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Abstract

Training Long-Context Large Language Models (LLMs) is challenging, as hybrid
training with long-context and short-context data often leads to workload imbal-
ances. Existing works mainly use data packing to alleviate this issue, but fail to
consider imbalanced attention computation and wasted communication overhead.
This paper proposes Hierarchical Balance Packing (HBP), which designs a novel
batch-construction method and training recipe to address those inefficiencies. In
particular, the HBP constructs multi-level data packing groups, each optimized
with a distinct packing length. It assigns training samples to their optimal groups
and configures each group with the most effective settings, including sequential
parallelism degree and gradient checkpointing configuration. To effectively utilize
multi-level groups of data, we design a dynamic training pipeline specifically tai-
lored to HBP, including curriculum learning, adaptive sequential parallelism, and
stable loss. Our extensive experiments demonstrate that our method significantly
reduces training time over multiple datasets and open-source models while main-
taining strong performance. For the largest DeepSeek-V2 (236B) MoE model, our
method speeds up the training by 2.4× with competitive performance. Codes will
be released at https://github.com/ModelTC/HBP.

1 Introduction

Large Language Models (LLMs) [1, 2, 3] have achieved state-of-the-art performance in tasks like
machine translation, summarization, and code generation. However, many applications demand to
process and understand long-context information [4, 5, 6], such as summarizing books, analyzing
legal documents, or retaining context in multi-turn conversations. This underscores the necessity for
long-context LLMs that can efficiently process long input sequences.

As mentioned in [1], incorporating long context during the Supervised Fine-Tuning (SFT) [7]
stage is highly necessary. On the other hand, general short-context data is also crucial to maintain
the model’s general capabilities. However, this hybrid dataset composition introduces significant
challenges, primarily in terms of speed and accuracy. For speed, long-context data intensifies training
inefficiencies due to imbalanced workloads; For accuracy, long-context data can degrade performance
on short-context tasks, affecting the model’s general capabilities. These challenges hinder the
efficiency and effectiveness of SFT for long-context LLMs.

The workload imbalance caused by the hybrid of long and short data arises from two main aspects: (1)
within mini-batch imbalance [8], which is caused by excessive padding from randomized mini-batch
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Figure 1: Difference between naive packing and hierarchical balance packing. Short, medium,
and long represent different length samples, and SP Comm refers to the additional communication
overhead introduced by enabling sequence parallel (SP) training. ABR (Attention Balance Ratio)
measures imbalanced attention computation, and CR (Communication Ratio) measures additional
communication overhead, described in Section 3.1.

construction, and (2) across mini-batch imbalance [8], which is caused by uneven computation
distribution over data parallel replicas. Existing approaches mainly address this issue using data
packing [6, 9], which combines variable-length data into fixed-length mini-batches. While data
packing helps mitigate workload imbalances, it can also introduce new challenges. First, data packing
alters the data distribution, which might affect the models’ performance. Second, the complexity of
attention computation for short- and long-context data differs significantly. The attention complexity
of the packed samples is the sum of the attention complexities of all samples within each packing
group. As illustrated in Figure 1, naive packing leads to high variance in attention complexity by
directly mixing long and short samples, which causes imbalanced attention computation and workload
imbalance. Third, handling long-context data requires sequential parallelism (SP) and collective
communication for attention computation [10, 11], which short data do not need. When mixed,
short-context data also requires sequence parallel communication, leading to wasted communication
time. Larger models, such as DeepSeek-V2 (236B) [12] MoE (Mixture of Experts) models, introduce
higher communication overhead due to the increased number of parameters.

To overcome the limitations of data packing, we propose Hierarchical Balance Packing (HBP),
an innovative method that proposes multi-level data packing instead of conventional single-level
data packing. HBP consists of three key components: (1) What are the optimal packing groups?
(2) How to assign training samples to their optimal group? (3) How can a long-context LLM
be trained with that data? Firstly, we propose hierarchical group auto-selection to determine the
optimal packing-length group set and corresponding configurations, including the packing length,
Gradient Checkpointing configuration [13], and the SP degree (how many partitions the data is
divided into). Secondly, we propose balanced packing to allocate each sample to the optimal group,
aiming to minimize imbalanced attention computation and communication overhead. Thirdly, we
adopt alternative training between different packing groups, along with curriculum learning and a
stable loss normalizer to stabilize the training process.

We validate the effectiveness of our method through extensive experiments in multiple settings. For
example, on datasets Tulu3 [14] (32K) + Longcite [15] (128K), our approach speeds up 2.4× (57.1
to 23.8 GPU Days) on DeepSeek-V2 (236B) [12]; On datasets OpenHerme [16] (4K) + Longcite
(128K), our approach reduces training time from 2.95 to 2.04 GPU Days about 1.45× speeds up
on LLama3.1-8B [1]. More importantly, our method preserves performance on both short- and
long-context datasets while achieving significant efficiency gains. Experiments on various models
at different scales like LLama3.1-8B [1], Qwen2.5-32B [2], Qwen2.5-72B [2], and DeepSeek-V2
(236B) demonstrate consistent improvements, showing the effectiveness and generalizability of HBP.

2 Related Works

2.1 Long-Context LLM

Long-Context Extension. Long-Context Extensions aim to enhance LLMs’ capabilities in handling
long contexts. Current research can be broadly categorized into approaches that require fine-tuning
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and those that operate in a zero-shot manner. Zero-shot approaches often leverage techniques such
as prompt compression [17] or specially designed attention mechanisms [18, 19]. On the other
hand, fine-tuning methods primarily focus on extending position encoding, such as RoPE-based
approaches [5], or utilizing memory-augmented architectures [20].

Long-Context Supervised Fine-Tuning. For Long-Context SFT, research mainly concentrates
on generating long-context datasets [21] and establishing corresponding benchmarks [22, 15, 23].
LongAlign [6] also focuses on workload balance and accuracy degradation issues. LongAlign
proposed using packing and loss-reweighting to mitigate these issues. However, they failed to
recognize the imbalanced attention computation and wasted communication overhead due to the
packing of short- and long-context data. FlexSP [24] dynamically organizes training samples into
different data groups and uses flexible sequence parallelism to enable hybrid training. Its online data
organization introduces significant overhead (5-15 seconds) each iteration and fails to handle attention
computation complexity across data-parallel (DP) groups. In contrast, our method introduces only
negligible overhead and achieves a better computation balance of attention.

2.2 Data Packing

Data packing [9] is a more practical approach compared to randomly organizing data batches in LLM
training. It reduces padding within batches and minimizes idle time across different data-parallel
groups. Common packing methods include Random Packing [25], Sorted Batching [6], First Fit
Shuffle (FFS), First Fit Decrease (FFD), Best Fit Shuffle (BFS), Shortest-Pack-First Histogram-
Packing (SPFHP) [26], Iterative sampling and filtering (ISF) [8]. However, those packing methods
operate on a fixed length. HBP operates data globally by introducing multiple packing groups of
varying lengths, enabling more flexible and efficient handling of hybrid training with both short- and
long-context data.

3 Problem Analysis

In this section, we first define the notations in Table 1 and introduce performance metrics in Section 3.1.
We then conduct a preliminary analysis of the commonly used packing methods in Section 3.2 and
training strategies in Section 3.3.

Table 1: Notation and Definitions
Symbol Definition
T token number in one device
N number of devices
B local batch size in one device
ti token number of i-th sample in B
A computation complexity of attention ∼ O(T 2)
Tmax maximal token number across N devices
Amax maximal attention computation across N devices
Itermax total number of training iterations
Tcomm token number for SP communication in one iteration

Table 2: Results of ABR and CR in different
sequence lengths using packing. Lower metrics
indicate more efficient training.

Packing Len SP ABR CR DBR PR

4K 1 0.343 0 0.003 0.0
32K 4 0.456 1.0 0.001 0.0
128K 8 0.506 1.0 0.003 0.0

3.1 Measuring Metrics

Dist Balance Ratio (DBR) [8] quantifies the computational balance inter-devices based on length. A
lower DBR 1 indicates more balanced workload distribution across different devices.

DBR =

∑N
i (Tmax − Ti)

Tmax ×N
, PR =

∑B
i (tmax − ti)

tmax ×B
(1)

Padding Ratio (PR) [8] measures the proportion of wasted computations resulting from intra-device
padding based on input length. A lower PR 1 indicates fewer padding tokens.

Attention Balance Ratio (ABR) is proposed to quantify the imbalance in attention computation
for different data inter-devices. Previous metrics estimate the computational cost of attention based
solely on the length of the input with full attention. However, using packing algorithms, attention
computation becomes a significant factor in the overall cost. Consider the packing of a 4K sequence
as an example, both {1K, 1K, 1K, 1K} and {2K, 2K} have the same total length. However, their
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actual attention computation differs significantly, with complexities of 4K2 and 8K2, respectively.
The Attention Balance Ratio (ABR) and example are given by 2. A lower ABR indicates a more
balanced attention computation between different DP groups, resulting in less idle time.

ABR =

∑N
i (Amax −Ai)

Amax ×N
, ABR (example) =

8K2 − 4K2

8K2 × 2
= 0.25 (2)

Communication Ratio (CR) is proposed to measure the overhead of SP communication. Tcommi in
CR 3 represents the total number of tokens that require SP communication in the current iteration,
while Ti denotes the total number of tokens in the current iteration. A lower CR 3 indicates that fewer
tokens require SP communication, resulting in reduced communication overhead.

Average Tokens (Ave-T) is defined as the average number of tokens processed per iteration, serving
as a measure of the model’s workload. A larger Ave-T 3 indicates higher training efficiency.

CR =

∑N
i Tcommi∑N

i Ti

, Ave-T =

∑Itermax
j

(∑N
i Ti

)
Itermax ×N

(3)

3.2 Packing Analysis

Importance of Packing. In Table 3, we conduct three batching alternatives, random batching, ISF
packing batching [8] (comparison between different packing methods is shown in Appendix A),
sorted batching [6] (ensures that the sequences within each batch have similar lengths) at three
sequence length 4K, 32K, 128K using Tulu3 [14] dataset. Both sorting and packing reduce DBR
and PR, speeding up training. On longer sequences like 128K, packing achieves higher Ave-T than
sorting, improving GPU utilization and benefiting mixed-length datasets.

Limitation of Packing. Although packing can partially address the efficiency issues associated
with hybrid training, several limitations remain. Imbalance Problem of Attention Complexity:
Packing samples with varying sequence lengths leads to differing attention computation complexities.
Directly mixing these samples can cause imbalanced workloads and inefficient resource utilization.
As illustrated in Table 2, the ABR increases significantly with the sequence length growth, indicating
a rise in device idle time. More details are shown in Appendix D. SP Communication Overhead:
long sequences require communication for attention computation, whereas short sequences do not.
Directly mixing them can lead to extra communication overhead. As shown in Table 2, the CR
reaches 1 when the sequence length increases, indicating that all short-context data are involved in
unnecessary communication.

Table 3: Comparison of batching strategies at
different sequence lengths. The local batch size
B is adjusted dynamically under the 32K and
128K settings in sorted batching.

Seq Len Batching DBR PR Ave-T GPU Days
(speed up)

4K random 0.540 0.416 2.4K 8.0 (1.0×)
4K sorted 0.001 0.001 2.4K 3.3 (2.4×)
4K packing 0.003 0.0 4K 3.1 (2.6×)
32K random 0.64 0.0 0.8K 16.7 (1.0×)
32K sorted 0.01 0.02 30.2K 4.8 (3.5×)
32K packing 0.0007 0.0 32K 4.4 (3.8×)

128K random 0.639 0.0 0.9K 38.0 (1.0×)
128K sorted 0.01 0.02 125K 5.5 (6.9×)
128K packing 0.001 0.0 128K 5.2 (7.3×)

Table 4: Results of SP, minimum GC layers, and
memory cost across different sequence lengths.
Iter Time represents the average time taken over
ten iterations.

Seq Len SP GC Layer Memory Iter Time

32K 2 28 77G 4.45s
32K 4 23 78G 4.35s
32K 8 8 78G 4.12s

64K 2 32 OOM -
64K 4 28 78G 6.3s
64K 8 24 79G 6.2s

128K 4 32 OOM -
128K 8 29 78G 10.2s
128K 16 23 79G 10.5s

3.3 Training Strategy Analysis

Given the GPU resources and the data to be trained, we can select from various training strategies,
provided that the VRAM requirements are satisfied. The main factors to consider are the degree
of SP and the configuration of Gradient Checkpointing (GC), which is the number of layers where
GC is enabled. If the SP degree is small, the VRAM demand is high, which forces an increase in
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Figure 2: Hierarchical Balance Packing training framework.

the number of GC layers and leads to excessive additional computation. On the other hand, if the
SP degree is large, although the VRAM demand is reduced, it introduces additional communication
overhead. Therefore, there is a trade-off between the SP degree and GC configuration. Moreover, the
optimal strategy varies for different sequence lengths. Table 4 shows that the optimal strategies for
32K, 64K, and 128K are different.

4 Hierarchical Balance Packing

In this section, we first describe how to determine optimal packing length groups (Section 4.1), then
explain how each sample is assigned to a group (Section 4.2). Finally, we introduce a dynamic
training pipeline for HBP (Section 4.3). The overall framework is shown in Figure 2.

4.1 Hierarchical Groups Auto-Selection

To determine the optimal packing length groups, we design a profile-based auto-selection algorithm
as described in Algorithm 1. It operates in two stages: (1) finding the best training strategy for
predefining a possible sequence length set (e.g., 8K, 16K, 32K, 64K, 128K) based on naive packing.
(2) Deriving the final packing groups by optimizing communication overhead.

Algorithm 1 Hierarchical Groups Auto-
Selection

1: Inputs: Lengths L, Profile Time P , Strategy
S

2: Stage-1: Find the best training strategy
3: Initialize P ← [], S ← []
4: for each l ∈ L do
5: s = (sp, ckpt)← FindBestSpCkpt(l)
6: P.add(ProfileTime(s)), S.add(s)
7: end for
8: j ← argmin(P )
9: sbest ← S[j], lbest ← L[j]

10: smax ← S[−1], lmax ← L[−1]
11: Stage-2: Optimize packing groups for

communication
12: l1 ← ⌊lbest/lbest.sp⌋, l2 ← ⌊lmax/lmax.sp⌋
13: if l2 > lbest then
14: Lp ← [l1, lbest, l2, lmax]
15: else
16: Lp ← [l1, lbest, lmax]
17: end if
18: return Lp

Algorithm 2 Balance Packing

1: Inputs: Dataset D = {x1, x2, . . . , xn}, hier-
archical packing groups Lp = {l1, l2, . . . , ln}

2: G = {G1, G2, . . . , Gn}: packed data group
3: B = {B1, B2, . . . , Bn}: final batched data
4: GroupData(D,Lp): splits D subsets

[D1, D2, . . . , Dn] by packing groups Lp.
5: Packing Gi =(Di, li): packing Di by li
6: GreedyFill Gi = (Gi, li, [Di−1, . . . , D1]): fill

data from smaller groups to reduce PR.
7: Balance Batching(Gi): construct balance

batches by sorting packed data according to
attention complexity A in Section 3.1.

8:
9: Initialize B ← [ ]

10: [D1, . . . , Dn]← GroupData(D, Lp)
11: for i = n to 1 do
12: Gi ← Packing(Di, li)
13: Gi ← GreedyFill(Gi, li, [Di−1, . . . , D1])
14: Bi ← Balance Batching(Gi), B.add(Bi)
15: end for
16: return Shuffle(B)

Stage 1: Find the best training strategy. The algorithm begins by initializing two empty lists, P
and S, to store the profiling times and the corresponding strategies, respectively. For each possible

5



Medium Medium

Naive 32K Packing Group

Short ShortShort Short

Medium

Short Short Short Short

32K Packing Group

Medium Medium Medium

SP = 1

SP = 2

No
Comm

L <= 16K

L > 16 K

SP = 2

SP
Comm

16K Packing Group

SP
Comm

Naive Packing Groups [32K] Optimized Packing Groups [16K, 32K]

16K Packing Group

Figure 3: Example of optimizing packing group for communication.

input length l, we compute the optimal degree of SP and the configuration of the GC s = (sp, ckpt)
with the FindBestSpCkpt function, which achieves the optimal trade-off between the degree of SP
and the configuration of the GC. More details of FindBestSpCkpt are shown in Appendix I.1.

Specifically, given a packing length l, we iterate all possible sp degrees and ckpt GC configurations
and profile their iteration time. The best combination (sp, ckpt) is then found by a greedy method.
Once all input lengths are processed, the algorithm selects the best strategy by identifying the index j
that minimizes the profiling times in P . The optimal strategy and input length are:

j = argmin(P ), sbest = S[j], lbest = L[j] (4)

Additionally, the maximum input length lmax and its corresponding strategy smax are also retained.

Stage 2: Optimize packing groups for communication.

After calculating the optimal lbest and the corresponding sbest, we can optimize it further to reduce
communication overhead and obtain the final packing group lengths. Taking 32K packing groups
in Figure 3 with SP=2 as an example, each SP process handles a split of 16K tokens. For samples
longer than 16K, additional communication is required anyway. For samples shorter than 16K, we
can group them into 16K packing groups, which is equivalent to training with 16K packing groups
using SP=1, thereby reducing communication.

l1 =

⌊
lbest

sbest.sp

⌋
and l2 =

⌊
lmax

smax.sp

⌋
(5)

For lbest, the smallest packing group l1 is derived based on its optimal degree of SP sbest.sp, ensuring
no communication overhead during sequential parallelism. Similarly, the smallest packing group l2
for lmax is also considered. If l2 is smaller than lbest, it will be merged into the lbest range. Finally, the
hierarchical packing groups Lp = {l1, lbest, l2, lmax} is obtained. More implementation details are
shown in Appendix I.

4.2 Balance Packing

After obtaining the optimal hierarchical pack groups, we distribute the dataset samples into different
groups while ensuring that the metrics outlined in Section 3.1 (DBR, PR, ABR, and CR) are
well-optimized, which conventional packing struggles with. We first divide the entire dataset into
sub-datasets [D1, D2, . . . , Dn] based on Lp. For each Di, the following steps are executed:

(1) Packing: We pack the data in Di to length li. This ensures low PR and DBR. Note that arbitrary
packing methods are feasible.

(2) GreedyFill: We use the remaining unpacked data for a greedy fill, as larger groups struggle to fill
the packed data using only their samples. A simple example illustration is shown in Appendix E.

(3) Balance Batching: Constructing balance batches Bi based on attention complexity using heuristic
solution sorting support maintaining balanced attention computation across different packing groups.
Heuristic solutions are an efficient, approximate solution for large-scale datasets. More evidences are
shown in Appendix D.
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The procedure of balanced packing is illustrated in Algorithm 2. Since our approach inherently
involves multiple levels, i.e., hierarchical packing groups, it automatically separates short- and long-
context data, avoiding wasted communication overhead and imbalanced attention computation and
reducing CR and ABR significantly. We also achieve low PR and DBR at multiple levels, thanks to
GreedyFill. More details about the implementation are shown in Appendix J.

4.3 Dynamic Training Pipeline

Since HBP involves multi-level inputs, it is essential to design a dynamic training pipeline, enabling
hot switching of different packing groups. Adaptive SP (pre-initialized multi-SP achieving zero
overhead) is proposed to ensure efficient training with multi-level packing. Curriculum Learning and
a Stable Loss Normalizer are proposed to improve the performance in hybrid training.

Adaptive Sequential Parallel: Each packing group is assigned an optimal training configuration
s = (sp, ckpt), and we adopt an alternating scheme that selects the best SP degree and GC setting per
packing group, as illustrated in Figure 2.

Curriculum Learning Strategy: Training on long-context tasks presents challenges because initi-
ating training without instructional capabilities can result in significant fluctuations in the training
loss, as illustrated in Figure 4. Thanks to our inherent hierarchical structure, it is straightforward to
adopt a curriculum learning strategy that begins with general short-context data in the early stages of
training. As training progresses, we transition to a hybrid approach that alternates training both short-
and long-context data, as illustrated in Figure 2.

Stable Loss Normalizer: The training stability introduced by data packing is an important problem,
as it impacts the data distribution. Previous work [6] has analyzed loss calculation, identifying two
primary loss normalizers Ltoken (Token-Mean) and Lsample (Sample-Mean):

Ltoken =

∑Bl

i lossi∑Bl

i Ti

, Lsample =

∑Bl

i
lossi
Ti

Bl
, Tave =

∑Bg

i Ti

Bg
, Lstable =

∑Bl

i lossi
Bl ∗ Tave

(6)

where Bl represents the local batch size within the DP group, and Ti denotes the number of loss
tokens in the batch i. They argued that instability lies in the inconsistent loss of normalization. [27]
also proposes sum loss without normalization to mitigate the effect of norm discrepancies. However,
the sum loss introduces a trade-off: as the sequence length increases, the gradient values escalate
disproportionately (1e+5), as shown in the left part of Figure 5. To address the above issues, we
empirically observe Tave (Average Token) of the global batch size Bg across all DP groups can serve
as a stable loss normalizer. The stable loss normalizer is derived from theoretical considerations,
with the objective of guaranteeing that each token contributes equally to the aggregate loss. This
formulation mitigates biases introduced by heterogeneous sequence lengths, varying data-parallel
group sizes, and gradient accumulation strategies. We illustrate the effect of different normalization
strategies under a simple setting: a data-parallel (DP) group of size 2, where each rank processes a
local batch of 2 samples.

Token-Mean: In the token-mean approach, the loss for each DP rank is normalized by its local token:

Ldp1 =
loss1 + loss2
T1 + T2

, Ldp2 =
loss3 + loss4
T3 + T4
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The global loss is then averaged across ranks:

Lfinal =
Ldp1 + Ldp2

2
=

loss1+loss2
T1+T2

+ loss3+loss4
T3+T4

2

This formulation normalizes losses rank-wise without accounting for global token distribution,
potentially introducing bias when sequence lengths vary across ranks.

Sample-Mean: In the sample-mean method, losses are first normalized per sample and then averaged:

Ldp1 =
loss1
T1

+ loss2
T2

2
, Ldp2 =

loss3
T3

+ loss4
T4

2

The global loss becomes:

Lfinal =
Ldp1 + Ldp2

2
=

loss1
T1

+ loss2
T2

+ loss3
T3

+ loss4
T4

4

This strategy balances individual samples but fails to reflect the total token count, giving undue
weight to shorter sequences.

Stable Loss Normalizer: To eliminate such bias, we normalize by the global average token length:

Lave =
T1 + T2 + T3 + T4

4
, Ldp1 =

loss1 + loss2
2 · Tave

, Ldp2 =
loss3 + loss4

2 · Tave

Each DP’s loss is then normalized by Tave, And the final loss is:

Lfinal =
Ldp1 + Ldp2

2
=

loss1 + loss2 + loss3 + loss4
4 · Lave

=
loss1 + loss2 + loss3 + loss4

T1 + T2 + T3 + T4

This normalization ensures that the contribution of each token is equal, regardless of which sample or
rank it belongs to, thereby producing an unbiased global loss.

5 Experiments

5.1 Experimental Setup

Implementation Details. We use large-scale datasets: Tulu3 (32K)[14] for general tasks and
LongCite (128K)[15] for long-context tasks. Both have shown strong performance across various
benchmarks. They also enhance the model’s ability to handle input lengths from 0.1K to 128K
tokens. We conduct experiments with the following models: LLaMA 3.1 [1], Qwen-2.5 [2], and
DeepSeek-V2 (236B). Most models are trained on 32x H100 80GB GPUs using the DeepSpeed [28],
while DeepSeek-V2 (236B) is trained with the Megatron-LM [29] with 256x H100 80G GPUs. In our
experiments, we use DeepSpeed-Ulysses’s [10] sequence parallelism approach, and the ring-attention
[11] method is also applicable. We conducted ablation experiments using the LLaMA3.1-8B model.
For the Longsite dataset, approximately 2k samples are uniformly sampled. The loss normalizer for
baselines without special instructions is Token-Mean, while HBP uses Ave-Token. GPU days are the
evaluation metric to estimate the total training time. We use a learning rate of 1e-5, weight decay of
0.01, and adopt AdamW as our optimizer.

Evaluation. We comprehensively evaluated the LLM’s performance using OpenCompass [30]. For
general tasks, several benchmark datasets were assessed, including MMLU [31], MMLU PRO [32],
CMMLU [33], BBH [34], Math [35], GPQA Diamond [36], GSM8K [37], HellaSwag [38], Math-
Bench [39], HumanEval [40], MBPP [41], IFEval [42], and Drop [43]. For long-context tasks, the
evaluation including Ruler [44], NeedleBench [45], LongBench [46], and Longcite.
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Table 5: Results of different models. The naive packing baseline ISF uses the Token-Mean loss
normalizer. LongAlign uses their proposed loss-reweighting. AVE represents the average performance
on general tasks. Deepseek-V2(236B) is trained in a 32K setting due to resource constraints.

Model General Tasks Long Tasks GPU Days

(Type) AVE MMLU BBH IFEval Math GSM8k HumanEval Ruler (32K|128K) LongBench LongCite (speed up)

LLama3.1-8B
LongAlign-packing 56.6 44.5 65.5 67.8 30.7 80.6 62.2 84.5 | 57.5 46.7 67.8 5.4 (0.97×)
LongAlign-sorted 57.6 62.7 65.4 67.8 32.8 82.2 61.6 85.8 | 59.9 46.5 64.0 33.3 (0.16×)

ISF 56.0 54.5 65.3 70.4 33.7 81.7 62.8 85.0 | 67.4 44.0 71.6 5.22 (1.0×)
HBP 58.2 63.0 67.2 67.7 33.0 81.9 63.4 85.6 | 70.8 43.1 71.5 3.73 (1.4×)

Qwen2.5-32B
ISF 73.5 74.8 83.5 75.6 56.5 93.7 86.6 88.2 | 59.3 51.0 60.2 21.3 (1.0×)

HBP 76.2 76.6 83.6 76.0 57.1 94.4 84.2 88.3 | 59.0 51.9 61.7 16.0 (1.33×)

LLama3.1-70B
ISF 72.1 78.9 83.0 77.6 44.1 85.3 76.8 91.8 | 57.1 50.4 72,7 44.4 (1.0×)

HBP 74.2 81.5 83.1 76.2 48.3 93.3 77.4 93.4 | 57.5 52.2 75.3 31.1 (1.42×)

DeepSeek-V2 (236B)
ISF 71.8 76.8 84.0 71.1 41.3 89.0 78.6 86.6 | - 47.1 - 57.1 (1.0x)

HBP 72.0 76.5 83.1 72.6 41.4 89.9 78.1 87.3 | - 50.3 - 23.8 (2.4×)

Table 6: Results of HBP Components. This experiment uses the Token-Mean Loss Normalizer.
Hierarchical indicates the enabled hierarchical packing. Balance refers to balance batching.

Model Hierarchical Balance ABR CR AVE GPU Days (speed up)

LLaMA3.1-8B 0.506 1.0 56.0 5.22 (1.0×)
LLaMA3.1-8B ✓ 0.288 0.173 56.4 4.51 (1.2×)
LLaMA3.1-8B ✓ ✓ 0.002 0.173 56.6 3.73 (1.40×)
LLaMA3.1-70B 0.506 1.0 72.2 44.4 (1.0×)
LLaMA3.1-70B ✓ 0.288 0.173 72.8 33.3 (1.25×)
LLaMA3.1-70B ✓ ✓ 0.002 0.173 72.2 31.1 (1.43×)

5.2 Main Results

In Table 5, we compare our method HBP with LongAlign [6] and packing method ISF [8]. We also
notice that LongAlign improves the average general tasks to some extent; it sacrifices performance in
long tasks e.g., Ruler-128K. In contrast, our method maintains strong performance both in general
short tasks and long tasks. The improvements are consistent across a wide range of model sizes,
from 8B to 236B parameters. Notably, for the largest MoE model, DeepSeek-V2 (236B), our method
achieves an impressive 2.4× training speed-up, reducing training time from 57.1 to 23.8 GPU days.
Full results are shown in Appendix C.

5.3 Ablation Results

Importance of Hybrid Training. Table 9 shows that both short- and long-context data are essential
for maintaining general and long-text capabilities. "Longcite (8K)" includes only sequences up to 8K.
All settings use naive packing. Removing long-context data (row 1) harms long-text performance,
while removing short-context data (row 2) weakens the general ability. Row 3, with partial short data,
confirms these effects.

Components of HBP. In Table 6, we show that the Attention Balance Ratio (ABR) and Communi-
cation Ratio (CR) can be reduced significantly with hierarchical packing. In particular, ABR drops
from 0.506 to 0.288, and the CR drops from 1.0 to 0.173. By balancing the batching data with a
similar complexity of attention computation, we have much more balanced mini-batches with low
ABR, from 0.288 to 0.002. Overall, we achieve a 1.4× speedup. Similar results can be observed in
the larger LLaMA-3.1-70B model.

Curriculum Learning. Table 7 presents the impact of curriculum learning on HBP. Starting with
short tasks and gradually mixing in long-context tasks benefits training and convergence. We applied
a similar curriculum strategy to the naive ISF baseline using advanced sampling, which also showed
improvements. This confirms the general effectiveness of curriculum learning for long-context SFT.
Notably, HBP naturally separates short and long contexts, making curriculum learning easier to apply.

Iterations for Curriculum Learning training. Table 8 presents detailed ablation studies across
different models. As shown, even a simple curriculum learning setup, adding 100 steps of early-stage
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Table 7: Results of curriculum learning (CL).
Model CL AVE LongBench

LLama3.1-8B-HBP 56.6 41.6
LLama3.1-8B-HBP ✓ 58.2 43.1

LLama3.1-70B-HBP 72.2 51.5
LLama3.1-70B-HBP ✓ 74.2 52.2

LLama3.1-8B-ISF 56.0 44.0
LLama3.1-8B-ISF ✓ 57.4 43.4

Table 8: Results of different CL iterations.
Model CL-Iterations AVE LongBench

LLama3.1-8B-HBP 0 56.6 41.6
LLama3.1-8B-HBP 100 58.0 43.1
LLama3.1-8B-HBP 500 58.2 43.1

LLama3.1-70B-HBP 0 72.2 51.5
LLama3.1-70B-HBP 100 73.8 52.4
LLama3.1-70B-HBP 500 74.2 52.2

Table 9: The importance of hybrid training.
Dataset Pack Len AVE LongBench Ruler-128K
Tulu3 32K 57.5 43.0 52.5

Longcite 128K 18.8 16.7 68.5
Tulu3 + Longcite(8K) 32K 58.6 43.2 62.1

Tulu3 + Longcite 128K 56.0 44.0 67.5

Table 10: Results of different loss normalizers.
Loss Normalizer AVE LongBench Ruler-128K Longcite

Sum 56.7 42.5 65.2 70.5
Sample-Mean 55.5 42.9 46.1 70.3
Token-Mean 56.6 41.6 67.5 70.6
Ave-Token 57.6 43.1 70.8 71.2

training with short samples, already yields noticeable improvements. To ensure training stability, we
ultimately adopt a setting with 500 steps of short-sample-only training in our final experiments.

Stable Loss Normalizer. We compared several loss normalization methods by training models using
different normalizers while keeping all other training configurations consistent. As shown in Table
10, the Ave-Token loss normalizer achieved the highest performance in both general tasks, Average
(AVE) 57.6, and long context tasks LongBench 43.1, Ruler-128K 70.8, and LongSite 71.2.

Importance of Hierarchical Groups Auto-Selection. Table 11 compares manual (row 2) and
automatic (row 3) packing groups. Automatic selection of groups (based on Appendix F) achieves
greater speedup, reducing training time from 4.25 to 3.73 GPU days.

Table 11: Ablation results of optimizing packing groups for communication. Groups represent the
packing group lengths used during training, while SP refers to the Sequence Parallel degree.

Model Groups Selection SP ABR CR AVE LongBench GPU Days (speed up)

LLama3.1-8B-ISF [128K] manual [8] 0.506 1.0 56.0 44.0 5.22 (1.0×)
LLama3.1-8B-HBP [32K, 128K] manual [2, 8] 0.002 1.0 57.9 43.2 4.25 (1.22×)
LLama3.1-8B-HBP [16K,128K] auto [1,8] 0.002 0.173 58.2 43.1 3.73 (1.4×)

Compared with FlexSP. As shown in Table 12, HBP achieves lower ABR, DBR, and PR than
FlexSP, while maintaining a similar CR, contributing to faster training (4.35 to 3.73 GPU days), even
considering only the model computation time. Furthermore, FlexSP introduces a per-batch grouping
overhead (5-15 seconds), which further slows down training (see Appendix B). HBP performs global
data-level operations in advance with negligible data overhead.

Negligible Overhead. The overhead of HBP is negligible: Auto-Selection takes ∼3 minutes and
Packing 5 seconds, together contributing less than 2% of training time (see Appendix G).

Table 12: Ablation results with FlexSP. All metrics are calculated based on the official code. For
FlexSP, we only consider the model computation time and ignore the impact of data grouping time.

Model SP CL PR DBR CR ABR AVE LongBench GPU Days (speed up)

LLama3.1-8B-ISF [8] 0 0.001 1.0 0.506 56.0 44.0 5.22 (1.0×)
LLama3.1-8B-FlexSP [24] [1,2,4,8] 0.04 0.064 0.171 0.36 56.1 41.8 4.35 (1.2×)

LLama3.1-8B-HBP [1,8] 0 0.001 0.173 0.002 56.6 41.6 3.73 (1.4×)
LLama3.1-8B-HBP [1,8] ✓ 0 0.001 0.173 0.002 58.2 43.1 3.73 (1.4×)

Dataset Generalization. To verify the generalization of our method, we conducted experiments on
different datasets (OpenHermes[16], LongWriter[23]). Our method also achieves effective results on
these datasets. Results are shown in the Appendix H.

6 Conclusion and Limitations

In this paper, we proposed Hierarchical Balance Packing (HBP), a novel strategy to address workload
imbalances in long-context LLM training through multi-level data packing and a dynamic training
pipeline. Due to limitations in computational resources, we have not conducted experiments on longer
contexts, such as 256K or 512K. Additionally, we have not validated HBP on other post-training
tasks, such as RLHF or DPO. We leave these explorations to future work.
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The paper is primarily based on empirical observations and proposes heuristic
approaches, which are not fully supported by formal mathematical proofs or a complete set
of theoretical assumptions.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The experimental results can be fully reproduced based on the information
provided in the paper, and the authors have indicated that the code will be released in the
future.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: The code and data are not yet publicly available, and although the authors
plan to release them later, they are currently not provided with sufficient instructions in the
supplemental material to ensure faithful reproduction of the results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The full details are provided in the main text and supplemental material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The results are accompanied by error bars, confidence intervals, or statistical
significance tests, at least for the experiments that support the main claims of the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper provides sufficient information about the computational resources
used, including details in both the main text and the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research presented in the paper fully conforms to the NeurIPS Code of
Ethics in all respects.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All resources used in the paper comply with their respective licenses and terms
of use.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Packing Strategy Results

Table 13 illustrates the complexity of different packing strategies and their corresponding final
training times. It also shows that the training indicators Data Balance Ratio (DBR), Padding Ratio
(PR), and Attention Balance Ratio (ABR) are strongly correlated with the training time, emphasizing
the effectiveness of these indicators. Based on the computational complexity of packing strategies
and their training time, and accuracy performance, we ultimately selected ISF as our naive packing
baseline.

Table 13: Results of different packing strategies in the training setting of 128K with hybrid data.
N: Number of samples; M: Number of samples per pack; S: Maximum pack length; C: Number of
iterations.

Packing Strategy Complexity DBR ABR PR Ave LongBench GPU Days (speed up)

No - 0.63 0.72 0 56.5 41.8 38.3 (1.00×)
Random O(N) 0 0.53 0.03 56.2 42.0 5.57 (6.87×)

ISF C*O(N+M) 0 0.506 0.01 56.6 41.6 5.22 (7.33×)
FFS O(NM) 0 0.508 0.01 56.3 42.0 5.24 (7.30×)
FFD O(NM) 0 0.515 0.01 56.4 42.4 5.48 (6.98×)
BFS O(NM) 0 0.508 0.01 56.8 41.7 5.24 (7.30×)

SPFHP O(N+S2) 0 0.512 0.01 56.2 42.3 5.40 (7.10×)

B Results of FlexSP data grouping

The experiments were conducted with a sequence length of 128K using 32 GPUs. The results for
FlexSP were obtained by directly testing with the officially released code. The FlexSP data group
method incurs a non-negligible overhead of 5–15 seconds per batch, which cannot always be hidden
by the training time shown in Table 14 Rows 3 and 4.

Table 14: Results of FlexSP data grouping. Data Time refers to the time taken to fetch a batch after
overlapping with model training. Model Time refers to the time spent on model training. Total Time
represents the overall time, including both data and model processing. All times are averaged over
100 iterations.

Model Dataset Group method Data Time Model Time Total Time
GPT-7b github FlexSP 0.25s 15.4s 15.6s
GPT-7b CommonCrawl FlexSP 0.3s 13.0s 13.3s
GPT-7b Wikipedia FlexSP 4.41s 2.4s 6.81s
GPT-7b Tulu3 + Longcite FlexSP 3.43s 3.02s 6.45s
GPT-7b Tulu3 + Longcite HBP 0 s 2.75s 2.75s

C Full Results

Tables 15 and 16 present our complete results for general tasks and long-context tasks, respectively.
These results collectively validate the effectiveness of our HBP method. The other dense models
all use the GQA architecture, while Deepseek-V2 adopts the MLA structure, which involves more
communication due to a larger number of K and V heads, similar to MHA. HBP effectively reduces
the communication overhead, making the speedup more significant.

D More Details of Attention Imbalance Problem

Imbalance of attention complexity: As deduced from Megatron-LM paper, gives a packed sequence
containing n sub-sequences with total lengths, each transformer layer computes cost can be approxi-
mated as:24Bsh2 +4B

∑
s2i , where si is the length of the i-th sub-sequence, B is the batch size, and

h is the hidden size. Therefore, variance in attention complexity
∑

s2i directly impacts compute cost.

Effectiveness of Balance Batching:
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Table 15: Full results of general tasks. The naive packing baseline ISF uses the Token-Mean loss
normalizer. LongAlign uses their proposed loss-reweighting. AVE represents the average performance
on general tasks. Deepseek-V2(236B) is trained in a 32K training setting due to resource constraints.

Model MMLU BBH IFEval Math GSM8k HumanEval mmlu_pro cmmlu GPQA Drop MBPP hellaswag mathbench-a mathbench-t AVE GPU Days (speed up)
LLama3.1-8B

LongAlign-packing 44.5 65.5 67.8 30.7 80.6 62.2 26.5 48.4 28.8 71.5 63.8 80.5 45.6 75.6 56.6 7.4 (0.7×)
LongAlign-sorted 62.7 65.4 67.8 32.8 82.2 61.6 38.3 43.6 29.3 65.1 63.0 69.6 50.3 73.9 57.6 33.3 (0.16×)

ISF 54.5 65.3 70.4 33.7 81.7 62.8 34.6 39.8 24.2 65.4 61.8 67.9 46.7 74.7 56.0 5.22 (1.0×)
HBP 63.0 67.2 67.7 33.0 81.9 63.4 38.4 43.4 27.8 68.7 65.0 68.7 50.1 76.4 58.2 3.73 (1.4×)

Qwen2.5-32B
ISF 74.8 83.5 75.6 56.5 93.7 86.6 59.6 77.6 37.9 82.7 80.1 93.5 64.1 63.5 73.5 21.33 (1.0×)

HBP 76.6 83.6 76.0 57.1 94.4 84.2 59.2 79.5 41.4 83.5 80.9 93.5 70.1 86.2 76.2 16.00 (1.33×)

LLaMA3.1-70B
ISF 78.9 83.0 77.6 44.1 85.3 76.8 55.0 66.9 41.4 81.9 76.6 89.3 65.1 88.0 72.1 44.40 (1.0×)

HBP 81.5 83.1 76.2 48.3 93.3 77.4 60.2 66.3 43.9 84.1 78.6 89.0 67.9 88.4 74.2 31.10 (1.42×)

Qwen2.5-72B
ISF 83.9 86.0 79.3 57.2 94.6 85.9 66.2 84.7 45.4 84.6 84.8 93.7 74.1 95.0 79.6 47.10 (1.0×)

HBP 84.2 85.8 79.7 56.2 94.7 85.0 65.9 84.9 50.5 84.9 86.4 93.9 72.8 95.1 79.5 33.70 (1.40×)

DeepSeek-V2 (236B)
ISF 76.8 84.0 71.1 41.3 89.0 78.6 54.2 76.9 37.9 77.2 76.7 90.2 68.4 92.3 71.8 57.10 (1.0×)

HBP 76.5 83.1 72.6 41.4 89.9 78.1 55.5 73.3 36.4 78.5 77.4 90.2 70.1 92.5 72.0 23.80 (2.4×)

Table 16: Full results of Long tasks. The naive packing baseline ISF uses the Token-Mean loss
normalizer. LongAlign uses their proposed loss-reweighting. AVE represents the average performance
on general tasks. Deepseek-V2(236B) is trained in a 32K training setting due to resource constraints.

Model Ruler (32K | 128K) NeedleBench (32K | 128K) LongBench Longcite GPU Days (speed up)

LLama3.1-8B
LongAlign-packing 84.5 | 57.5 87.9 | 85.0 46.7 67.8 7.4 (0.7×)
LongAlign-sorted 85.6 | 60.0 92.4 | 88.9 46.6 64.0 33.3 (0.16×)

ISF 85.0 | 67.4 92.1 | 90.1 44.5 71.6 5.22 (1.0×)
HBP 85.6 | 70.8 91.8 | 90.0 43.2 71.5 3.73 (1.4×)

Qwen2.5-32B
ISF 88.2 | 59.3 94.5 | 84.6 51.0 60.2 21.33 (1.0×)
HBP 88.3 | 59.0 96.0 | 88.9 51.9 61.7 16.00 (1.33×)

LLaMA3.1-70B
ISF 91.8 | 57.1 95.5 | 92.6 50.4 72.7 44.4 (1.0×)
HBP 93.4 | 57.5 95.2 | 92.4 52.2 75.3 31.1 (1.42×)

Qwen2.5-72B
ISF 92.6 | 58.5 94.5 | 90.8 50.0 64.3 47.1 (1.0×)
HBP 92.8 | 58.2 95.2 | 91.4 51.7 64.7 33.7 (1.40×)

DeepSeek-V2 (236B)
ISF 86.6 | - 96.0 | - 47.1 - 57.1 (1.0×)
HBP 87.3 | - 95.9 | - 50.3 - 23.8 (2.4×)

Sorting is indeed a heuristic solution, and it cannot be strictly proven mathematically to guarantee
perfect balance. However, based on the results across different datasets, it achieves near-perfect
balance (low ABR approaching 0).

Heuristic solutions are a common and efficient approximate solution for solving problems on large-
scale datasets. Our method ensures that iterations maintain attention to balance across different
datasets over 99.6% of training shown in Table 17, demonstrating the strong generalization capability
of our method.

Balance Evidence: The left side in Figure 6 shows baseline packing with high attention cost variance
across DP groups, while the right side shows our sorting-based method, which significantly reduces
this variance and improves efficiency.

Table 17: ABR comparison of different datasets using HBP.
Dataset Packing method ABR
Tulu3 HBP 0.001
OpenHermes HBP 0.001
Tulu3 + Longcite HBP 0.002
OpenHermes + Longcite HBP 0.004
Tulu3 + Longwriter HBP 0.003

22



0 20 40 60 80 100

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Ti
m

e 
(s

)

Forward Time (w/o sort)

dp1
dp2
dp3
dp4

0 20 40 60 80 100

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Forward Time (with sort)

dp1
dp2
dp3
dp4

0 20 40 60 80 100
Step

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Se
q 

Le
ng

th
 S

qu
ar

e 
Su

m

1e10 Attention Complexity (w/o sort)

dp1
dp2
dp3
dp4

0 20 40 60 80 100
Step

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1e10 Attention Complexity (with sort)

dp1
dp2
dp3
dp4

Figure 6: The plots show the forward time for different DP ranks (32 GPU DP=4, SP=8). The left
column shows results without sorting, while the right column shows results after applying sort-based
load balancing. The bottom plots illustrate the attention complexity (measured as the sum of sequence
length squared) for each DP rank during forward passes. The top and bottom figures are used to verify
the correlation between attention complexity and forward time. The left and right figures illustrate the
imbalance in forward time across different DP ranks before and after applying sort-based balancing.
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Figure 7: Example of GreedyFill. For longer samples, relying solely on data within the corresponding
range (e.g., [32K, 128K]) makes it difficult to achieve full packing, resulting in low Ave-T. It operates
within local packing groups by selecting a small number of sequences from other shorter packing
groups to fill residual space and optimize Ave-T efficiently.

E More Details of GreedyFill.

GreedyFill aims to reduce intra-pack padding tokens and improve Ave-T. It operates within local
packing groups by selecting a small number of sequences from other shorter packing groups to
efficiently fill residual space, as shown in Figure 7.

F More Details of Hierarchical Groups Auto-Selection.

The necessity of auto-selection: Table 18 presents an example of 32K token-length training,
showcasing various SP degrees and GC configurations. The second row highlights the minimal
configuration s = (2, 28) that satisfies memory constraints. While this configuration adheres to

23



memory requirements, it fails to achieve optimal performance. In contrast, the fourth row illustrates
a more balanced and effective configuration with s = (8, 8), achieving the fastest speed. These
experiments demonstrate that, given a specific packing length, there are significant performance
differences among various SP degrees and GC configurations.

The final selection groups result: Table 19 presents the training speed of the optimal SP degrees
and GC configurations for various sequence lengths L. The second row of the table shows that our
optimal configuration is groups = 16K, with the corresponding training strategy being s = (1, 28).
This indicates that the optimal training strategy is distinct for different packing groups. The evidence
above emphasizes the importance of searching for the best groups and their corresponding training
strategies, i.e., Auto-Group Selection.

Table 18: Results of different SP degrees and
GC configurations. Iter Time is the average time
over ten iterations.

SP GC Layer AVE Memory Iter Time GPU Days
1 32 - OOM - -
2 28 57.5 78G 3.01 s 3.73
4 23 57.8 78G 2.95 s 3.37
8 8 57.6 77G 2.82 s 3.04

16 0 56.6 76G 3.60 s 3.93

Table 19: Results of different packing groups
using hybrid data. Iter Time is the average time
over ten iterations.

Packing Groups SP GC Layer Memory Iter Time
8k 2 8 77 G 2.69 s

16k 1 28 76 G 2.65 s
32k 8 8 76 G 2.83 s
64k 4 28 78 G 3.01 s

128k 8 28 79 G 3.05 s

G Overhead Analysis

Balance Packing and Auto-Selection overhead relative to training time. Both steps together remain
consistently negligible: Auto-Selection requires at most 15 minutes and Packing only 5 seconds,
while training spans from 168 to 1400 minutes. Overall, the combined overhead is below 2% of
training time, confirming that preprocessing costs are insignificant compared to model training.

Table 20: Balance Packing and Auto-Selection overhead relative to training time.
Model Dataset Auto-Selection Time Balance Packing Time Training Time Overhead Ratio

LLaMA3.1-8B Tulu3 + Longcite 3.25 min 5 sec 168 min 2%
LLaMA3.1-70B Tulu3 + Longcite 15 min 5 sec 1400 min 1%

G.1 Overhead of Profiling

Memory Profiling. The memory profiling cost depends on the sequence length set (Seq) processed
by the device:

Costm = len(Seq)× profile_iter× iteration_time.

Time Profiling. The total number of search strategies (S) is determined by the packing length set
(L) and the Sequence Parallel (SP ) settings. profile_iter can be adjusted based on actual iteration
times, with typical values ranging from 3 to 10:

S = len(L)× len(SP ), Costt = len(S)× profile_iter× iteration_time.

Total Cost (Example). For instance, with profile_iter = 5, L = {16K, 32K, 128K} and SP =
{2, 4, 8}, Seq = {4K, 8K, 16K}, for LLaMA3.1-8B:

Costt = 3× 3× 5 = 45× iteration_time,
Costm = 3× 5 = 15× iteration_time,

Costtotal = Costt + Costm = 60× iteration_time.

Considering the 3000+ training iterations, totaling 60 iterations (2%) is negligible compared to the
overall training time.

G.2 Overhead of Balance Packing

For our training dataset of 1 million samples, the overhead introduced by Balance Packing is
consistently within 5 seconds.
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Complexity. The computational complexity of Balance Packing can be expressed as:

Cost = L ·
(
C ·O(N +M) +M · logM

)
,

where N is the number of samples, M is the number of packing groups, C is the number of ISF
iterations, and L denotes the selected packing set.

Since C ≪ N , M ≪ N , and L≪ N , the overall complexity reduces to a sublinear class relative to
N . Hence, scaling to substantially larger datasets incurs only minimal additional overhead.

G.3 Scalability of the Proposed Method

Large-scale dataset. Our profiling is performed for only a small number of iterations (< 100). As
the dataset size increases, the overall overhead ratio (< 1%) becomes even lower. Meanwhile, the
complexity of Balance Packing is O(N), so the additional cost introduced is negligible as the dataset
scales.

H Dataset Generalization

H.1 OpenHermes

We also provide some of our experimental results on OpenHermes. For example, Table 21 shows that
the results are consistent with Tulu3 under different packing strategies. The label 22 shows that our
HBP is also effective in a 128K training setting.

Table 21: Results of different packing strategies in the training setting of 4K on the OpenHermes
dataset.

Packing Strategy Complexity DBR ABR PR Ave LongBench GPU Days (speed up)
- - 0 0.878 0.676 48.2 46.4 11.4 (1.0×)

random O(N) 0 0.648 0.089 51.44 47.8 3.64 (3.1×)
ISF C*O(N+M) 0 0.64 0.022 50.9 47.8 3.28 (3.5×)
FFS O(NM) 0 0.638 0.022 52.4 48.4 3.29 (3.5×)
FFD O(NM) 0 0.71 0.022 50.6 48.4 3.45 (3.3×)
BFS O(NM) 0 0.64 0.022 52.3 47.7 3.33 (3.4×)

SPFHP O(N+S2) 0 0.71 0.029 52.0 47.8 3.47 (3.3×)

Table 22: Results of HBP Components on OpenHermes + Longcite dataset. This experiment uses the
Token-Mean Loss Normalizer. Balance refers to enabling Attention Balance Sort, while Hierarchical
indicates the activation of hierarchical packing.

Hierarchical Balance ABR AVE LongBench Ruler-32K Longsite GPU Days (speed up)
0.513 52.1 47.2 87.7 72.1 2.95 (1.0×)

✓ 0.269 53 47.1 89.1 72.0 2.33 (1.27×)
✓ ✓ 0.004 52.4 47.1 88.3 72.3 2.04 (1.44×)

H.2 LongWriter

Figure 8 and Table 23 present the results of our HBP hybrid training on Tulu3 and LongWriter. The
x-axis represents the user instruction required length, and the y-axis represents the model output
length based on the Long-Writer paper. A stronger linear correlation indicates better instruction-
following capability of the model. The left side of the Figure shows the original baseline results
without using the Long-Writer dataset. The middle shows the results of naive packing, and the
right shows the results of HBP. The experiment demonstrates that our method is equally effective,
achieving consistent acceleration across both models.

Table 23: Model Evaluation Results of Tulu3 and LongWriter Hybrid Training.

Model Dataset AVe LongBench LongWriter GPU Days (speed up)

Llama3.1-8B-ISF Tulu3 + LongWriter 57.3 40.9 67.0 4.4 (1.0×)
Llama3.1-8B-HBP Tulu3 + LongWriter 57.8 42.7 66.4 3.5 (1.26×)
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Figure 8: Results of Long-Writer Dataset for evaluating the impact of our method on accuracy. The x-
axis represents the user instruction required length, and the y-axis represents the model output length
based on the Long-Writer paper. A stronger linear correlation indicates better instruction-following
capability of the model. The left side of the Figure shows the original baseline results without using
the Long-Writer dataset. The middle shows the results of naive packing, and the right shows the
results of HBP.

I Implementation Details of Hierarchical Groups Auto-Selection

I.1 FindBestSpCkpt

Algorithm 3 FindBestSpCkpt Function

1: Initialize P ← [], O ← []
2: for each sp ∈ SP do
3: ckpt← GreedyProfileCkpt(l)
4: P.add(ProfileTime(l, sp, ckpt)),

O.add(sp, ckpt)
5: end for
6: j ← argmin(P )
7: return O[j]

Algorithm 4 GreedyProfileCkpt

1: Inputs: l, sp, cmin, cmax

2: s1 ← (sp, l, cmin)
3: s2 ← (sp, l, cmax)
4: mr

1 ← ProfileMemory(s1)
5: mr

2 ← ProfileMemory(s2)
6: mave ← (mr

2 −mr
1)/(cmax − cmin)

7: co ← cmax −mr
2/mave

8: return co

Algorithm 3 determines the optimal gradient checkpointing strategy by evaluating all possible sp
strategies.

• Initialization: Start with empty lists P and O for profiling times and configurations,
respectively.

• Iterate Over Strategies: For each strategy sp ∈ SP :

– Compute the best gradient checkpointing configuration (ckpt) using the GreedyPro-
fileCkpt function.

– Use ProfileTime to profile the execution time for the model with the given configuration
and append it to P .

• Find Optimal Strategy: Identify the index j of the minimum profiling time in P using
argmin(P ).

• Return Best Configuration: Return the SP degree and corresponding gradient checkpoint-
ing configuration O[j].

I.2 GreedyProfileCkpt

The algorithm 4 estimates the number of gradient checkpoint layers required for a given strategy l
and sp. Here, we provide a more detailed explanation. We use the "pynvml" library to monitor GPU
memory usage for memory analysis.

Memory Profiling:
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Step 1: Given an input length L, enable Gradient Checkpointing for all layers (32 for 7B), and record
the remaining GPU memory as m1.

Step 2: Given the same input length L, enable Gradient Checkpointing for only a subset of layers
(e.g., 20 layers), and record the remaining GPU memory as m2.

Step 3: From the above, we can estimate the average memory saved per layer with Gradient
Checkpointing: ave_m = (m1 - m2) / (32 - 20)

By running only 10 iterations, we can obtain a reliable estimate of the memory saved per layer when
using Gradient Checkpointing.

Memory And Time Consumption Report:

For a given input length L, we set different sequence parallelism (SP) configurations. Based on the
remaining GPU memory and the previously estimated ave_m, we determine the number of layers to
apply Gradient Checkpointing. Then, we run 10 iterations to record the corresponding memory usage
and iteration time.

Full workflow:

• Initialization: Obtain the configurations using the minimum and maximum number of
gradient checkpointing layers (based on empirical observations):

s1 = (sp, l, cmin), s2 = (sp, l, cmax)

• Memory Profiling: Profile the remaining memory for s1 (mr
1) and s2 (mr

2).
• Memory Slope Calculation: Compute the average memory slope (avem) as:

mave =
mr

2 −mr
1

cmax − cmin
.

• Checkpointing Layer Estimation: Estimate the required number of checkpoints (co) as:

co = cmax −
mr

2

mave
.

J Implementation Details of Balance Packing

J.1 GroupData

Given a data set D and predefined hierarchical lengths Lp, we evaluate the length of each data set x
to determine the interval (li−1, li) to which it belongs, assigning it to the corresponding group Di.
The detailed procedure is outlined in Algorithm 5.

J.2 GreedyFill

For a given packing group Gi with the corresponding length li, we iterate through the smaller dataset
partitions (Di−1, Di−2, . . . , D1) and greedily fill the group g within the current Gi. The detailed
procedure is illustrated in Algorithm 6.

J.3 Attention Balance Sort Function

First, we calculate the attention complexity for all data within the given packing group G. Then, we
sort the elements in Gi based on their attention complexity and construct mini-batches according to
the global token number requirements as shown in Algorithm 7.
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Algorithm 5 GroupData Function

1: Inputs: Dataset D = {x1, x2, . . . , xN},
hierarchical packing lengths
L = {l1, l2, . . . , ln}

2: Initialize: (D1, D2, . . . , Dn) ←
([], [], . . . , [])

3: for x ∈ D do
4: if len(x) ∈ (li−1, li] then
5: Di.add(x)
6: end if
7: end for
8: return (D1, D2, . . . , Dn)

Algorithm 6 GreedyFill Function

1: for g ∈ Gi do
2: for j = i− 1→ 1 do
3: for x ∈ Dj do
4: if

∑
s∈g len(s) + len(x) ≤ li then

5: g.add(x)
6: Remove x from Dj

7: end if
8: end for
9: end for

10: end for
11: return Gi

Algorithm 7 Attention Balance Sort Function

1: Initialize A← []
2: for g ∈ G do
3: a =

∑
x∈g(len(x))2

4: A.add(a)
5: end for
6: Sort G based on A
7: return G
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