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Abstract
Label distribution learning (LDL) is a powerful
learning paradigm that emulates label polysemy
by assigning label distributions over the label
space. However, existing LDL evaluation met-
rics struggle to capture meaningful performance
differences due to their insensitivity to subtle dis-
tributional changes, and existing LDL learning
objectives often exhibit biases by disproportion-
ately emphasizing a small subset of samples with
extreme predictions. As a result, the LDL metrics
lose their discriminability, and the LDL objec-
tives are also at risk of overfitting. In this paper,
we propose DeltaLDL, a percentage of predic-
tions that are approximately correct within the
context of LDL, as a solution to the above prob-
lems. DeltaLDL can serve as a novel evaluation
metric, which is parameter-free and reflects more
on real performance improvements. DeltaLDL
can also serve as a novel learning objective, which
is differentiable and encourages most samples to
be predicted as approximately correct, thereby
mitigating overfitting. Our theoretical analysis
and empirical results demonstrate the effective-
ness of the proposed solution.

1. Introduction
Label polysemy is a common phenomenon in real-world
scenarios, traditionally emulated by multi-label learning
(Zhang & Zhou, 2013), which treats labels in a binary fash-
ion. In contrast, label distribution learning (LDL) (Geng,
2016) offers a more refined framework by answering the
question: “To what extent does each label y describe the
instance x?” This is achieved through the concept of a
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label distribution d, represented as a probability simplex,
where each label is associated with a real-valued description
degree dyx. By quantifying label polysemy, LDL enables a
broader spectrum of applications, including tasks like ob-
ject detection (Xu et al., 2023), age estimation (Wen et al.,
2023), sentiment analysis (Chen et al., 2020), and diagnostic
assistance (Li et al., 2023), etc.

For years, there are some deep-rooted problems in the field
of LDL: 1) existing evaluation metrics for LDL are based
on some distance/similarity metrics, e.g., Kullback-Leibler
divergence (KLD), which have very small values and thus
have poor discriminability between superior and inferior
models, since the label distribution is subject to two con-
straints, non-negativity (i.e., dyx ≥ 0) and sum-to-one (i.e.,∑

y∈Y d
y
x = 1); 2) existing LDL algorithms mainly focus

on minimizing the average of some kind of measurement,
usually the KLD as well, which may lead to overfitting
due to excessive preference for some samples, resulting
even worse performance than that calculated from uniform
vectors.

To kill two birds with one stone, the idea of approximately
correct prediction can be introduced. On the one hand, it
enables the design of percentage-based metrics, quantifying
what proportion of the samples are predicted approximately
correctly, which is intuitive and semantically meaningful;
on the other hand, it enables the design of noise-robust ob-
jectives, allowing the model to sacrifice samples that are
particularly difficult to learn, ensuring that most samples are
predicted approximately correctly, thereby avoiding overfit-
ting to a specific subset of data.

Contributions and organizational structure In this paper:
1) we conduct a theoretical analysis of the KLD to demon-
strate its unsuitability as an evaluation metric/learning ob-
jective for LDL (Section 2.1); 2) we propose DeltaLDL, a
function that calculates the percentage of label distributions
that are approximately correctly predicted, exhibiting desir-
able properties, making it a promising candidate for both
metrics and objectives (Section 2.2); 3) based on DeltaLDL,
we propose a novel evaluation metric, the µ metric, which
possesses superior discriminative power according to our
analysis (Section 3); 4) based on DeltaLDL, we propose a
novel learning objective and encapsulate it in a new LDL
algorithm, named δ-LDL, which can achieve highly compet-
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itive performance according to our experiments (Sections 4
and 5). Related work and limitations are discussed in Sec-
tions 6 and 7, respectively.

2. Theoretical analysis
In this section, we conduct a theoretical analysis to argue
that the KLD is not suitable as an evaluation metric/learning
objective for LDL. Then, we propose our new solution,
named DeltaLDL.

Preliminaries Let x ∈ X = Rq denote the feature of
the instance and d = (d

yj
x )cj=1 ∈ ∆c−1 denote the label

distribution, where c is the number of the labels, yj is the
j-th label in the label space Y = {yj}cj=1, and

∆k−1 ≜ {v ∈ Rk |1v⊤ = 1, v ≥ 0} (1)

is the (k − 1)-dimensional probability simplex. LDL’s goal
is to find a mapping f : X 7→ ∆c−1. More specifically,
given a training set {xi, di}mi=1 and an LDL model f(·; Θ),
the loss function can be defined as

ℓ(Θ) =
1

m

m∑

i=1

dist(f(xi; Θ), di), (2)

where Θ is the model parameters and dist(·, ·) is a distance
metric, usually the KLD. The optimal parameters Θ∗ can
be obtained by minimizing Equation (2), i.e.,

Θ∗ = argmin
Θ

ℓ(Θ). (3)

2.1. Issues of existing metrics: KLD as an example

KLD is defined as

KL(u ||v) =
c∑

j=1

uj log
uj
vj

, (4)

which exposes shortcomings in two aspects. First, KLD
is not bounded and is only sensitive to small probability
values of the prediction, i.e., KL(u ||v) ∈ [0,+∞) and
KL(u ||v) → ∞ if vj → 0+, ∃j ∈ [c]. Most existing LDL
methods are based on maximum entropy models or neural
networks with softmax as the final mathematical processing,
hence it is difficult to trigger its sensitivity. Second, KLD
does not adequately capture the changing nature of prob-
ability simplexes, i.e., KL(u ||v) lacks the significance of
changes to tell the difference between superior and inferior
models when u, v ∈ ∆c−1. To illustrate the second aspect,
we introduce the following assumption and proposition.
Assumption 2.1. The ground-truth label distribution d fol-
lows a Dirichlet distribution, i.e., the probability density
function of d is given by

p(di; α) =
1

B(α)

c∏

j=1

(d
yj
xi)

αj−1, B(α) =

∏c
j=1 Γ(αj)

Γ(
∑c

j=1 αj)
,

(5)

Table 1. Case analysis of two LDL datasets
Case Dataset E(KL(u ||v)) SA-BFGS LRR

1) SBU 3DFE .0707 .0627 .0571
2) M2B .6335 .6878 .6664

where Γ(·) is the gamma function. Assumption 2.1 is cur-
rently the most common assumption in the literature of LDL
(Lu & Jia, 2022; He et al., 2024). Based on Equation (5),
we have the following proposition.

Proposition 2.2. The expectation of the KLD between a
Dirichlet-distributed random vector u and a uniform vector

v =

(
1

c
,
1

c
, · · · , 1

c

)

︸ ︷︷ ︸
c

(6)

is given by

E (KL(u ||v)) =
c∑

j=1

(
αj∑c
k=1 αk

(
ψ(αj + 1)− ψ

(
c∑

k=1

αk + 1

))
+

αj∑c
k=1 αk

log c

)
,

(7)
where ψ(·) is the digamma function. E(KL(u ||v)) can be
regarded as the theoretical stochastic KLD performance of
an LDL model.

Proof. See Appendix A for details.

Remark 2.3. To estimate α from given data (di)
m
i=1, one

can employ maximum likelihood estimation (MLE), i.e.,
minimizing:

ℓMLE(α) = −
m∑

i=1

log p(di; α) =

−m


ln Γ




c∑

j=1

αj


−

c∑

j=1

ln Γ(αj)




−
m∑

i=1

c∑

j=1

(αj − 1) ln d
yj
xi ,

(8)

the closed-form solution of which does not exist. Thus, one
can employ numerical optimization methods, e.g., L-BFGS,
to solve the optimization problem.

With Proposition 2.2 and Remark 2.3, one can calculate
E(KL(u ||v)) for each LDL dataset. Here we conduct a
case analysis of two LDL datasets, SBU 3DFE and M2B, and
compare the KLD performance of two learned LDL meth-
ods, SA-BFGS (Geng, 2016) and LRR (Jia et al., 2023b),
both of which exploit average KLD as the learning objective.
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The results are shown in Table 1. In case 1), since label dis-
tributions in SBU 3DFE are non-sparse, the calculated values
are very small, lacking discriminability, i.e., considerable
performance improvements are only reflected via these nu-
anced changes, which is counterintuitive; in case 2), results
of SA-BFGS and LRR are worse than the stochastic perfor-
mance, indicating that minimizing average KLD sometimes
does not work as expected, which may be attributed to the
negative contribution of some extremely predicted samples.

2.2. The proposed solution: DeltaLDL

On the one hand, Proposition 2.2 fully illustrates the non-
significance of KLD as an evaluation metric/learning objec-
tive for LDL; on the other hand, it provides a baseline of
performance improvements to get a glimpse of real perfor-
mance improvements, which will be discussed in Section 3.
Taking inspiration from the analysis of Table 1, we define
DeltaLDL as our new solution.

Definition 2.4 (Approximately correct LDL; DeltaLDL).
Suppose that an LDL model f(·; Θ) is evaluated on
{xi, di}ni=1; DeltaLDL of a distance metric dist(·, ·) is
defined as the following function:

D(dist, δ; f) ≜
1

n

n∑

i=1

I(dist(di, f(xi; Θ)) ≤ δ), (9)

where I(·) is the indicator function to count the number of
approximately correct predictions. DeltaLDL of a similarity
metric sim(·, ·) is defined as the following function:

D(sim, δ; f) ≜
1

n

n∑

i=1

I(sim(di, f(xi; Θ)) ≥ δ). (10)

Remark 2.5. The following properties hold for D:

• D(·, ·; ·) ∈ [0, 1]R;
• D(dist, supu,v∈∆c−1 dist(u, v); ·) = 1;
• D(sim, infu,v∈∆c−1 sim(u, v); ·) = 1;
• D(dist, δ; ·) ≤ D(dist, δ′; ·), if δ ≤ δ′;
• D(sim, δ; ·) ≥ D(sim, δ′; ·), if δ ≤ δ′;
• dist(di, f(xi)) = infu,v∈∆c−1 dist(u, v), ∀i ∈ [n], if

and only if D(dist, infu,v∈∆c−1 dist(u, v); f) = 1;
• sim(di, f(xi)) = supu,v∈∆c−1 sim(u, v), ∀i ∈ [n], if

and only if D(sim, supu,v∈∆c−1 sim(u, v); f) = 1.

As stated in Definition 2.4, any distance/similarity metric
can be transformed into a percentage of predictions that are
approximately correct within the context of LDL. Further-
more, Remark 2.5 shows some good properties of DeltaLDL,
which are intuitive and easy to proof by readers. These prop-
erties indicate that DeltaLDL has excellent potential as an
evaluation metric/learning objective, and also highlight the
relationship between DeltaLDL and the distance/similarity

metric employed. In this paper, we focus primarily on
D(KL, ·; ·), since the KLD is the most widely used evalu-
ation metric in the field of LDL. Following the definition
of DeltaLDL, one may wonder how it can be utilized as an
evaluation metric/learning objective.

3. DeltaLDL as an evaluation metric
To transform D(KL, ·; ·) into an evaluation metric, the fol-
lowing challenges must be addressed: 1) the metric should
be parameter-free, as δ varies with different label distribu-
tions and is difficult to determine; 2) the metric should effec-
tively reflect real performance improvements, enabling sig-
nificant differentiation between superior and inferior models.
To this end, we propose the following definition.

Definition 3.1 (The discriminative power µ). Suppose that
an LDL model is evaluated on the test set, where the ground-
truth label distribution matrix is D = (di

i.i.d.∼ D)ni=1, and
the predicted label distribution matrix is D̃ = (d̃i)

n
i=1,

which is given by the LDL model f ; our new evaluation
metric based on D(KL, δ; f), denoted as µ, is defined as

µ(D, D̃) ≜
1

δ0

∫ δ0

0

D(KL, δ; f)dδ

=
1

δ0

∫ δ0

0

1

n

n∑

i=1

I(KL(d̃i ||di) ≤ δ)dδ

∈ [0, 1]R,

(11)

where
δ0 = E (KL(u ||v)) , u ∼ D, (12)

and v is a uniform vector (the same as Equation (6)).

Since the test set is available in the evaluation phase, Equa-
tion (12) can be calculated as:

δ0 ≈ δ′0 =
1

n

n∑

i=1

KL(di ||v) =
1

n

n∑

i=1

c∑

j=1

d
yj
xi ln d

yj
xic.

(13)

According to Definition 3.1, µ’s semantic essence lies in the
overall performance of the predictions being approximately
correct across different values of δ; mathematically, µ is
defined as the ratio of the area enclosed by the function
D(KL, δ; ·) w.r.t. δ and the coordinate axes, where δ−1

0

serves as the scaling factor. By adopting an integral form, µ
eliminates dependency on specific δ, addressing the afore-
mentioned challenge 1; the introduction of δ0 establishes a
baseline via the value based on uniform vectors, exclusively
capturing performance improvements above this baseline,
thus effectively resolving the challenge 2.

Discriminability analysis For better comparison, we de-
fine the real performance improvement based on the
KLD/µ(·, ·), with a little symbol abuse.
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Figure 1. κ1, κ0, µ1, and µ0 of DF-LDL w.r.t. the number of samples in the test set of SBU 3DFE.

Definition 3.2 (The real performance improvement based on
the KLD). Let κ0 = E(KL(D ||v)), where v is a uniform
vector; suppose that an LDL model is evaluated on the test
set and the KLD is κ1; the real performance improvement
based on the KLD is defined as κR ≜ κ1 − κ0.

Definition 3.3 (The real performance improvement based
on the µ metric). Let µ0 = E(µ(D, v)), where v is a
uniform vector; suppose that an LDL model is evaluated
on the test set and the value of the µ metric is µ1; the real
performance improvement based on the µ metric is defined
as µR ≜ µ1 − µ0.1

Similarly, readers can get the real performance improve-
ment based on other evaluation metrics. We train a DF-LDL
model on the training set of the SBU 3DFE dataset, and eval-
uate it on the test set by calculating κ1, κ0, µ1, and µ0 with
varying numbers of test samples. The results are shown
in Figure 1. As can be seen, µR is much larger than κR,
indicating that the µ metric is more sensitive to performance
improvements than the KLD, which is consistent with our
theoretical analysis. One limitation worth noting is that,
when there are few samples for testing, the µmetric is unsta-
ble, which is the nature characteristic of percentage-based
metrics and can be eliminated by increasing the number
of samples. Since DeltaLDL has been successfully trans-
formed into an evaluation metric, the µ metric, one may
wonder how it can be utilized as a learning objective.

4. DeltaLDL as a learning objective
To transform D(KL, ·; ·) into a learning objective, the fol-
lowing challenges must be addressed: 1) the objective
should not contain the indicator function I(·), as it is dif-
ficult to optimize; 2) the objective should be to sacrifice
a small number of samples that are difficult to learn and
ensure that most samples can be predicted as approximately
correct. To solve the challenge 1, we introduce a smoothing
function σ(·) to replace I(·). Suppose that an LDL model
is training on the training set, where the ground-truth label

1For readers who find these definitions obscure, we hereby
provide a metaphor: κ0 and µ0 are like the accuracy of random
selection in multi-classification problems.

distribution matrix is D = (di
i.i.d.∼ D)mi=1, and the predicted

label distribution matrix is D̃ = (d̃i)
m
i=1, which is given by

the LDL model f ; then D(KL, δ; f) can be transformed
into the following basic loss function:

ℓ0(δ; D, D̃) =
1

m

m∑

i=1

σ






c∑

j=1

d
yj
xi ln

d
yj
xi

d̃
yj
xi


− δ


 ,

(14)

which is differentiable if σ(·) is appropriate. The above chal-
lenge 2 lies in ensuring that D(KL, δ; ·) should be as large
as possible while keeping δ as small as possible. (Note that
δ is difficult to determine, as mentioned in Section 3.) This
requirement can be understood geometrically as minimizing
the area enclosed by the function ℓ0(δ; ·, ·) w.r.t. δ and the
coordinate axes. We can use adaptive Simpson’s rule (ASR)
(McKeeman, 1962), a numerical integration method, for
loss function calculation, to solve this challenge.
Remark 4.1. From Simpson’s rule, we have
∫ b

a

ℓ0(δ; ·, ·)dδ ≈ φ0(a, b)

=
b− a

6

(
ℓ0(a) + 4ℓ0

(
a+ b

2

)
+ ℓ0(b)

)
.

(15)

In adaptive Simpson’s rule, the term υa,b quantifies the error
of the basic Simpson’s approximation by considering the
subdivision at the midpoint. It is defined as:

υa,b = φ0(a, c)+φ0(c, b)−φ0(a, b), c =
a+ b

2
. (16)

The adaptive Simpson’s rule refines the integration by re-
cursively subdividing the interval until the error is below a
specified tolerance ε.
Remark 4.2. From the adaptive Simpson’s rule, we have
∫ b

a

ℓ0(δ; ·, ·)dδ ≈ φ(a, b, ε) =

{
φ0(a, c) + φ0(c, b) + υa,b/15, |υa,b| ≤ 15ε,
φ (a, c, ε/2) + φ (c, b, ε/2) , o/w.

(17)
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Algorithm 1 Adaptive Simpson’s rule: ASR
Input: Interval bounds a, b; error tolerance ε; current integral
estimate s; maximum recursion depth ξ.
Output: Integral estimate s′.
1: c← (a+b)/2;
2: l← φ0(a, c); ▷ Equation (15)
3: r ← φ0(c, b);
4: if |l + r − s| ≤ 15ε or t ≤ 0 then
5: return l + r + (l+r−s)/15; ▷ Equation (17)
6: end if
7: return ASR(a, c, ε/2, l, ξ − 1) + ASR(c, b, ε/2, r, ξ − 1);

Algorithm 2 Our proposed algorithm: δ-LDL
Input: Training set {(xi, di)}mi=1, maximum recursion depth ξ,
test sample x′.
Output: Label distribution d′.
1: EPS← 10−7;
2: Θ← random initialization;
3: δ′0 ← 1/m

∑m
i=1

∑c
j=1 d

yj
xi ln d

yj
xic; ▷ Equation (19)

4: for each epoch to anticipated epoch number do
5: B ← randomly split {(xi, di)}mi=1 into batches;
6: for each batch in B do
7: D̃ ← f(x; Θ), ∀x ∈ the batch; ▷ Equation (20)
8: s0 ← φ0(0, δ

′
0); ▷ Equation (15)

9: ℓ← ASR(0, δ′0, EPS, s0, ξ); ▷ Algorithm 1
10: Θ← update by Adam, tracing ℓ; ▷ Equation (21)
11: end for
12: end for
13: d′ ← f(x′; Θ); ▷ Equation (20)
14: return d′;

The rule is summarized in Algorithm 1. Finally, the loss
function can be defined as:

ℓ(D, D̃) = φ(0, δ′0, EPS). (18)

Implementation details In Equation (14), σ(·) is imple-
mented as the ReLU function; in Algorithm 2, ξ is set to 5;
in Equation (18),

δ′0 =
1

m

m∑

i=1

c∑

j=1

d
yj
xi ln d

yj
xic, (19)

serving as a performance baseline, and EPS can be a small
positive number, e.g., 10−7. The above loss function can
be optimized by gradient descent methods, such as Adam
(Kingma & Ba, 2015). The LDL model f is implemented
by a naive network with the parameter matrix Θ ∈ Rq×c:

f(x; Θ) = ς(xΘ), (20)

where ς(·) is the softmax function as the final mathemat-
ical processing. The overall algorithm is summarized in
Algorithm 2, denoted as δ-LDL.
Remark 4.3. Let ℓ0(δ; D, f(X; Θ)) be ℓ0(Θ); assume
that σ(·) is the ReLU function; D̃ = f(X; Θ); ℓ0(Θ) is

differentiable and its gradient w.r.t. Θ is given by

∂ℓ0(Θ)

∂Θ
= I(KL(D || D̃) > δ)⊙ (X⊤(D̃ −D)), (21)

where ⊙ is the element-wise product.

Time complexity analysis Let X ∈ Rm×q denote the fea-
ture matrix and D ∈ Rm×c denote the ground-truth label
distribution matrix; D̃ = f(X; Θ); the overall time cost
of δ-LDL (Algorithm 2) is primarily influenced by the fol-
lowing calculations: computing δ′0 in Equation (19) has
a complexity of O(mc); the forward pass step in Equa-
tion (20) requires O(mqc); each calculation of the KLD,
κ = D ⊙ (logD − log D̃), has a complexity of O(mc);
calculating the gradient, ∂κ/∂Θ = X⊤(D̃ −D), involves
a complexity of O(mqc). Since the parameter ξ is fixed,
ℓ0 is computed a limited number of times and this number
remains relatively small. The overall time complexity of
each iteration of δ-LDL is O(kmqc), where k is the number
of calculations of Equation (14), attributed to Algorithm 1.
It is linear w.r.t. the number of samples m/labels c, clarify-
ing that our proposed δ-LDL can be applied to large-scale
datasets. Then, one may wonder how δ-LDL performs in
practice.

5. Experiments
In this section, extensive experiments are conducted to illus-
trate the superiority of the µ metric and δ-LDL. Details of
all implementations are openly accessible at GitHub.2

5.1. Experimental setup

Metrics & datasets We mainly evaluate LDL models’ per-
formance via the µ ↑ metric proposed in Section 3. We also
represent the same metrics suggested in (Jia et al., 2023b),
which are Cheby. ↓ (Chebyshev distance), Clark ↓ (Clark
distance), Can. ↓ (Canberra distance), KLD ↓ (Kullback-
Leibler divergence), Cosine ↑ (cosine similarity), Int. ↑
(intersection similarity) and Spear. ↑ (Spearman’s coeffi-
cient), respectively. Here ↓ (↑) indicates “the lower (higher)
the better”. We adopt several widely used label distribution
datasets, including: M2B (Nguyen et al., 2012), fbp5500
(Liang et al., 2018), RAF ML (Li & Deng, 2019), SBU 3DFE

(Yin et al., 2006), Natural Scene (Geng et al., 2021),
Music (Lee et al., 2021) and Painting (Machajdik & Han-
bury, 2010).

Comparison methods & methodology We compare δ-LDL
with several LDL methods. On the one hand, methods
based on the optimization of the average KLD are mainly
compared, including: SA-BFGS (Geng, 2016), LDLLC (Jia
et al., 2018), LDLSF (Ren et al., 2019a), LCLR (Ren et al.,
2019b), SCL (Jia et al., 2019), DPA (Jia et al., 2023a) and

2https://github.com/SpriteMisaka/PyLDL
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Table 2. Experimental results on M2B, fbp5500, and SBU 3DFE, formatted as “mean± std”
Algorithms Cheby. ↓ Clark ↓ Can. ↓ KLD ↓ Cosine ↑ Int. ↑ Spear. ↑ µ ↑

M2B

PT-Bayes • .5394±.043 • 1.7487±.064 • 3.6172±.169 • 1.7422±.393 • .5272±.053 • .4498±.042 • .5758±.052 • 25.76%±.043

SCL • .4788±.013 • 1.6358±.010 • 3.3495±.032 • .7773±.027 • .6842±.014 • .4741±.010 • .5752±.110 • 26.67%±.012

LDLSF • .3865±.018 • 1.5441±.031 • 3.0624±.083 • 2.0495±.497 • .7363±.022 • .5991±.019 • .6405±.026 • 32.95%±.030

LDLF • .4171±.024 • 1.5266±.048 • 3.1013±.114 • .5688±.051 • .7584±.020 • .5604±.028 .6984±.031 • 44.91%±.054

LCLR • .3867±.022 • 1.2516±.036 • 2.4208±.089 • .7303±.098 • .7152±.026 • .6040±.022 .6862±.026 • 52.13%±.031

DPA • .3847±.022 • 1.1734±.030 • 2.2681±.071 • .7013±.089 • .7187±.026 • .6075±.022 .6936±.024 • 52.95%±.031

LDLLC • .3845±.022 • 1.1733±.030 • 2.2683±.070 • .7003±.089 • .7189±.026 • .6077±.022 .6939±.025 • 52.99%±.031

SA-BFGS • .3826±.021 • 1.2228±.028 • 2.3520±.066 • .6878±.091 • .7231±.025 • .6080±.021 .6886±.026 • 53.06%±.029

LRR • .3793±.021 • 1.1675±.028 • 2.2525±.066 • .6664±.088 • .7271±.025 • .6127±.021 .6986±.024 • 53.90%±.029

AA-kNN • .3721±.020 ◦ 1.0566±.031 ◦ 1.9578±.067 • .6179±.074 • .7426±.023 • .6191±.020 .7022±.026 • 55.21%±.028

DF-LDL • .3699±.019 1.1011±.025 2.0883±.058 • .5743±.072 • .7457±.023 • .6219±.019 .7049±.022 • 55.36%±.027

δ-LDL .3599±.017 1.0966±.023 2.0629±.051 .4882±.053 .7768±.020 .6333±.017 .6943±.023 58.25%±.025

fbp5500

PT-Bayes • .6569±.011 • 1.6829±.010 • 3.1196±.032 • 15.2111±.362 • .4779±.015 • .3413±.011 • .6987±.010 • .08%±.001

SCL • .2822±.005 • 1.4191±.007 • 2.6654±.022 • .4370±.010 • .8442±.006 • .6339±.004 • .7314±.053 • 38.39%±.011

LDLSF • .1450±.003 ◦ 1.0405±.016 ◦ 1.6992±.031 • .3391±.030 • .9515±.002 • .8381±.003 • .8876±.005 • 69.42%±.013

AA-kNN • .1515±.004 ◦ 1.0482±.015 ◦ 1.7383±.031 • .1819±.013 • .9418±.003 • .8315±.004 • .8860±.006 • 78.19%±.010

LCLR • .1386±.003 • 1.2978±.009 • 2.2253±.022 • .1114±.005 • .9523±.003 • .8475±.004 • .9009±.005 • 84.36%±.007

SA-BFGS • .1369±.003 • 1.2945±.009 • 2.2146±.022 • .1084±.005 • .9536±.003 • .8494±.004 • .9025±.004 • 84.77%±.006

LDLF • .1348±.004 1.2786±.011 2.1763±.028 • .1058±.006 • .9549±.003 • .8503±.005 • .9017±.005 • 85.18%±.008

DF-LDL • .1346±.003 • 1.2898±.010 • 2.2008±.023 • .1055±.005 • .9548±.002 • .8518±.003 .9042±.004 • 85.18%±.006

DPA • .1347±.003 • 1.2844±.010 • 2.1895±.024 • .1053±.005 • .9548±.003 • .8512±.003 .9038±.004 • 85.19%±.006

LDLLC • .1348±.003 • 1.2844±.010 • 2.1894±.024 • .1052±.005 • .9549±.003 • .8511±.003 • .9036±.004 • 85.20%±.006

LRR • .1343±.003 • 1.2837±.010 • 2.1871±.024 • .1046±.004 • .9552±.002 • .8516±.003 .9040±.004 • 85.29%±.006

δ-LDL .1300±.003 1.2783±.010 2.1685±.023 .0997±.005 .9576±.002 .8560±.003 .9061±.004 85.99%±.006

SBU 3DFE

PT-Bayes • .1289±.004 • .4019±.009 • .8606±.020 • .0772±.004 • .9247±.003 • .8452±.004 • .1444±.035 • 33.40%±.016

AA-kNN • .1272±.004 • .4001±.009 • .8281±.020 • .0801±.004 • .9217±.004 • .8489±.004 • .2053±.030 • 36.18%±.016

LDLSF • .1091±.003 • .4020±.011 • .8224±.021 • .0874±.020 • .9402±.003 • .8591±.004 • .3358±.025 • 37.61%±.020

SA-BFGS • .1151±.004 • .3706±.009 • .7827±.020 • .0627±.003 • .9384±.003 • .8599±.004 • .3001±.029 • 39.68%±.018

LCLR • .1061±.004 • .3627±.009 • .7531±.020 • .0579±.003 • .9438±.003 • .8669±.004 • .3573±.025 • 43.42%±.020

LDLLC • .1078±.003 • .3581±.009 • .7476±.018 • .0573±.003 • .9439±.003 • .8671±.003 • .3441±.025 • 43.49%±.016

DPA • .1077±.003 • .3580±.009 • .7474±.019 • .0572±.003 • .9440±.003 • .8672±.003 • .3446±.027 • 43.56%±.017

LRR • .1078±.003 • .3576±.009 • .7470±.018 • .0571±.003 • .9440±.003 • .8672±.003 • .3421±.027 • 43.56%±.017

SCL • .1111±.004 • .3512±.008 • .7523±.018 • .0573±.003 • .9436±.003 • .8658±.003 • .2952±.027 • 43.61%±.017

LDLF • .1023±.003 .3310±.008 • .6940±.017 • .0512±.003 • .9492±.003 • .8760±.003 .4045±.026 • 48.82%±.018

DF-LDL • .1001±.003 .3276±.007 .6817±.016 .0493±.003 .9511±.003 .8780±.003 .4273±.022 • 49.93%±.018

δ-LDL .0986±.004 .3272±.008 .6794±.018 .0494±.003 .9513±.003 .8793±.003 .4345±.029 50.73%±.018

LRR (Jia et al., 2023b); on the other hand, methods based on
specified structures are also compared, including: PT-Bayes
(Geng, 2016), AA-kNN (Geng, 2016), LDLF (Shen et al.,
2017) and DF-LDL (González et al., 2021). To ensure a
fair comparison, for each dataset and for each method we
conduct ten-fold experiments repeated 10 times, and the
average performance is recorded.

5.2. Results and discussion

Label distribution prediction Table 2 shows the represen-
tative label distribution prediction results. • (◦) indicates
“δ-LDL is statistically superior (inferior) to the comparing
methods” (pairwise t-test at 0.05 significance level); there
is no significant if neither • nor ◦ is shown; the best and
second-best results are highlighted in bold and underline,
respectively. In terms of performance on M2B, a consider-
able number of state-of-the-art methods are even inferior to

AA-kNN, exposing the limitations of minimizing average
KLD; in contrast, δ-LDL achieves the best performance on
five metrics, significantly outperforming the other methods.
Note that the KLD evaluation of δ-LDL on M2B is 0.4882,
which is lower than the stochastic performance, i.e., 0.6335
in Table 1, which fully demonstrates the effectiveness of our
proposed δ-LDL. The results on fbp5500 and SBU 3DFE are
similar, which implies that δ-LDL is effective on different
datasets. Remaining results can be found in Appendix B.

Regarding the µ metric, it is always significant on t-test as
our expectation. Note that the ranking derived from the µ
metric may be different from that derived from the KLD.
An obvious example lies in the comparison between LDLF
and DF-LDL on M2B, where the KLD evaluation of LDLF
is 0.5688, which is lower than that of DF-LDL, i.e., 0.5743,
while the µ metric shows that DF-LDL is superior to LDLF.
This is because the µ metric focuses on the percentage of
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predictions that are approximately correct, which is less
susceptible to extreme predictions. Compared with other
metrics, the µ metric has explicit range, is more discrim-
inable between superior and inferior models, and is more
intuitive, reliable, and interpretable.

Abation study & analysis on parameters Here we are
interested in the importance of each processing step in δ-
LDL, thus an ablation study on M2B is conducted: 1) we
replace the loss function with solely ℓ0(δ′0; ·, ·) to examine
the importance of ℓ, and this model is denoted as δ-LDLℓ0 ;
2) we replace the ASR with solely Simpson’s rule by setting
ξ = 0, and this model is denoted as δ-LDL w/o ASR. The
results are shown in Figure 2(a), which confirms that each
processing step in δ-LDL is indispensable. We conduct an
analysis on parameters on M2B as well, where the KLD and
training time w.r.t. ξ are also shown in Figure 2(a). The
training time initially increases sharply with the growth of
ξ, but gradually levels off. This is because, as ξ increases,
more samples are able to meet the conditions for halting the
computation of the ASR loss in advance. For the balance
between training time and performance, ξ is fixed at 5 in
our proposed δ-LDL.

Though δ-LDL is δ-parameter-free, we can still analyze the
impact of δ on D(·, δ; ·) with predictions of an experiment.
We analyze various D(·, δ; ·)s w.r.t. δ with predictions of
one experiment on M2B, results of which are shown in Fig-
ure 2(b) and Appendix B. The gray lines indicate the integra-
tion interval. In terms of our proposed δ-LDL, D(KL, δ; ·)
is larger that that of other methods when δ is small, which
makes the area under the curve larger. It is worth noting
that D(KL, δ; ·) is a monotonically increasing function of
δ, which is consistent with our theoretical analysis.

Robustness testing We now evaluate the robustness of the µ
metric, exploiting the artificial dataset introduced in (Geng,
2016). First, we generate the artificial dataset with 200×200
samples. Then we continuously apply noise along a cer-
tain axis of the features, which is visualized in Figure 3(a).
The KLD and µ metric w.r.t. the noise level are shown in
Figure 3(b). The KLD lacks the significance of changes
when the noise level is low. Then, it sharply increases and
becomes highly volatile once the noise level surpasses a
certain threshold. This is because when the noise increases
to a certain extent, the label distribution will become sparse,
triggering the sensitivity of the KLD, which is consistent
with our theoretical analysis. The early tiny changes/the
later substantial fluctuations in the KLD are detrimental to
the discriminable/reliable evaluation of LDL models. In con-
trast, the µ metric remains stable and gradually decreases
with the noise level. This is because the µmetric is based on
the percentage of predictions that are approximately correct,
which is less sensitive to noise.

Next, we evaluate the robustness of δ-LDL and other meth-
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Figure 2. (Best viewed in color) Visualized results of the analysis
on parameters.
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Figure 3. (Best viewed in color) Visualized results of the robust-
ness testing of the µ metric.

ods, exploiting the same artificial dataset mentioned above.
From bottom to top, from left to right, the four types of
processing in Figure 4(a) are: 1) no treatment; 2) applying
Gaussian noise (He et al., 2024); 3) randomly setting de-
scription degrees to zero (Xu & Zhou, 2017); 4) randomly
emphasizing description degrees (Kou et al., 2023). These
treatments correspond to different possible types of noise
in label distributions. The prediction results of represen-
tative methods are shown in Figures 4(b) to 4(g), and the
ground truth, i.e., the original artificial data without noise,
is shown in Figure 4(h) for comparison. The consistency
of each prediction result reflects the robustness of each
method. Although it is hard to visualize the so-called “deci-
sion boundary” in the field of LDL, Figure 4 shows that our
method predicts accurately and the prediction results are not
easily affected by noise.

6. Related work
Our work is mainly related to LDL. LDL was initially pro-
posed by Geng et al. to tackle the problem of age estimation,
and subsequently developed into a novel paradigm of ma-
chine learning (Geng, 2016), which is now supported by
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Figure 4. (Best viewed in color) Visualized results of the robustness testing of δ-LDL and other methods.

theoretical underpinnings (Wang & Geng, 2019). Over the
years, a large number of specialized algorithms for LDL
have emerged (Geng et al., 2013; Geng & Hou, 2015; Shen
et al., 2017; González et al., 2021).

Regrading evaluation metrics, the average KLD is the most
widely used one and it is first considered by Geng, who
advocates hierarchical clustering to select representative
metrics, and demonstrates that Clark and Canberra metrics
suffer from oversensitivity to small values. Subsequent stud-
ies by Xu & Zhou revealed KLD’s unreliability with sparse
predictions, prompting calls for alternative measures. Met-
rics that used in early work therefore directly borrows from
existing mathematical foundations, e.g., Topsϕe (Ren &
Geng, 2017), Sϕrensen (Ren et al., 2019a) and Spearman’s
coefficient (Jia et al., 2023b), etc. There is little work on
designing new metrics until recently, e.g., the DPA proposed
by Jia et al., which, however, from the empirical results, still
lacks discriminability between superior and inferior models.
The CAD, QFD2 and CJS proposed by Wen et al. do not
address this issue either, and only work with ordinal label
distributions. Our proposed µ metric, which is based on the
percentage of predictions that are approximately correct, is
the first to tackle this issue.

Regrading learning objectives, the average KLD and the
MSE are the most widely adopted. For example, AA-BP
(Geng, 2016), a simple 3-layer network, minimizes MSE
but underperforms due to overfitting. The average KLD is
exploited in many LDL work based on loss function engi-
neering via different optimization methods, including BFGS

(Jia et al., 2018; 2023a), ADMM (Ren et al., 2019a;b), and
gradient-based methods (Jia et al., 2019; 2023b). These
methods 1) implicitly address overfitting through ad-hoc
regularization, indicating the field of LDL lacks principled
solutions; 2) sometimes are worse than average performance
deduced by uniform vectors, which could not even be ver-
ified before our work. The essential difference between
our proposed δ-LDL and these methods is that it no longer
focuses on all samples, but sacrifices a part of them by using
an approximately correct interval.

Furthermore, the parameter δ is potentially related to the
parameter ρ in the margin theory, which is exploited in
some LDL work (Wang & Geng, 2019; 2021a;b). The
difference, however, is that: 1) their work focuses on the
problem of objective mismatch, using margin theory to
improve the performance of classification tasks, destroying
the expected shape of the predicted label distributions, while
our work still focuses on LDL tasks; 2) the margin ρ is still a
hyperparameter that needs to be set in their methods, while
our method is δ-parameter-free, which is more convenient
for practical scenarios.

7. Limitations and conclusion
Limitations A notable limitation of the proposed δ-LDL
algorithm is that it has not yet achieved optimal performance
across all metrics, which is close to the theoretical best-
case scenario. This is likely due to our current work not
considering fitting different shapes of label distributions,
which is an area that warrants further exploration.
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Conclusion In this paper, we propose DeltaLDL, a percent-
age of predictions that are approximately correct in LDL.
DeltaLDL can serve as a novel evaluation metric, which
is parameter-free and reflects real performance improve-
ments; DeltaLDL can also serve as a novel learning objec-
tive, which is differentiable and ensures that most samples
can be predicted as approximately correct. Our theoretical
analysis and empirical results demonstrate the effectiveness
of the proposed solution.
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of machine learning. There are many potential societal
consequences of our work, none which we feel must be
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A. Proof of Proposition 2.2
Proof. Let u = (u1, u2, · · · , uc) be a random vector distributed according to a Dirichlet distribution, i.e., u ∼ Dir(α),
with parameters α = (α1, α2, · · · , αc). The KLD between u and v is given by KL(u ||v) =∑c

j=1 uj log(cuj). Then
the expectation of the KLD can be decomposed as

E (KL(u ||v)) = E




c∑

j=1

uj log(cuj)


 =

c∑

j=1

E (uj log(cuj)) =

c∑

j=1

(E(uj log uj) + E(uj) log c) . (22)

From the properties of the Dirichlet distribution, the expected value of uj is

E(uj) =
αj∑c
k=1 αk

. (23)

Since u ∼ Dir(α), we have uj ∼ Beta(αj ,
∑c

k=1 αk −αj), ∀j ∈ [c]. From the properties of the Beta distribution, we have

E(uj log uj) =
αj∑c
k=1 αk

(
ψ(αj + 1)− ψ

(
c∑

k=1

αk + 1

))
. (24)

Combining Equations (22) to (24), the proof is complete.

B. Remaining experimental results
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Figure 5. (Best viewed in color) Visualized results of the analysis on parameters.
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Approximately Correct Label Distribution Learning

Table 3. Experimental results on RAF ML, Natural Scene, Music, and Painting, formatted as “mean± std”
Algorithms Cheby. ↓ Clark ↓ Can. ↓ KLD ↓ Cosine ↑ Int. ↑ Spear. ↑ µ ↑

RAF ML

SCL • .3566±.006 • 1.5754±.012 • 3.4061±.031 • .6360±.011 • .7080±.006 • .5337±.004 • .3372±.025 • 20.95%±.006

PT-Bayes • .3482±.022 • 1.7253±.033 • 3.7506±.106 • .8545±.123 • .7346±.024 • .5983±.023 • .5575±.028 • 32.15%±.039

LDLSF • .1885±.004 • 1.5429±.013 • 3.0619±.034 • .8256±.069 • .9102±.005 • .7672±.005 • .7713±.010 • 48.58%±.017

AA-kNN • .2643±.005 • 1.4882±.014 • 3.0326±.036 • .4073±.014 • .8221±.006 • .6737±.006 • .6041±.013 • 49.37%±.012

LDLF • .1974±.008 ◦ 1.4077±.017 • 2.7417±.045 • .2444±.014 • .9071±.006 • .7569±.009 • .7494±.012 • 68.14%±.017

DF-LDL • .1546±.005 • 1.4196±.015 • 2.7375±.036 • .1957±.011 • .9273±.005 • .8087±.005 • .7817±.010 • 75.68%±.010

SA BFGS • .1538±.005 • 1.4199±.015 • 2.7385±.036 • .1957±.011 • .9277±.005 • .8096±.005 • .7840±.010 • 75.77%±.010

LCLR • .1538±.005 • 1.4199±.015 • 2.7386±.036 • .1957±.011 • .9277±.005 • .8096±.005 • .7839±.010 • 75.77%±.010

LDLLC • .1538±.005 1.4178±.015 • 2.7335±.036 • .1956±.011 • .9276±.005 • .8096±.005 • .7842±.010 • 75.79%±.010

LRR • .1538±.005 • 1.4185±.015 • 2.7356±.037 • .1957±.011 • .9276±.005 • .8096±.005 • .7841±.010 • 75.79%±.010

DPA • .1538±.005 • 1.4185±.016 • 2.7355±.037 • .1957±.011 • .9276±.005 • .8096±.005 • .7841±.010 • 75.80%±.010

δ-LDL .1527±.005 1.4159±.016 2.7267±.038 .1929±.011 .9284±.005 .8108±.006 .7847±.010 76.06%±.010

Natural Scene

PT-Bayes • .7469±.019 • 2.9025±.008 • 8.5810±.033 • 19.3376±.971 • .3446±.022 • .2416±.019 • .3467±.024 • 10.19%±.017

SCL • .3486±.017 • 2.4728±.020 • 6.8978±.083 • .9959±.028 • .6647±.008 • .4180±.010 • .3368±.041 • 25.11%±.007

LDLSF • .3185±.012 • 2.4948±.017 • 6.8440±.071 • 2.6764±.348 • .7193±.012 • .5493±.011 • .4718±.016 • 35.02%±.020

LCLR • .3590±.016 ◦ 2.3688±.018 ◦ 6.5106±.072 • 1.1351±.093 • .6681±.018 • .5258±.014 • .4697±.017 • 35.33%±.024

SA BFGS • .3323±.015 ◦ 2.3921±.019 6.5725±.073 • .9239±.070 • .7016±.016 • .5480±.014 • .4898±.016 • 39.00%±.025

DF-LDL • .3067±.013 ◦ 2.3698±.019 ◦ 6.4633±.074 • .7828±.041 • .7323±.013 • .5670±.012 • .5092±.016 • 42.55%±.022

AA-kNN • .2888±.014 ◦ 1.7886±.038 ◦ 4.1708±.110 • 1.0107±.081 • .7391±.015 .5969±.014 • .5319±.020 • 42.71%±.024

LDLLC • .2994±.012 • 2.4214±.018 • 6.6168±.076 • .7327±.035 • .7504±.013 • .5718±.011 • .5251±.015 • 44.30%±.018

DPA • .2994±.012 • 2.4207±.019 • 6.6152±.079 • .7327±.035 • .7500±.012 • .5722±.011 • .5252±.015 • 44.31%±.018

LRR • .2991±.012 • 2.4210±.018 • 6.6161±.076 • .7322±.035 • .7499±.013 • .5722±.011 • .5254±.015 • 44.33%±.018

LDLF • .2842±.012 • 2.4188±.018 • 6.5960±.074 • .6787±.037 • .7706±.014 • .5899±.012 • .5473±.017 • 47.47%±.021

δ-LDL .2760±.012 2.4123±.017 6.5501±.075 .6586±.033 .7807±.012 .5974±.011 .5553±.017 48.96%±.018

Music

PT-Bayes • .1733±.026 • 1.1169±.101 • 2.8681±.292 • .3290±.082 • .7818±.040 • .6930±.034 • .2079±.105 • 04.85%±.026

LDLSF • .0946±.006 • .9498±.072 • 2.4003±.194 • .6168±.306 • .8718±.018 • .7678±.019 • .3123±.072 • 23.89%±.045

SA BFGS • .1020±.008 • .8802±.060 • 2.2770±.172 • .1912±.030 • .8665±.018 • .7673±.018 • .3030±.072 • 25.57%±.047

DF-LDL • .1022±.008 • .8489±.057 • 2.1694±.160 • .1719±.026 • .8726±.018 • .7763±.018 • .2688±.080 • 26.18%±.045

LCLR • .1000±.008 • .8644±.064 • 2.2295±.182 • .1821±.034 • .8738±.019 • .7733±.020 • .3673±.073 • 26.23%±.049

DPA • .0971±.007 • .8532±.059 • 2.2104±.166 • .1758±.027 • .8746±.017 • .7741±.018 • .3224±.072 • 27.04%±.047

LRR • .0969±.007 • .8519±.058 • 2.2061±.166 • .1751±.027 • .8750±.017 • .7745±.018 • .3214±.071 • 27.11%±.047

LDLLC • .0968±.007 • .8518±.057 • 2.2063±.160 • .1751±.027 • .8751±.017 • .7745±.017 • .3212±.070 • 27.12%±.046

SCL • .0776±.004 • .7676±.050 • 1.9339±.131 • .1157±.013 • .9150±.008 • .8065±.012 • .4544±.055 • 32.12%±.028

LDLF • .0775±.005 • .7532±.054 • 1.9050±.140 • .1134±.014 • .9161±.009 • .8096±.014 .4538±.078 • 34.01%±.045

AA-kNN • .0784±.006 • .7499±.061 • 1.9309±.172 • .1258±.021 • .9067±.015 • .8051±.018 • .3989±.081 • 36.75%±.045

δ-LDL .0733±.005 .7185±.055 1.8221±.150 .1061±.016 .9218±.011 .8186±.015 .4942±.058 39.35%±.036

Painting

PT-Bayes • .7070±.056 • 2.5747±.056 • 7.0292±.221 • 7.4050±1.412 • .3337±.055 • .2275±.044 • .1484±.075 • 00.07%±.003

LDLSF • .2853±.023 • 1.8290±.067 • 4.3005±.204 • 4.1107±1.205 • .6565±.033 • .5507±.025 .2047±.067 • 11.89%±.040

LCLR • .2979±.028 • 1.8632±.070 • 4.5308±.229 • .9065±.215 • .6579±.036 • .5538±.028 .2454±.066 • 16.23%±.045

SA BFGS • .2965±.028 • 1.8559±.073 • 4.5050±.237 • .8997±.233 • .6596±.036 • .5547±.028 .2363±.069 • 16.37%±.044

DF-LDL • .2714±.021 • 1.8051±.064 • 4.3184±.202 • .6950±.096 • .6772±.032 .5746±.023 .2310±.073 • 17.13%±.044

SCL • .2579±.019 ◦ 1.6915±.067 3.9339±.193 • .5574±.042 • .7223±.017 • .5940±.019 • .1987±.078 • 19.36%±.024

AA-kNN .2572±.021 • 1.7553±.060 • 4.1427±.182 • .7100±.161 • .6987±.027 • .5888±.021 .2241±.072 • 19.76%±.041

DPA .2585±.020 • 1.7561±.069 • 4.1452±.215 • .5999±.067 .7116±.028 .5951±.022 .2780±.069 • 20.48%±.041

LRR .2587±.019 • 1.7556±.068 • 4.1422±.212 • .5988±.064 .7118±.027 .5954±.022 .2782±.068 • 20.48%±.040

LDLLC .2586±.020 • 1.7560±.069 • 4.1438±.216 • .5994±.066 .7120±.027 .5953±.022 .2774±.068 • 20.48%±.041

LDLF .2485±.019 1.7059±.066 3.9700±.200 .5343±.046 .7336±.023 .6075±.021 .3054±.088 22.54%±.036

δ-LDL .2484±.020 1.7019±.067 3.9520±.201 .5288±.048 .7377±.023 .6102±.022 .3146±.092 23.05%±.037
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