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Abstract
Sequence-to-sequence tasks often benefit from001
long contexts, but the quadratic complexity002
of self-attention in standard Transformers ren-003
ders this non-trivial. During generation, tempo-004
rary representations – stored in the so-called005
KV cache – account for a large portion of006
GPU memory usage and scale linearly with007
context length. We introduce KV-DISTILL ,008
a Transformer compression framework that009
distills long context KV caches into signifi-010
cantly shorter representations in a question-011
independent fashion. KV-DISTILL can be012
trained as a parameter-efficient adaptor for pre-013
trained models, and enables the compression014
of arbitrary spans of a context while preserv-015
ing pre-trained model capabilities. We treat a016
compressed-uncompressed cache as a student-017
teacher pairing and apply a KL-type diver-018
gence to match the generated outputs. KV-019
DISTILL outperforms other compression tech-020
niques in worst-case extractive tasks and ap-021
proaches uncompressed performance in long022
context question answering and summarization,023
and it can be fine-tuned on domain-specific con-024
texts to reduce lengths by up to 99% while pre-025
serving downstream performance. We demon-026
strate the generalizability of KV-DISTILL across027
various model sizes and architectures.1028

1 Introduction029

Harnessing the full potential of attention-based030

large language models (LLMs) often requires them031

to condition on long contexts. However, use of032

expansive contexts is complicated by the quadratic033

complexity of self-attention. In particular, during034

generation, one must maintain a store of all past key035

and value representations of past tokens (called the036

KV cache) that grows linearly with sequence length.037

The memory burden imposed by the KV cache is038

significant, and often limits the length of the se-039

quences that a model can handle.040

1Our code and checkpoints will be made available at
https://example.com

Much work has been devoted to architectural im- 041

provements to attention in order to reduce memory 042

during generation. Strategies include augmenting 043

sequences with memory tokens (Rae et al., 2020; 044

Wu et al., 2022), sparsifying attention patterns 045

(Beltagy et al., 2020), and using conditional com- 046

putation to only process essential tokens (Ainslie 047

et al., 2023). However, such techniques have 048

seen little widespread adoption due to performance 049

drops on downstream tasks, or inefficient train- 050

ing/inference procedures. Even when given long 051

contexts without compression, LLMs fail to fully 052

utilize them (Qin et al., 2022; Liu et al., 2024; Lu 053

et al., 2024). Together this suggests long contexts 054

may allow for significant compression while yield- 055

ing large memory savings. 056

In what follows, we suppose that a prompt to a 057

LLM is composed of contextual text(s) followed 058

by a question whose answer is dependent on the 059

provided context. KV compression can be divided 060

into two paradigms: question-aware, and question- 061

independent. In question-aware compression, we 062

have access to the question that we need answered, 063

and can compress the context with this in mind. 064

In question-independent compression, we do not 065

know what questions will be asked in the future. 066

For instance, consider a scenario in which a fixed 067

textual context will be used to respond to many 068

questions; the goal of question-independent com- 069

pression is to compress this context once for reuse 070

across many question. 071

Prior work in training-free context compression 072

has primarily focused on which representations in 073

the KV cache to select for eviction, with excellent 074

results (Zhang et al., 2023; Li et al., 2024). How- 075

ever, in practice, we observe that the performance 076

of this selection procedure suffers greatly in the 077

question-independent paradigm. Furthermore, we 078

anticipate that there is room for performance im- 079

provements in general-purpose context compres- 080

sion when the model is trained to handle for com- 081
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Figure 1: We subselect tokens from the KV cache and distill into the smaller subset

pression.082

Prior workin trainable context compression have083

typically utilized a combination of cross-entropy084

and autoencoding objectives to pre-train general085

context compressors (Qin et al., 2024; Ge et al.,086

2024; Rae et al., 2020), which are suitable for087

question-independent compression. These loss088

functions have led to significant performance loss089

at high compression rates.090

In this work we design a general-purpose train-091

able context compression method for LLMs that092

outperforms prior methods in both the question-093

independent and question-aware paradigms. Our094

method, KV-DISTILL , accomplishes this, while095

also maintaining pretrained model capabilities, be-096

ing suitable for long contexts, and having minimal097

performance penalty on downstream tasks. KV-098

DISTILL can support coherent, useful generation at099

compression ratios as high as 1000x.100

To achieve this we train a scorer which retains101

the most important context tokens, while apply-102

ing a parameter efficient adapter to conditionally103

modify important tokens’ activations in-place. We104

further apply a token-level KL-type divergence to105

match the next-token prediction distributions, treat-106

ing the compressed cache as a student, and the107

uncompressed cache as a teacher. KV-DISTILL only108

need be applied once to a fixed context, has zero109

overhead during auto-regressive decoding, and can110

compress arbitrary (sub)spans of a given context.111

We show improvements on several model fami-112

lies, considering extractive and abstractive tasks,113

with both short and long contexts, and at multiple114

model scales. KV-DISTILL is general purpose and115

has broad applicability to the LLM community.116

2 Background 117

2.1 Key-Value Cache 118

Transformer-based language models (LMs) 119

(Vaswani et al., 2017) use self-attention to aggre- 120

gate context information and make predictions. A 121

decoder-only transformer LM autoregressively 122

predicts new tokens, and each step requires the 123

LM to obtain the key and value states of all past 124

tokens. To avoid re-computing the KV state of 125

past tokens, most LM implementations (e.g. Wolf 126

et al. (2020)) cache the key and values states, in 127

a structure called the KV cache. When making 128

new predictions, self-attention is performed on 129

query states of the new token and the KV -cache, 130

and the new token’s key and value representations 131

are appended to the KV cache. Because the 132

KV cache grows proportional to the number of 133

tokens generated, maintaining the full KV cache in 134

memory is a primary bottleneck when conditioning 135

on large contexts. The goal of this work is to 136

alleviate this by compressing KV cache in the 137

dimension of sequence length, especially in the 138

question-independent regime 139

2.2 Related Work 140

Much prior work has tackled the problem of reduc- 141

ing the complexity of the self-attention mechanism 142

itself. Previous work tries to sparsify the attention 143

patterns(Beltagy et al., 2020; Zaheer et al., 2020), 144

use recurrence attention(Yang et al., 2019), or 145

kernelize the attention matrix(Choromanski et al., 146

2021), but they require a considerable amount of 147

further training. 148

Similar to our work, one line of work involves 149

compressing the hidden states (KV cache) of past 150
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tokens into a shorter sequence of representations.151

For example, some methods learns “soft represen-152

tations” of context (Qin and Eisner, 2021). Mu153

et al. (2023) compress particular prompts into much154

shorter “gist tokens”, but do not attempt more155

general context compression. Furthermore, their156

method demonstrates poor generalizability, as per-157

formance does not scale with the number of gist158

tokens used. Zeng et al. (2023) propose to rec-159

ognize and prioritize some important tokens (VIP160

tokens) during inference. Most relevant here, the161

following methods employ a similar idea of dynam-162

ically compressing the context prior to inference.163

2.3 Trainable Compression164

Ge et al. (2024) design In-Context Autoencoder165

(ICAE) to compress long contexts for use in large166

language models (LLMs). ICAE consists of two167

main components: a learnable encoder and a fixed168

decoder. The encoder compresses the input con-169

text into a small number of memory slots. These170

memory slots are then used by the frozen LLMs171

(decoder) to reconstruct the context or respond to172

prompts. ICAE is pretrained using autoencoding173

and language modeling objectives on a large pre-174

training corpus and further fine-tuned using instruc-175

tion data to maintain instruction-tuning. However,176

there is still a gap in downstream task performance177

when using an ICAE-compressed context, com-178

pared to an uncompressed context, and the method179

falters under high compression ratios.180

Qin et al. (2024) propose DODO to compress181

sub-select KV activations to a set of “nugget” to-182

kens, which grow proportionally with the length of183

context sequence. Their method is trained with184

auto-encoding or language modeling objectives.185

However, DODO models operate at a fixed com-186

pression ratio, require training both an encoder and187

decoder, and still show a large gap in downstream188

task performance when compared to an uncom-189

pressed context.190

2.4 Training-Free Compression191

Zhang et al. (2023) propose H2 to reduce mem-192

ory usage during generation. H2 identifies “heavy-193

hitter” tokens, which significantly influence atten-194

tion scores during inference. Specifically, H2 cal-195

culates the accumulated attention for each key and196

retains the top-k key-value pairs with the highest197

scores.198

In the question-aware setting, the accumulated at-199

tention scores include attention scores from tokens200

in the question attending to the context. This effec- 201

tively uses the question to scan for important details 202

in the context. This allows H2 to maintain nearly 203

uncompressed performance at moderate compres- 204

sion ratios, by focusing on tokens most relevant to 205

the current question. However, performance still 206

degrades when compression ratios exceed 20×. 207

In the question-independent paradigm, the H2 208

selection mechanism is applied solely to the con- 209

text (as opposed to the context and question in 210

the question-aware setting). We then allow the 211

question to attend to only to this compressed 212

context. We empirically observe that in the 213

question-independent paradigm, H2 performance 214

plummets drastically, highlighting the need for im- 215

proved question-independent compression meth- 216

ods. Lastly, H2 offers no way to further im- 217

prove compressive performance given prior domain 218

knowledge. 219

Similarly SnapKV (Li et al., 2024) uses the at- 220

tentions of a window of recent tokens to determine 221

which context tokens are “heavy-hitters"; in the 222

question-independent setting, this is undesirable, 223

as the last tokens of a context may not necessarily 224

provide additional information regarding attention 225

patterns. In the question-independent paradigm we 226

find that SnapKV performs similarly to H2 , so 227

do not compare against it in the remainder of this 228

paper. 229

3 Key-Value Distillation 230

We consider a transformer-based language model 231

(Vaswani et al., 2017), denoted by LM, that is de- 232

fined on the vocabulary V . The KV-DISTILL pro- 233

cess is then: (1) a set of important tokens in the 234

input context is determined; (2) an adapted lan- 235

guage model LMθ is used to encode the context into 236

a KV cache, and sub-select the aforementioned im- 237

portant tokens from the generated KV cache; and (3) 238

the unmodified LM conditions on the compressed 239

KV cache to auto-regressively generate it’s output. 240

3.1 Important State Selection for Cache 241

Compression 242

Let c = {wi}Ni=1 represent a context consisting of 243

N tokens, where wi ∈ V and c⃗ ∈ VN . In a typi- 244

cal scenario, LM predicts a sequence of new tokens, 245

denoted by y⃗, conditioning on c. For example, c 246

may be a prompt and LM generates y⃗ as a response. 247

Future token prediction draws on information from 248

past tokens via attention by having LM encode the 249
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context tokens into key and value hidden states250

X⃗
(K)
l , X⃗

(V )
l ∈ RN×d, which taken together form251

the KV cache (Section 2.1), where d is the dimen-252

sion of the transformer and l is the layer of LM. We253

may drop the subscript l and superscripts (K) and254
(V ) and use X⃗ to generally denote the key/value255

states of transformers at any layer.256

Transformers assume that X⃗ fully describes and257

represents the context c⃗. However, attending to X⃗258

can be inefficient when c⃗ is long. Therefore, we259

further assume that retaining a subset of key/value260

states is sufficient for approximating the next-token261

distribution conditioned on all key/value states.262

That is, we could retain rows from X⃗ to form263
˜⃗
X ∈ Rk×d, where k ≤ N is the number of se-264

lected rows. We use a subset of the tokens’ hidden265

states to represent the complete context, which is266

plausible because representations in ˜⃗
X are condi-267

tioned on the prior context. Suppose we determine268

the (i1, . . . , ik)-th tokens are to be retained in layer269

l. We use a hard selection matrix S⃗l ∈ {0, 1}k×N270

to derive (layer-specific) ˜⃗
Xl from X⃗l by271

˜⃗
Xl = S⃗lX⃗l, S⃗l = [e⃗(i1), . . . ,⃗e⃗(ik)], (1)272

where e⃗(i) ∈ {0, 1}N is the i-th standard basis273

vector. Note that this formulation does not require274

that the same tokens be selected across each layer.275

The problem of determining which indices276

(i1, . . . , ik) to retain still remains. We would like277

the subselection S⃗ to retain most of the context278

information given a fixed k. One possibility is to279

use a feedforward neural network to measure the280

importance of each token position:281

s⃗ = FFNθ

(
X⃗ ′

η

)
(2)282

where θ is the parameters of the FFN, s⃗ ∈ RN and283

s⃗i indicate the “importance score” of the i-th token284

and X⃗ ′
η indicates the hidden states at the η-th layer.285

The indices i1:k can then be derived by taking the286

tokens with the top-k scores. We can control the287

percent of the KV cache retained by scaling k with288

the length of the context. In our we retain the same289

i1:k across all layers and take η = 6.290

The above selection procedure is rendered non-291

differentiable by the top-k operator. We may prop-292

agate gradients to the scorer by decaying the at-293

tention weights of tokens attending to ˜⃗
X inversely294

proportionally to their computed importance scores.295

More precisely, let z⃗ ∈ Rd represent the hidden296

Figure 2: Selected tokens are routed to trainable, LoRA-
adapted W⃗Q and W⃗O matrices (W⃗O is omitted in
this figure); all other tokens pass through the original
(frozen) model parameters.

state of a single token attending to ˜⃗
X with unnor- 297

malized attention weights α: 298

α =
(
z⃗W⃗Q

)(
˜⃗
X(K)

)⊤
(3) 299

we decay α to produce scorer-informed attention 300

weights α′: 301

α′ = σ(s⃗)⊙ α, (4) 302

where ⊙ denotes the element-wise (Hadamard) 303

product and σ the sigmoid function. We note that 304

the above formulation is one of many possible scor- 305

ing functions that can be used with KV-DISTILL , 306

that could be learnable or parameter-free, and could 307

potentially have layer-wise specificity. We leave ex- 308

ploring different scoring functions as future work. 309

3.2 Architecture 310

After performing sub-selection to determine impor- 311

tant token indices, we pass the context c⃗ through a 312

modified LMθ that uses conditional computation to 313

condense the context into ˜⃗
X . This allows for the 314

representations of important tokens to be “packed" 315

with information from unselected tokens, and is 316

strictly more expressive than only subselection. 317

We instantiate LMθ with LoRA adaptors (Hu et al., 318

2022) to minimize the number of trainable parame- 319

ters. 320

More importantly, within LMθ, the subselected 321

tokens are routed to trainable W⃗Q, W⃗O matrices, 322

where W⃗Q, W⃗O are the query and output matrices 323

of transformers, while discarded tokens are routed 324

to the original (frozen) matrices, as shown in Fig- 325

ure 2. This has the effect of informing LMθ as to 326

which tokens are selected, allowing for special- 327

ized aggregation of the value representations for 328

selected tokens. This method of informing LMθ has 329
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minimal overhead (the LoRA matrices account for330

under 500MB of GPU memory for a 27B parame-331

ter model), and only a single set parameters must332

be maintained in memory.333

We anticipate that other architectural forms334

could make KV-DISTILL effective. However, we335

find that applying conditional computation to in-336

form LMθ of selected tokens is important to the337

performance of KV-DISTILL . We find that some338

methods of informing the model of selected tokens,339

such as by adding a trainable embedding to these340

tokens, do not work well (see Appendix B). The341

particular architecture chosen has the advantage of342

lower memory usage during training, and provides343

excellent performance. We leave the task of finding344

even more efficient architectures to future work.345

3.3 Objective Function346

After generating compressed cache ˜⃗
X , we aim to347

match the output of LM when conditioned on ˜⃗
X348

to the output of LM when conditioned on X. Pre-349

vious compression methods (Ge et al., 2024; Qin350

and Van Durme, 2023) rely on the autoencoding351

objective to pretrain LMθ. However, given that LM352

predicts future tokens during inference, there is a353

discrepancy in pretraining and downstream usage,354

which could result in performance loss. Instead355

we propose matching the next-token probability356

distribution of tokens conditioned on X⃗ and ˜⃗
X .357

Consider a generative language model that predicts358

the next token y⃗t conditioned on the past tokens359

y⃗<t and a fixed context c⃗ that is represented by360

either X⃗ or ˜⃗
X . We would like to minimize the dif-361

ference between their next-token distributions, i.e.362

p
(
y⃗t | y⃗<t, X⃗

)
and qθ

(
y⃗t | y⃗<t,

˜⃗
X
)

. Let qθ indi-363

cate the distribution that conditions on the distilled364

KV cache ˜⃗
X . Also note that the only learnable365

parameters in this formulation arise from encoding366
˜⃗
X; during auto-regressive generation we use the367

original frozen parameters of LM.368

Given probability distributions p, qθ, we use the369

forward and reverse KL divergences to measure370

their similarity. With simplified notations we have:371
372

DKL(p∥qθ) = Ey∼p(·)

[
log

(
p(y)

qθ(y)

)]
373

DKL (qθ∥p) = Ey∼qθ(·)

[
log

(
qθ(y)

p(y)

)]
(5)374

The mode-seeking and mean-seeking behavior375

of the reverse- and forward- KL divergences respec-376

tively is well known. To incorporate both behaviors 377

into the objective, we sum the forward and reverse 378

divergences: 379

L(θ) = λ ·DKL(p∥qθ)+(1−λ) ·DKL(qθ∥p), (6) 380

where a hyperparameter λ controls the balance be- 381

tween forward and reverse KL divergence. 382

Given both p and qθ are categorical distribution, 383

both KL divergences in eq. (5) can be analytically 384

solved. Tthe L1-norm of the gradient of the reverse 385

divergence dominates nearly everywhere. As such 386

we propose scaling the forward and reverse terms 387

by having λ > 0.5 in eq. (6). The benefit of λ is 388

confirmed with the ablations in Appendix B. 389

4 Experiments 390

To assess the efficacy of KV-DISTILL , we conduct 391

experiments on LLAMA-2 7B, LLAMA-3 8B, MIS- 392

TRAL 7B,GEMMA-2 9B and GEMMA-2 27B. In all 393

cases we use the instruction-tuned model. A KV- 394

DISTILL model is obtained by distilling on a large 395

corpus to obtain strong general-purpose context 396

compressors. 397

Data We curate a large instruction dataset from 398

Self-Instruct, P3, LongAlpaca, and Super-Natural 399

Instructions (Soboleva et al., 2023; Wang et al., 400

2022a; Sanh et al., 2021; Chen et al., 2023; Wang 401

et al., 2022b). Training instances are split into 402

(Context, Instruction,Answer) triples. In cases 403

where the context is sufficiently long (more than 404

1536 tokens), we pad to a multiple of 1536 and 405

fold the context to a batch of N × 1536 instances, 406

compress the resulting KV cache, and then unfold 407

the cache. Empirically, we observe little perfor- 408

mance degradation when applying folding during 409

pretraining, while allowing the model to see longer 410

examples. We also always leave the first few (< 10) 411

tokens of the context uncompressed, as we find that 412

retaining them improves performance; this is not 413

a new observation, see Han et al. (2024) and Xiao 414

et al. (2023). 415

Training The general training procedure is as fol- 416

lows: (1) pass the (Context, Instruction,Answer) 417

triple through the original model to obtain target 418

logits, (2) apply the KV-DISTILL architecture to ob- 419

tain logits conditioned on the compressed cache 420

(we compress the context, and leave the instruction 421

uncompressed), (3) apply Equation 6 between the 422

obtained and target logits. 423

We use rank-stabilized LoRA on the Q,K, V,O 424

matrices with r = 128 to train LMθ (Hu et al., 425
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Figure 3: Needle-in-a-Haystack results; The x-axis shows the length of the document, the y-axis indicates the
compression ratio applied, and the color the accuracy of retrieval under those settings averaged across different
locations in the document. Left: H2I. Right: KV-DISTILL .

2022; Kalajdzievski, 2023). Note that the K,V426

are trainable for all tokens, not just selected to-427

kens. The behavior of the Q,O adapters is dis-428

cussed in Section 3.2. Optimization is done using429

Deepspeed Stage 2, and the AdamW optimizer430

(Rasley et al., 2020). During pretraining, we sam-431

ple KV retention fractions between 0.1-80%. As432

such, all KV-DISTILL models support arbitrary re-433

tention rates. All models are distilled on a cluster434

of 8 NVIDIA A100 80GB GPUs. All models ex-435

cept GEMMA 27B converged within 3 days, while436

GEMMA 27B took 4 days. See Appendix A for437

further details.438

Dataset Average Max

SQuAD 225 1k
QuALITY 6k 9k
SQuALITY 7k 11k
GovReport 10k 71k

Table 1: Evaluation Dataset Statistics

Evaluation In all evaluation datasets, we have439

a natural (Context, Question) pairing. We always440

compress the context and leave the question un-441

compressed. All evaluations are performed with442

greedy decoding. Summary statistics regarding the443

context length of evaluation dataset are provided in444

Table 1.445

Methods Tested We evaluate against DODO (Qin446

et al., 2024), ICAE (Ge et al., 2024), and H2447

in both the question-aware (H2A) and question-448

independent (H2I) forms. Please refer to Sec 2.2449

for further description about the selected methods.450

In practice, to improve the performance of H2 , we451

also retain a set of sink tokens as described in Xiao452

et al. (2023).453

5 Results 454

5.1 Needle-In-a-Haystack 455

Motivation The Needle-in-a-Haystack test 456

(Kamradt, 2023) evaluates a model’s ability to 457

accurately retrieve information from a sentence 458

(a "needle") embedded within a large document 459

(a "haystack"), in which a sentence is randomly 460

positioned. In Figure 3, we show the results 461

of H2I (left) and KV-DISTILL (right) at various 462

compression ratios at different document lengths. 463

The accuracy is computed across the placement 464

of the needle within a document. Crucially, at 465

compression time, the model does not know that a 466

is needle being sought, nor that a needle is placed 467

within the context. 468

Results We see that KV-DISTILL significantly 469

outperforms H2I at almost all compression ra- 470

tios and document lengths. In particular, KV- 471

DISTILL demonstrates near-perfect accuracy even 472

after removing 90% of the KV . 473

5.2 Extractive Question Answering 474

Motivation SQuAD is an extractive question- 475

answering task. We hypothesize that extractive 476

tasks will suffer the largest performance loss under 477

context compression. As such, we choose to use 478

performance on SQuAD as a proxy for general- 479

purpose compressive ability of a model. In all the 480

following experiments, we choose the pretraining 481

checkpoint with the best SQuAD performance for 482

further experimentation. To assess accuracy we 483

generate an answer conditioned on the compressed 484

context, checking if the generated response is con- 485

tained in the ground-truth answer. 486

Results Table 2 contains SQuAD accuracy re- 487
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Model % KV 0-Shot Acc.

LLAMA3 BASE 100% 87.6± .6%

KVD 25% 86.6± .7%
KVD 20% 86.0± .7%

H2A 25% 84.0± .7%
H2A 20% 83.0± .7%
H2I 25% 56.6± .9%
H2I 20% 51.7± 1%

DODO 20% 73.3± .8%

LLAMA2 7B BASE 100% 82.5± .7%

KVD 25% 79.1± .8%
KVD 20% 77.6± .8%

H2A 25% 77.9± .7%
H2A 20% 76.7± .7%
H2I 25% 55.2± .9%
H2I 20% 50.3± 1%

ICAE 57% 75.0± .8%

GEMMA 9B BASE 100% 85.15± .7%

KVD 25% 84.55± .7%
KVD 20% 83.1± .7%

GEMMA 27B BASE 100% 85.3± .8%

KVD 25% 83.1± 1%
KVD 20% 82.2± 1%

MISTRAL 7B BASE 100% 87.1± .6%

KVD 25% 84.1± .7%
KVD 20% 82.5± .7%

Table 2: Zero-shot accuracy on SQuAD at selected
KV retention ratios.

sults. We see that in all cases, KV-DISTILL models488

perform within a few percentage points of base489

models, even under a “worst-case" task. Further-490

more, KV-DISTILL models significantly outperform491

prior trainable methods (ICAE, DODO), even when492

retaining less of the KV cache. KV-DISTILL models493

significantly outperform H2I, demonstrating the494

ability of the pretraining objective and architecture495

to create reusable compressed KV representations.496

KV-DISTILL models also enjoy a slight improve-497

ment over H2A at similar compression ratios,498

demonstrating the effectiveness of its compression499

at capturing almost all salient information in the500

context, even without question-awareness.501

When retaining under 20% of KV , we observe502

rapid declines in performance across all methods,503

indicating the difficulty of the task under high con-504

text compression. Lastly, we note that initial pre-505

training hyperparameters for all models were set506

based on initial experimentation with LLAMA-3507

and SQuAD; as such, we anticipate that perfor-508

mance of most models can be improved with hyper-509
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Figure 4: Accuracy on QuALITY

parameter tuning during the pre-training process. 510

5.3 Long Context Question Answering 511

Motivation QuALITY is a long document 512

multiple-choice question answering dataset that 513

assesses reading comprehension. We use QuAL- 514

ITY to assess the decision making capabilities of 515

models equipped with distilled contexts. To assess 516

QuALITY accuracy, we use the same evaluation 517

procedure used by LLAMA-3 (AI@Meta, 2024). 518

Results Figure 4 shows the experiment results 519

on QuALITY, with data points at the follow- 520

ing retention rates highlighted: {100%, 25%, 521

20%, 10%, 5%, 1%, 0.1%}. We observe that KV- 522

DISTILL performs similarly to the uncompressed 523

cache, with only minor losses in performance at 524

10x compression. Although not included in Figure 525

4, 0% cache retention results in accuracy of 32.4%, 526

25.8%, and 24.4% for the LLAMA-3, MISTRAL, 527

and GEMMA-2 models respectively, demonstrating 528

the neccessity of the context for the task. Impres- 529

sively, we see significant improvements over the 530

random accuracy even when distilling to as few as 531

7 tokens from a 7k input passage; for example, on 532

LLAMA-3 we observe only a 20% drop in accuracy 533

despite eliminating 99.9% of the context. 534

5.4 Long Context Abstractive Summarization 535

Motivation SQuALITY is a question-focused 536

summarization dataset based on the same collection 537

of long documents as the QuALITY benchmark. 538

We use it to evaluate the abstractive summarization 539

capabilities of models trained with distilled con- 540

texts. We compute the Rouge-L scores (Lin, 2004) 541

between the generated summaries and ground-truth 542

answers, following the same evaluation protocol 543

7
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used by LLAMA-3 (AI@Meta, 2024).544

Result Figure 5 show Rouge-L performance on545

SQuALITY. We observe that KV-DISTILL models546

perform as well or better than uncompressed mod-547

els when retaining more that 20% of the KV cache.548

When retaining under 20%, we observe different549

performance falloff behaviors for different mod-550

els; in particular, we observe that textscLlama-551

3 and GEMMA-2 have stable performance until552

100x compression, at which point performance553

dips drastically. This difference in the behavior of554

the compression-performance trade-off could be at-555

tributed to the larger vocabulary sizes of LLAMA-3556

and GEMMA-2, which allows the KL-loss to cap-557

ture more fine-grained features of the output dis-558

tribution during pretraining. These results demon-559

strate that KV-DISTILL can support very high com-560

pression ratios with minimal performance penalty561

on abstractive tasks.562

5.5 Finetuned Long Context Summarization563

Motivation GovReport is a long document sum-564

marization dataset that consists (Report, Summary)565

pairs written by government research agencies.566

In contrast to the evaluations on QuALITY and567

SQuALITY (which are performed in a zero-shot568

fashion using the best pretraining checkpoint),569

we perform additional finetuning distillation with570

Equation 6 on the GovReport training set before571

evaluation. As with SQuALITY, we use GovRe-572

port to assess the abstractive summarization ability573

of models equipped with KV-DISTILL .574

Results Table 3 shows results for GovReport for575

both query-aware H2A and query-independent H2I576

paradigms, as well as KV-DISTILL prior to fine-577

tuning (zero-shot) and KV-DISTILL after finetuning578

KVD

KV retention H2A H2I Zero Shot Finetune

100% 23.7 23.7 23.7 23.7
20% 22.8 20.6 22.3 23.5
10% 22.4 18.6 21.8 23.3
5% 21.9 18.5 21.1 23.2
1% 21.1 18.3 20.1 22.8

Table 3: ROUGE-L on GovReport summarization.

on LLAMA-3. We observe that KV-DISTILL and 579

query-aware H2 perform close to each other on 580

this evaluation in the zero-shot setting, while KV- 581

DISTILL outperforms H2I at all compression ratios. 582

However, upon finetuning, we observe a practical 583

improvement in performance with KV-DISTILL , 584

with little degradation from uncompressed perfor- 585

mance across all compression rates. In particular, 586

we note the improvement in performance is greater 587

at more severe compression ratios, confirming the 588

utility of KV-DISTILL in supporting ultra-high com- 589

pression ratios. 590

6 Discussion and Conclusion 591

We develop a method to reduce the memory re- 592

quirements of long-context conditioned LM gen- 593

eration. Our method sub-selects tokens from the 594

KV cache, and applies a token-level KL-type loss 595

between the output of the LM when conditioned on 596

sub-selected tokens and when conditioned on the 597

uncompressed cache. We evaluate our method on 598

long-context extractive and abstractive tasks, and 599

demonstrate improved performance over compet- 600

ing compression methods. We further demonstrate 601

that continued training on domain-specific data can 602

allow for use of compression ratios as high as 100x 603

with negligible losses in performance. 604

As part of this work we release distilled check- 605

points across various model language families. 606

These artifacts allow efficient text generation con- 607

ditioned on significantly larger inputs than before, 608

with much lower memory burden, and support com- 609

pression ratios as high as 1000x. We anticipate 610

these artifacts will be of great practical benefit, 611

enabling exciting new applications and research 612

directions in language processing. 613

7 Limitations 614

The time-consuming and stochastic nature of dis- 615

tilling a model means that it cannot be guaranteed 616

that the process will work well across all model 617

families. Furthermore, we are unsure as to the root 618

8



cause of performance discrepancies between model619

architectures after distillation; this issue merits fur-620

ther research. Lastly, the 8k token context-capacity621

of LLAMA-3 limited many of our experiments, and622

is small by the standards of currently available lan-623

guage models; to address this, we will be releasing624

a KV-DISTILL LLAMA-3.1 model with a 128k to-625

ken context capacity.626
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A Training & Evaluation Details 813

We train all KV-DISTILL models with the follow- 814

ing parameters at bf16 precision on 8 NVIDIA 815

A100s. Please see Table 4 for further details. The

Hyperparameter Value

Optimizer AdamW
Learning Rate 5e-5

Batch Size 32
LoRA Rank 128

λ 0.6
η 6

Table 4: Hyperparameters for training
816

QuALITY, SQuALITY, GovReport, and SQuAD 817

evaluations are performed on the test set, if pub- 818

lic, else results are reported on the development 819

set. To measure SQuAD accuracy, we generate up 820

to 128 tokens, normalize the output by stripping 821

punctuation, and check if the correct answer is con- 822

tained in the generated answer. For SQuALITY 823

and QuALITY, we follow the evaluation procedure 824

of AI@Meta (2024). For GovReport, we prompt 825

the model to summarize the report, and then greed- 826

ily generate 630 tokens. 827
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B Pretraining Objective Ablations828

We assess the necessity of both the forward and829

reverse terms in the loss by evaluating SQuAD per-830

formance on multiple different pre-training losses831

with varying λ values in Equation 6. In Table 5832

we observe that using either the pure forward or833

reverse divergences performs markedly worse than834

using a mixture of both. Furthermore, using solely835

the auto-encode + cross-entropy (used in ICAE and836

DODO), performs significantly worse than Equation837

6, demonstrating the significant benefits that the838

weighted distillation objective provide. We also839

note that replacing the routing mechanism with a840

learnable embedding (added to important tokens)841

does not perform well.842

Loss SQuAD Acc. (%)

λ = 1 83.4%
λ = 0.6 86.0%
λ = 0.4 85.3%
λ = 0 82.7%

AE + LM 79.1%
NO ROUTING 67.4 %

Table 5: Effect of Pretraining Loss wrt LLAMA-3.

C Qualitative Analysis of Generated Text843

In Figure 6 we present representative summaries844

of the short story “Galactic Ghost". LLAMA-3 was845

prompted to summarize the short story in a few846

sentences. As the KV retention ratio decreases, we847

observe an increase in statements that are unfaithful848

to the original context. Particularly, at extremely849

high compression ratios, the model begins to hal-850

lucinate details, but impressively still maintains851

understanding of the general plot of the story. Note852

the varying degrees of semantic compression in853

summaries generated under high compression ra-854

tios; qualitatively, we observe that models with855

severely compressed contexts generally understand856

the text, but resort to making vague statements.857

(a) 100% KV retention
The story follows Willard, a space explorer who is left
alone after his friend and space mate, Dobbin, dies.
Willard is haunted by the memory of Dobbin’s final
words, “I saw the Ghost Ship," and becomes obsessed
with finding the ship. He spends years searching for it,
and eventually, he sees a strange, ghostly ship that
seems to be heading towards him. As he gets closer, he
realizes that it’s not just a hallucination, but a real ship
from Earth that’s been traveling through space for
centuries. In the end, Willard is taken aboard the ship,
but learns that the ship and its crew are mere shells of
their former selves, and that they are doomed to remain
in space forever. Ultimately, Willard is forced to
confront the reality that he’ll never return to Earth.

(b) 2.5% KV retention
The story follows the journey of Willard, a space
traveler who has been alone in space for years after the
death of his friend and partner, Dobbin. Willard is
struggling to come to terms with his isolation and the
loss of his friend, and is haunted by the legend of the
Ghost Ship, a mythical vessel that is said to roam the
solar system, never to be seen again. One day, Willard
spots a strange, rocket-shaped object approaching him,
and as it draws closer, he realizes it is the Mary Lou.
The ship is now a mere shadow of its former self, and
Willard is invited to board it, where he is greeted by a
rescue team who have been sent to retrieve him. As he
adjusts to life on the rescue ship, Willard comes to
terms with his past and the reality of his situation, and
ultimately accepts that he will never return to Earth.
The story concludes with Willard’s poignant realization
that he and the crew of the rescue ship are the Ghosts,
doomed to roam the solar system forever.

(c) .25% KV retention
The story follows the journey of Willard, a space
explorer who has been traveling through the galaxy for
years, searching for a new home for humanity. He has
lost his friend and companion, Dobbin, and is
struggling to come to terms with his own mortality. One
day, he discovers a faint light in the distance, which he
believes to be a sign of life. As he approaches the light,
he realizes it is a ghost ship, a ship that has been
drifting through space for millions of years, its crew and
passengers long dead. The ship is a relic of a bygone
era, and Willard is forced to confront the reality that he
will never be able to return to Earth, as the ship would
pass through it, making it impossible to survive. In the
end, Willard comes to accept his fate, realizing that he
and the crew of the ghost ship are doomed to drift
through space forever, a reminder of the transience of
human existence.

Figure 6: LLAMA-3 was tasked with summarizing a 6k
token short story at low KV retention rates. Inaccura-
cies in the summary are highlighted yellow, and were
determined by hand.
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