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ABSTRACT

End-to-end backpropagation (BP) is the foundation of current deep learning tech-
nology. Unfortunately, as a network becomes deeper, BP becomes inefficient for
various reasons. This paper proposes a new methodology for decoupling BP to
transform a long gradient flow into multiple short ones in order to address the op-
timization issues caused by long gradient flows. We report thorough experiments
conducted to illustrate the effectiveness of our model compared with BP, Early
Exit, and associated learning (AL), a state-of-the-art methodology for backpropa-
gation decoupling. We release the experimental code for reproducibility.

1 INTRODUCTION

Current deep learning technology largely depends on backpropagation and gradient-based learn-
ing methods (e.g., gradient descent) for model training. Meanwhile, many successful applications
rely on extremely deep neural networks; for example, Transformer contains at least 12 layers (most
have several sublayers) (Vaswani et al., 2017), BERT has 12 to 24 layers (most also have several
sublayers) (Devlin et al., 2018), and GoogLeNet has 22 layers (many layers are Inception modules
containing several sublayers) (Szegedy et al., 2015). However, training a deep network based on
backpropagation is inefficient for many reasons. First, a long gradient flow may suffer from gradient
vanishing or explosion (Hochreiter, 1998). Second, a long gradient flow may lead to unstable gradi-
ents in the early layers (the layers close to the input layer) (Nielsen, 2015). Third, backpropagation
results in backward locking, meaning that the gradient of a network parameter can be computed only
when all other gradients on which it depends have been computed (Jaderberg et al., 2017). These
issues may become severe bottlenecks, especially when a network is deep. To train deep networks
more efficiently, researchers have developed various strategies, such as batch normalization, gra-
dient clipping, new activation functions (e.g., ReLU and leaky ReLU), new network architectures
(e.g., LSTM (Hochreiter & Schmidhuber, 1997)), and many more.

Since a long gradient flow is a root cause of the above issues, a possible way to eliminate these
issues is to shorten the length of the gradient flow, for example, by cutting a network into multiple
components and assigning a local objective to each component. In this way, a long gradient flow
can be divided into multiple shorter pieces, which should, at least partially, address the issues of
vanishing/exploding gradients, unstable gradients in early layers, and backward locking. Perhaps
the most straightforward approach for assigning a local objective to a component is by adding a
local auxiliary classifier that outputs a predicted ŷ and updates the local parameters based on the
difference between ŷ and the ground-truth target y. We call this strategy “Early Exit” in this paper
because each such auxiliary classifier can be regarded as an exit of the neural network. The concept
of Early Exit has been used in many previous studies, e.g., Mostafa et al. (2018); Teerapittayanon
et al. (2016); Szegedy et al. (2015). However, most of these studies have used Early Exit for other
purposes, e.g., creating multiple prediction paths or helping to obtain gradients for the parameters
in the early layers. Consequently, these studies have not investigated the separation of end-to-end
backpropagation (BP) into multiple pieces, and the associated gradient flows are still long. In addi-
tion, even if Early Exit is used to isolate the gradient flow, as shown in (Mostafa et al., 2018), the test
accuracies are lower than those of models trained via BP. There are other methods of cutting long
gradient flows (Jaderberg et al., 2017; Czarnecki et al., 2017; Löwe et al., 2019; Wu et al., 2022; Kao
& Chen, 2021). However, most of these methods have been applied only to simple networks, and
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Figure 1: An illustration of contrastive learning and supervised contrastive learning.

their test accuracies are still unsatisfactory likely because the local objectives may not align with the
global objective; details will be discussed in Section 4.

This paper proposes a new methodology, Delog-SCL, which decouples the long gradient flow of a
deep neural network by leveraging supervised contrastive learning (SCL). In this design, the forward
path transforms an input x into the corresponding prediction ŷ as usual. However, the gradient flow
on the backward path is blocked between different components. Instead of using a global objective,
we assign a local objective to each component and force each gradient flow to remain within one
component. We present experiments conducted on multiple open datasets and compare the result
with those of models trained via BP, Early Exit, and associated learning (AL) (Wu et al., 2022; Kao
& Chen, 2021), a state-of-the-art methodology for BP decoupling that yields results comparable to
those of BP. We find that Delog-SCL outperforms AL in terms of test accuracy in most cases with
fewer parameters. Additionally, since our method has a more straightforward network architecture
than AL, our method could be a favorable alternative to AL.

The rest of the paper is organized as follows. In Section 2, we introduce Delog-SCL and its proper-
ties. Section 3 presents a comparison of Delog-SCL with BP, Early Exit, and AL in terms of their
test accuracies and numbers of parameters. We also report the results of analyses on certain prop-
erties of Delog-SCL in the same section. Section 4 reviews previous works on BP decoupling and
presents a comparison of these works with our model. We conclude our contribution in Section 5.

2 METHODOLOGY

2.1 PRELIMINARIES: CONTRASTIVE LEARNING AND SUPERVISED CONTRASTIVE LEARNING

Contrastive learning (CL) is a self-supervised technique for learning visual representations of im-
ages. Referring to the left of Figure 1, given an image x, CL involves generating different views
(i.e., x1 and x2 in Figure 1) via the same family of data augmentations T . The generated views (x1

and x2) are further transformed via an encoder function f and a projection head g to minimize the
contrastive loss between the output vectors (i.e., z1 and z2). After training, the projection head g is
disregarded, and only the encoder f is used to generate the visual representations of images (Chen
et al., 2020). In other words, given an anchor image x, CL relies on regarding its augmented images
as positive instances and all other images as negative instances and considering that positive pairs
should be close after encoding and projection.

SCL refers to the extension of CL from a self-supervised setting to a fully supervised setting. There-
fore, the training data for SCL consist of not only the training images themselves but also the classes
of those images. Referring to the right of Figure 1, given an anchor image x of class c, the positive
instances include the other images of class c in the same batch, whereas all other images in the same
batch are regarded as negative instances (Khosla et al., 2020).
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Figure 2: An example neural network with 3 hidden layers. The black arrows correspond to the
forward path, the red arrows correspond to the backward path, and the green box denotes the com-
parison of the distance between two incoming variables ŷ(i) and y(i).
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Figure 3: An example of a decoupled neural network based on supervised contrastive learning. The
black arrows correspond to the forward path, the red arrows correspond to the backward path, and
the green box denotes the comparison of the distance between two incoming variables.

2.2 DECOUPLING END-TO-END BACKPROPAGATION VIA SUPERVISED CONTRASTIVE
LEARNING

This section presents Delog-SCL, which leverages the supervised contrastive loss to split one long
gradient flow in a deep neural network into multiple shorter ones.

Let us first consider a standard neural network with 3 hidden layers as an example. As shown in
Figure 2, x(i) refers to an input image i, and the function fℓ (ℓ = 1, . . . , 4) transforms r

(i)
ℓ−1 into

r
(i)
ℓ (under the assumptions that x(i) = r

(i)
0 and the predicted class ŷ(i) = r

(i)
4 ). Depending on the

network architecture, the functions fℓ could be various well-known neural network layers, such as
fully connected layers, convolutional layers, pooling layers, or residual blocks. The objective LOUT

is determined by the task type. For example, if we are addressing a classification task, we could use
the cross-entropy loss between the predicted class ŷ(i) and the ground-truth class y(i) as the objective
LOUT . We use backpropagation to obtain ∂LOUT /∂θfℓ for each layer ℓ, where θfℓ represents the
parameters of function fℓ. Once the gradients are obtained, we can use gradient-based optimization
strategies, e.g., gradient descent, to update the parameter values. Given a neural network with H
hidden layers, it can be seen that the longest gradient flow is constructed as a product of H + 2
local gradients. For example, to obtain ∂LOUT /θf1 in a network with 3 hidden layers (as shown in
Figure 2), we need the following:

∂LOUT

∂θf1
=

∂LOUT

∂ŷ(i)
× ∂ŷ(i)

∂r
(i)
3

× ∂r
(i)
3

∂r
(i)
2

× ∂r
(i)
2

∂r
(i)
1

× ∂r
(i)
1

∂θf1
. (1)
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The number of terms of this product grows linearly with the depth of the network. Therefore, as
networks become deeper, their long gradient flows cause several optimization issues, as discussed
in Section 1.

We use Figure 3 to illustrate our strategy of cutting a long gradient flow into several local gradients
for a neural network with 3 hidden layers. Let r(i)0 (i.e., x(i)) and r

(j)
0 (i.e., x(j)) be two image

views in the same batch (r(i)0 and r
(j)
0 may or may not be augmented images, i.e., views, from the

same image). We use f1 to transform each of them, obtaining r
(i)
1 and r

(j)
1 , and further use the

function g1 to convert them into z
(i)
1 and z

(j)
1 , respectively. The functions f1 and g1 can be regarded

as the encoding function and the projection head, respectively, in CL (refer to Figure 1). We repeat
the same process for each hidden layer ℓ to form the corresponding component ℓ. If x(i) and x(j)

are two different views of the same image or if y(i) (the class of x(i)) is equal to y(j) (the class of
x(j)), then we should ensure that z(i)

ℓ is close to z
(j)
ℓ for all ℓ. Otherwise, we should increase the

distance between z
(i)
ℓ and z

(j)
ℓ . In the last layer, we compute the distance between ŷ(i) and y(i) as

the loss LOUT
i . Eventually, we define the local supervised contrastive loss LSC

ℓ for batch B in layer
ℓ as shown in Equation 2:

LSC
ℓ =

∑
∀i∈B

−1

|P (i)|
∑

∀p∈P (i)

log
exp

(
z
(i)
ℓ · z(p)

ℓ /τ
)

∑
∀j∈B I(j ̸= i) exp

(
z
(i)
ℓ · z(j)

ℓ /τ
) , (2)

where B = 1, 2, . . . , N represents a batch of multiview images, P (i) is the set of all positive samples
for an image i, τ is a hyperparameter, and I(j ̸= i) ∈ {0, 1} is an indicator function that returns 1 if
j ̸= i and 0 otherwise.

Ultimately, the global objective function is an accumulation of the local supervised contrastive losses
and the losses in the output layer, as defined below:

L =

H∑
ℓ=1

LSC
ℓ +

N∑
i=1

LOUT
i , (3)

where H is the number of hidden layers and LOUT
i is the ith loss in the output layer (refer to

Figure 3).

The computation of LSC
ℓ and the pseudo code of Delog-SCL for a 3-layer vanilla ConvNet is given

in Algorithm 1 and Algorithm 2 in Appendix A.5.

2.3 FORWARD PATH, BACKWARD PATH, AND INFERENCE FUNCTION

For a regular neural network (e.g., Figure 2), the forward path and the inference function are identi-
cal, and the backward path is simply obtained by inverting the direction of the forward path. How-
ever, the situation is more complicated in our case because we divide the global objective into several
local ones. Consequently, we have multiple short forward paths, multiple short backward paths, and
one inference path. Thus, the inference path and the forward paths are no longer identical in Delog-
SCL.

During training, each component ℓ has its own forward and backward paths. Taking Figure 3 as
an example, the forward path of component ℓ transforms each r

(i)
ℓ−1 into r

(i)
ℓ via the local encoding

function fℓ and further transforms each r
(i)
ℓ into z

(i)
ℓ via the local projection head gℓ. On the

backward path, each hidden layer computes ∂LSC
ℓ /∂θgℓ and ∂LSC

ℓ /∂θfℓ based on the chain rule and
updates the parameters by means of gradient-based optimization strategies. We block the gradient
flow between each component.1 As a result, each gradient flow remains within one component and
is therefore short. Equation 4 and Equation 5 show these local gradient flows.

1The gradient flow can be blocked by using Tensor.detach() in PyTorch or tf.stop_gradient
in TensorFlow.
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∂LSC
ℓ

∂θgℓ
=

∂LSC
ℓ

∂z
(i)
ℓ

×
∂z

(i)
ℓ

∂θgℓ
. (4)

∂LSC
ℓ

∂θfℓ
=

∂LSC
ℓ

∂z
(i)
ℓ

×
∂z

(i)
ℓ

∂r
(i)
ℓ

×
∂r

(i)
ℓ

∂θfℓ
. (5)

Eventually, even if we construct a deep neural network, the cost of computing each ∂LSC/∂θfℓ and
each ∂LSC/∂θgℓ remains constant. Additionally, the gradient flow in the output layer is also short:
we simply compute ∂Lout

k /∂θfH+1
(where H is the number of hidden layers). This design alleviates

various issues caused by long gradient flows.

In the inference (prediction) phase, we need the functions fℓ but not gℓ, as shown by Equation 6:

ŷ(i) = fH+1 ◦ fH ◦ . . . ◦ f2 ◦ f1(x(i)), (6)

where ◦ is the function composition operator (H = 3 for the example illustrated in Figure 3).

Although our proposed method (e.g., Figure 3) involves more parameters than a standard neural
network structure (e.g., Figure 2) during training, they have the same number of parameters during
inference because both of them use only the functions fℓ. Therefore, they have the same hypothesis
space. The parameters that participate in the inference phase (denoted by θfℓ ) are called the effective
parameters, and the parameters used during training but not during inference (denoted by θgℓ ) are
called the affiliated parameters.

2.4 PROPERTIES

Table 1: An illustration of the training process pipeline
t1 t2 t3 t4 t5 t6 ...

B1 Task 1 Task 2 Task 3
B2 Task 1 Task 2 Task 3
B3 Task 1 Task 2 Task 3
B4 Task 1 Task 2 Task 3
...

In this section, we discuss three properties of our proposed model — short gradient flows, a flexible
structure, and the ability to perform parallel (pipelined) training.

As discussed in Section 2.3, training a regular neural network with BP requires a gradient flow of
length O(H). In contrast, the length of each gradient flow in our model is independent of the number
of layers; the length is always a constant. Therefore, the various optimization issues resulting from
long gradient flows, as discussed in Section 1, are eliminated (or at least alleviated).

The network structure is more flexible and perhaps easier to understand than that of associated
learning (AL), a state-of-the-art methodology for decoupling BP in terms of test accuracy (Kao &
Chen, 2021; Wu et al., 2022). Specifically, AL involves projecting the features x and the target y into
the same latent space for each layer ℓ. Although this design yields excellent test accuracies that are
comparable to those of BP-trained models (Wu et al., 2022), it has at least two unconventional and
perhaps mysterious characteristics. First, AL involves projecting a one-hot-encoded target variable
y into a latent vector t1 and then transforming t1 back into y. Interestingly, the length of t1 is
sometimes greater than the number of classes. This process corresponds to building an autoencoder
whose bottleneck layer is larger than the input and output layers. Although this unconventional
approach works surprisingly well in practice (Wu et al., 2022; Kao & Chen, 2021), the fundamental
reasons for this are still unclear. Second, when converting a neural network into its AL form, we
sometimes need to create extra fully connected layers. In contrast, our design is more natural because
we need neither the autoencoder nor the extra fully connected layers.
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Finally, since each component has its own local objective, we can parallelize the training procedure
by means of pipelining. We use the network illustrated in Figure 3 as an example. Let Task ℓ denote
the entire forward and backward process in layer ℓ; then, we can illustrate the pipelining process
as shown in Table 1. Specifically, in the first time unit t1, component 1 uses the first batch (B1) to
perform Task 1. At t2, component 2 performs Task 2 based on B1, and component 1 continues to
performing Task 1 based on the second batch (B2). Starting at t3, all three components can perform
forward propagation, backward propagation, and parameter updating simultaneously. However, we
have shown here only that parallelization by means of pipelining is feasible; implementation of the
pipeline mechanism is left for future work.

3 EXPERIMENTS

We compare Delog-SCL with three baselines using different neural networks on different datasets.
The baseline models include BP, the Early Exit mechanism introduced in Section 1, and AL, a state-
of-the-art method for BP decoupling in terms of the test accuracy. We test three neural networks: a
vanilla convolutional neural network (vanilla ConvNet), the VGG network (Simonyan & Zisserman,
2014), and the residual network (ResNet) (He et al., 2016). The experimental datasets include
CIFAR-10 (consists of 50, 000 color training images and 10, 000 test images; each image belongs to
1 of 10 classes), CIFAR-100 (consists of 50, 000 color training images and 10, 000 test images; each
image belongs to 1 of 100 classes), and Tiny-ImageNet (consists of 100, 000 color training images,
10, 000 validation images, and 10, 000 test images; each image belongs to 1 of 200 classes).

3.1 ACCURACY COMPARISON

Table 2: A comparison of the test accuracies (mean ± standard deviation) of different methodologies
when using different neural network architectures on CIFAR-10. We highlight the winner among the
non-BP methodologies in bold face. We mark a methodology with a † symbol if the test accuracy of
this methodology is higher than that of BP.

Vanilla ConvNet VGG ResNet

BP 86.85± 0.57 93.02± 0.03 93.95± 0.11

Early Exit 83.16± 0.33 91.28± 0.15 89.63± 0.34
AL 86.98± 0.24 † 93.22± 0.12 † 91.33± 0.09

Delog-SCL 86.98± 0.33 † 93.42± 0.11 † 92.78± 0.11

Table 3: A comparison of the test accuracies of different methodologies when using different neural
network architectures on CIFAR-100. We follow the same notations used in Table 2.

Vanilla ConvNet VGG ResNet

BP 58.68± 0.13 72.58± 0.39 73.59± 0.11

Early Exit 50.64± 0.44 71.11± 0.95 64.48± 0.41
AL 53.06± 0.15 72.43± 0.27 67.53± 0.32

Delog-SCL 59.63± 0.37 † 73.14± 0.30 † 70.41± 0.27

Table 4: A comparison of the test accuracies of different methodologies when using different neural
network architectures on Tiny-ImageNet. We follow the same notations used in Table 2.

VGG ResNet

BP 48.30± 0.14 49.71± 0.18

Early Exit 46± 0.18 40± 0.34
AL 49.06± 0.14 † 44.83± 0.15

Delog-SCL 48.95± 0.17 † 46.87± 0.26
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Table 2 shows the test accuracies of the various methods on the CIFAR-10 dataset. The simple
Early Exit mechanism can be used to learn the relationship between an image and its corresponding
class. However, the test accuracies of Early Exit are much worse than those of BP. Both AL and our
proposed Delog-SCL yield better test accuracies than BP based on the Vanilla ConvNet and VGG
architectures. However, when ResNet is used, BP yields the highest test accuracy. If we compare
only the methods that involve BP decomposition, Delog-SCL performs the best among them.

We also tested BP, Early Exit, AL, and Delog-SCL on CIFAR-100. The results, as shown in Table 3,
are similar to those on CIFAR-10: Delog-SCL performs better than both AL and BP based on
Vanilla ConvNet and VGG, whereas Delog-SCL performs worse than BP when ResNet is used.
These results are also consistent with those reported in (Kao & Chen, 2021; Wu et al., 2022).

Table 4 gives the results obtained on Tiny-ImageNet. When VGG is used, both AL and Delog-SCL
outperform BP. However, for ResNet, BP performs much better.

Delog-SCL is stable in training, as can be shown by Figure 5 in the Appendix.

3.1.1 DISCUSSION ON ACCURACY COMPARISON

When BP is used, all parameters are updated to minimize a global objective – the residual between
the prediction ŷ and the target y. On the other hand, methods to decouple end-to-end backpropa-
gation, such as Delog-SCL and AL, are composed of many local objectives, which may differ from
the global objective. Therefore, it is surprising that Delog-SCL and AL outperform BP for some
network structures. The authors of AL proposed several conjectures to explain this remarkable re-
sult. First, projecting the feature vector x and the target y into the same latent space may be helpful.
Second, the autoencoder may implicitly perform some feature extraction and regularization. Third,
overparameterization may be helpful for optimization (Arora et al., 2018; Chen & Chen, 2020).
However, the first and second conjectures only apply to AL but not to Delog-SCL, but Delog-SCL
still yields better accuracies than BP and AL in vanilla ConvNet and VGG. Therefore, the above
conjectures may not fully explain the success of Delog-SCL. Further investigation will be needed to
uncover the fundamental reasons.

As for ResNet, its authors state that the main effect of a residual is not about promoting gradient
flows (He et al., 2016). Instead, ResNet performs better than vanilla ConvNet because the latent
representations Hℓ and Hℓ+1 at deep neighboring layers ℓ and ℓ + 1 are likely similar. Regular
nonlinear transformations may be difficult to approximate an (almost) identical mapping from Hℓ

to Hℓ+1. However, the residual connection sets Hℓ+1 to be f(Hℓ) +Hℓ. Even if f() is a nonlinear
function, a solver is easier to make Hℓ+1 ≈ Hℓ by making f(Hℓ) ≈ 0. The property that Hℓ+1 ≈
Hℓ is likely true when a network is deep. However, when using Delog-SCL or AL, each local
network is short, so Delog-SCL and AL are unlikely to take advantage of the residual connections.
As a result, optimizing a ResNet by BP usually gives better results than by BP-decoupling methods,
such as Delog-SCL and AL.

3.2 NUMBER OF EFFECTIVE PARAMETERS

Table 5: A comparison of the numbers of parameters used during training and testing with different
methodologies (using CIFAR-10 as an example)

VGG ResNet
Training Testing Training Testing

BP 11.9M 11.9M 11.2M 11.2M
AL 284.9M 13.9M 325.1M 14.4M

Delog-SCL 70.1M 11.9M 72.4M 11.2M

Table 5 shows the numbers of parameters required during training and inference for VGG and
ResNet (using CIFAR-10 as an example).

For BP, the training and testing stages involve the same set of parameters. In contrast, the training
process of AL requires additional bridge functions and encoding functions, which are not used
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Figure 4: Training Delog-SCL on CIFAR-10 using multiple short gradient flows vs using single
long gradient flow.

during testing. So, the number of training parameters is much larger than the number of parameters
required for BP. During testing, the extra fully connected layers in AL also require more parameters
than are needed in BP. Finally, Delog-SCL and BP have the same number of testing parameters.
However, during training, Delog-SCL needs the projection heads gℓ for each component, so the
number of required parameters during training is more than for BP but much fewer than for AL.

The difference of the parameter counts may also be reflected on the training and inference speed.
We show the practical training and testing time of different methods in Table 7 in the Appendix.

3.3 MULTIPLE SHORT GRADIENT FLOWS ACCELERATE LEARNING

This section shows that dividing a long gradient flow into multiple short ones accelerates learning.

Referring to Figure 3, our proposed Delog-SCL uses a local supervised contrastive loss to create a
short local gradient flow LSC

ℓ . We compare the standard Delog-SCL with a modification where only
a single long gradient flow is used. In the compared baseline, we enable the global objective LOUT

to pass through the entire network and remove all local supervised contrastive losses LSC
ℓ .

The results are shown in Figure 4. We label the original Delog-SCL as “multiple short gradient
flows” and the modification with single long gradient flow as “single gradient flow”. Using multiple
short gradient flows accelerates the learning speed, especially in the first 100 epochs.

3.4 THE EFFECT OF BATCH SIZE AND PROJECTION HEAD

We also experimented with how the batch size and the type of projection head influence learning.
The experimental results show that a larger batch size improves the learning quality, which is con-
sistent with previous studies (Chen et al., 2020; Henaff, 2020; Bachman et al., 2019). As for the
projection head, using a nonlinear function benefits the representation quality of layers before it.
The result also matches the experiments conducted in Chen et al. (2020).

The experimental details of batch size and projection heads are presented in Section A.3 and Sec-
tion A.4 in Appendix.

4 RELATED WORK

Studies on alternatives to BP mostly aim to address optimization and performance issues, such as
gradient vanishing/explosion and training costs. We review some of these works that have particu-
larly focused on the creation of local objectives and local gradient flows.
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Table 6: A comparison of the properties of BP, AL, and Delog-SCL
Number of affiliated

parameters
Structure
flexibility

Length of
gradient flows

Allows pipelined
training

BP 0 High Long False
AL Many Medium Short True

Delog-SCL Few Medium Short True

The first type of BP alternative is target propagation (Lee et al., 2015; Meulemans et al., 2020;
Manchev & Spratling, 2020; Bengio, 2014), which assigns a local target for each layer via feedback
(inverse) mapping. Such a methodology can alleviate the problem of vanishing/exploding gradients
since each gradient flow is short. However, the parameters are still updated in a layerwise fashion,
so it could be challenging to learn the parameters in different layers simultaneously.

Methods of the second type model BP as a constrained optimization problem, in which the output
of one layer is forced to equal the input to the next layer (Gotmare et al., 2018; Marra et al., 2020).
Such a design shortens the gradient flows and enables parallel parameter updates. However, the
experimental results show that the test accuracies are lower than that of standard BP.

Methods of the third type determine the local objectives through transformations of the target. A
representative method of this type is AL Wu et al. (2022); Kao & Chen (2021), which transforms
both the feature vector x and the target y into the same set of latent spaces. To the best of our
knowledge, AL is the only existing method that can achieve BP decoupling for a wide range of
network architectures and yield test accuracies that are comparable to those obtained with BP.

Our proposed Delog-SCL is motivated by both AL and Greedy InfoMax (GIM) (Löwe et al., 2019),
which uses the contrastive loss as each local objective. However, GIM targets self-supervised learn-
ing tasks, whereas our Delog-SCL can handle supervised learning tasks because Delog-SCL uses the
supervised contrastive loss in the hidden layers and the distance between the predicted and observed
targets in the output layer.

Since only Delog-SCL and AL yield test accuracies comparable to those of BP, in Table 6, we
further compare the properties of these three methods. First, BP requires no affiliated parameters
because all parameters collaborate to reduce the global loss. BP can be applied to almost all kinds
of neural networks. However, its gradient flow is long (especially when the network is deep), and
it is challenging to achieve pipelined training with this method. AL requires transforming both the
feature vector x and the target y alongside each other. As a result, AL usually requires additional
fully connected layers, resulting in a large number of affiliated parameters and less structural flexi-
bility. However, each gradient flow in AL is short, and parameters in different layers can be updated
simultaneously via pipelined training. Finally, because Delog-SCL requires computing the super-
vised contrastive loss in each hidden layer, this method also needs additional affiliated parameters
(although much fewer than AL) during training. The introduction of the supervised contrastive loss
also adds complexity in the network design. The advantages of Delog-SCL are similar to those of
AL: the gradient flows are short, and parallel parameter updating is possible (via pipelining).

5 CONCLUSION

This paper presents Delog-SCL, a new methodology for decoupling the components of the BP pro-
cess in a neural network. Delog-SCL may address various optimization issues (e.g., vanishing/ex-
ploding gradients and unstable gradients in the early layers) resulting from the long gradient flows in
deep neural networks. We report experiments conducted to show that Delog-SCL’s predictive power
is comparable to (and frequently better than) that of either BP or AL, which is a state-of-the-art al-
ternative to BP. Delog-SCL is more flexible than AL because Delog-SCL does not require additional
fully connected layers, whereas AL usually does. Therefore, Delog-SCL is a natural substitute for
AL and could be a promising alternative to BP.
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A APPENDIX

A.1 TEST ACCURACY VS EPOCH

Figure 5 compares Delog-SCL and BP on vanilla CNN in terms of their dynamics of test accuracy
when the epoch increases. First, the test accuracy of Delog-SCL improves stably. Second, the
Delog-SCL outperforms BP after approximately 100 epochs. BP is better than Delog-SCL at the
beginning, likely because all the parameters in BP are updated to minimize a global objective. On
the contrary, most of the parameters in Delog-SCL are updated to fit local objective functions, which
usually have no direct access to the target variable.

Different hyperparameter settings may lead to slightly different curves. However, most of them
follow a similar pattern. Experiments on other datasets (CIFAR-10 and tiny-ImageNet) for the VGG
network structure also show similar trends.

A.2 A COMPARISON OF TRAINING AND TEST TIME OF BP, AL, AND DELOG-SCL

Table 7 compares Delog-SCL, BP, and AL in terms of their practical training and testing seconds
per epoch on ConvNet, VGG, and ResNet using the CIFAR-10 dataset. The empirical training and
testing speed of Delog-SCL and BP are extremely close. However, AL is apparently slower than the
other two.

The experiments are tested on the Container Compute Service with NVIDIA Tesla V100 GPU.

11



Under review as a conference paper at ICLR 2023

0 100 200 300 400 500
Epoch

10

20

30

40

50

60

Te
st

 a
cc

ur
ac

y 
(%

)

Delog-SCL
BP

Figure 5: Epoch vs test accuracy for BP and Delog-SCL on CIFAR-100 using vanilla ConvNet.

Table 7: A comparison of the training and testing seconds (mean ± standard deviation) per epoch
with different methodologies (using CIFAR-10 as an example)

ConvNet VGG ResNet
Training Testing Training Testing Training Testing

Delog-SCL 16.62± 0.71 1.58± 0.01 51.63± 0.09 2.67± 0.01 42.14± 0.54 2.34± 0.01
BP 15.74± 0.33 1.59± 0.02 50.05± 0.06 2.67± 0.01 42.05± 0.55 2.35± 0.02
AL 22.81± 0.56 1.82± 0.02 71.40± 0.81 3.19± 0.02 56.62± 1.29 2.39± 0.01

A.3 A LARGER BATCH SIZE IMPROVES THE LEARNING QUALITY

We also tested how the batch size influences the test accuracy. As shown in Table 8, performing
Delog-SCL training using a large batch size is helpful, and the improvement on VGG is more evident
than in other networks. This finding is consistent with the results reported in previous studies,
e.g., Chen et al. (2020); Henaff (2020); Bachman et al. (2019), in which the authors noted that
because a larger batch tends to include more negative pairs (as shown in Equation 2), the model
has access to more information that can be used to distinguish positive pairs from negative pairs.
Although other studies, e.g., Mitrovic et al. (2020), have shown that the number of negative pairs
may not be critical to the improvement of the test accuracy, most studies tend to agree that a larger
batch size leads to better results.

Table 8: The test accuracies of Delog-SCL when using different batch sizes on CIFAR-10.
Batch Size VGG ResNet

32 92.67± 0.10 92.54± 0.14
128 93.11± 0.16 92.53± 0.11
1024 93.42± 0.11 92.78± 0.11
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Table 9: The test accuracies when using different projection heads on CIFAR-10.
Type of projection head VGG ResNet

Identity 79.2 84.2
Linear 90.4 90.2
MLP 93.0 92.4

A.4 A NONLINEAR PROJECTION HEAD BENEFITS THE REPRESENTATION QUALITY OF THE
LAYER BEFORE IT

This section presents the influence of different projection heads. Table 9 compares the accuracies
of VGG and ResNet on CIFAR-10 when 3 different types of projection heads are used: identity
mapping (i.e., gℓ

(
r
(i)
ℓ

)
= r

(i)
ℓ ), linear mapping (i.e., gℓ

(
r
(i)
ℓ

)
= wTr

(i)
ℓ + w0), and the default

mapping based on a multilayer perceptron (MLP). The results are similar to those reported in (Chen
et al., 2020): the MLP mapping shows a 2.6% improvement over linear projection, which outper-
forms identity projection by over 10%.

Using an MLP as the projection head is beneficial likely because the information loss induced by
the contrastive loss is more severe when a simple projection head is used (Chen et al., 2020). In
particular, since a projection head gℓ (refer to Figure 3 and Figure 1) maximizes the agreement
between augmented images, gℓ may remove information relevant to image rotation, flipping, and
other data augmentation operations, which could be useful for downstream tasks. When a simple
projection head gℓ is used, the information contained in r

(i)
ℓ will be similar to that in z

(i)
ℓ , which

means that r(i)ℓ is invariant to data augmentation. On the other hand, when a complex projection
head such as an MLP is used, the information in r

(i)
ℓ may be very different from that in z

(i)
ℓ . As

a result, even if z(i)
ℓ loses information relevant to data augmentation, r(i)ℓ may still preserve this

information.

A.5 PSEUDO CODE

Here we provide a PyTorch pseudocode for the creation of the local supervised contrastive losses
(Algorithm 1) and Delog-SCL (Algorithm 2).
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Algorithm 1: PyTorch-like pseudocode for Lsc

import torch
import torch.nn as nn
class SupConLoss(nn.Module):

def __init__(self, dim):
super.__init__()
self.linear =nn.Sequential(nn.Linear(dim, 512), nn.ReLU(),
nn.Linear(512, 1024))

self.temperature =0.1
def forward(self, x, label):

x = self.linear(x)
x = nn.functional.normalize(x)
label =label.view(-1, 1)
bsz =label.shape[0]
mask =torch.eq(label, label.T).float()
anchor_mask =torch.scatter(torch.ones_like(mask), 1, torch
.arange(bsz).view(-1, 1), 0)
logits =torch.div(torch.mm(x, x.T), self.temperature)
deno =torch.exp(logits)*anchor_mask
prob =logits -torch.log(deno.sum(1, keepdim=True))
loss =-(anchor\_mask *mask *prob).sum(1)/mask.sum()
return loss.view(1, bsz).mean()

Algorithm 2: PyTorch-like pseudocode for Delog-SCL
import torch
import torch.nn as nn
# A 3-layer vanilla ConvNet example for Delog-SCL
class CNN_DelogSCL(nn.Module):

def __init__(self, dim):
super.__init__()
CNNs =[ ]
losses =[]
channels =[3, 128, 256, 512]
self.shape =32
for i in range(3):

CNNs.append(nn.Sequential(nn.Conv2d(channels[i],
channels[i+1], padding=1), nn.ReLU())
losses.append(SupConLoss(self.shape*self.shape*channels[
i+1]))

self.CNN =nn.ModuleList(CNNs)
self.loss =nn.ModuleList(losses)
self.fc =nn.Sequential(flatten(), nn.Linear(self.shape*
self.shape*channels[-1], 10))
self.ce =nn.CrossEntropyLoss()

def forward(self, x, label):
loss =0
for i in range(3):

# .detach() prevents the computation graph from
propagating gradients to the next layer
x = self.CNN[i](x.detach())
if self.training:

loss +=self.loss[i](x, label)
y = self.fc(x.detach())
if self.training:

loss +=self.ce(y, label)
return loss

return y
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