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ABSTRACT

Bloom filters are space-efficient probabilistic data structures that are used to test
whether an element is a member of a set, and may return false positives. Recently,
variations referred to as learned Bloom filters were developed that can provide
improved performance in terms of the rate of false positives, by using a learned
model for the represented set. However, previous methods for learned Bloom filters
do not take full advantage of the learned model. Here we show how to frame the
problem of optimal model utilization as an optimization problem, and using our
framework derive algorithms that can achieve near-optimal performance in many
cases. Experimental results from both simulated and real-world datasets show
significant performance improvements from our optimization approach over both
the original learned Bloom filter constructions and previously proposed heuristic
improvements.

1 INTRODUCTION

Bloom filters are space-efficient probabilistic data structures that are used to test whether an element
is a member of a set [Bloom (1970)]. A Bloom filter compresses a given set S into an array of bits. A
Bloom filter may allow false positives, but will not give false negative matches, which makes them
suitable for numerous memory-constrained applications in networks, databases, and other systems
areas. Indeed, there are many thousands of papers describing applications of Bloom filters [Dayan
et al. (2018), Dillinger & Manolios (2004), Broder & Mitzenmacher (2003)].

There exists a trade off between the false positive rate and the size of a Bloom filter (smaller false
positive rate leads to larger Bloom filters). For a given false positive rate, there are known theoretical
lower bounds on the space used [Pagh et al. (2005)] by the Bloom filter. However, these lower
bounds assume the Bloom filter could store any possible set. If the data set or the membership
queries have specific structure, it may be possible to beat the lower bounds in practice [Mitzenmacher
(2002), Bruck et al. (2006), Mitzenmacher et al. (2020)]. In particular, [Kraska et al. (2018)] and
[Mitzenmacher (2018)] propose using machine learning models to reduce the space further, by using
a learned model to provide a suitable pre-filter for the membership queries. This allows one to beat
the space lower bounds by leveraging the context specific information present in the learned model.
Rae et al. (2019) propose a neural Bloom Filter that learns to write to memory using a distributed
write scheme and achieves compression gains over the classical Bloom filter.

The key idea of learned Bloom filters is that in many practical settings, given a query input, the
likelihood that the input is in the set S can be deduced by some observable features which can be
captured by a machine learning model. For example, a Bloom filter that represents a set of malicious
URLs can benefit from a learned model that can distinguish malicious URLs from benign URLs.
This model can be trained on URL features such as length of hostname, counts of special characters,
etc. This approach is described in [Kraska et al. (2018)], which studies how standard index structures
can be improved using machine learning models; we refer to their framework as the original learned
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Bloom filter, Given an input x and its features, the model outputs a score s(x) which is supposed
to correlate with the likelihood of the input being in the set. Thus, the elements of the set, or keys,
should have a higher score value compared to non-keys. This model is used as a pre-filter, so when
score s(x) of an input x is above a pre-determined threshold t, it is directly classified as being in
the set. For inputs where s(x) < t, a smaller backup Bloom filter built from only keys with a score
below the threshold (which are known) is used. This maintains the property that there are no false
negatives. The design essentially uses the model to immediately answer for inputs with high score
whereas the rest of the inputs are handled by the backup Bloom filter as shown in Fig.1(A). The
threshold value t is used to partition the space of scores into two regions, with inputs being processed
differently depending on in which region its score falls. With a sufficiently accurate model, the size
of the backup Bloom filter can be reduced significantly over the size of a standard Bloom filter while
maintaining overall accuracy. [Kraska et al. (2018)] showed that, in some applications, even after
taking the size of the model into account, the learned Bloom filter can be smaller than the standard
Bloom filter for the same false positive rate.

The original learned Bloom filter compares the model score against a single threshold, but the
framework has several drawbacks.

Choosing the right threshold: The choice of threshold value for the learned Bloom filter is critical,
but the original design uses heuristics to determine the threshold value.

Using more partitions: Comparing the score value only against a single threshold value wastes
information provided by the learning model. For instance, two elements x1, x2 with s(x1) >>
s(x2) > t, are treated the same way but the odds of x1 being a key are much higher than for x2.
Intuitively, we should be able to do better by partitioning the score space into more than two regions.

Optimal Bloom filters for each region: Elements with scores above the threshold are directly
accepted as keys. A more general design would provide backup Bloom filters in both regions and
choose the Bloom filter false positive rate of each region so as to optimize the space/false positive
trade-off as desired. The original setup can be interpreted as using a Bloom filter of size 0 and false
positive rate of 1 above the threshold. This may not be the optimal choice; moreover, as we show,
using different Bloom filters for each region(as shown in Fig.1(C)) allows further gains when we
increase the number of partitions.

Follow-up work by [Mitzenmacher (2018)] and [Dai & Shrivastava (2019)] improve on the original
design but only address a subset of these drawbacks. In particular, [Mitzenmacher (2018)] proposes
using Bloom filters for both regions and provides a method to find the optimal false positive rates for
each Bloom filter. But [Mitzenmacher (2018)] only considers two regions and does not consider how
to find the optimal threshold value. [Dai & Shrivastava (2019)] propose using multiple thresholds
to divide the space of scores into multiple regions, with a different backup Bloom filter for each
score region. The false positive rates for each of the backup Bloom filters and the threshold values
are chosen using heuristics. Empirically, we found that these heuristics might perform worse than
[Mitzenmacher (2018)] in some scenarios.

A general design that resolves all the drawbacks would, given a target false positive rate and the
learned model, partition the score space into multiple regions with separate backup Bloom filters
for each region, and find the optimal threshold values and false positive rates, under the goal of
minimizing the memory usage while achieving the desired false positive rate as shown in Fig.1(C).
In this work, we show how to frame this problem as an optimization problem, and show that our
resulting solution significantly outperforms the heuristics used in previous works. Additionally,
we show that our maximum space saving1 is linearly proportional to the KL divergence of the key
and non-key score distributions determined by the partitions. We present a dynamic programming
algorithm to find the optimal parameters (up to the discretization used for the dynamic programming)
and demonstrate performance improvements over a synthetic dataset and two real world datasets:
URLs and EMBER. We also show that the performance of the learned Bloom filter improves with
increasing number of partitions and that in practice a small number of regions (≈ 4− 6) suffices to
get a very good performance. We refer to our approach as a partitioned learned Bloom filter (PLBF).
Experimental results from both simulated and real-world datasets show significant performance
improvements. We show that to achieve a false positive rate of 0.001, [Mitzenmacher (2018)] uses

1space saved by using our approach instead of a Bloom filter
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8.8x, 3.3x and 1.2x the amount of space and [Dai & Shrivastava (2019)] uses 6x, 2.5x and 1.1x the
amount of space compared to PLBF for synthetic, URLs and EMBER respectively.
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Figure 1: (A),(B),(C) represent the original LBF, LBF with sandwiching, and PLBF designs, respectively. Each
region in (C) is defined by score boundaries ti, ti+1 and a false positive rate fi of the Bloom Filter used for that
region. (D),(E) show the LBF and PLBF with score space distributions. (F) represents a PLBF design equivalent
to the sandwiching approach used in Appendix.D.1.
2.1 STANDARD BLOOM FILTERS AND RELATED VARIANTS

A standard Bloom filter, as described in Bloom’s original paper [Bloom (1970)], is for a set S =
{x1, x2, ..., xn} of n keys. It consists of an array of m bits and uses k independent hash functions
{h1, h2, ...hk} with the range of each hi being integer values between 0 and m− 1. We assume the
hash functions are fully random. Initially all m bits are 0. For every key x ∈ S, array bits hi(x) are
set to 1 for all i ∈ {1, 2, ...k}.
A membership query for y returns that y ∈ S if hi(y) = 1 for all i ∈ {1, 2, ...k} and y 6∈ S otherwise.
This ensures that the Bloom filter has no false negatives but non-keys y might result in a false positive.
This false positive rate depends on the space m used by the Bloom Filter. Asymptotically (for large
m,n with m/n held constant), the false positive rate is given by(

1−
(
1− 1

m

)kn)k
. (1)

See [Broder & Mitzenmacher (2003); Bose et al. (2008)] for further details.

[Bloom (1970)] proved a space lower bound of |S| × log2(
1
F ) for a Bloom filter with false positive

rate F . The standard construction uses space that is asymptotically log2 e(≈ 1.44) times more
than the lower bound. Other constructions exist, such as Cuckoo filters[Fan et al. (2014)], Morton
filters[Breslow & Jayasena (2018)], XOR filters[Graf & Lemire (2020)] and Vacuum filters[Wang
et al. (2019)]. These variants achieve slightly better space performance compared to standard Bloom
filters but still are a constant factor larger than the lower bound. [Pagh et al. (2005)] presents a Bloom
filter design that achieves this space lower bound, but it appears too complicated to use in practice.

2.2 LEARNED BLOOM FILTER

Learned Bloom filters make use of learned models to beat the theoretical space bounds. Given a
learned model that can distinguish between keys and non-keys, learned Bloom filters use it as a
pre-filter before using backup Bloom filters. The backup Bloom filters can be any variant including
the standard, cuckoo, XOR filters, etc. If the size of the model is sufficiently small, learned models
can be used to enhance the performance of any Bloom filter variant.

3



Published as a conference paper at ICLR 2021

We provide the framework for learned Bloom filters. We are given a set of keys S = {x1, x2, .., xn}
from a universe U for which to build a Bloom filter. We are also given a sample of the non-keys Q
which is representative of the set U − S. Features that can help in determining if an element is a
member of S are determined. The learned model is then trained on features of set S ∪Q for a binary
classification task and produces a score s(x) ∈ [0, 1]. This score s(x) can be viewed (intuitively,
not formally) as the confidence of the model that the element x is in the set S. So, a key in S
would ideally have a higher score value than the non-keys. An assumption in this framework is that
the training sample distribution needs to match or be close to the test distribution of non-keys; the
importance of this assumptions has been discussed at length in [Mitzenmacher (2018)]. For many
applications, past workloads or historical data can be used to get an appropriate non-key sample.

As discussed above, [Kraska et al. (2018)] set a threshold t and inputs satisfying s(x) > t are
classified as a key. A backup Bloom filter is built for just the keys in S satisfying s(x) ≤ t. This
design is represented in Fig.1(A). [Mitzenmacher (2018)] proposes using another Bloom filter before
the learned model along with a backup Bloom Filter. As the learned model is used between two
Bloom filters as shown in Fig.1(B), this is referred to as the ’sandwiching’ approach. They also
provide the analysis of the optimal false positive rates for a given amount of memory for the two
Bloom filters (given the false negative rate and false positive rate for the learned model, and the
corresponding threshold). Interestingly, the sandwiching approach and analysis can be seen as a
special case of our approach and analysis, as we describe later in Appendix.D.1. [Dai & Shrivastava
(2019)] use multiple thresholds to partition the score space into multiple regions and use a backup
Bloom filter for each score region. They propose heuristics for how to divide up the score range and
choose false positive rate per region.

3 PARTITIONED LEARNED BLOOM FILTER (PLBF)

3.1 DESIGN

As discussed before, the general design segments the score space into multiple regions using multiple
thresholds, as shown in Fig.1(C), and uses separate backup Bloom filters for each region. We can
choose different target false positive rates for each region2. The parameters associated with each
region are its threshold boundaries and its false positive rate. Setting good values for these parameters
is crucial for performance. Our aim is to analyze the performance of the learned Bloom filter with
respect to these parameters, and find methods to determine optimal or near-optimal parameters.

The following notation will be important for our analysis. Let G(t) be the fraction of keys with scores
falling below t. We note that since the key set is finite, G(t) goes through discrete jumps. But it is
helpful (particularly in our pictures) to think of G(t) as being a continuous function, corresponding
to a cumulative probability distribution, with a corresponding “density” function g(t). For non keys,
we assume that queries involving non-keys come from some distribution D, and we define H(t) to be
probability that a non-key query from D has a score less than or equal to t. Note that non key query
distribution might be different from non key distribution. If non key queries are chosen uniformly
at random, non key query distribution would be the same as non key distribution. We assume that
H(t) is known in the theoretical analysis below. In practice, we expect a good approximation of H(t)
will be used, determined by taking samples from D or a suitably good approximation, which may be
based on, for example, historical data (discussed in detail in [Mitzenmacher (2018)]). Here H(t) can
be viewed as a cumulative distribution function, and again in our pictures we think of it as having a
density h(t). Also, note that if queries for non-keys are simply chosen uniformly at random, then
H(t) is just the fraction of non-keys with scores below t. While our analysis holds generally, the
example of H(t) being the fraction of non-keys with scores below t may be easier to keep in mind.
Visualization of the original learned Bloom filter in terms of these distributions is shown in Fig.1(D).

As we describe further below, for our partitioned learned Bloom filter, we use multiple thresholds and
a separate backup Bloom filter for each region, as show in Fig.1(E). In what follows, we formulate
the problem of choosing thresholds and backup Bloom filter false positive rates (or equivalently,
sizes) as an optimization problem in section 3.2. In section 3.3.1, we find the optimal solution of a
relaxed problem which helps us gain some insight into the general problem. We then propose an
approximate solution for the general problem in section 3.3.3.

2The different false positive rates per region can be achieved in multiple ways. Either by choosing a separate
Bloom filter per region or by having a common Bloom filter with varying number of hash functions per region.
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We find in our formulation that the resulting parameters correspond to quite natural quantities in
terms of G and H . Specifically, the optimal false positive rate of a region is proportional to the ratio
of the fraction of keys to the fraction of non-keys in that region. If we think of these region-based
fractions for keys and non-keys as probability distributions, the maximum space saving obtained is
proportional to the KL divergence between these distributions. Hence we can optimize the thresholds
by choosing them to maximize this divergence. We show that we can find thresholds to maximize
this divergence, approximately, through dynamic programming. We also show that, naturally, this KL
divergence increases with more number of regions and so does the performance. In our experiments,
we find a small number(≈ 4− 6) of partitions suffices to get good performance.

3.2 GENERAL OPTIMIZATION FORMULATION

To formulate the overall problem as an optimization problem, we consider the variant which minimizes
the space used by the Bloom filters in PLBF in order to achieve an overall a target false positive rate
(F ). We could have similarly framed it as minimizing the false positive rate given a fixed amount of
space. Here we are assuming the learned model is given.

We assume normalized score values in [0, 1] for convenience. We have region boundaries given
by ti values 0 = t0 ≤ t1 ≤ ....tk−1 ≤ tk = 1, with score values between [ti−1, ti] falling into
the ith region. We assume the target number of regions k is given. We denote the false positive
rate for the Bloom filter in the ith region by fi. We let G and H be defined as above. As state
previously, Fig.1(E) corresponds to this setting, and the following optimization problem finds the
optimal thresholds ti and the false positive rates fi:

min
ti,fi

(∑k
i=1 |S| × (G(ti)−G(ti−1))× c log2

(
1
fi

))
+ Size of Learned Model (2)

constraints
∑k
i=1 (H (ti)−H(ti−1))× fi ≤ F (3)
fi ≤ 1 , i = 1...k (4)

(ti − ti−1) ≥ 0 , i = 1...k ; t0 = 0; tk = 1 (5)
The minimized term (Eq.2) represents the total size of the learned Bloom filter, the size of backup
Bloom filters is obtained by summing the individual backup Bloom filter sizes. The constant c in the
equation depends on which variant of the Bloom filter is used as the backup3; as it happens, its value
will not affect the optimization.

The first constraint (Eq.3) ensures that the overall false positive rate stays below the target F . The
overall false positive rate is obtained by summing the appropriately weighted rates of each region.
The next constraint (Eq.4) encodes the constraint that false positive rate for each region is at most 1.
The last set of constraints (Eq.5) ensure threshold values are increasing and cover the interval [0, 1].

3.3 SOLVING THE OPTIMIZATION PROBLEM

3.3.1 SOLVING A RELAXED PROBLEM

If we remove the false positive rate constraints (Eq.4, giving fi ≤ 1), we obtain a relaxed problem
shown in Eq.6. This relaxation is useful because it allows us to use the Karush-Kuhn-Tucker (KKT)
conditions to obtain optimal fi values in terms of the ti values, which we used to design algorithms
for finding near-optimal solutions. Throughout this section, we assume the the relaxed problem yields
a solution for the original problem; we return to this issue in subsection 3.3.3.

min
ti=1...k−1,fi=1...k

(∑k
i=1 |S| × (G(ti)−G(ti−1))× c log2

(
1
fi

))
+ Size of Learned Model

constraints
∑k
i=1 (H(ti)−H(ti−1))× fi ≤ F ;

(ti − ti−1) ≥ 0 , i = 1...k; t0 = 0; tk = 1
(6)

3The sizes of Bloom filter variants are proportional to |S| × log2(1/f), where S is the set it represents, and
f is the false positive rate it achieves. See e.g. [Mitzenmacher (2018)] for related discussion. The constant c
depends on which type of Bloom filter is used as a backup. For example, c = log2(e) for standard Bloom filter.
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The optimal fi values obtained by using the KKT conditions yield Eq.7 (as derived in Appendix.A),
giving the exact solution in terms of ti’s.

fi = F G(ti)−G(ti−1)
H(ti)−H(ti−1)

(7)

The numerator G(ti) − G(ti−1) is the fraction of keys in the ith region and the denominator
H(ti) −H(ti−1) is the probability of a non-key query being in the ith region. In intuitive terms,
the false positive rate for a region is proportional to the ratio of the key density (fraction of keys)
to non-key density (fraction of non-key queries). Since we have found the optimal fi in terms
of the ti, we can replace the fi in the original problem to obtain a problem only in terms of the
ti. In what follows, we use ˆg(t) to represent the discrete distribution given by the k values of
G(ti)−G(ti−1) for i = 1, . . . , k, and similarly we use ˆh(t) for the distribution corresponding to the
H(ti)−H(ti−1) values. Eq.8 shows the rearrangement of the minimization term(excluding model
size) after substitution.

Min. Term =

k∑
i=1

|S| × (G(ti)−G(ti−1))× c log2
(

H(ti)−H(ti−1)

(G(ti)−G(ti−1))× F

)

=

k∑
i=1

|S| × (G(ti)−G(ti−1))× c log2
(
1

F

)
− c× |S| ×DKL

(
ˆg(t), ˆh(t)

) (8)

where DKL is the standard KL divergence for the distributions given by ˆg(t) and ˆh(t).

Eq.8 represents the space occupied by the backup Bloom filters; the total space includes this and the
space occupied by the learned model.

c×
(
|S| × log2

(
1
F

)
− |S| ×DKL

(
ˆg(t), ˆh(t)

))
+ Size Of Learned Model (9)

The space occupied by the Bloom filter without the learned model is c× |S| × log2(1/F ). Thus, the
space saved by PLBF in comparison to the normal Bloom filter is:

c×
(
|S| ×DKL

(
ˆg(t), ˆh(t)

))
− Size Of Learned Model (10)

The space saved by PLBF is therefore linearly proportional to the KL divergence of key and non-key
distributions of the regions given by ˆg(t) and ˆh(t) of the regions.

This derivation suggests that the KL divergence might also be used as a loss function to improve the
model quality. We have tested this empirically, but thus far have not seen significant improvements
over the MSE loss we use in our experiments; this remains an interesting issue for future work.

3.3.2 FINDING THE OPTIMAL THRESHOLDS FOR RELAXED PROBLEM

We have shown that, given a set of thresholds, we can find the optimal false positive rates for the
relaxed problem. Here we turn to the question of finding optimal thresholds. We assume again that we
are given k, the number of regions desired. (We consider the importance of choosing k further in our
experimental section.) Given our results above, the optimal thresholds correspond to the points that
maximize the KL divergence between ( ˆg(t), ˆh(t)). The KL divergence of ( ˆg(t), ˆh(t)) is the sum of the
terms gi log2

gi
hi

, one term per region. (Here gi = G(ti)−G(ti−1) and hi = H(ti)−H(ti−1).) Note
that each term depends only on the proportion of keys and non-keys in that region and is otherwise
independent of the other regions. This property allows a recursive definition of KL divergence that is
suitable for dynamic programming.

We divide the score space [0, 1] into N consecutive small segments for a chosen value of N ; this
provides us a discretization of the score space, with larger N more closely approximating the
real interval. Given k, we can find a set of k approximately optimal thresholds using dynamic
programming, where the solution is approximate due to our discretization of the score space. Let
DPKL(n, j) denote the maximum divergence one can get when you divide the first n segments into
j regions. Our approximately optimal divergence corresponds to DPKL(N, k). The idea behind
the algorithm is that the we can recursively define DPKL(n, j) as represented in Eq.11. Here g′, h′
represent the fraction of keys and the fraction of non-key queries, respectively, in these N segments.
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DPKL (n, j) = max

(
DPKL(n− i, j − 1) +

(
n∑
r=i

g′(r)× log2

(∑n
r=i g

′(r)∑n
r=i h

′(r)

)))
(11)

The time complexity of computing DPKL(N, k) is O(N2k). One can increase the value of N to get
more precision in the discretization when finding thresholds, at the cost of higher computation time.

3.3.3 THE RELAXED PROBLEM AND THE GENERAL PROBLEM

We can find a near-optimal solution to the relaxed problem by first, obtaining the threshold values
that maximize the divergence and then, getting the optimal fi values using Eq.7. In many cases, the
optimal relaxed solution will also be the optimal general solution, specifically if F × (G(ti−1) −
G(ti))/(H(ti−1)−H(ti)) < 1 for all i. Hence, if we are aiming for a sufficiently low false positive
rate F , solving the relaxed problem suffices.

To solve the general problem, we need to deal with regions where fi ≥ 1, but we can use the relaxed
problem as a subroutine. First, given a fixed set of ti values for the general problem, we have an
algorithm (Alg.1, as discussed in Appendix.B) to find the optimal fi’s. Briefly summarized, we solve
the relaxed problem, and for regions with fi > 1, the algorithm sets fi = 1, and then re-solves the
relaxed problem with these additional constraints, and does this iteratively until no region with fi > 1
remains. The problem is that we do not have the optimal set of ti values to begin; as such, we use the
optimal ti values for the relaxed solution as described in Section 3.3.2. This yields a solution to the
general problem (psuedo-code in Alg.2), but we emphasize that it is not optimal in general, since we
did not start with the optimal ti. We expect still that it will perform very well in most cases.

In practice, we observe that keys are more concentrated on higher scores, and non-key queries are
more concentrated on lower scores. Given this property, if a region with fi = 1 (no backup Bloom
filter used) exists in the optimal solution of the general problem, it will most probably be the rightmost
region. In particular, if (G(ti−1)−G(ti))/(H(ti−1)−H(ti)) is increasing as ti−1, ti increase – that
is, the ratio of the fraction of keys to the fraction of non-key queries over regions is increasing – then
indeed without loss of generality the last (kth) region will be the only one with fk = 1. (We say only
one region because any two consecutive regions with fi = 1 can be merged and an extra region can
be made in the remaining space which is strictly better, as adding an extra region always helps as
shown in Appendix.D.2.) It is reasonable to believe that in practice this ratio will be increasing or
nearly so.

Hence if we make the assumption that in the optimal solution all the regions except the last satisfy the
fi < 1 constraint, then if we identify the optimal last region’s boundary, we can remove the fi ≤ 1
constraints for i 6= k and apply the DP algorithm to find near optimal ti’s. To identify the optimal
last region’s boundary, we simply try all possible boundaries for the kth region (details discussed
in Appendix.C). As it involves assumptions on the behavior of G and H , we emphasize again that
this will not guarantee finding the optimal solution. But when the conditions are met it will lead to a
near-optimal solution (only near-optimal due to the discretization of the dynamic program).

4 EVALUATION

We compare PLBF against the theoretically optimal Bloom filter [Bloom (1970)]4, the sandwiching
approach [Mitzenmacher (2018)], and AdaBF [Dai & Shrivastava (2019)]. Comparisons against
standard Bloom filters5 appear in Appendix.E.1. We excluded the original learned Bloom filter
[Kraska et al. (2018)] as the sandwiching approach was strictly better. We include the size of the
learned model with the size of the learned Bloom filter. To ensure a fair comparison, we used the
optimal Bloom filter as the backup bloom filter for all learned variants. We use 3 different datasets:

URLs: As in previous papers [Kraska et al. (2018), Dai & Shrivastava (2019)], we used the URL data
set, which contains 103520 (23%) malicious and 346646 (77%) are benign URLs. We used 17 features
from these URL’s such as host name length, use of shortening, counts of special characters,etc.

4For the space of a theoretically optimal Bloom filter, we take the standard Bloom filter of same false positive
rate and divide it’s space used by log2 e, as obtaining near-optimality in practice is difficult. This uses the fact
that the standard Bloom filter is asymptotically log2 e times suboptimal than the optimal as discussed in Sec.2.1.

5PLBF performs better against standard Bloom filters, as discussed in Appendix.D.3. Section 4.1 are
conservative estimates of gains possible in practice using a PLBF.
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Figure 2: FPR vs Space for the (A) Synthetic (B) URLs (C) EMBER datasets for various baselines along with
key and non-key score distributions. Space Saved as we increase number of regions for the (D) Synthetic (E)
URLs (F) EMBER datasets for PLBF compared to the optimal Bloom filter

EMBER: Bloom filters are widely used to match file signatures with the virus signature database.
Ember (Endgame Malware Benchmark for Research) [Anderson & Roth (2018)] is an open source
collection of 1.1M sha256 file hashes that were scanned by VirusTotal in 2017. Out of the 1.1 million
files, 400K are malicious, 400K are benign, and we ignore the remaining 300K unlabeled files. The
features of the files are already included in the dataset.

Synthetic: An appealing scenario for our method is when the key density increases and non-key
density decreases monotonically with respect to the score value. We simulate this by generating the
key and non-key score distribution using Zipfian distributions as in Fig.2(A). Since we directly work
on the score distribution, the size of the learned model for this synthetic dataset is zero.

4.1 OVERALL PERFORMANCE

Here, we compare the performance of PLBF against other baselines by fixing the target F and
measuring the space used by each methods. We use PLBF Alg.3 with DP algorithm discretization(N )
set to 1000. We train the model on the entire key set and 40% of the non-key set. The thresholds and
backup Bloom filters are then tuned using this model with the aim of achieving the fixed target F .
The rest of the non-keys are used to evaluate the actual false positive rate.

While any model can be used, we choose the random forest classifier from sklearn [Pedregosa et al.]
for its good accuracy. The F1 scores of the learned models used for synthetic, URLs and EMBER
were 0.99, 0.97, and 0.85, respectively. We consider the size of the model to be the pickle file size on
the disk (a standard way of serializing objects in Python). We use five regions (k = 5) for both PLBF
and AdaBF as this is usually enough to achieve good performance as discussed in 4.2. Using higher
k would only improve our performance.

The results of the experiment are shown in the Fig.2(A-C) along with the distribution of the scores of
keys and non-keys for each dataset. As we can see from the figure, PLBF has a better Pareto curve
than the other baselines for all the datasets. On the synthetic dataset and URLs dataset we observe a
significantly better performance. In contrast, for the EMBER dataset our performance is only slightly
better indicating that the model here is not as helpful. The difference between space used by PLBF
and optimal Bloom filter first increases with decreasing false positive rate but converges to a constant
value for all datasets, as given in Eq.10. For the same amount of space used(400Kb,500Kb,3000Kb
space for synthetic,URLs,EMBER, respectively), PLBF achieves 22x, 26x, and 3x smaller false
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positive rates than the sandwiching approach, and 8.5x, 9x, and 1.9x smaller false positive rates than
AdaBF for synthetic, URLs, and EMBER, respectively. To achieve a false positive rate of 0.001, the
sandwiching approach uses 8.8x, 3.3x, and 1.2x the amount of space and AdaBF uses 6x, 2.5x, and
1.1x the amount of space compared to PLBF for synthetic, URLs, and EMBER datasets respectively.

4.2 PERFORMANCE AND THE NUMBER OF REGIONS

The maximum space savings obtained by using PLBF is linearly proportional to the KL diver-
gence of the distributions(Eq10) and this KL divergence strictly increases with the number of
regions(Appendix.D.2). Fig.2(D-F) show the space saved w.r.t the optimal Bloom filter as we increase
the number of regions k for a target false positive rate of 0.001. The red line in the figure shows the
savings when using 25 regions; using more regions provides no noticeable improvement on this data.
Our results suggest using 4-6 regions should be sufficient to obtain reasonable performance. We have
additional experiments in Appendix.E that shows PLBF performance against standard Bloom filters
and PLBF performance w.r.t model quality.

5 CONCLUSION

Our analysis of the partitioned learned Bloom filter provides a formal framework for improving
on learned Bloom filter performance that provides substantially better performance than previous
heuristics. As Bloom filters are used across thousands of applications, we hope the PLBF may find
many uses where the data set is amenable to a learned model.
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A SOLVING THE RELAXED PROBLEM USING KKT CONDITIONS

As mentioned in the main text, if we relax the constraint of fi ≤ 1, using the stationary KKT
conditions we can obtain the optimal fi values. Here we show this work. The appropriate Lagrangian
equation is given in Eq.12. In this case, the KKT coniditions tell us that the optimal solution is a
stationary point of the Lagrangian. Therefore, we find where the derivative of the Lagrangian with
respect to fi is zero.

L (ti, fi, λ, νi) =
∑k
i=1 (G(ti)−G(ti−1))× c log2

(
1
fi

)
+ λ×

((∑k
i=1 (H(ti)−H(ti−1))× fi

)
− F

)
+∑k

i=1 νi × (ti−1 − ti)
(12)

∂L(ti,fi,λ,νi)
∂fi

= 0 (13)

∂(G(ti)−G(ti−1))c log2

(
1
fi

)
∂fi

= −λ∂(H(ti)−H(ti−1))×fi
∂fi

(14)

fi =
c ln(2)×(G(ti)−G(ti−1))×λ

(H(ti)−H(ti−1))
(15)

λ = F
c ln(2)×

∑k
i=1 (G(ti)−G(ti−1))

= F
c ln 2 (16)

fi =
(G(ti)−G(ti−1))×FPR

(H(ti)−H(ti−1))
(17)

Eq.15 expresses fpri in terms of λ. Summing Eq.15 over all i and using the relationship between F
and H we get Eq.16. Thus the optimal fi values turn out to be as given in Eq.17.
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Algorithm 1 Finding optimal fpr’s given thresholds

InputG′ - the array containing key density of each region
InputH′ - the array containing non-key density of each region
Input F - target overall false positive rate
Input k - number of regions
Output f - the array of false positive rate of each region

1: procedure OPTIMALFPR(G′, H′, F, k)
2: Gsum ← 0 . sum of key density of regions with fi = 1
3: Hsum ← 0 . sum of non-key density of regions with fi = 1
4: for i in 1, 2, ...k do
5: f [i]← G′[i]·F

H′[i] . Assign relaxed problem solution

6: while some f [i] > 1 do
7: for i in 1, 2, ...k do
8: if (f [i] > 1) then f [i]← 1 . Cap the false positive rate of region to one
9: Gsum ← 0
10: Hsum ← 0
11: for i in 1, 2, ...k do
12: if (f [i] = 1) thenGsum ← Gsum +G′[i];Hsum ← Hsum +H′[i] . Calculate key,non-key density in regions

with no Bloom filter(f [i] = 1)
13: for i in 1, 2, ...k do
14: if (f [i] < 1) then f [i] = G′[i]·(F−Hsum)

H′[i]·(1−Gsum)
.Modifying the fi of the regions to ensure target false positive rate is FPR

15: return fpr Array

Algorithm 2 Using relaxed solution for the general problem

InputGdis - the array containing discretized key density of each region
InputHdis - the array containing discretized key density of each region
Input F - target overall false positive rate
Input k - number of regions
Output t - the array of threshold boundaries of each region
Output f - the array of false positive rate of each region
Algorithm ThresMaxDivDP - DP algorithm that returns the thresholds maximizing the divergence between key and non-key distribution.
Algorithm CalcDensity - returns the region density given thresholds of the regions
Algorithm OptimalFPR - returns the optimal false positive rate of the regions given thresholds
Algorithm SpaceUsed - returns space used by the back-up Bloom filters given threhsolds and false positive rate per region.

1: procedure SOLVE(Gdis, Hdis, F, k)
2: t← ThresMaxDivDP(Gdis, Hdis, k) . Getting the optimal thresholds for the relaxed problem
3: G′, H′ ← CalcDensity(Gdis, Hdis, t)
4: f = OptimalFPR(G′, H′, F, k) . Obtaining optimal false positive rates of the general problem for given thresholds
5:
6: return t , f Array

B OPTIMAL FALSE POSITIVE RATE FOR GIVEN THRESHOLDS

We provide the pseudocode for the algorithm to find the optimal false positive rates if threshold values
are provided. The corresponding optimization problem is given in Eq.18. As the boundaries for
the regions are already defined, one only needs to find the optimal false positive rate for the backup
Bloom filter of each region.

min
fi=1...k

∑k
i=1 (G(ti)−G(ti−1))× c log2(

1
fi
)

constraints
∑k
i=1 (H(ti)−H(ti−1))× fi = F

fi ≤ 1 i = 1...k

(18)

Alg.1 gives the pseudocode. We first assign false positive rates based on the relaxed problem but may
find that fi ≥ 1 for some regions. For such regions, we can set fi = 1, re-solve the relaxed problem
with these additional constraints (that is, excluding these regions), and use the result as a solution for
the general problem. Some regions might again have a false positive rate above one, so we can repeat
the process. The algorithm stops when there is no new region with false positive rate greater than one.
This algorithm finds the optimal false positive rates for the regions when the thresholds are fixed.
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Algorithm 3 Solving the general problem

InputGdis - the array containing discretized key density of each region
InputHdis - the array containing discretized key density of each region
Input F - target overall false positive rate
Input k - number of regions
Output t - the array of threshold boundaries of each region
Output f - the array of false positive rate of each region
Algorithm ThresMaxDivDP - DP algorithm that returns the thresholds maximizing the divergence between key and non-key distribution.
Algorithm CalcDensity - returns the region density given thresholds of the regions
Algorithm OptimalFPR - returns the optimal false positive rate of the regions given thresholds

1: procedure SOLVE(Gdis, Hdis, F, k)
2: MinSpaceUsed←∞ . Stores minimum space used uptil now
3: index← −1 . Stores index corresponding to minimum space used
4: Glast ← 0 . Key density of the current last region
5: Hlast ← 0 . Non-key density of the current last region
6:
7: for i in k − 1, k, ...N − 1 do . Iterate over possibilities of last region
8: Glast←

∑N
j=iGdis[j] . Calculate the key density of last region

9: Hlast←
∑N

j=iHdis[j]

10: t← ThresMaxDivDp(G[1..(i− 1)], H[1..(i− 1)], k − 1) . Find the optimal thresholds for the rest of the array
11: t.append(i)
12: G′, H′ ← CalcDensity(Gdis, Hdis, t)
13: f = OptimalFPR(G′, H′, F, k) . Find optimal false positive rates for the current configuration
14: if (MinSpaceUsed < SpaceUsed(Gdis, Hdis, t, f))
15: thenMinSpaceUsed← SpaceUsed(Gdis, Hdis, t, f); index← i . Remember the best performance uptil now
16:
17: Glast ←

∑N
j=indexGdis[j]

18: Hlast ←
∑N

j=indexHdis[j]

19: t← ThresMaxDivDP(G[1..(index− 1)], H[1..(index− 1)], k − 1)
20: t.append(index)
21: G′, H′ ← CalcDensity(Gdis, Hdis, t)
22: f = OptimalFPR(G′, H′, F, k)
23:
24: return t , f Array

C ALGORITHM FOR FINDING THRESHOLDS

We provide the pseudocode for the algorithm to find the solution for the relaxed problem; Alg.3 finds
the thresholds and false positive rates. As we have described in the main text, this algorithm provides
the optimal parameter values, if (G(ti−1)−G(ti))/(H(ti−1)−H(ti)) is monotonically increasing.

The idea is that only the false positive rate of the rightmost region can be one. The algorithm receives
discretized key and non-key densities. The algorithm first iterates over all the possibilities of the
rightmost region. For each iteration, it finds the thresholds that maximize the KL divergence for
the rest of the array for which a dynamic programming algorithm exists. After calculating these
thresholds, it finds the optimal false positive rate for each region using Alg.1. After calculating the
thresholds and false positive rates, the algorithm calculates the total space used by the back-up Bloom
filters in PLBF. It then remembers the index for which the space used was minimal. The ti’s and fi’s
corresponding to this index are then used to build the backup Bloom filters. The worst case time
complexity is then O(N3k).

D ADDITIONAL CONSIDERATIONS

D.1 SANDWICHING: A SPECIAL CASE

We show here that the sandwiching approach can actually be interpreted as a special case of our
method. In the sandwiching approach, the learned model is sandwiched between two Bloom filters
as shown in Fig.3(A). The input first goes through a Bloom filter and the negatives are discarded.
The positives are passed through the learned model where based on their score s(x) they are either
directly accepted when s(x) > t or passed through another backup Bloom filter when s(x) ≤ t. In
our setting, we note that the pre-filter in the sandwiching approach can be merged with the backup
filters to yield backup filters with a modified false positive rate. Fig.3(B) shows what an equivalent
design with modified false positive rates would look like. (Here equivalence means we obtain the
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same false positive rate with the same bit budget; we do not consider compute time.) Thus, we see
that the sandwiching approach can be viewed as a special case of the PLBF with two regions.

However, this also tells us we can make the PLBF more efficient by using sandwiching. Specifically,
if we find when constructing a PLBF with k regions that fi < 1 for all i, we may assign f0 =
max1≤i≤k fi. We may then use an initial Bloom filter with false positive rate f0, and change the
target false positive rates for all other intervals to fi/f0, while keeping the same bit budget. This
approach will be somewhat more efficient computationally, as we avoid computing the learned model
for some fraction of non-key elements.

fpr0

Postive

Negative
Bloom filter

Input (x)

s(x) > t

Learned Model

fpr1

Bloom filter

PostiveNegative

Postive

s(x) ≤ t

Input (x)

s(x) > t

Learned Model

fpr0* fpr1

Bloom filter

PostiveNegative

s(x) ≤ t

fpr0

Bloom filter

PostiveNegative
(A) (B)

Figure 3: (A) represent LBF with sandwiching.(B) represents a PLBF design equivalent to the sandwiching
approach.

D.2 PERFORMANCE AGAINST NUMBER OF REGIONS k

Earlier, we saw the maximum space saved by using PLBF instead of a normal Bloom filter is linearly
proportional to the DKL( ˆg(t), ˆh(t)). If we split any region into two regions, the overall divergence
would increase because sum of divergences of the two split regions is always more than the original
divergence, as shown in Eq.19. Eq.19 is an application of Jensen’s inequality.

(
(g1 + g2)× log (g1+g2)

(h1+h2)

)
≤
(
g1 × log g1

h1

)
+
(
g2 × log g2

h2

)
(19)

Increasing the number of regions therefore always improves the maximum performance. We would
hope that in practice a small number of regions k would suffice. This seems to be the the case in our
experience; we detail one such experiment in our evaluation(4.2).

D.3 PERFORMANCE USING VARIOUS BLOOM FILTER VARIANTS

We consider how the space saved of the PLBF varies with the type of backup Bloom filter being
used. The PLBF can use any Bloom filter variant as the backup Bloom filter. When we compare our
performance with a Bloom filter variant, we use that same Bloom filter variant as the backup Bloom
filter for a fair comparison.

First, absolute space one can save by using a PLBF instead of a Bloom filter variant is given in Eq.10.
This quantity increases with increasing c6.

6The sizes of standard Bloom filter variants are proportional to |S| × log2(1/f), where S is the set it
represents, and f is the false positive rate it achieves. See e.g. Mitzenmacher (2018) for related discussion. The
constant c depends on which type of Bloom filter is used as a backup. For example, c = log2(e) for standard
Bloom filter, c = 1.0 for the optimal Bloom filter.
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The relative space one saves by using PLBF instead of the given Bloom filter variant is shown in
Eq.20. This quantity is the ratio of the space saved by PLBF (as shown in Eq.10) divided by the space
used by the given Bloom filter variant (c× |S| × log2(1/F )) as shown in Eq.20.

(c×|S|×DKL( ˆg(t), ˆh(t))−Size Of Learned Model)
c×|S|×log2(1/F )

(20)

Cancelling the common terms we obtain the following Eq.21.

(
DKL( ˆg(t), ˆh(t))

log2(1/F ) − Size Of Learned Model
c×|S|×log2(1/F )

)
(21)

The relative space saved, like the absolute space saved, also increases with increasing c. Thus, both
the relative and absolute space saved for the PLBF is higher for a standard Bloom filter (c = 1.44)
than an optimal Bloom filter (c = 1.00), and hence our experiments in Section 4.1 are conservative
estimates of gains possible in practice using PLBF.

E ADDITIONAL EXPERIMENTS

E.1 PERFORMANCE W.R.T STANDARD BLOOM FILTERS

Earlier, we evaluated our performance using optimal Bloom filters and here we present results using
standard Bloom filters. As shown in Appendix.D.3, PLBF performs better w.r.t standard Bloom
filters than optimal Bloom filters. As one can see from Fig.4, PLBF performs better than the standard
Bloom filter.
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Figure 4: FPR vs Space for the (A) Synthetic (B) URLs (C) EMBER datasets for various baselines along with
key and non-key score distributions.

E.2 PERFORMANCE AND MODEL QUALITY

Here we provide an experiment to see how the performance of various methods varies with the
quality of the model. As discussed earlier, a good model will have high skew of the distributions
g and h towards extreme values. We therefore vary the skew parameter of the Zipfian distribution
to simulate the model quality. We measure the quality of the model using the standard F1 score.
Fig.5(B) represents the space used by various methods to achieve a fixed false positive rate of 0.001
as we vary the F1 score of the model. The figure shows that as the model quality in terms of the F1
score increases, the space required by all the methods decreases (except for the optimal Bloom filter,
which does not use a model). The space used by all the methods goes to zero as the F1 score goes to
1, as for the synthetic dataset there is no space cost for the model. The data point corresponding to F1
score equal to 0.99 was used to plot Fig.2(A).
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Figure 5: Space used by various baselines as we increase F1 score for Synthetic dataset

E.3 DISCRETIZATION EFFECT ON DYNAMIC PROGRAMMING RUNTIME, PLBF SIZE

All the runtime experiments in this subsection and the next subsection are measured using an 2.8GHz
quad-core Intel Core i7 CPU @ 2.80GHz with 16GB of memory. We use the bloom-filter python
package [bloom filter] for our backup Bloom filters. The dynamic programming algorithms are
implemented in Python.

Here we provide an experiment to see how the dynamic programming (DP) algorithm runtime (psuedo
code in Alg.3) and PLBF size vary with level of discretization (N ). In the tables below, we have
the DP algorithm runtime and space taken by the PLBF to achieve an approximate empirical false
positive rate of 0.001 for various N . As discussed in Sec. 3.3.2, with increasing value of N one gets
closer to optimal parameters, at the cost of higher computation time. This trend is demonstrated in
the table below for the URLs and EMBER datasets. We note that if runtime is an issue, the increase
in size from using smaller N is relatively small.

N DP Runtime(in sec) PLBF Size (in Kb)
50 1.17 187.6
100 2.15 184.37
500 10.97 183.63
1000 26.94 183.55
2000 56.79 182.85

Table 1: DP runtime and space used by PLBF as we increase the discretization N in the URLs dataset

N DP Runtime(in sec) PLBF Size (in Kb)
50 1.36 2952.33
100 2.52 2944.68
500 11.39 2933.09
1000 25.26 2928.76
2000 56.12 2926.79

Table 2: DP runtime and space used by PLBF as we increase the discretization N in the EMBER dataset

E.4 CONSTRUCTION TIME FOR VARIOUS BASELINES

Here we look at the construction time breakdown for the PLBF and various alternatives, with the
goal of seeing the cost of in terms of construction time for using the more highly tuned PLBF. The
construction time of all the learned Bloom filters includes the model training time and parameter
estimation time, which are not required for the standard Bloom filter construction process. Since
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we use the same model for all learned baselines, the model construction time is the same for all of
them. In Fig.6, we plot the construction time breakdown for various baselines in order to achieve
an approximate empirical false positive rate of 0.001. Recall that the AdaBF and Sandwiching
approaches use heuristics to estimate their parameters and unsurprisingly they therefore seems
somewhat faster than PLBF. However, for N = 100 we see the parameter estimation time is smaller
than the key insertion time and model training time. The parameter estimation time for PLBF varies
with the level of discretization we use for the DP algorithm. The PLBF with N = 1000 takes the
longest to execute while standard Bloom filter is fastest baseline. As shown in Table1 above, using
N = 1000 gives only a slight improvement in size. We therefore believe that if construction time is
an issue, as for situations where one might want to re-learn and change the filter as data changes, one
can choose parameters for PLBF construction that would still yield significant benefits over previous
approaches.

Figure 6: Construction time breakdown for various baselines for the URLs dataset
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