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Abstract

Transformers have emerged as the backbone neural network architecture in today’s
AI applications. Due to their high complexity, sparsifying transformers, at both
pre-training and fine-tuning stages, is very attractive for lowering the training and
inference costs. In this paper, we propose EcoSpa, an efficient structured sparse
training approach for language and vision transformers. Unlike prior works focus-
ing on individual building blocks, EcoSpa fully considers the correlation between
the weight matrices and their component rows/columns, and performs the coupled
estimation and coupled sparsification. To achieve that, EcoSpa introduces the use
of new granularity when calibrating the importance of structural components in
the transformer and removing the insignificant parts. Evaluations across different
models, in both pre-training and fine-tuning scenarios, demonstrate the effective-
ness of the proposed approach. EcoSpa leads to 2.2× size reduction with 2.4 lower
perplexity when training GPT-2 model from scratch. It also enables 1.6× training
speedup over the pre-training method. For training sparse LLaMA-1B from scratch,
our approach reduces GPU memory usage by 50%, decreases training time by 21%,
and achieves a 1.6× speedup in inference throughput while maintaining model
performance. Experiments of applying EcoSpa for fine-tuning tasks also show
significant performance improvement with respect to model accuracy and pruning
cost reduction.

1 Introduction

Thanks to their excellent performance for sequence modeling and scalability, transformers [56] have
served as the backbone neural network architecture across various important domains, such as natural
language processing (NLP) [56, 14, 58, 46, 54], computer vision [16, 37, 5] and speech processing
[15, 22, 28]. However, despite their unprecedented popularity, modern transformers suffer from high
model complexity, causing expensive costs in both training and inference phases.

To alleviate these challenging issues, sparse training, a strategy that originated for optimizing
convolutional neural networks (CNNs), has emerged as an attractive solution for efficient transformers.
In general, given an input model χ, sparse training aims to output a sparse model χs with high
task performance. As illustrated in Fig. 1, when χ is randomly initialized, sparse training serves
as an efficient pre-training method that can reduce the computational and memory costs of the
expensive training-from-scratch process. When χ is a pre-trained high-performance dense model,
sparse training is essentially the well-known pruning technique, which imposes the sparsity on χ in
the fine-tuning process and trims down the inference cost.

Although sparse training has been well studied for slimming CNN models, the fundamentally different
mechanism of transformers, e.g., multi-head self-attention, make the existing CNN-oriented solutions
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Figure 1: Our proposed EcoSpa is a structured sparse training approach, applicable for both pre-
training and fine-tuning stages.

not suitable for transformers. To date, the efficient sparse transformer training is still under-explored.
More specifically, 1) for applying sparse training at the pre-training stage, [20], [6, 11] propose to
train sparse vision and NLP transformers from scratch, with focus on exploring head-level sparsity.
Also [12] proposes to use specially structured matrix for sparse transformer training; 2) for applying
sparse training at the fine-tuning stage, [39, 11, 63] explore the structured sparsity at head levels.
Observing the potential layer-wise redundancy, [10, 41] propose to remove unimportant layers in
the transformer architecture. In addition, [4, 55] use finer granularity at row and column level for
structured pruning, achieving good compression performance.

Technical Contributions. In this paper, we propose to perform structured sparse transformer training
1 from a new perspective. Unlike prior works focusing on evaluating the importance of individual
components of transformer architecture, e.g., a weight matrix or its component row/column, we
propose to fully consider the inter-matrix and inter-row/column correlation, leading to new mechanism
for importance assessment and structural removal. More specifically, at the coupled estimation step,
we introduce a new granularity, namely, coupled weight matrices, to calibrate the architectural
importance of transformer model, providing more fine-grained measurement via exploring the
inherent coupling effects of weight matrices. Then, at the coupled sparsification step, for the row
and column within those unimportant coupled matrices, we propose to rank and remove them in a
coupled way, maximally preserving the inherent inter-row/column correlation in the weight matrix.

We apply our approach, namely EcoSpa, in both pre-training and fine-tuning scenarios. Evaluation
across different model types (e.g., vision transformers, and large language model (LLMs)) show that
EcoSpa brings significant performance improvement with respect to training speed, model accuracy,
and cost reduction. For instance, when training the GPT-2 model from scratch, our approach can bring
1.6× size reduction with 0.6 lower perplexity (PPL). It also brings 1.6× training speedup compared
to the existing sparse pre-training methods. For pre-training sparse LLaMA-1B from scratch, our
approach cuts GPU memory usage by half, shortens training time by 21%, and boosts inference
throughput by 1.6×. For training sparse DeiT from scratch, EcoSpa brings 0.8% accuracy increase
over the state-of-the-art solutions. Experiments on pruning LLMs also demonstrate the effectiveness
of our approach.

2 Background

2.1 Preliminaries

Notation. We represent tensors using boldface calligraphic script, denoted as X . Matrices and
vectors are indicated with boldface capital and lowercase letters, such as X and x, respectively.
Furthermore, non-boldface letters with indices, e.g., X (i1, · · · , id), X(i, j), and x(i), denote the
entries for a d-dimensional tensor X , a matrix X , and a vector x, respectively.

Transformer. For Transformer-based models, the key components include the Multi-Head Attention
(MHA) and Feed-Forward Network (FFN). More specifically, the MHA operation is defined as
follows:

MHA(XQ,XK ,XV ) = Concat(head1, . . . , headh)W
O, (1)

1In this paper we focus on structured sparsity, which can bring measured speedup on off-the-shelf hardware;
while the unstructured sparsity typically cannot. Though some GPUs provide hardware support for semi-
structured 2:4 sparsity, this feature is only available for the high-end GPUs such as A100 and up, limiting its
practice in many budget-limited resource-limited applications.
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where XQ,XK ,XV ∈ Rl×dm are the length-l input sequences, dm is the embedding dimension,
and h is the number of attention heads. Here each attention head headi operates as below:

headi = Attention(XQW
Q
i , XKWK

i , XV W
V
i ) = ϕ

(
XQW

Q
i (XKWK

i )⊤√
dh

)
XV W

V
i ,

(2)
where ϕ(·) represents the softmax function, WQ

i , WK
i ,W V

i ∈ Rdm×dh , WO ∈ Rdm×dm , and
dm = dh × h. The FFN consists of two fully connected layers with a Gaussian Error Linear
Unit (GELU) activation function applied in between. Let X represent the input embeddings, and
Win ∈ Rdm×d,Wout ∈ Rd×dm , bin, bout denote the weight matrices and bias vectors, respectively.
The operation of FFN can be then defined as follows:

FFN(X) = GELU(XWin + bin)Wout + bout. (3)

2.2 Related Works

Sparse Training for Transformer Pre-training. Applying sparse training at the pre-training stage
is very attractive for reducing the high complexity of the costly train-from-scratch process. However,
unlike the well-studied sparse CNN pre-training, to date sparse transformer pre-training is still
under-explored. [6] dynamically extracts and trains sparse sub-networks, either in unstructured
or structured ways, thereby alleviating the training memory bottleneck for Vision Transformers.
Inspired by the Lottery Ticket Hypothesis originated in CNN, [11] performs early detection of the
structured winning lottery tickets for transformers, improving the pre-training efficiency. In [12], a
class of structured matrices, which can closely approximate the dense weight matrices, are proposed
for hardware-efficient sparse pre-training, accelerating the overall training process. Notice that the
methods developed in [11, 6, 12] can also be applied at the fine-tuning stage for transformer pruning.
Another related work is [23], which combines low-rank matrix and unstructured sparse matrix to
form the pre-training model.

Sparse Training for LLM Pruning. Due to the high costs of pre-trained LLM models, using sparse
training to trim down LLM size is a promising solution for efficient deployment. In general, pruning
LLM can be performed in either unstructured or structured way. Unstructured pruning [21, 50, 66, 50,
61, 40] focus on removing unimportant individual weights, achieving high compression performance
but limited computational efficiency due to the unstructured sparsity pattern. Structured pruning
[39, 61, 4, 3, 8, 7, 67, 62] aims to sparsify some building components of transformer architecture, e.g.,
head, row, layer, etc., offering wall-clock time inference speedup. To guide the selection of elements
to be removed, typical pruning metrics include magnitude-based [50, 3] and loss-based [39, 55].
Magnitude-based methods use the absolute values of weights, whereas loss-based approaches assess
the impact of pruning on model loss, often using the gradient information obtained from Taylor
expansion.

Sparse Training for CNN Pre-training/Pruning. Sparse training for CNN, at pre-training and
fine-tuning stages, has been well-studied in the literature. For efficient sparse CNN pre-training, [43]
explores to prune and grow the same amount of weights periodically and iteratively. [44] proposes to
automatically adjust the sparsity levels, achieving good scalability and high computational efficiency.
[19] uses the gradient-based criteria to grow the weights with Erdos-Renyi Kernel initialization, and a
memory-economic scheme is proposed in [64] for training on the edge devices. Recently, [9] proposes
to automatically sparsify the CNN model from scratch, obtaining a compact model without iterative
fine-tuning. On the other hand, CNN pruning can be roughly categorized to unstructured pruning
(for weights) [24, 25] and structured pruning (for channels/filters) [26, 59, 65, 27, 36, 17, 49, 52, 38].
Considering the importance of structured sparsity for inference speedup, most of the state-of-the-art
CNN pruning works focus on structured pruning.

3 Method

Fig. 2 shows the overall procedure of EcoSpa, which consists of two key steps. (1) Coupled Estima-
tion (Section 3.1). This step assesses the importance of the building components of transformers,
using our proposed new calibration granularity at the coupled weight matrix level. (2) Coupled Spar-
sification (Section 3.2). Once the unimportant coupled weight matrices are identified, EcoSpa further
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Figure 2: Key steps of EcoSpa: 1) Estimate the importance of coupled weight matrix Wcouple; and 2)
Remove the coupled row/column pair in unimportant Wcouple.

gauges the fine-grained importance of the coupled row/column pairs in the component matrices and
discards the insignificant ones.

3.1 Coupled Estimation: Coupled Weight Matrix-wise Importance Calibration

As extensively studied in the literature [21, 50, 55], estimating the unimportant components of neural
networks plays a crucial role for model sparsification. In general, importance estimation can be
performed at different granularity levels, such as weight, neuron, layer, and head. More specifically,
when aiming for obtaining the structured sparse transformers, identifying the insignificant heads and
layers is the most common practice [6, 11, 41, 39].

Unlike existing works, we propose to assess the importance of structural components within trans-
formers using a new granularity, namely coupled weight matrix. This idea is motivated by the
observation that the transformer has its unique computing pattern and model topology, and hence
coupling the weight matrices can provide rich information for importance estimation. Next, we
describe the details of our proposal.

Coupled Weight Matrix in MHA. Recall that Eq. 1 and Eq. 2 depict the computations of MHA,
which consists of four types of weight matrices WQ, WK , W V and WO. We propose to estimate
the structural importance of MHA by analyzing the combined effect of these matrices. More
specifically, consider the following mathematical reformulation of Eq. 2:

MHA(XQ,XK ,XV ) =

h∑
i=1

headiW
O
i =

h∑
i=1

ϕ(
XQ

WQK
i︷ ︸︸ ︷

Wi
QWK

i

⊤
X⊤

K√
dh

)XV

W V O
i︷ ︸︸ ︷

Wi
V Wi

O,
(4)

where WO
i ∈ Rdh×dm , WO = Concat(WO

1 , . . . ,WO
h ). It is seen that WQK

i = WQ
i WK

i
⊤

and W V O
i = W V

i WO
i , as the combination of two weight matrices, can serve as the structural

components in MHA. Following this perspective, we propose to set the granularity of importance
estimation at the level of those coupled weight matrices. We believe this strategy brings two benefits:
i) it provides more fine-grained measurement than the commonly adopted head-level calibration; and
ii) it meanwhile naturally explores the inter-matrix correlation within the attention heads, avoiding
the limitations if only focusing on individual weight matrices.

Connection to Transformer Circuits Framework. In general, these coupled weight matrices
reflect distinct functional roles within attention heads aligning with established transformer circuits
framework [18]. Specifically, WQK

i = WQ
i WK

i
⊤ governs token-to-token relationships by de-

termining attention patterns, while W V O
i = W V

i WO
i captures token influence on the output by

modulating and integrating attended information [18]. This coupled structure encapsulates both
the selection of relevant information and its transformation into meaningful outputs. A concrete
example of this mechanism is observed in induction heads [45], which enable in-context learning by
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recognizing and extending patterns in sequences. Given an input like “A B . . . A”, the WQK
i matrix

facilitates retrieval by computing attention scores to determine the relevance of the current "A" to
previous tokens. Meanwhile, W V O

i ensures that the model correctly predicts “B” as the next token
by reinforcing the learned sequence. This mechanism is fundamental in applications such as code
completion and structured text generation, where leveraging previously seen sequences enhances
model consistency and coherence. By preserving these functional circuits through our coupled matrix
approach, EcoSpa maintains the essential computational patterns that make transformers effective
while achieving efficient sparsification.

Extension to GQA. Next we show that the concept of coupled weight matrix can also be applied
to Grouped Query Attention (GQA) [1] – the generalization of MHA that has been adopted in
state-of-the-art LLMs such as LLaMA [54], Falcon [2], Mistral [32]. Recall that GQA divides h
attention heads into multiple groups, so its attention mechanism can be reformulated as follows:

GQA(XQ,XK ,XV ) =

h∑
i=1

ϕ(
XQ

WQK
i,g(i)︷ ︸︸ ︷

WQ
i WK⊤

g(i) X
⊤
K√

dh
)XV

W V O
g(i),i︷ ︸︸ ︷

W V
g(i)W

O
i ,

(5)

where g(i) maps the i-th head to its corresponding group. It is seen the structural components in
the format of coupled weight matrices also exist for GQA, as WQK

i,g(i) = WQ
i WK⊤

g(i) and W V O
g(i),i =

W V
g(i)W

O
i .

Compatibility with RoPE. Furthermore, when rotary position embedding (RoPE) [48] is used in
the model architecture, the coupled weight matrix can also be incorporated into this position-aware
scenario, capturing both the structural coupling and positional encoding as follows:

MHA(XQ,XK ,XV )RoPE =

h∑
i=1

ϕ(
RoPE(XQWi

Q)RoPE(XKWK
i )⊤√

dh
)XV W

V O
i

=

h∑
i=1

ϕ(
XQW

Q
i PtP

⊤
s WK⊤

i X⊤
K√

dh
)XV W

V O
i =

h∑
i=1

ϕ(
XQ

WQK
i,RoPE︷ ︸︸ ︷

WQ
i,RoPEW

K⊤

i,RoPE X⊤
K√

dh
)XV W

V O
i ,

(6)
where WQ

i,RoPE = WQ
i Pt and WK

i,RoPE = WK
i Ps. Here RoPE(·) encodes positional information

by applying position-dependent rotations to query and key projections, where Pt,Ps ∈ Rdh×dh

are rotation matrices corresponding to the t-th and s-th positions, respectively. Each matrix is

block-diagonal, with blocks defined as:
(

cos(tθj) sin(tθj)
− sin(tθj) cos(tθj)

)
,
(

cos(sθj) sin(sθj)
− sin(sθj) cos(sθj)

)
, where

j ∈ {1 · · · dh/2} and θj is pre-defined frequency parameter, e.g., θj = 1/100002j/dh . From Eq. 6 it
is seen that with RoPE integrated, the positional encoding is naturally incorporated into the weight
transformations, redefining the coupled weight matrix as WQK

i,RoPE = WQ
i,RoPEW

K⊤

i,RoPE.

Coupling Effect of Weight Matrices in FFN. Following the same philosophy, we also evaluate
the importance of the building blocks in FFN from the lens of the coupled weight matrix. More
specifically, consider the FFN computation (Eq. 3) can be reformulated as follows:

FFN(X) = 0.5Y1 ⊙ (1 + erf(Y1/
√
2)Wout

= 0.5XWinWout + 0.5erf(Y1/
√
2)⊙ (XWin)Wout,

(7)

where Y1 = XWin, ⊙ is the Hadamard product, and erf(·) denotes the error function as erf(x) =
2√
π

∫ x

0
exp(−t2)dt bounded by [−1, 1]. This formulation highlights that the coupled weight matrix

Wio = WinWout in the first term of Eq. 7 forms the backbone of FFN computations. While the
second correction term modulated by erf(·) introduces variability, it is always not larger than the
first term, since it is bounded by [−0.5XWinWout, 0.5XWinWout]. Based on this observation, we
propose to approximately assess the structural importance of FFN via evaluating the importance of
WinWout.
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Coupled Weight Matrix-wise Importance. After setting the resolution of the importance estimator
with the proposed granularity, we can gauge the structural criticality of MHA and FFN accordingly.
To that end, we calibrate the empirical Fisher information [34] in a coupled weight matrix-wise way
as follows:

Î(Wcouple) =
1

2

2∑
k=1

1

|Wk|
1

|D|
∑
i,j

(
∂L(Wk;D)

∂Wk
)2i,j , (8)

where Wcouple = W1W2. Here for MHA, {W1,W2} is {WQ
i ,WK⊤

i } and {W V
i ,WO

i }; while
for FFN, {W1,W2} is {Win,Wout} 2. Also, D is the training data and | · | returns the size of
the operand. Notice that different from prior works [29, 51], the empirical Fisher information is
calculated for the entire coupled weight matrix Wcouple instead of its entries. Smaller Î(Wcouple)
indicates the lower importance of Wcouple when sparsifying the model.

3.2 Coupled Sparsification: Removing the Coupled Row/Column Pair

Upon obtaining the importance information of all the coupled weight matrices, the next step is
to sparsify W1 and W2 belonging to those less significant Wcouple. To that end, we perform
row/column-wise sparsification, a strategy with finer granularity than removing the entire Wi,
towards minimizing performance loss and preserving model structuredness. Notice that though
removing the rows/columns in the weight matrices of transformers has been reported in [11, 6, 55],
we believe those individual weight matrix-oriented methods are not the best suited in the scenario
involved with coupled weight matrices. In other words, the coupling effect between W1 and W2

should be fully considered and leveraged in the sparsification process. This principle is supported by
our theoretical analysis in Appendix A and B. Aiming at that, we propose coupled sparsification, a
solution that removes the coupled row/column pairs in W1 and W2, with details described as below.

Inspiration from tSVD. The key idea of coupled sparsification is inspired by the philosophy of
truncated singular value decomposition (tSVD). More specifically, recall that a matrix M ∈ Rm×n

can be exactly factorized to two matrices via SVD as:

M = UΣV ⊤ =

(
Um,r

Um,(m−r)

)⊤(
Σr,r

Σ(m−r),(n−r)

)(
V ⊤

r,n

V ⊤
(n−r),n

)

=

(
Um,rΣ

1/2
r,r

Um,(m−r)Σ
1/2

(m−r),(n−r)

)⊤(
Σ

1/2
r,r V

⊤
r,n

Σ
1/2

(m−r),(n−r)V
⊤
(n−r),n

)
= M1M2,

(9)

where Σr,r ∈ Rr×r is a diagonal matrix containing r largest singular values σi’s and Σ(m−r),(n−r) ∈
R(m−r)×(n−r) is a diagonal rectangular matrix containing the smallest (min(m,n)− r) σi’s. Then,
consider a rank-r tSVD [57] for approximating M is performed as:

M ≈ (Um,rΣ
1/2
r,r )(Σ

1/2
r,r V

⊤
r,n) = (M1 ⊙ Smask1)(M2 ⊙ Smask2). (10)

Notice that here Smaski is the binary matrix that essentially removes a sets of rows/columns of
Mi. Meanwhile, it is theoretically proven that tSVD provides the optimal rank-r approximation
for M [57]. Therefore, the row/column-wise sparsification policy for M1 and M2 in tSVD, by its
nature, brings important insights for sparsifying two component matrices with closely approximating
their combination. More specifically, comparing Eq. 9 and Eq. 10, we can see that the removed
rows/columns are Um,(m−r)Σ

1/2
(m−r),(n−r) and Σ

1/2
(m−r),(n−r)V

⊤
(n−r),n, which exhibit the following

characteristics:

Observation #1 (Small ℓ2 Norm) The removed rows/columns of M1 and M2 typically have smaller
ℓ2 norm, as Σ(m−r),(n−r) only contains very least significant σi’s.

Observation #2 (Aligned Removal) The removed rows in M1 and columns in M2 always have the
same indices, exhibiting the positional alignment of the sparsification.

Sparsifying Coupled Weight Matrices. Considering the mathematical format of Eq. 10 is highly
similar to our desired task of sparsifying the coupled W1 and W2, a natural idea is directly per-
forming tSVD (Eq. 10) on W = W1W2 to obtain sparse W1 and W2. However, this strategy is

2FFN in LLaMA models contains three weight matrices (Wgate, Wup, and Wdown) and SwiGLU. The
coupled structure in this scenario is established by defining W1 = Wgate ⊙Wup, W2 = Wdown, preserving
the key relationships between the weight matrices.
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mathematically infeasible because Eq. 9 is generally not invertible, e.g., we cannot use SVD(W1W2)
to reconstruct W1 or W2. Fortunately, we can still leverage the observations extracted from tSVD
process to design the sparsification policy for W1 and W2. More specifically, we propose to calculate
the importance scores of the row/column vectors of Wi:

υ = [υ1, υ2, . . . , υd] =
∥vec(W1)∥2,col ⊙ ∥vec(W2)∥2,row

∥∥vec(W1)∥2,col ⊙ ∥vec(W2)∥2,row ∥2
, (11)

where ∥vec(·)∥2,col and ∥vec(·)∥2,row represent the column-wise and row-wise ℓ2 norm of a matrix,
respectively, e.g., ∥vec(W1)∥2,col =

√∑m
i=1 |W1(i, j)|, (j = 1, 2, . . . , d)}. And ∥vec(·)∥2 calcu-

lates the ℓ2 norm of a vector. From Eq. 11 it is seen that υi essentially calculates the normalized
combined ℓ2 for the i-th column of W1 and the i-th row of W2, reflecting the two key observations
we obtain from tSVD. Hence we can rank υi’s to determine the important coupled row/column in W1

and W2, and then remove those insignificant pairs. Note that when RoPE is used in the attention, Pt

and P⊤
s are incorporated into the process of calculating importance scores for the row and column

pairs of W1 and W2, while the sparsification process is still performed on the individual weight
matrices such as WQ

i and WK
i . Pt and P⊤

s will be then adjusted according to the new shapes of
weight matrices.

Overall Sparse Training Procedure.

Algorithm 1 describes the pro-
cessing scheme of EcoSpa. Here
in each epoch, after identifying
top-K least significant Wcouple,
the importance scores of the
rows/columns in those compo-
nent weight matrices are calcu-
lated. Once the cumulative impor-
tance scores exceed the threshold
θ, the pair of rows and columns
corresponding to the smallest
score is removed. This gradual
sparsification process continues
till the overall model reaches the
target budget size. We analyze
and discuss the selection of hyper-
parameters in Appendix C.

Algorithm 1: Processing Scheme of EcoSpa
Input: Random Initialized/Pre-trained model W ,

top-K ratio, Target model size c,
Cumulative threshold θ

Output: Sparse Model Ŵ
for t in [1, 2, · · · , T ] do

Update: Wt = Wt−1 + δW
if Param(Wt) > c then

Compute: Î(Wcouple),∀Wcouple ∈ W ▷ Eq. 8
Select: top-K Wcouple with smallest
Î → {Wcouple}top−K

for Wcouple in {Wcouple}top−K do
Compute: υ of Wcouple ▷ Eq. 11
while

∑
υi > θ do

Remove smallest υi and i-th row/col. of
Wcouple

Remove i-th row/col. optimizer moments of
Wcouple

4 Experiments

4.1 Experiments on Pre-training (Train from Scratch)

Large Language Model (LLaMA): For large language models, we follow the training settings
in [69] to train sparse LLaMA from scratch on the C4 dataset. The training employs the Galore
optimizer with an initial learning rate of 0.01 and a batch size of 512.

NLP Transformer (GPT-2): We pre-train sparse NLP transformers by following the training settings
in [68]. Specifically, we train sparse GPT-2 [47] models from scratch on the WikiText-103 dataset
[42], using the AdamW optimizer with an initial learning rate of 0.001, training for 100 epochs and a
batch size of 512.

Vision Transformer (DeiT): We apply our approach to train sparse DeiT models [53] from scratch
on the ImageNet-1K dataset [13]. We use the same hyper-parameters as in [6], which include the
AdamW optimizer with an initial learning rate of 0.0005 and a batch size of 512.
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Table 1: Evaluation of training LLaMA-1B models from scratch on C4 dataset on 13.1B tokens using
8×A100 GPUs. Validation perplexity is provided, along with memory estimates for total parameters
and optimizer states in BF16 format. The results for LoRA and ReLoRA are sourced from [69].

Method PPL Training Time # Params. (M) # Mem. (GB) Throughput (tokens/s)

Baseline 15.56 51.1h 1339.08 7.80 21786.49
LoRA 19.21 125.4h 1339.08 6.17 21786.49
ReLoRA 18.33 125.6h 1339.08 6.17 21786.49
Galore 15.64 60.6h 1339.08 4.38 21786.49
EcoSpa 15.60 40.3h 933.94 3.88 35211.27

Table 2: Evaluation of training LLaMA-7B models from scratch on the C4 dataset (1.4B tokens)
using 8×A100 GPUs.

Method PPL Training Time # Params. (M) # Mem. (GB) Throughput (tokens/s)

8-bit Galore 26.9 20.8h 6738.42 17.86 9689.9
8-bit SLtrain 27.6 31.4h 3144.73 11.81 2204.6
8-bit EcoSpa 23.0 18.3h 5046.96 12.56 10330.6

Table 3: Evaluation of training sparse/low-rank GPT-2 models from scratch on WikiText-103 using
8×A100 GPUs. Validation perplexity is provided, along with memory estimates for total parameters
and optimizer states in FP16 format.

Method PPL Training Time # Params. (M) # Mem. (MB) Throughput (tokens/s)

GPT2-Small 18.5 9.5h 124.4 711.8 47411.2
In-Rank 18.9 - 91.2 521.9 -
Monarch 20.7 - 72 412.0 -
EcoSpa 17.8 7.5h 71.2 504.7 80691.2

GPT2-Medium 19.5 28.7h 354.8 2030.2 36556.8
In-Rank 20.2 18.0h 223.0 1276.0 -
Monarch 20.3 - 165 994.1 -
EcoSpa 17.1 17.3h 158.5 917.2 52326.4

Comparison Results. Table 1 presents the pre-training results for LLaMA-1B. Our approach reduces
GPU memory usage by 50%, decreases training time by 21%, and achieves a 1.6× speedup in
inference throughput without any performance loss. Compared to Galore, our approach reduces
memory usage by 10%, increases training speed by 1.5×, and boosts inference speed by 1.6×. The
results for LoRA [30] and ReLoRA [35] are sourced from [69]. For low-rank methods, LoRA [31]
fine-tunes pre-trained models using low-rank adaptors: W = W0 +BA, where W0 is the fixed initial
weights and BA is a learnable low-rank adaptor. For pre-training, W0 is the full-rank initialization
matrix. ReLoRA [35] is a variant of LoRA designed for pre-training. It periodically merges BA into
W and reinitializes BA with a reset on optimizer states and learning rate. EcoSpa surpasses these
low-rank methods, reducing PPL by 3.6 and 2.7, respectively, while decreasing memory usage by
37% and offering 1.6× acceleration in inference throughput.

Table 2 presents the results of pre-training LLaMA-7B. Compared to SLTrain [23], EcoSpa reduces
training time by 41.7% and achieves a 4.7× speedup in inference with better performance. Unlike
SLTrain adopting the combination of low-rank factorization and unstructured sparsity that cannot
translate to actual speedup, the training process of EcoSpa is on the structured sparse models that
enjoy measured training and inference speedup.

Table 3 compares our approach with the existing sparse and low-rank pre-training works. It is seen
that EcoSpa achieves better performance than baseline and prior efforts using less training time.
Specifically, our approach can train sparse GPT2-Small and GPT2-Medium models from scratch,
with 1.7× and 2.2× model size reduction, respectively; and meanwhile, it brings 0.7 and 2.4 lower
perplexity over the baseline models.

Table 4 lists the performance results of various sparse vision transformer pre-training methods.
EcoSpa achieves a 0.8% increase in top-1 accuracy for DeiT-Tiny and a 0.35% increase for DeiT-
Small over state-of-the-art solutions, along with greater model size reduction.
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Table 4: Results of training sparse DeiT models from scratch on ImageNet-1k. Results for SSP-Tiny
and SSP-Small are sourced from [6]. Inference speedup is measured on Nvidia RTX 3090 GPU.

Method # Params. (M) # Mem. (MB) FLOPs Saving (%) Top-1 Acc. (%) Inference Speedup

DeiT-Tiny 5.72 32.73 - 71.80 -
SSP-Tiny 4.21 24.09 23.69 68.59 1.12×
S2ViTE-Tiny 4.21 24.09 23.69 70.12 1.12×
EcoSpa 3.95 22.60 32.01 70.92 1.20×
DeiT-Small 22.10 126.46 - 79.78 -
SSP-Small 14.60 83.54 33.13 77.74 1.29×
S2ViTE-Small 14.60 83.54 33.13 79.22 1.29×
EcoSpa 13.98 79.99 37.30 79.57 1.29×

Table 5: Perplexity of compressed LLaMA2-7B on WikiText-2 with different target model sizes.
SVD-LLM [60] and SliceGPT [4] are low-rank based methods. LLM Surgeon [55] is a pruning
method, K-OBD [55], as a baseline comparison method, uses Kronecker-factored curvature and only
prunes without updating the remaining weights.

Method K-OBD SVD-LLM LLM Surgeon SliceGPT EcoSpa
Training Time 16h58m, H100 15m, A100 17h08m, H100 1h07m, H100 1h41m, A100

PPL @
Target Size

80% 9.14 7.94 6.18 6.64 6.36
70% 15.43 9.56 7.83 8.12 7.66
60% 28.03 13.11 10.39 - 10.24
50% 46.64 23.97 15.38 - 14.02

Table 6: Comparison of downstream zero-shot task performance of LLaMA2-7B model when trained
on WikiText2 dataset.

Target Size PIQA WinoGrande HellaSwag ARC-e ARC-c Avg.

LLaMA2-7B 100% 79.11 69.06 75.99 74.58 46.25 69.00

EcoSpa
80% 73.78 61.48 67.79 61.62 39.42 60.82
75% 71.93 60.69 64.69 54.38 35.15 57.37
70% 70.18 59.98 60.00 49.16 34.22 54.71

SliceGPT
80% 69.42 65.11 59.04 59.76 37.54 58.18
75% 66.87 63.38 54.16 58.46 34.56 55.48
70% 63.55 61.33 49.62 51.77 31.23 51.50

4.2 Experiments on Fine-tuning LLaMA2-7B (Structured Pruning)

Experimental Setting. We evaluate the pruning performance of EcoSpa on the pre-trained
LLaMA2 [54] models. We use WikiText-2 [42] as the calibration dataset and evaluate the per-
plexity of the pruned model. We follow the same training settings adopted in [55], use 128 sequences
with a sequence length of 2048 tokens from the training dataset, and evaluate perplexity on the stan-
dard test split. Additionally, we also evaluate the performance of the pruned models on downstream
zero-shot tasks.

Comparison Results. Table 5 presents a comparison of the perplexity performance between EcoSpa
and existing LLM pruning and low-rank factorization methods applied to LLaMA2-7B. Our approach
consistently achieves lower perplexity across various target model size configurations compared
to previous works. Additionally, Table 6 illustrates the zero-shot task performance of the pruned
LLaMA2-7B model. In comparison to SliceGPT [4], our method demonstrates improved results
across different target model sizes, indicating its effectiveness.

5 Conclusion

In this paper, we propose EcoSpa, an efficient structured sparse training approach for transformers.
By estimating the coupled weight matrix-wise importance and removing the coupled row/column
pair during training, EcoSpa brings a significant reduction in training costs and model complexity
with preserving high task performance. Experiments across various transformer models demonstrate
the superior performance of EcoSpa in both pre-training and fine-tuning scenarios.
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Appendix

A Theoretical Analysis

A.1 Problem Setup

Let A ∈ Rm×n be a matrix whose columns are a1, . . . ,an ∈ Rm. Let B ∈ Rn×p be a matrix whose
rows are bT1 , . . . , b

T
n , where bi ∈ Rp. The product AB can be expressed as a sum of outer products:

P := AB =

n∑
i=1

aib
T
i (12)

We analyze the error introduced by removing a single column from A and a single row from B. Let
Anew and Bnew denote the matrices after removal. The objective is to compare the Frobenius norm of
the error matrix, ∆ := P − Pnew = AB −AnewBnew, under two different sparsification strategies.

A.2 Sparsification Strategies and Error Analysis

We compare two methods for selecting which column/row pair to remove.

1. Coupled Sparsification (Proposed)
Definition 1 (Coupled Sparsification). Select the index j∗ that minimizes the Frobenius norm
contribution of the corresponding outer product term:

j∗ = argmin
j∈{1,...,n}

∥ajb
T
j ∥F = argmin

j∈{1,...,n}
∥aj∥2∥bj∥2 (13)

Remove the column aj∗ from A to obtain A
(C)
new and the row bTj∗ from B to obtain B

(C)
new . The resulting

matrices have dimensions m× (n− 1) and (n− 1)× p, respectively. The new product is implicitly
defined by keeping the original pairings for the remaining terms:

P (C)
new :=

∑
i̸=j∗

aib
T
i (14)

Proposition 1 (Error under Coupled Sparsification). The error matrix introduced by Coupled Sparsi-
fication is exactly the removed outer product term:

∆1 := P − P (C)
new =

n∑
i=1

aib
T
i −

∑
i̸=j∗

aib
T
i = aj∗b

T
j∗ (15)

The Frobenius norm of this error is:

∥∆1∥F = ∥aj∗b
T
j∗∥F = ∥aj∗∥2∥bj∗∥2 = min

j∈{1,...,n}
∥aj∥2∥bj∥2 (16)

Proof. Equation (15) follows directly from the definition of P in (12) and P
(C)
new . Equation (16) uses

the property ∥uvT ∥F = ∥u∥2∥v∥2 and the selection criterion from (13).

Remark 1. Coupled Sparsification minimizes the Frobenius norm of the error matrix ∆1 for a single
pair removal, based on the greedy selection of the pair (aj , bj) that contributes the least to the
Frobenius norm.

2. Individual Sparsification (Baseline)
Definition 2 (Individual Sparsification). Select the index k∗ corresponding to the column of A with
the smallest L2 norm, and the index l∗ corresponding to the row of B (or column of BT ) with the
smallest L2 norm:

k∗ = argmin
k∈{1,...,n}

∥ak∥2 (17)

l∗ = argmin
l∈{1,...,n}

∥bl∥2 (18)
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Remove column ak∗ from A to obtain A
(I)
new and row bTl∗ from B to obtain B

(I)
new. The resulting

matrices have dimensions m× (n−1) and (n−1)×p, respectively. The new product P (I)
new is formed

by multiplying these modified matrices:

P (I)
new := A(I)

newB
(I)
new (19)

Let the columns of A(I)
new be a′

p and the rows of B(I)
new be (b′p)

T for p = 1, . . . , n− 1. These are the
original columns/rows excluding ak∗ and bl∗ , implicitly re-indexed. The product is:

P (I)
new =

n−1∑
p=1

a′
p(b

′
p)

T (20)

Proposition 2 (Error under Individual Sparsification). The error matrix introduced by Individual
Sparsification is:

∆2 := P − P (I)
new =

n∑
i=1

aib
T
i −

n−1∑
p=1

a′
p(b

′
p)

T (21)

This error term ∆2 can be complex, especially when k∗ ̸= l∗.
Remark 2 (Mismatch Effect). If k∗ = l∗, then Individual Sparsification happens to select the same
index. In this case, A(I)

new = A
(C)
new and B

(I)
new = B

(C)
new , leading to ∆2 = ak∗bTk∗ . The error norm is

∥∆2∥F = ∥ak∗∥2∥bk∗∥2.

However, if k∗ ̸= l∗, the matrix product P (I)
new = A

(I)
newB

(I)
new involves multiplying columns and rows that

were not originally paired. For example, if k∗ = 1, l∗ = 2, n = 3, then A
(I)
new = [a2,a3] and B

(I)
new =[

bT
1

bT
3

]
. The product is P (I)

new = a2b
T
1 + a3b

T
3 . The original product was P = a1b

T
1 + a2b

T
2 + a3b

T
3 .

The error is ∆2 = P − P
(I)
new = a1b

T
1 + a2b

T
2 − a2b

T
1 .

In general, ∆2 can be expressed as:

∆2 = ak∗bTk∗︸ ︷︷ ︸
Term related to removed ak∗

+ al∗b
T
l∗︸ ︷︷ ︸

Term related to removed bl∗

+

 ∑
i̸=k∗,l∗

aib
T
i − P (I)

new


︸ ︷︷ ︸

Mismatch Effect (if k∗ ̸=l∗)

(22)

The "Mismatch effect" arises because the structure
∑

aib
T
i is broken by removing components based

on potentially different indices k∗ and l∗. Calculating P
(I)
new involves multiplying the remaining n− 1

columns of A(I)
new with the remaining n − 1 rows of B(I)

new, creating cross-terms that differ from the
original summation structure. This structure makes ∥∆2∥F difficult to analyze directly and prevents
it from directly optimizing a simple objective related to ∥ak∗∥2 or ∥bl∗∥2.

A.3 Theoretical Comparison

Proposition 3 (Probabilistic Error Comparison). The error introduced by Coupled Sparsification,
∥∆1∥F , is probabilistically likely to be smaller than the error introduced by Individual Sparsification,
∥∆2∥F .

Argument Sketch. 1. Coupled Sparsification, by definition (13), selects the pair (j∗) such that the
Frobenius norm of the removed term, ∥aj∗b

T
j∗∥F , is minimized. This minimized value is precisely

the Frobenius norm of the error, ∥∆1∥F (Equation (16)). The method directly optimizes an upper
bound related to the reconstruction error for the specific structure AB =

∑
aib

T
i .

2. Individual Sparsification selects indices k∗ and l∗ based on minimizing individual vector norms
∥ak∥2 and ∥bl∥2 independently. - If k∗ = l∗, the error norm is ∥∆2∥F = ∥ak∗∥2∥bk∗∥2. Since j∗

minimizes the product ∥aj∥2∥bj∥2, we have ∥∆1∥F ≤ ∥∆2∥F in this specific case. - If k∗ ̸= l∗, the
error ∆2 includes the complex "Mismatch effect" described in Remark 2. The selection criteria (17)
and (18) do not directly minimize ∥∆2∥F . The mismatch term introduces components unrelated to
the individual norms being minimized, breaking the direct link between the optimization objective
and the resulting error norm.

15



3. Because Coupled Sparsification directly minimizes the quantity ∥aj∥2∥bj∥2 which equals the
error norm ∥∆1∥F , while Individual Sparsification minimizes separate quantities (∥ak∥2, ∥bl∥2)
leading to a complex error ∆2 (often involving mismatch effects) that isn’t directly minimized, it is
probabilistically expected that ∥∆1∥F ≤ ∥∆2∥F . The individual strategy optimizes components in
isolation, failing to account for their coupled contribution to the product AB and the structure of the
resulting error upon removal, especially when k∗ ̸= l∗.

A.4 Empirical Validation

To verify this theoretical advantage, empirical tests were conducted.

1. Random matrices A and B were generated for various dimensions (n × n with n ∈
{100, 500, 1000, 5000}).

2. For each dimension, 5000 random matrix pairs were generated.
3. The Frobenius norm errors, ∥∆1∥F (Coupled) and ∥∆2∥F (Individual), were computed

after removing one column/row pair using each strategy.
4. The probability P(∥∆1∥F < ∥∆2∥F ) was estimated from the trials.

The results are summarized in Table 7.

Table 7: Empirical Comparison of Frobenius Error Norms

Matrix Size (n) Avg. ∥∆1∥F (Coupled) Avg. ∥∆2∥F (Individual) P(∥∆1∥F < ∥∆2∥F ) (%)

100× 100 76.4 757.9 99.0
500× 500 434.4 8498.9 99.7
1000× 1000 900.5 23931.2 99.9
5000× 5000 4743.7 266465.9 100.0

The empirical results strongly support the theoretical analysis, showing that Coupled Sparsifica-
tion yields significantly lower error with very high probability (> 99%) compared to Individual
Sparsification across different matrix dimensions.

B Theoretical Motivation for Coupled Sparsification in FFNs

B.1 Derivation from Pruning Error Approximation (for GELU)

Our method, Coupled Sparsification, removes the j-th column of Win and the j-th row of Wout

together. The true error this introduces for an input X is:

Error(j,X) = ∥GELU(XWin)wout,j∥F (23)

To analyze this without input-dependency, we approximate the error using the first-order Taylor
expansion of GELU around zero (GELU(u) ≈ c · u). Applying this approximation yields a bound on
the true error:

Error(j,X) ≈ ∥c · (Xwin,j)wout,j∥F (24)
= c · ∥X(win,jwout,j)∥F (25)
≤ c · ∥X∥F · ∥win,jwout,j∥F (26)
= (c · ∥X∥F ) · (∥win,j∥2 · ∥wout,j∥2) (27)

This derivation shows that the true error is bounded by a term proportional to our Coupled Metric.
The data-dependent part is a common scaling factor, leaving our metric as the decisive factor for
ranking. This justifies why the Coupling Effect exists: the coupled weight matrix drives the dominant,
first-order term of the FFN computation.

B.2 Applicability to Other FFN Types and the Coupled Effect

While the mathematical forms of other FFN layer types, such as ReLU or SwiGLU, differ from
GELU and may not present a direct linear term in the same manner, our approach is designed to adapt
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to these structures. A key insight is that for many non-linear activations (e.g., ReLU, SiLU, GELU),
significant input magnitudes can lead to negligible outputs (e.g., for negative inputs).

Our method addresses this by focusing on the coupled influence of the input and output weight
matrices. For SwiGLU, as elaborated in Footnote 2, we establish a coupled structure by defining
W1 = Wgate ⊙Wup and W2 = Wdown. This formulation is chosen to capture the critical functional
relationships and information flow between these interdependent weight matrices. By assessing
importance through this coupled effect, we inherently account for how the non-linearity modulates a
neuron’s ultimate contribution, leading to a more accurate importance evaluation.

B.3 Coupled Sparsification V.S. Uncoupled Sparsification in FFN

To empirically validate the effectiveness of our Coupled Sparsification method for FFN matrices, we
conducted direct comparisons against Uncoupled Sparsification on both LLaMA2 (with SwiGLU)
and GPT-2 (with GELU) models, evaluated on the WikiText-2 dataset. As presented in Table 8,
Coupled Sparsification dramatically outperforms Uncoupled Sparsification.

Table 8: Coupled Sparsification V.S. Uncoupled Sparsification in FFN.

Sparsity 30% 50% 70% 90%

LLaMA2 (SwiGLU)
(PPL=9.4)

Coupled 142.2 730.7 2115.6 6481.6
Uncoupled 187062.7 208483.4 261173.1 173291.2

GPT2-m (GELU)
(PPL=21.4)

Coupled 19137.1 24296.2 16157.3 28261.5
Uncoupled 4205783.8 1158156.8 12031555.3 7131925831.1

C Hyper-parameters

C.1 Selection of K and θ.

As described in Algorithm 1, K determines the percentage of Wcouple’s that will be sparsified in each
epoch, and threshold θ impacts the amount of to-be-removed coupled row/column pairs within those
unimportant Wcouple’s. As shown in Fig. 3, when applying EcoSpa at the pre-training stage, larger θ
brings better training performance, while the model is less sensitive to the change of K. On the other
hand, Fig. 4 shows that it is better to use smaller K at the fine-tuning stage, while the selection of θ
is less significant in this scenario. We hypothesize that such difference might be due to the existence
of a pre-trained model in the fine-tuning process since a pre-trained model typically has more diverse
distribution of Wcouple than the model being sparsely trained from random initialization, making the
identification of unimportant Wcouple more effective. Therefore, considering K cannot be too small
(otherwise, it is challenging to meet the model size budget (see the change of parameters (dashed
curve) in Fig. 4), we set K = 30% and θ = 90% in our experiments.
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Figure 3: Pre-training sparse DeiT-Small on CIFAR-10 with various K and θ. The target model size
is 11M.
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Figure 4: Fine-tuning Pre-trained sparse BERT-Base on SQuAD with various K and θ. The target
model size is 72.6M.
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Figure 5: Pre-training DeiT-Small model on CIFAR-10 dataset using different Wcouple compression
methods. All the methods remove the same number of parameters within the same Wcouple’s in each
epoch.
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C.2 Importance of Coupled Sparsification.

Fig. 5 compares the training performance using different methods to compress Wcouple. It is seen
that our proposed coupled row/column-wise sparsification scheme achieves the best performance. In
particular, it outperforms the uncoupled row/column-based solution, demonstrating the importance
of removing the row/column of W1 and W2 in a coupled way. Notice that though our approach is
inspired by tSVD, it achieves better performance than directly applying tSVD on Wcouple. This is
because SVD not only changes the structure of the model but also alters the numerical distribution of
the original model weights. Consequently, the optimizers that keep track of moment information, e.g.,
Adam [33], cannot work well since they will not be able to use previously accumulated information,
thereby affecting the model performance.

Table 9: Overview of Experimental Setups and Hyper-parameters

Experiments Model Dataset top - K(%) θ(%)
Table 1 LLaMA-1B C4 30 90
Table 2 LLaMA-7B C4 30 90
Table 3 GPT WikiText 30 90
Table 4 DeiT ImageNet 30 90
Table 5 LLaMA2-7B@80% WikiText 30 95
Table 5 LLaMA2-7B@70% WikiText 30 90
Table 5 LLaMA2-7B@60% WikiText 30 90
Table 5 LLaMA2-7B@50% WikiText 30 85
Table 6 LLaMA2-7B WikiText 30 95

C.3 Observation of Compressed Model.

We analyze the resulting structure of the compressed models. Intriguing patterns emerge, revealing
how the coupled sparsification strategy interacts differently with components based on model archi-
tecture and task. These observations, detailed below and summarized in Tables 10 and 11, provide
insights into the method’s adaptive nature.

• Language Models (e.g., GPT-2): In language models like GPT-2, the primary goal is
sequence modeling and maintaining contextual coherence. We observe that EcoSpa tends
to preserve the dimensions of the value projection (W V ) and the final output projection
(WO) matrices within the attention blocks. These components are crucial for integrating
contextual information and propagating it through the network. Conversely, the query (WQ)
and key (WK) matrices, which predominantly determine the attention patterns (implicitly
via WQWKT

), undergo more aggressive compression. This suggests that EcoSpa identifies
greater redundancy within the attention pattern formation mechanism while prioritizing
the preservation of the value pathway for maintaining coherence, aligning with findings on
functional roles within transformer circuits [18].

• Vision Models (e.g., DeiT): In vision transformers aimed at classification tasks like DeiT,
a different pattern emerges. While EcoSpa compresses matrices throughout most of the
network layers (Blocks 1-10 in DeiT-Tiny, see Table 10), the dimensions in the final,
higher-level blocks (Blocks 11-12) often remain largely unchanged or are compressed less
aggressively. These later layers are typically responsible for consolidating abstract features
critical for the final classification decision. The observed behavior indicates that EcoSpa
implicitly safeguards these high-level representations by reducing compression in deeper
layers, while readily exploiting redundancies in the earlier feature extraction layers.

These distinct behaviors across model types underscore EcoSpa’s ability to adaptively apply sparsity
based on the implicit functional importance of different components, preserving critical pathways
while effectively pruning less essential dimensions identified through the coupled analysis.
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Table 10: Dimensionality changes in DeiT-Tiny (3 Heads per block) after applying EcoSpa block-
wise.

Layer / Block WQ,WK Dim. W V ,WO Dim. W in,W out (FFN) Dim.

Original 192× 64 192× 64 192× 768

After EcoSpa
Block 1 192× 37 192× 41 192× 399
Block 2 192× 39 192× 43 192× 393
Block 3 192× 40 192× 42 192× 501
Block 4 192× 41 192× 50 192× 451
Block 5 192× 43 192× 50 192× 419
Block 6 192× 49 192× 50 192× 402
Block 7 192× 56 192× 50 192× 391
Block 8 192× 55 192× 56 192× 379
Block 9 192× 56 192× 57 192× 366
Block 10 192× 50 192× 56 192× 387
Block 11 192× 64 192× 64 192× 768
Block 12 192× 64 192× 64 192× 768

Table 11: Dimensionality changes in GPT-2-Small (12 Heads per block) after applying EcoSpa
block-wise.

Layer / Block WQ,WK Dim. W V ,WO Dim. W in,W out (FFN) Dim.

Original 768× 64 768× 64 768× 3072

After EcoSpa
Block 1 768× 64 768× 64 768× 2064
Block 2 768× 25 768× 64 768× 1337
Block 3 768× 21 768× 64 768× 1259
Block 4 768× 21 768× 64 768× 1643
Block 5 768× 37 768× 64 768× 1639
Block 6 768× 30 768× 64 768× 1613
Block 7 768× 20 768× 64 768× 1629
Block 8 768× 20 768× 64 768× 1104
Block 9 768× 20 768× 64 768× 1073
Block 10 768× 21 768× 64 768× 1589
Block 11 768× 26 768× 64 768× 1574
Block 12 768× 21 768× 64 768× 2044
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D Broader Impacts

Our research on sparse training for transformer models enables more computationally efficient and
environmentally sustainable training and deployment of AI models. Developing sparse training
methods for Transformer models can significantly accelerate AI training and inference, fostering
innovation while reducing energy consumption. This not only democratizes the development and
utilization of AI but also aligns with global efforts towards sustainable computing practices, miti-
gating the environmental impact associated with training resource-intensive neural networks. As
AI permeates various domains, optimizations like sparse training will play a crucial role in striking
a balance between model performance and environmental responsibility, ensuring the responsible
advancement of this technology.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Refer to Abstract section.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We demonstrated that the proposed sparse transformer training approach brings
significant efficiency and performance improvement. However, due to the limited computing
resources, we do not conduct experiments on larger models (e.g., 65B and 175B), especially
in the pre-training scenario. A more comprehensive exploration will be the subject of our
future work.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Appendix

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Appendix

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide training settings for all experiments and we plan to release our
code after the conference.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Appendix
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Refer to the Experiments section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: In the experimental section, we have indicated the model of the workstation
used for training the model, as well as the training time.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We strictly adhere NeurIPS Code of Ethics.646
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: This paper focuses on how to boost the speed of model training and inference,
which has significant benefits both in terms of environmental protection and the cost for
model deployment.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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