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ABSTRACT

Several variational quantum circuit approaches to machine learning have been
proposed in recent years, with one promising class of variational algorithms in-
volving tensor networks operating on states resulting from local feature maps. In
contrast, a random feature approach known as quantum kitchen sinks provides
comparable performance, but leverages non-local feature maps. Here we combine
these two approaches by proposing a new circuit ansatz where a tree tensor network
coherently processes the non-local feature maps of quantum kitchen sinks, and
we run numerical experiments to empirically evaluate the performance of the new
ansatz on image classification. From the perspective of classification performance,
we find that simply combining quantum kitchen sinks with tensor networks yields
no qualitative improvements. However, the addition of feature optimization greatly
boosts performance, leading to state-of-the-art quantum circuits for image classifi-
cation, requiring only shallow circuits and a small number of qubits – both well
within reach of near-term quantum devices.

1 INTRODUCTION

Tensor network (TN) methods have been studied across physics, mathematics, and computer science
for their expressive power, interpretability, and computational efficiency (Kolda & Bader, 2009; Eisert,
2013; Vervliet et al., 2014; Cichocki et al., 2015; Sidiropoulos et al., 2017; Orús, 2019; Biamonte,
2019). These properties make them well-suited for machine learning, recently leading to several
promising results (Novikov et al., 2015; Stoudenmire & Schwab, 2016; Cohen et al., 2016; Glasser
et al., 2019). Under some mild constraints, a TN may be interpreted as a quantum circuit (Grant et al.,
2018; Huggins et al., 2019; Haghshenas et al., 2022). In some cases, these circuits may be simulated
with a computational effort that scales polynomially with the number of qubits, which makes them
amenable to numerical exploration on classical computers—in stark contrast with the exponential
scaling expected in simulation of arbitrary quantum circuits.

One of the underlying challenges in developing quantum TN methods for machine learning is
to establish a competitive performance baseline. A classical algorithm, random kitchen sinks
(RKS) (Rahimi & Recht, 2007; 2008a;b), offers some inspiration since it has been shown to be
competitive with multilayer neural networks (May et al., 2017). The principal difference between the
two approaches is that RKS, a kernel method, replaces the costly learning of low-level features in a
multilayer network with random non-local features. This randomization step may be considered a
special kind of feature engineering in a machine learning pipeline.

A quantum algorithm based on RKS, known as quantum kitchen sinks (QKS) (Wilson et al., 2018),
has been shown to produce error rates that are comparable to quantum TN methods (Huggins et al.,
2019) at similar qubit utilizations and minimal classical overhead. An important question is whether
coherent quantum processing can provide any improvement in classification performance. The
original QKS results indicated some mild improvement with coherent processing over a small number
of qubits and some degradation at a large number of qubits—and no systematic guidance for how
coherent processing could be leveraged. Here we attempt to shed some light into this question
by combining QKS and TN circuits into a new variational ansatz, and show this combined ansatz
compares favorably to both of its ancestors.

In both the classical and quantum contexts, the contest between the multilayer networks and relatively
shallow (Q/R)KS models is strongly impacted by the design of the network layers and features. It is
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well-known that any function can be learned by either shallow or multilayer architecture; the essential
questions are (1) how efficient is the corresponding architecture and (2) how much work is required
in optimizing the architecture to the task (Bengio, 2007). We assess each of these points in turn by
separately studying the two modules of the combined QKS and TN protocol.

Figure 1: (a) Classical data parameterize rotations in quantum kitchen sinks (QKS). Application of
quantum rotation gates such as RP (θ) = cos(θ/2)I − i sin(θ/2)P (where P is a Pauli operator)
results in quantum states whose amplitudes are mixtures of non-linear functions of the classical
angles. Variational circuits where such quantum gates are followed with a tree tensor network (TTN)
structure coherently process the output of QKS before a small part of the state is measured. (b) Test
errors over 10 realizations (median and 68% credibility intervals) as a function of the number of
episodes. Joint optimization of the rotations and TTN lead to binary classifiers with error rates below
1% (on “3” vs. “5” handwritten digits from the MNIST dataset).

A concrete example of a TN is a tree tensor network (TTN), depicted in (Fig. 1a). In these networks,
two collections of n qubits each (where χ = 2n is referred to as the bond dimension) interact unitarily,
but only one of the resulting collections of n qubits continues on for additional computation. We
refer to the quantum circuit that results from combining QKS with TTN as QKS+TTN, in contrast to
the previous QKS approach which leveraged linear classifiers (such as support vector machines1),
which we refer to as QKS+SVM. In this work, we only considered χ = 2 and χ = 4 and focused
on the TTN to build a large coherent computation. An attractive feature of the proposed TTN and
other related ansatze (such as multi-scale entanglement renormalization ansatz (Evenbly & Vidal,
2009)) is that they avoid the problem of barren optimization landscapes, due to the shallow circuit
depth (McClean et al., 2018; Wang et al., 2021; Cerezo et al., 2021; Arrasmith et al., 2021), and
their sparse connectivity prevents errors from accumulating pathologically (Kim & Swingle, 2017;
Shehab et al., 2019; Anikeeva et al., 2021), making the implementation of these circuits on near-term
hardware appealing.

Classification using QKS+TTN requires simulating the evolution of the quantum state through fixed
circuits (parameterized by the classical input data), which are called kitchen sinks or episodes (Wilson
et al., 2018), and the TTN, which concludes with the application of a measurement on the remaining
n qubits at the root of the tree (Grant et al., 2018; Huggins et al., 2019). For a single-shot execution of
the circuit, the resulting outcome corresponds to the classical output of the classifier. For a multi-shot
execution of the circuit, we consider the application of a linear classifier to the observed outcome
frequencies. For binary classification, we may consider measuring a single qubit out of the remaining
n, but more general classification tasks may use all possible χ outcomes of the final measurement.

Contributions. We propose a new circuit ansatz where a TTN coherently processes the non-
local feature maps of QKS. We empirically evaluate the performance of the new ansatz on image
classification. In terms of classification performance, we find that simply combining QKS and
TTN yields no qualitative improvements. However, training QKS+TTN with feature optimization
(QKS+TTN+FO) significantly boosts performance and improves qubit utilization over the QKS+SVM
baseline (Fig. 1b), leading to state-of-the-art quantum circuits for image classification, while requiring

1The work of (Wilson et al., 2018) used logistic regression, while we use linear support vector machines here
for convenience – we do not expect a material performance difference between the two.
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only shallow quantum circuits and a small number of qubits – both well within reach of near-term
quantum devices.

A crucial feature of the new ansatz is how classical data are mapped to quantum states. Previous
work considered local feature maps (Grant et al., 2018; Huggins et al., 2019), where each classical
dimension xi was encoded in one qubit amplitude cos(xi) |0⟩ + sin(xi) |1⟩ (or similar non-linear
encoding), which required a number of qubits equal to the number of classical features in the problem
(synthetic features may be naturally included as desired). Our work uses the non-local feature map
provided by QKS so that the quantum state corresponding to each episode contains information about
the entire data. This decouples the correlation structure in the data from the quantum circuit structure
so that we may apply the same TN structure to datasets of different dimensionality and correlation
structure.

2 METHODS AND BENCHMARKS

We begin by describing the datasets and the methods used for QKS+SVM, QKS+TTN, and
QKS+TTN+FO. We present two approaches to reducing the complexity of the overall model: (i)
translational symmetry in the TTN and (ii) sparsity in the features.

Benchmarks. The MNIST dataset (LeCun et al., 1998) is a well-known benchmark in machine
learning. Each digit is a (28× 28)-pixel, 8-bit grayscale image of a handwritten digit. We treat each
image as a vector with dimension 282 = 784 and split the dataset into 60,000 training and 10,000
testing images. While it is a benchmark for multi-class classification, we choose to focus on the
binary classification two digits that are difficult to distinguish: the handwritten digits “3” and “5”,
which we refer to as (3,5)-MNIST. All licensing information for existing assets can be found in the
supplementary material.

Establishing a baseline with quantum kitchen sinks. Consider an unknown target function
f : Data→ Labels. The general approach to “learning” the target function is to approximate it with
some structured parameterized function gθ taken from some hypothesis space. In deep learning, such
gθ is structured as a parameterized composition of a large number of simple non-linear functions,
and the many parameters of this composition all have to be learned for optimal performance. As
an alternative, Rahimi and Recht (Rahimi & Recht, 2007; 2008a;b) have shown that it was possible
to produce a sufficiently rich set of hypothesis functions g(·,θ) as weighted linear sums of simple
non-linear functions with random parameters. The weights in the summary linear combination of
such non-linear terms still need to be learned, but this is a linear learning step that can be done at a
significantly lower cost than learning a full customary neural network. Results presented in (Rahimi
& Recht, 2007; 2008a;b) suggest that there are multiple reasonable choices of non-linearities that can
be used as structural blocks for RKS: cosine, sign, and indicator functions in particular.

Figure 2: A quantum kitchen sink (QKS), highlighted in blue, is made up of independent episodes,
each consisting of a unitary operation applied to |0⟩ state . Each unitary is parameterized by a random,
fixed vector (grey) and the classical input. The resulting tensor product state is then measured in a
fixed basis, and the outcomes are processed further by classical post-processing (red) to generate a
classical output. This procedure can be engineered to approximate any function of the classical input.

The quantum kitchen sinks (QKS) algorithm proposed by (Wilson et al., 2018) leverages the connec-
tion between trigonometric functions and qubit rotations to implement the required non-linearities.
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Concretely, the original proposal used linear random mixtures of features as angles for single-qubit
rotations, optionally followed by entangling operations. A quantum circuit composed of such op-
erations impacts the amplitudes of a quantum state with cosines and sines of weighted mixtures of
classical data.

More specifically, let x ∈ Rp be a p-dimensional feature vector. Let Ω = (ω1, . . . , ωq)
T be a ran-

domized matrix, where for each k, ωk is a p-dimensional vector with r ≤ p elements having random
values and remaining elements being exactly zero. We can also specify a random q-dimensional bias
vector β. Then we get our set of random quantum circuit parameters θ = Ωx+ β.

For a sufficiently large count E interpreted as the number of episodes we repeat this randomized
synthesis E times to form a set of encoding parameters {Ωe,βe}Ee=1. This set of parameters is
drawn only once and becomes a permanent part of a QKS solution. The Ωe and βe elements can be
drawn from various statistical distributions—e.g., normal, uniform, etc.—and parameters of these
distributions become hyperparameters of the method. Choice of variances, for one, has a strong
impact on the outcomes—as shown by a cross-validation grid-search in the supplementary material.

Once we have encoded the data for an episode e ∈ [E] as vectors of circuit parameters θe(x) =
Ωe x+ βe, x ∈ Learningdata we need to choose an ansatz for quantum circuit(s) driven by these
parameters. As shown by (Wilson et al., 2018) the circuit structure can be quite simple provided that
the corresponding unitary transformation depends strongly on the θs. For example, the one-qubit
ansatz presented in Fig. 2 has been proven to work well in multiple datasets. As suggested by the
figure, the quantum step starts with some basic quantum state, e.g., |0⟩, and the circuit is followed
by a full measurement that extracts a classic bit string and collapses the state. This concludes the
quantum feature pre-processing step. The bits extracted by measurement of multiple episodes form
an aggregated feature vector that is then fed into a classical linear classification algorithm.

The critical difference between QKS and classical RKS is that in the case of QKS, the aggregated
feature vector is by itself stochastic even though the encoding parameters {Ωe,βe}Ee=1 are fixed.
This is due to the stochastic nature of quantum measurement. Therefore it might be crucial to allow
multiple runs (referred to as shots) of the same circuit within each episode and average measurement
results across these runs. Such a multi-shot approach provides a more accurate representation of
non-linearities induced by the quantum encoding. In either case, the totality of quantum steps
generates an aggregated feature vector that is post-processed further. (Wilson et al., 2018) used
Logistic Regression (LR) for the classical post-processing, while here, we explore several different
approaches (both classical and quantum) to achieve better performance.

Coherently processing quantum kitchen sinks with tensor networks. Although the non-linearities
provided by QKS are sufficient to approximate arbitrary functions of the classical inputs (and may
therefore be used for a wide range of machine learning tasks), it is not apparent how to optimally
engineer multi-qubit episodes, much less how performance may depend on the number of qubits in an
episode. The results of (Wilson et al., 2018) indicated some potential improvement with the number of
qubits per episode, but also considered only fixed instances of arbitrarily chosen multi-qubit circuits.
In this section, we explore an approach to address this question by considering coherent processing of
the output of the QKS with highly structured shallow quantum circuits: tree tensor networks (TTN).
We chose to focus on TTNs due to computational convenience, but expect additional gains may be
possible with other TN structures.

The original QKS proposal used tensor product measurements, followed by (largely) unstructured
classical post-processing of measurement outcomes. Here, we wanted to consider measurements that
have an efficiently contractible TN structure (Fig. 3). This change resulted in a variational quantum
circuit with multiple layers of coherent processing. The architecture design consisted of two main
modules: the non-local features and TTN.

A TTN will map E/ lgχ qubits down to n qubit in O(lgE) depth by successively discarding (or
rather, ignoring) half of the qubits. Note that the TTN we employ here is a slight modification of
the TTN considered in condensed matter studies (Shi et al., 2006; Tagliacozzo et al., 2009; Murg
et al., 2015; Nakatani & Chan, 2013). In particular, our TTN is not made up of isometries (unitaries
followed by projections on some of the outputs) because that would correspond to post-selection
on measurement outcomes at each tensor and an exponentially small probability of post-selection
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success for the overall circuit 2. Instead, in our TTN we discard some of the output qubits for each
tensor in the tree, so in some sense, our TTN is “dissipative”, with the advantage that it does not
require post-selection. This changes the connectivity of the network compared to the isometric
case. However, it only translates to an effective increase in the bond dimension, which is why the
contraction cost has asymptotic scaling proportional to χ7 instead of the usual χ3 for isometric TTN
(see details on computational complexity in the supplementary material).

Figure 3: Coherent post-processing of the quantum features with a tree tensor network (TTN),
highlighted in blue. The TTN is a variational quantum circuit consisting of unitary interactions
between qubits. In the χ = 2 case, a unitary—represented by a uniquely parameterized tensor—
operates on two qubits. Only one of the resulting qubits continues onto the next layer, while the other
is measured and discarded (as depicted by the black squares). Furthermore, in a departure from the
pure randomization approach of QKS, here we also consider optimizing the features (yellow) as well
as the TTN, using randomization only to initialize the QKS.

The O(χ7) scaling can be understood by noting that the TTN can be contracted efficiently starting at
the leaves. Episodes interact via χ2 × χ2 unitaries (two input indices and two output indices, which
are then doubled because we consider density matrices), and a partial trace must be computed to
discard half of the episodes at the output of the unitary. Overall this computation requires summing
over four input indices, two output indices, and a final index for the degrees of freedom that are
traced out, for a total of 7 indices of dimension χ. After the leaves are contracted with the first
layer of unitaries, the TTN structure is recovered, so the next layer can be contracted with the same
complexity. This does require a number of contractions that is linear in E, but parallelism allows for
O(lgE) time contraction.

A quantum computer may implement the contraction by decomposing the χ2 × χ2 unitary into qubit
interactions. This can be done in depth O(χ4) according to the Solovay-Kitaev theorem (Nielsen
et al., 2000), pointing to a potential cubic speed-up over the classical implementation. The more
meaningful (and subtle) comparison to other classical classification algorithms in terms of the scaling
necessary to achieve a fixed target classification accuracy is not addressed here and remains an open
problem.

Architecture Design & Training. In the proposed architectural design, each input datum x is
translated into a product state of the form ρ̂0 (x⃗n)⊗ ρ̂1 (x⃗n)⊗ ρ̂2 (x⃗n)⊗ · · · ⊗ ρ̂E (x⃗n) where E is
the number of episodes. If we average over all training data in a class ℓ, we obtain the separable state
ρ̂ℓ = 1

Nℓ

∑Nℓ

n=0 ρ̂0
(
x⃗ℓ
n

)
⊗ ρ̂1

(
x⃗ℓ
n

)
⊗ ρ̂2

(
x⃗ℓ
n

)
⊗ · · · ⊗ ρ̂E

(
x⃗ℓ
n

)
where Nℓ is the number of training

examples with class label ℓ. In the following, we assume binary classification with ℓ ∈ {0, 1} for
simplicity. However, all the equations can be straightforwardly generalized for a multi-class setting.

Tensor network optimization. We may consider training the TTN by first fixing the QKS parameters.
The unitary tensors are optimized by gradient descent methods applied to the training objective
described below and in the supplementary material. Similar to (Huggins et al., 2019), the unitaries
are expressed as matrix exponentials of anti-hermitian matrices, while anti-hermiticity (and thus
unitarity) is preserved by an appropriate choice of parameterization.

2This may be acceptable in networks that aim to train generative models, which would be employed by
running the networks backward and treating the measurements in the isometries as state preparation. However,
such an approach cannot be directly employed with QKS.
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We optimize the TTN by minimizing Pr(error) = 1−
∑

ℓ∈L tr ρ̂ℓM̂ℓ/|L|, the probability of single-
shot classification error in the training set, where L is the set of labels and the M̂ℓ are the elements
of a positive operator-valued measure (POVM). The M̂ℓ are implicitly defined by the TN and fixed
projectors at the root of the tree TN, i.e., M̂ℓ = E†(|ℓ⟩⟨ℓ|) for some completely-positive trace-
preserving (CPTP) map E corresponding to the state evolution in the dissipative TN. For simplicity,
we use the same objective for single-shot and multi-shot classification3, although this approach
requires modification for multi-class multi-shot classification.

Due to the normalization condition on the POVM, binary classification yields Pr(error) = 1
2 −

1
2 tr

[
(ρ̂0 − ρ̂1)E†(|0⟩⟨0|)

]
, so that we may take the maximization of f = tr

[
(ρ̂0 − ρ̂1)E†(|0⟩⟨0|)

]
as our objective instead (with similar expressions for the multi-class case). It is inconvenient to manip-
ulate ρ̂ℓ directly, as these matrices have size that is exponential in E, but ci(ℓ̄, ℓ) = tr

[
ρ̂ℓ̄iE†(|ℓ⟩⟨ℓ|)

]
can be computed by contracting the TN for any given training example ρ̂ℓ̄i , which can be done on a
classical computer by only manipulating tensors of a fixed dimension in O(χ) for (χ ≥ |L|). On a
quantum computer, ci(ℓ̄, ℓ) may be estimated by running the state preparation and TN as circuits, and
estimating the probability of obtaining outcome ℓ at the final measurement for state preparation ρ̂ℓ̄i .

Computing the objective function requires contracting the entire TN for each training example, which
is excessive in some cases. This can be replaced by considering only random mini-batches of the
training set using stochastic variants of gradient descent (see supplementary material). Suppose we
choose to optimize each tensor sequentially. In that case, we may partially contract the TN so that
at each step of the optimization, the objective reduces to the product of three small matrices—the
unitary tensor, its conjugate, and a non-unitary tensor corresponding to the partial contraction of
the remainder of the network which remains fixed—in a manner that is reminiscent of quantum
combs (Chiribella et al., 2008). However, we find that globally updating all tensors leads to faster
convergence and lower computational overhead.

Feature optimization. In a departure from the pure randomization approach of kitchen sinks, here
we also consider optimizing the features as well as the tensor network, using randomization only to
initialize the QKS. This additional optimization step can also be approached with gradient descent.
For an episode e ∈ [E], we computed the gradient with respect to the global objective f of the
ansatz, ∇f =

[
∂f
∂ω1

, ∂f
∂ω2

, · · · ∂f
∂ωd

, ∂f
∂β

]
, with respect to parameters {Ωe,βe} of the driving angles

θe(x) = Ωex + βe. For a batch of examples indexed by n ∈ [Nℓ], the gradient elements are
∂f
∂ωi

= 1
Nℓ

∑
n

(
∂ρn

∂θn
xn,i

)
· Vn and ∂f

∂β = 1
Nℓ

∑
n

∂ρn

∂θn
· Vn where ρn represents the density matrix

of the feature being optimized and “· Vn” represents contraction with the remainder of the tensor
network. With the gradient in hand, we sequentially optimize each feature with respect to the global
objective. Additional architecture and training details can be found in the supplementary material.

Reducing model complexity via translational symmetry and sparsity constraints. We explore two
approaches for reducing model complexity by imposing (i) translational symmetry on the TTN (see
motivation in the supplementary material) and (ii) sparsity on the features. Translational symmetry
is enforced by requiring all tensors at a fixed distance from the root to be identical, while sparsity
is enforced by setting a fixed (random) fraction of Ωe to 0. These constraints reduce the size of the
hypothesis space and could offer better generalization, that is, up to a point where the model begins
to underfit. Parsimonious models with minimal complexity could exist right before this transition.

3 RESULTS

In this section, we present the results of several numerical experiments on QKS, QKS+TTN, and
QKS+TTN+FO. We begin by establishing the baseline performance of QKS. Next, we combine
QKS with a TTN—we found that simply combining QKS and TTN did not improve classification
performance over the QKS baseline. However, the addition of feature optimization greatly improved
the performance and yielded state-of-the-art quantum circuits for image classification. Finally, for the

3The performance in the multi-shot case is not determined directly by the objective, but rather by numerically
training and testing a linear classifier on the observed outcomes frequencies for multiple experimental shots on
each training/testing example (i.e., 2 dimensional real-valued vectors)
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Figure 4: Translational symmetry and sparsity may be imposed on the TN and features, respectively,
thereby reducing the number of parameters in the model. Note the sparser connectivity between data
features and quantum rotations (teal), and the layer-wise symmetry of the tensors (orange).

most complex networks, we show that imposing translational symmetry and sparsity constraints led to
dramatic reductions in the number of free parameters while having minimal impact on classification
performance.

Baseline performance of quantum kitchen sinks. The original QKS design, as described by (Wilson
et al., 2018), was intentionally limited to circuits where the quantum encoding of the data features
was fed into a linear post-processing layer. For the (3,5)-MNIST dataset, error rates between 3.3%
and 3.7% were reported in the experiments that ran on noisy quantum hardware. Results obtained on
a noiseless simulator showed error rates at or slightly below 2%. While these error rates showed a lift
over a linear SVMs (which was the stated intent of the original QKS research), the performance has
been inferior compared to the state of the art for (3,5)-MNIST classification.

a b c

Figure 5: (a) Classification error rates for (3,5)-MNIST over 100 realizations (median and 68%
credibility intervals) as a function of the number of QKS episodes. Allowing multiple shots at the
one-qubit ansatz (multi-shot) led to better performance compared to single shots at the same circuits
(single-shot). (b) Restricting the training dataset to a fraction of its original size (f = 0.1 and f =
0.01) limited the achievable classification performance, and (c) the observed dependency on the size
of the training dataset was fit to a power law y(f) = a f b where (a, b) = (0.72±0.18,−0.48±0.06),
consistent with the O(1/

√
N) predictions from theoretical results (Rahimi & Recht, 2007; 2008a;b).

We established a more competitive baseline than the one given in the original QKS proposal by
allowing multiple runs, or shots, of the quantum circuits. Compared to the single-shot approach,
the multi-shot approach offered better error rate scaling as a function of the number of episodes
(Fig. 5a). At the largest number of episodes we tested (E = 10, 000), the single-shot approach
yielded a test error of 1.87 ± 0.28 (mean ± std.) on (3,5)-MNIST, which was consistent previous
observations (Wilson et al., 2018), while the multi-shot approach offered a significant reduction to
0.78± 0.12.

Further, using the multi-shot approach, we validated the scaling of the error rate as a function of the
training set size (N ) against theoretical guarantees for random feature algorithms. We simulated
smaller datasets by taking fractions of the training dataset (f = 0.1 and f = 0.01), which shifted the
noise floor higher at a large number of episodes Fig. 5b. The empirical dependence of the noise floor
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on the size of the training set was fitted to a power law y(f) = a f b via a non-linear least-squares
procedure yielding (a, b) = (0.72± 0.18,−0.48± 0.06),4 which is consistent with the O(1/

√
N)

predictions from theoretical results (Rahimi & Recht, 2007; 2008a;b). For the full dataset (f = 1)
and a large number of episodes (E →∞), the power law predicts an error of a = 0.72± 0.18, which
is consistent with the error 0.78± 0.12 observed at E = 10, 000. Note that the one-qubit QKS ansatz
corresponds to the random Fourier features of RKS; therefore, we treat QKS+SVM as the classical
model and explore improvements against this baseline via coherent post-processing.

Coherent processing of non-local features yields compact networks. From the results presented in
the preceding section, it was clear that many episodes were required for QKS to perform well. Up to
this point, the quantum states generated by QKS have been measured and classically post-processed
with a linear SVM, and the parameters of QKS have been randomly drawn/fixed. Here we have
replaced classical post-processing with quantum post-processing—QKS+SVM to QKS+TTN—and
optimized the features along with the tensor network (feature optimization), using randomization
only to initialize QKS. We found that QKS+TTN yielded no qualitative improvements, however, the
addition of feature optimization (QKS+TTN+FO) greatly boosted performance.

a b

Figure 6: (a) Performance of combined protocols on (3,5)-MNIST over 10 realizations (median
and 68% credibility intervals) as a function of the number of episodes or qubits. It shows that
feature-optimized networks offer a significant performance lift over the QKS baseline while admitting
a 20× reduction in qubit utilization. (b) Imposing translational symmetry constraints on the TN
degrades the performance of χ = 2 networks but enhances the performance of χ = 4 networks.

We compared the performance of networks without feature optimization (QKS+TN) against those
with feature optimization (QKS+TTN+FO). Networks without feature optimization (QKS+TTN)
closely tracked the QKS+SVM baseline while networks with feature optimization (QKS+TTN+FO)
outperformed QKS+SVM, while admitting a 20× reduction in the number of episodes/qubits (Fig.
6a). Therefore, it appears that feature optimization is necessary for the formation of compact networks.

Reducing model complexity: translational symmetry and sparsity constraints. In the previous
section, we showed that QKS+TTN+FO achieved better performance than QKS+SVM at a fraction
of the number of episodes. We also reduced the model complexity, as measured by the number of free
(trainable) parameters by imposing translational symmetry on the TTN and sparsity on the features.

Translational symmetry constraints on the TTN had varying effects, depending on the bond dimension
of the network (Fig. 6b). While performance was degraded in the χ = 2 networks, the performance of
χ = 4 networks was equivalent or slightly better (Table 1)—while admitting an exponential reduction
in the number of parameters in the TTN.

Further, in the most complex model we tested, a QKS+TTN+FO network with with 512 episodes
and χ = 4, imposing both translational symmetry on the TTN and sparsity in the features revealed a
regime of parsimonious models (Table 1). The design of the best performing model on (3,5)-MNIST

4The uncertainties are computed by linearization of the fit model in the neighborhood of the least-squares
optimum, and correspond to a single standard deviation along each coordinate.
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Table 1: Translational symmetry and sparsity constraints were imposed on most complex model we
tested, a QKS+TTN+FO network with 512 qubits and χ = 4. Imposing these constraints yielded
dramatic reductions in the number of free parameters. A combination of translational symmetry and
50% sparsity constraints yielded the best test errors (mean ± std.) on (3,5)-MNIST, in bold.

Model Reduction Free Parameters (Fixed) Test Error (%)
No symmetry or sparsity 466, 945 0.44± 0.13

Transl. Symmetry 403, 960 0.35± 0.07
Transl. Symmetry + Sparsity (50%) 203, 256 0.35± 0.04
Transl. Symmetry + Sparsity (25%) 102, 904 0.37± 0.07
Transl. Symmetry + Sparsity (13%) 52, 728 0.45± 0.08
Transl. Symmetry + Sparsity (6%) 27, 640 0.65± 0.18

had a combination of constraints: a TTN with translational symmetry and features with 50% sparsity.
Note, however, that all parsimonious models had test errors below the QKS baseline.

State-of-the-art quantum circuits for image classification. We performed benchmarks on a broader
set of classification tasks. On the hardest MNIST binary classification tasks, the non-local feature
maps of QKS led to significantly lower test errors compared to local feature maps, when the pre-
processing and architecture/training configurations were matched (Table 2). The best performing
QKS+TTN+FO model (with translational symmetry) from the previous section led to the lowest test
errors we observed. These performance gains motivated a larger investigation into the full MNIST
dataset and the general multi-class problem.

Table 2: Non-local feature maps led to state-of-the-art quantum circuits for image classification, as
demonstrated on the hardest MNIST binary classification problems. We ran a control experiment
that matched the pre-processing and configuration (64 qubits, χ = 2, a mini-batch size of 222, and
30 epochs) of a similar quantum tensor network approach employing local feature maps (Huggins
et al., 2019). Additionally, we tested the best performing QKS+TTN+FO model (with translational
symmetry), which involved no pre-processing and the following configuration: 512 qubits, χ = 4, a
mini-batch size of 32, and 40 epochs.

Quantum Encoding 3 vs. 5 4 vs. 9 7 vs. 9 3 vs. 9 2 vs. 7
Local feature maps (Huggins et al., 2019) 12.4% 12.0% 10.7% 5.9% 4.3%

Non-local feature maps (control) 5.1% 4.2% 4.5% 2.5% 2.2%
Non-local feature maps (best) 0.4% 1.1% 0.8% 0.8% 0.9%

For the multi-class classification of MNIST, we established a baseline with QKS+SVM by construct-
ing a multi-class model composed of one-versus-one (OvO) binary classifiers: at 10,000 episodes,
the multi-class test error was 2.31%. In comparison, the QKS+TTN+FO with translational symmetry,
trained as OvO binary classifiers, yielded a multi-class test error of 1.16% at 512 episodes/qubits.
Taken together with the complete set of classification error rates (see supplemental material), the
QKS+TTN+FO offers state-of-the-art quantum circuits for image classification.

4 DISCUSSION

We have demonstrated that combining the non-local feature maps (of QKS) with coherent processing
(using a TN) and feature optimization can yield significant improvements in classification error rates
over the original QKS proposal, leading to state-of-the-art quantum circuits for image classification
with a qubit count and circuit depth that are within reach of near-term devices.

While these gains do not translate to meaningful quantum advantage (the TTN can be efficiently
contracted in a classical computer), they illustrate that variational optimization of quantum circuits
can perform non-trivial tasks on relatively small devices. The tree structure of the TN considered
here has also been argued by (Kim & Swingle, 2017) to have favorable noise-resilience properties,
which makes them promising candidates for interesting near-term demonstrations.
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Fan, Michael Collins, Daniel Hsu, Brian Kingsbury, Michael Picheny, and Fei Sha. Kernel
approximation methods for speech recognition, 2017. URL https://arxiv.org/abs/
1701.03577.

Jarrod R. McClean, Sergio Boixo, Vadim N. Smelyanskiy, Ryan Babbush, and Hartmut Neven.
Barren plateaus in quantum neural network training landscapes. Nat. Commun., 9(1), November
2018. ISSN 2041-1723. doi: 10.1038/s41467-018-07090-4. URL https://doi.org/10.
1038/s41467-018-07090-4.

V. Murg, F. Verstraete, R. Schneider, P. R. Nagy, and Ö. Legeza. Tree tensor network state with
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Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric
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A COMPUTATIONAL COMPLEXITY

As we have stated in the introduction, tensor network (TN) methods have been widely studied in
the machine learning and physics communities due to their expressive power and computational
convenience. Under some mild constraints on the components, a TN may be interpreted as quantum
circuits, and in some cases, these circuits may be simulated with a computational effort that scales
polynomially with the number of qubits involved—in stark contrast with the exponential scaling that
may be expected for arbitrary circuits.

A concrete example of a TN that can be simulated efficiently is a tree tensor network (TTN). In these
networks, two collections of n qubits each (where χ = 2n is referred to as the bond dimension)
interact unitarily 5, but only one of the resulting collections of n qubits continues on for additional
computation (the other is simply ignored). By successively discarding half of the qubits, a TTN will
map E/ lgχ qubits down to n qubits in O(lgE) depth. In this work, we only considered χ = 2 and
χ = 4, and focused on the TTN to build a large coherent computation.

Classification using QKS+TTN requires simulating the evolution of the quantum state through the
fixed circuits (parameterized by the classical input data) and the TTN, which concludes with the
application of a measurement on the remaining n qubits at the root of the tree. The result outcome
(or its expectation value) is then used for classification.

Thanks to the tree structure of the TN, the output of QKS+TTN can be computed by a classical
computer in time O(χ7 E) if the TN is contracted serially or in time O(χ7 lgE) if the network is
contracted in parallel. A quantum computer may implement the same transformation in time O(χ3),
with the disadvantage that the final outcome can only be sampled (but this sampling can be done in
parallel by running multiple copies of the circuit). The classical data must be pre-processed for each
episode, with a runtime of O(E D) serially or O(D) in parallel, where D is the dimensionality of
the classical data.

Training the network, however, requires more than just being able to simulate the evolution of
the quantum state: it requires optimizing over all the parameters in the TN. Without imposing any
symmetry, the TTN has (E−1)χ2(χ2+1)/2 lgχ real parameters. If the tensors along each layer of the
TTN are constrained to be identical, the number of parameters is reduced to lg(E)χ2(χ2 + 1)/2 lgχ.
Overall, the cost of training will be proportional to the number of parameters in the model and to the
training batch size.

The classical time overhead of classification with QKS+TTN is O(D + χ7 E), yielding the full
distributions of outcomes. The quantum time overhead with the equivalent circuits is O(S D +
S χ4 lgE), where S is the number of runs of the quantum circuit (given we can only sample the
final measurement in the quantum case, instead of obtaining the full distribution). The time overhead
for the training of QKS+TTN picks up additional factors proportional to the number of parameters in
the TN, but these are the same for the classical and quantum cases.

While for χ > 2, the compilation of each tensor into the native gate operations may add significant
classical computation overhead during training and significantly increase circuit depth, one may
replace the monolithic χ > 2 tensors with a network of subcomponents of bond dimension 2.
Such replacement would require a number of tensors/unitaries that grows as O(χ4) in order to
achieve good accuracy in full generality (Nielsen et al., 2000), but one may consider instead the
replacement with a fixed network of subcomponents, and optimizing over the parameters of that fixed
network Haghshenas et al. (2022). Although we do not consider the impact of such a fixed structure
here, there are indications that it would not impact classification performance—with the advantage
that it would greatly reduce the number of free parameters in the network, and the TN optimization
would be cheaper than computing accurate unitary decompositions at every iteration.

As pointed out in the main text, the TTNs we employ here are a slight modification of the TTNs
considered in condensed matter studies. In particular, our TTN is not made up of isometries. Instead,
in our TN we “ignore” or “discard” some of the output qubits for each tensor in the tree, so in
some sense, our TTN is “dissipative.” This changes the connectivity of the network compared to the

5We also considered more general operations, such as quantum channels. Although quantum channels have
an appealing structure for numerical optimization (the optimization of each local tensor is a convex problem), it
did not appear to lead to any performance improvement over the strictly unitary case.
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isometric case, but it only translates to an effective increase in the bond dimension, which is why the
contraction cost has asymptotic scaling proportional to χ7 instead of the usual χ3 for isometric TTNs.

We did not take into consideration the impact of connectivity constraints of any experimental
realization of a quantum computer. It should be noted, however, that connectivity constrains impose
at most a linear depth overhead as a function of width (Bhattacharjee & Chattopadhyay, 2017), but
more detailed (and likely architecture-dependent) analysis would be needed to pin down concrete
overhead numbers.

15



Under review as a conference paper at ICLR 2023

B MATERIALS AND METHODS

B.1 ARCHITECTURE AND TRAINING DETAILS

Quantum kitchen sinks. We simulated quantum kitchen sinks (QKS) using NumPy (Harris et al., 2020)
and processed the classical outputs using scikit-learn (Pedregosa et al., 2011). Hyperparameters such
as the variance of QKS weights and the regularization parameter of linear SVMs were optimized using
cross-validation grid search and randomized search, respectively. For each experimental condition,
we collected 32 logarithmically spaced sample points and 100 realizations using Dask (Rocklin,
2015) to distribute the computation across an internal cluster with 340 nodes, where each node had
44 cores and 318 GB.

Tree tensor networks. We combined QKS with a tree tensor network (TTN) by using TensorNet-
work (Roberts et al., 2019) to construct/contract the networks and SciPy (Virtanen et al., 2020) to
initialize/optimize the tensors and features. The TTN was initialized by drawing N tensors from
a circular unitary ensemble (CUE) (Dyson, 1962)—Un ∼ CUE(χ2) for n ∈ [N ], where the eigen-
values of Un have unit length and uniformly distributed in phase—then, for each unitary tensor,
we computed the χ2 − 1 real numbers parameterizing the corresponding hermitian matrix Hn in
Un = exp(iHn). To train the TTN, we chose to optimize each tensor sequentially—below, we
discuss global updates to all tensors. In that case, we partially contracted the TTN so that at each
step of the optimization, the objective was reduced to the product of three small matrices—the
unitary tensor, its conjugate, and a non-unitary tensor corresponding to the partial contraction of
the remainder of the network which remained fixed—in a manner that was reminiscent of quantum
combs (Chiribella et al., 2008). The partial contractions were computed and summed over a batch of
B = 1024 examples—an embarassingly parallel computation that was distributed using Dask. This
distributed operation resulted in a small matrix that could be used as a fixed input to any number of
optimization methods. To optimize the corresponding unitary tensor, we used conjugate gradient
(with a tolerance of 10−5 and a maximum number of iterations set at 100) since it led to the fastest
convergence.

Feature optimization. The sequential approach to optimizing each tensor was extended to tuning
each feature, which we called feature optimization (FO). The intuition behind FO was derived from
classical work by Bengio and LeCun comparing kernel machines and neural networks, where the key
difference was whether the low-level features (or templates matching units) were tunable (Bengio
et al., 2007). It was argued that more compact networks could be formed by tuning the basis
functions in the features to the training objective. Since the combination of QKS+TTN did not offer
a performance boost over the QKS+SVM baseline, we hypothesized that compact networks could
be formed by optimizing the features—i.e., QKS+TTN+FO could lead to performance gains over
the QKS+SVM baseline. Note, the propagation function (or input currents) to a unit i in the the first
hidden layer of a neural network zi = Wix+ bi is equivalent to the driving angle θe(x) = Ωex+βe

of a QKS episode. However, while the input currents are acted upon by sigmoid/rectifier activation
functions in the neural network, the driving angles parameterize a qubit rotation in the case of the
one-qubit QKS ansatz.

Using randomization only to initialize features, the addition of feature optimization (QKS+TTN+FO)
involved several changes to the optimization of the unitary tensors. For an episode e ∈ [E], we
computed the gradient with respect to the global objective f of the ansatz,

∇f =

[
∂f

∂ω1
,
∂f

∂ω2
, · · · ∂f

∂ωd
,
∂f

∂β

]
,

with respect to parameters {Ωe,βe} of the driving angles θe(x) = Ωex + βe. For a batch of
examples indexed by n ∈ [Nℓ], the gradient elements are

∂f

∂ωi
=

1

Nℓ

∑
n

(
∂ρn
∂θn

xn,i

)
· Vn,

∂f

∂β
=

1

Nℓ

∑
n

∂ρn
∂θn
· Vn,

where ρn represents the density matrix of the featuring that is being optimized and “· Vn” represents
contraction with the remainder of the tensor network. Similar to the optimization of the TTN,
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conjugate gradient was used for feature optimization, where the only change was that the maximum
number of iterations was set at 5. For different bond dimensions (χ = 2 and χ = 4), we compared
QKS+TTN and QKS+TTN+FO at 500 sweeps by collecting 4 linearly spaced sample points and 10
realizations using Dask on the internal cluster (described above).

Translational symmetry and sparse features. Reducing the complexity of a learning model is directly
related to its generalizability and speed of convergence (LeCun, 1989). While there is a well-known
2D translational symmetry that may be exploited for image classification (Simard et al., 2003; LeCun,
1989), it was not considered in this work; rather, we focused on the permutation symmetry in the
independent and identically distributed QKS episodes, with the goal of reducing the number of
trainable parameters in the TTN.

Since translation symmetry is included in the permutation symmetry, we imposed layer-wise weight
sharing on the TTN. Note, FO breaks the symmetry of the QKS episodes—however, reducing number
of parameters by imposing translational symmetry is still well-motivated, because such a constraint
is beneficial in avoiding barren plateaus (Wang et al., 2021; Cerezo et al., 2021; Arrasmith et al.,
2021) and overfitting (LeCun, 1989). In short, we did not exploit the 2D translational symmetry
in the images, but instead we were motivated by the permutation symmetry in the distribution of
QKS episodes before FO. Imposing translational symmetry required a different training algorithm
since each layer in the TTN shared the same set of parameters. We implemented a version of the
architecture in TensorFlow (Abadi et al., 2015) so that we could make global updates via automatic
differentiation (Algorithm 1). All parameters were updated using Adam (Kingma & Ba, 2014),
similar to Grant et al.(Grant et al., 2018), a batch size of B = 32, and an initial learning rate of 0.001.
We compared QKS+TTN+FO with and without translational symmetry in the most complex model
we tested (E = 512 and χ = 4) at 40 epochs and over 10 realizations using a single desktop with 4
cores and 32 GB.

Using the Tensorflow implementation, we also imposed sparsity in the features by setting a fixed
(random) fraction of Ωe to zero. We sought the most parsimonious QKS+TTN+FO models (for
E = 512 and χ = 4) by sampling 5 exponentially decreasing densities d at 40 epochs and over 10
realizations using the single desktop (described above).

Algorithm 1 Training algorithm for QKS+TTN+FO

1: given training data {xm, ℓm}Mm=0, batch size B, number of QKS episodes E, sparsity of features
d ∈ (0, 1], bond dimension χ, number of tensors N , and translational symmetry flag fsym.

2:
3: initialize random parameters Ωe ∼ N (0, σ2) and βe ∼ U(0, 2π) for e ∈ [E], and Haar random

unitaries {Un}Nn=1, where Un ∼ CUE(χ2).
4:
5: Θ← ({Ωe,βe}Ee=1, {Un}Nn=1)
6:
7: function VARIATIONALCIRCUIT(Θ)
8: for all e ≤ E do
9: θe ← Ωexm + βe

10: ρe ← PREPAREFEATURE(θe, d)
11: end for
12: f ← CONTRACTTTN({ρe}Ee=0, ℓm, χ, {Un}Nn=1, fsym)
13: return f
14: end function
15:
16: repeat
17: ∇f(Θ)← GRADIENTONBATCH(VARIATIONALCIRCUIT(Θ), B)
18: Θ← UPDATEPARAMETERS(∇f(Θ))
19: until stopping criterion is met
20: return trained classifier VARIATIONALCIRCUIT(Θ)

Multi-class classification. We applied the previously described architectures to a broader set of binary
and multi-class classification problems by training many one-versus-one (OvO) classifiers. We tested
a more general alternative that adapted the QKS+TTN+FO (χ = 4) architecture for the multi-class
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problem by mapping the full 16-dimensional output at the root node to 10 classes. We found that
mapping 12 of the measurement outcomes to 6 classes and the remaining outcomes to 4 classes led to
the fastest convergence; however, more general mappings may be considered.

All benchmarks for binary classification did not involve any pre-processing or regularization tech-
niques. For the multi-class classification of MNIST, we added a pre-processing step that deskewed
MNIST images. Additionally, to reduce overfitting and improve convergence, we replaced Adam with
AdamW with warm restarts, where the learning rate and decoupled weight decay (initialized at 0.001
and 4× 10−4) followed cosine annealing schedules (5 restarts, T0 = 1, Tmult = 2) (Loshchilov &
Hutter, 2019).

B.2 LICENSING OF EXISTING ASSETS

We provide licensing information for each existing asset below:

Python Libraries

• NumPy (Harris et al., 2020) and SciPy (Virtanen et al., 2020) are BSD licensed.
• Dask (Rocklin, 2015) and scikit-learn (Pedregosa et al., 2011) are licensed under the New

BSD License.
• TensorFlow (Abadi et al., 2015) and TensorNetwork (Roberts et al., 2019) are licensed under

the Apache License 2.0.

Datasets

• MNIST (LeCun et al., 1998) is licensed under the Creative Commons Attribution-Share
Alike 3.0 license.

• Fashion-MNIST (Xiao et al., 2017) is licensed under the MIT license.
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C SUPPLEMENTARY RESULTS

C.1 HYPERPARAMETERS FOR QUANTUM KITCHEN SINKS

Several hyperparameters in quantum kitchen sinks (QKS) affected its classification performance:
the variance of the normal distribution from which the weights of the random features are drawn,
controlled by σ, and the number of episodes E. We performed cross-validation (5 folds) experiments
using a grid search over these hyperparameters for both single-shot and multi-shot circuits (Figure C.1)
and found an optimal value of σ = 0.1 led to the best validation errors at a large number of episodes
(E = 10, 000).

a b

Figure C.1: (a) Single-shot validation errors (averaged over 5 folds) indicate optimal hyperparameter
values: σ = 0.1 and E = 10, 000. (b) The same hyperparameters hold for the multi-shot case.
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C.2 ABLATION OF THE TENSOR NETWORK

In the main text, we showed that the addition of feature optimization (FO) to QKS+TTN was necessary
for significant improvements over the QKS+SVM baseline. An important question is whether the
improvements were solely due to the enrichment of the non-local features, which we refer to as
feature enrichment. Moreover, how much of the improvement could be attributed to the coherent
post-processing with tensor networks? We assessed the contribution of these two factors by removing
the tensor network after training, and replacing the tensor network with classical post-processing (a
linear SVM classifier) on the optimized non-local features (Figure C.2).

We observed different behavior for different bond dimensions. For χ = 2, classical post-processing
the enriched features outperformed coherent post-processing of the enriched features, despite the
features having been optimized for the coherent post-processing of the TTN. However, for χ = 4,
classical post-processing of the enriched features under-performed coherent post-processing of the
enriched features. Interestingly, the performance of classical post-processing was essentially the same
in these two cases, while the coherent processing improved by a factor of two with the larger bond
dimension. This provides some indication that both feature enrichment and coherent post-processing
contribute to the performance improvement of QKS+TTN+FO over QKS+TTN and QKS+SVM.
In future work, this question can be more thoroughly investigated by studying feature optimization
with purely classical post-processing and by exploring different tensor network features in coherent
post-processing (different connectivity, higher bond dimensions, etc.).

a b

Figure C.2: (a) In the χ = 2 network, the relative contribution of feature enrichment exceeded that of
coherent post-processing and the reduction of the feature representation by tensor network led to a
degradation in performance. (b) For the χ = 4 network, there is a near-equivalent contribution of
feature enrichment, however, the coherent post-processing of the tensor network offered a performance
boost over classical post-processing.
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C.3 (TOP, SHIRT)-FASHION-MNIST

We also considered the performance of QKS+SVM, QKS+TTN, and QKS+TTN+FO (with and
without translational symmetry) on the Fashion-MNIST (Xiao et al., 2017) dataset. The Fashion-
MNIST dataset (Xiao et al., 2017) is composed of 28 × 28-pixel, 8-bit grayscale images, each
depicting various merchandise and articles of clothing, making it a more difficult classification task.
We vectorize and split the dataset similarly to that of MNIST. We tested the models on a hard binary
classification problem, “Top” vs. “Shirt,” which we refer to as (Top vs. Shirt)-Fashion-MNIST.

a b

Figure C.3: (a) Classification error rates over 10 realizations (median and 68% credibility intervals)
as a function of the number of episodes for (Top vs. Shirt)-Fashion-MNIST. Since this is a much
harder classification problem, the combined QKS+TTN protocol reaches an apparent noise floor
at a much smaller qubit utilization. (b) Enforcing translational symmetry constraints in the TTN
degrades performance in smaller architectures but offered equivalent or better performance in the
largest architecture we studied.
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C.4 BENCHMARKS ON MNIST AND FASHION-MNIST

As shown in the main text, the non-local feature maps of QKS led to significantly lower test errors than
local feature maps on the hardest MNIST binary classification tasks. Here we have benchmarked the
best architectural configuration we tested—QKS+TTN+FO with translational symmetry, E = 512,
and χ = 4 trained for 40 epochs—on the full MNIST and Fashion-MNIST datasets (Fig. C.4). To the
best of our knowledge, the model achieves state-of-the-art error rates compared to other variational
quantum circuit and TN approaches (Huggins et al., 2019; Farhi & Neven, 2018; Chen et al., 2021;
Hur et al., 2022).

Class  
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s
s
  

Figure C.4: Pairwise binary classification error rates for the best architectural configuration we
tested—QKS+TTN+FO with translational symmetry, E = 512, and χ = 4 trained for 40 epochs—on
MNIST (lower triangle) and Fashion-MNIST (upper triangle).

To test the generalization of QKS+TTN+FO architecture, we modified it directly for the multi-class
case by mapping the full 16-dimensional output at the root node to 10 classes. At 512 episodes
(no symmetry), the test error reached 1.82%, while admitting a 45× reduction in the number of
parameters compared to the OvO construction; at 1,024 episodes, the test error reached 1.67%.

Since we described multi-class classification benchmarks for MNIST in the main text and above,
here we focus on the multi-class classification of Fashion-MNIST. We established a baseline with
QKS+SVM by constructing a multi-class model composed of one-versus-one (OvO) binary classifiers:
at 10,000 episodes, the multi-class test error was 12.08%. In comparison, QKS+TTN+FO with
translational symmetry, trained as OvO binary classifiers, yielded a multi-class test error of 11.91%
at 512 episodes.

Although the classification error rates reported here are state-of-the-art for quantum circuits (Grant
et al., 2018; Huggins et al., 2019; Farhi & Neven, 2018; Chen et al., 2021; Hur et al., 2022) and
competitive against quantum-inspired tensor networks (Stoudenmire & Schwab, 2016; Stoudenmire,
2018; Liu et al., 2019), they are comparable to classical methods (LeCun et al., 1998). Thus, modules
of the ansatz would likely benefit from further exploration of different feature maps (Simard et al.,
2003) and other tensor network structures (Orús, 2019). The upshot would be a class of efficient
unitary networks that could fundamamentally resolve the exploding/vanishing gradient problem in
deep neural networks and the detection of long-term dependencies in dynamical systems (Arjovsky
et al., 2016; Jing et al., 2017).
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