, 1]. Using this, we go on to show that h and g satisfy condition (i) from Theorem 3.2.

∥h(t, zt)∥ = ∥WSP(h̃, ch, t, zt)∥ (71)

= ∥w(zt) · h̃(t, zt) + (1− w(zt)) · ch(zt)∥ (72)

≤ ∥w(zt) · h̃(t, zt)∥+ ∥(1− w(zt)) · ch(zt)∥ (73)

≤ ∥1 · h̃(t, zt)∥+ ∥(1− 0) · ch(zt)∥ (74)

= ∥h̃(t, zt)∥+ ∥ch(zt)∥ (75)

= ∥h̃(t, zt)∥+
∥∥∥∥γ · z∗ − zt

∥z∗ − zt∥+ ϵ

∥∥∥∥ (76)

= ∥h̃(t, zt)∥+ γ ·
∥∥∥∥ z∗ − zt
∥z∗ − zt∥+ ϵ

∥∥∥∥︸ ︷︷ ︸
<1

(77)

≤ ∥h̃(t, zt)∥+ γ (78)

≤
√
C ′

T · (1 + ∥zt∥2) + γ (79)

Thus,

∥h(t, zt)∥2 ≤
(√

C ′
T · (1 + ∥zt∥2) + γ

)2

(80)

= C ′
T · (1 + ∥zt∥2) + γ2 + 2 · γ ·

√
C ′

T · (1 + ∥zt∥2) (81)

≤ CT · (1 + ∥zt∥2) (82)

for some CT > 0.
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Similarly for ∥g(t, zt)∥2, we have

∥g(t, zt)∥ = ∥WSP(g̃, cg, t, zt)∥ (83)
= ∥w(zt) · g̃(t, zt) + (1− w(zt)) · cg(zt)∥ (84)
≤ ∥w(zt) · g̃(t, zt)∥+ ∥(1− w(zt)) · cg(zt)∥ (85)
≤ ∥1 · g̃(t, zt)∥+ ∥(1− 0) · cg(zt)∥ (86)
= ∥g̃(t, zt)∥+ ∥cg(zt)∥ (87)
= ∥g̃(t, zt)∥+ ∥0∥ (88)
= ∥g̃(t, zt)∥ (89)

≤
√

CT · (1 + ∥zt∥2) (90)

Thus, ∥g(t, zt)∥2 ≤ CT · (1 + ∥zt∥2).

Proof that WSP satisfies (ii) from Theorem 3.2. We now prove that for all T > 0, zt, z′t ∈ K, and t ∈ [0, T ],
∥h(t, zt)− h(t, z′t)∥+ ∥g(t, zt)− g(t, z′t)∥ ≤ CT · ∥zt − z′t∥.

We do this as follows:

∥h(t, zt)− h(t, z′t)∥ = ∥WSP(h̃, ch, t, zt)−WSP(h̃, ch, t, z
′
t)∥ (91)

=
∥∥∥(w(zt) · h̃(t, zt) + (1− w(zt)) · ch(zt)

)
−
(
w(z′t) · h̃(t, z′t) + (1− w(z′t)) · ch(z′t)

)∥∥∥ (92)

=
∥∥∥(w(zt) · h̃(t, zt)− w(z′t) · h̃(t, z′t)

)
+ ((1− w(zt)) · ch(zt)− (1− w(z′t)) · ch(z′t))

∥∥∥ (93)

≤ ∥w(zt) · h̃(t, zt)− w(z′t) · h̃(t, z′t)∥+ ∥(1− w(zt)) · ch(zt)− (1− w(z′t)) · ch(z′t)∥ (94)

Using the trick by Esmayli (2017), we have:

∥h(t, zt)− h(t, z′t)∥ ≤ ∥w(zt)− w(z′t)∥ · ∥h̃(t, zt)∥+ ∥w(z′t)∥ · ∥h̃(t, zt)− h̃(t, z′t)∥ (95)
+ ∥(1− w(zt))− (1− w(z′t))∥ · ∥c(zt)∥+ ∥1− w(z′t)∥ · ∥c(zt)− c(z′t)∥

≤ ∥w(zt)− w(z′t)∥ · ∥h̃(t, zt)∥+ 1 · ∥h̃(t, zt)− h̃(t, z′t)∥ (96)
+ ∥w(zt)− w(z′t))∥ · ∥c(zt)∥+ 1 · ∥c(zt)− c(z′t)∥

= ∥w(zt)− w(z′t)∥ · (∥h̃(t, zt)∥+ ∥c(zt)∥)︸ ︷︷ ︸
bounded by const.

+ ∥h̃(t, zt)− h̃(t, z′t)∥︸ ︷︷ ︸
<C′

T ·∥zt−z′
t∥

+∥c(zt)− c(z′t)∥ (97)

Since K is compact and h̃(zt) is continuous and linearly bounded (i.e. ∥h̃(zt)∥2 ≤ CT (1+∥zt∥2)), we know that ∥h̃(t, zt)∥
is bounded above by a constant. Similarly, c(zt) is continuous and bounded,

∥c(zt)∥2 =

∥∥∥∥ z∗ − z′t
∥z∗ − z′t∥+ ϵ

∥∥∥∥2 ≤
∥∥∥∥z∗ − z′t

ϵ

∥∥∥∥2 = ϵ−2 · ∥z∗ − z′t∥2, (98)

so ∥c(zt)∥ is bounded above by a constant. This leaves us to show that w(zt) and c(zt) are Lipschitz. This is true since both
functions are comprised of either composition of Lipschitz functions, or of multiplications of bounded Lipschitz functions,
and both of these operations are closed under Lipschitz continuity.

Similarly for ∥g(t, zt)− g(t, z′t)∥, we have,

∥g(t, zt)− g(t, z′t)∥ = ∥WSP(g̃, ch, t, zt)−WSP(g̃, ch, t, z
′
t)∥ (99)

= ∥(w(zt) · g̃(t, zt) + (1− w(zt)) · cg(zt))− (w(z′t) · g̃(t, z′t) + (1− w(z′t)) · cg(z′t))∥ (100)
= ∥w(zt) · g̃(t, zt)− w(z′t) · g̃(t, z′t)∥ (101)

Since w(zt) · g̃(t, zt) is the product of a bounded Lipschitz function and a Lipschitz function, we know that g(t, zt) is also
Lipschitz.

15



Neural SDEs on Compact State-Spaces

Proof that WSP satisfies (iii) from Theorem 3.2. Here, we prove that for each zt ∈ K, h(t, zt) and g(t, zt) are
continuous.

Since all functions involved are continuous and continuity is closed under addition, subtraction, multiplication and
composition, h(t, zt) and g(t, zt), defined for t ≥ 0, are continuous for each zt ∈ K

Proof that WSP satisfies (a) from Theorem 3.2. Here we prove that for all s ∈ [1, . . . , S] and zt ∈ K such that when
⟨zt − us, vs⟩ = 0, we have ⟨h(t, zt), vs⟩ ≥ 0.

First, when ⟨zt − us, vs⟩ = 0,

d(us, vs, zt) =
⟨zt − us, vs⟩

∥vs∥
=

0

∥vs∥
= 0. (102)

This means that,

w(zt) = tanh

(
β ·
∏
s

e−d(us,vs,zt)∑
s′ e

−d(us′ ,vs′ ,zt)
· tanh (α · d(us, vs, zt))

)
= 0. (103)

Plugging this into ⟨h(t, zt), vs⟩, we get:

⟨h(t, zt), vs⟩ = ⟨WSP(h̃, ch, t, zt), vs⟩ (104)

= ⟨w(zt) · h̃(t, zt) + (1− w(zt)) · ch(zt), vs⟩ (105)

= ⟨0 · h̃(t, zt) + (1− 0) · ch(zt), vs⟩ (106)
= ⟨ch(zt), vs⟩ (107)

=

〈
γ · z∗ − zt

∥z∗ − zt∥+ ϵ
, vs

〉
(108)

=
γ

∥z∗ − zt∥+ ϵ︸ ︷︷ ︸
>0

· ⟨z∗ − zt, vs⟩ (109)

Because polyhedra are convex, and z∗ ∈ K, zt ∈ K, we know that z∗−zt points to the interior of K; thus, ⟨z∗ − zt, vs⟩ ≥ 0,
completing the proof.

Proof that WSP satisfies (b) from Theorem 3.2. Here we prove that for all s ∈ [1, . . . , S] and zt ∈ K such that when
⟨zt − us, vs⟩ = 0, we have ⟨g(t, zt)⊙ ed, vs⟩ = 0 for t ≥ 0 and d ∈ [1, . . . , Dz]. We do this as follows:

⟨g(t, zt)⊙ ed, vs⟩ = ⟨WSP(g̃, cg, t, zt)⊙ ed, vs⟩ (110)
= ⟨(w(zt) · g̃(t, zt) + (1− w(zt)) · cg(zt))⊙ ed, vs⟩ (111)
= ⟨(0 · g̃(t, zt) + (1− 0) · cg(zt))⊙ ed, vs⟩ (112)
= ⟨cg(zt)⊙ ed, vs⟩ (113)
= ⟨0⊙ ed, vs⟩ (114)
= ⟨0, vs⟩ (115)
= 0 (116)

D. Discussion of Assumptions
The assumptions in Theorems 3.2 and 3.3 are easily satisfied when h, g, and log p̃(zt) are parameterized by NNs.

Lipschitz continuity with respect to inputs. Lipschitz continuous functions are closed under composition, making a
large class of neural networks Lipschitz continuous by construction. Additionally, there exist many easy and empirically
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effective methods for explicitly obtaining Lipschitz continuity, for example via weight normalization (e.g. Miyato et al.
(2018)), regularization (e.g. Liu et al. (2022)), and architecture design (e.g. Anil et al. (2019)). Altogether, this allows us to
conveniently satisfy the Lipschitz continuity assumptions for h, g, and log p̃(zt)—(ii) in Theorem 3.2, and (ii) and (iii) in
Theorem 3.3.

Next, Hurault et al. (2022) (Appendix B) proved that any composition of bounded, Lipschitz functions has Lipschitz
gradients with respect to the inputs, thereby making a large class of neural network satisfy the second half of (ii) from
Theorem 3.3. This is property is known as “Lipschitz smoothness,” and can also be obtained explicitly, for example via
mixup regularization (Gyawali et al., 2020).

Linearly bounded NNs. We parameterize all neural networks here with a composition of continuous functions, thereby
making them continuous. And since continuous functions on compact spaces are bounded, we easily satisfy (i) from
Theorems 3.2 and 3.3.

Differentiability and continuity of partials of NNs. All neural networks here use continuously differentiable activation
functions, so they are continuously differentiable with continuous partials.

E. Experimental Setup
Dynamics. As we argue in Section 1, initialization plays a crucial role in the success of expressive SDE-based models.
This is because many data sets (e.g. images) lie on compact Euclidean subspaces. In early-stage training, SDE trajectories
often leave the region, requiring a large number of gradient steps just to return to it (while not necessarily fitting the data
well), causing optimization to get stuck in poor local optima. In late-stage training, small perturbations to the dynamics
may, again, yield trajectories that lie outside the region. As such, to empirically compare the inductive bias of WSP (Eq. 5)
against baselines (Eqs. 1–3), we solve SDEs given by NNs h and g with randomly sampled weights. We define the viable
region, K = [0, 1], to be a compact rectangle, and specifically choose to set z0 = 0.99 near the boundary to stress-test the
chain-rule based SDEs in Eqs. 2 and 3 to show that once close to the boundary, they will struggle to return to the interior
of K. While simple, these preliminary experiments already show WSP boasts a stark improvement in inductive bias in
comparison to baselines.

Architecture. In all experiments presented here, we used 3-layer NNs with 64 hidden units and CELU activation (Barron,
2017). We repeated these experiments with 2-layer and 4-layer NNs and observed the exact same behavior, so we have
omitted them for brevity. We also repeated these experiments with other continuous activation functions—GeLU (Hendrycks
& Gimpel, 2016), ELU (Clevert et al., 2015), SELU (Klambauer et al., 2017), and SiLU (Elfwing et al., 2018)—and we
observed the exact same type of behavior, so we have omitted them for brevity.

Setup. For each SDE in Eqs. 1–3 and 5, we randomly drew the weights using the normal Glorot initialization (Glorot &
Bengio, 2010). In each plot, we repeated this initialization 5 times, drawing 3 samples for each initialization.

Differential Equation Solver. In Fig. 2, we used the Ito-Milstein SDE solver. In Fig. 3, we used the Dormand-Prince 8/7
ODE solver. In all experiments, we simulated the dynamics for t ∈ [0, 5] with a step size of 0.001. We purposefully chose a
small step size to ensure the faithfulness of the SDE solutions to the dynamics.

Pathwise Expansion. We used a truncation of R = 40 terms in the pathwise expansion (Eq. 117) for the experiment in
Fig. 3. We repeated the experiments with R = 20, 100, and 200 and observed the exact same behavior, so we have omitted
them for brevity.

Software. All experiments were conducted in Jax (Bradbury et al., 2018) with NumPyro (Phan et al., 2019), Diffrax (Kidger,
2021) and Chex.
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Figure 3. WSP exhibits better inductive bias than baselines given smooth, pathwise expansion of Brownian motion. Top left:
Stratonovich-SDE with NN quickly leaves K = [0, 1]. Top & bottom right: Stratonovich-SDE transformed via sigmoid sticks to the
boundary. Bottom left: Stratonovich-SDE with WSP successfully remains in K. Note: for Eqs. 2 and 3, we used the Stratonovich
chain-rule instead of Ito’s lemma.

F. Results
F.1. Inductive Bias with Smooth, Pathwise Expansion of Brownian Motion

Since SDE solvers are slow and unstable, prior work focused on finding mechanisms to use ODE solvers instead. ODE
solvers are known to be more numerically stable, accurate, and well-behaved when used with adaptive step-sizes. Prior
work has used several strategies to accomplish this. For example, prior work approximates the first two moments of the
time-marginal using the Fokker-Planck-Kolmogorov (FPK) equation, which can then be solved using an ODE solver (this is
known as the “Gaussian Assumed Approximation”, Särkkä & Solin (2019)). In diffusion models, prior work derived an
FPK-based fast, numerically stable process that samples from the same distribution as the SDE using an ODE solver (the
“probability flow ODE”) (Song et al., 2021). Finally, prior work (e.g. Ghosh et al. (2022)) replaces Brownian motion with
the Karhunen–Loeve Expansion (Särkkä & Solin, 2019), which takes the following form:

ξr ∼ N (0, 1),

dB̂t|ξ1, . . . , ξR =

R∑
r=1

√
2

T
cos

(
(2 · r − 1) · π · t

2T

)
· ξr · dt,

(117)

where T is the end-time of the process. This expansion replaces Brownian motion, dBt, with a randomly weighted sum
of ODEs, allowing us to use an ODE solver. As R → ∞, the distribution of dB̂t converges to that of dBt, and overall
differential equation converges to the Stratonovich SDE (Wong & Zakai, 1965).

In Fig. 3, we empirically demonstrate that WSP boasts the same favorable inductive bias in comparison to baselines, even
under this pathwise expansion.

F.2. Stationary SDEs

In Fig. 4, we show that, for any neural diffusion with WSP (Eq. 5) with randomly generated weights, we can always construct
a drift, given by Theorem 3.3, with dynamics that are viable in K = [0, 1] and induce the target time-marginal. Moreover,
like their non-stationary counterparts, these stationary dynamics overcome the shortcomings of the baselines dynamics in
Eqs. 1–3.
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Figure 4. Stationary SDE exhibits better inductive bias than baselines. Given a target time-marginal, given any diffusion with WSP,
we can always derive a corresponding drift via Theorem 3.3 that is viable in K and has the target stationary distribution. Like the
non-stationary dynamics, these dynamics overcome the shortcomings of the baselines dynamics in Eqs. 1–3. Here, our diffusion is a NN
with randomly initialized weights, with each color corresponding to a different seed. Note: the target time-marginal is not normalized.
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