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Abstract

Designing crystal materials with desired physic-001
ochemical properties remains a fundamental002
challenge in materials science. While large003
language models (LLMs) have demonstrated004
strong in-context learning (ICL) capabilities,005
existing LLM-based crystal generation ap-006
proaches are limited to zero-shot scenarios and007
are unable to benefit from few-shot scenarios.008
In contrast, human experts typically design009
new materials by modifying relevant known010
structures which aligns closely with the few-011
shot ICL paradigm. Motivated by this, we012
propose CrystalICL, a novel model designed013
for few-shot crystal generation. Specifically,014
we introduce a space-group based crystal to-015
kenization method, which effectively reduces016
the complexity of modeling crystal symmetry017
in LLMs. We further introduce a condition-018
structure aware hybrid instruction tuning frame-019
work and a multi-task instruction tuning strat-020
egy, enabling the model to better exploit ICL by021
capturing structure–property relationships from022
limited data. Extensive experiments on four023
crystal generation benchmarks demonstrate the024
superiority of CrystalICL over the leading base-025
line methods on conditional and unconditional026
generation tasks.027

1 Introduction028

The design and discovery of crystal materials with029

specific physicochemical properties have remained030

a long-standing issue in the field of materials de-031

sign. The development of novel crystal materi-032

als plays a crucial role in advancing technologies033

such as batteries, semiconductors, and catalysis034

(Butler et al., 2018; Desiraju, 2002). While tradi-035

tional methods based on Density Functional Theory036

(DFT) (Kohn and Sham, 1965) have proven effec-037

tive, they are often computationally expensive and038

time-consuming. In contrast, deep learning tech-039

niques (Xie et al., 2022; Jiao et al., 2023, 2024;040

Antunes et al., 2024; Gruver et al., 2024) have041
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Figure 1: The conditional crystal generation perfor-
mance of GPT-3.5 Turbo and CrystalLLM on P5.
emerged as a powerful alternative, enabling the 042

efficient prediction of potentially stable crystal ma- 043

terial structures and significantly accelerating the 044

discovery process. 045

In recent years, the successful adaptation of 046

LLMs in drug discovery (Zheng et al., 2024) and 047

protein structure prediction (Lin et al., 2023) has 048

inspired growing interest in leveraging pretrained 049

LLMs for crystal generation tasks. Among these 050

efforts, CrystalLLM (Gruver et al., 2024), which 051

is fine-tuned on Llama-2 (Touvron et al., 2023), 052

has demonstrated competitive performance in crys- 053

tal generation. However, it does not fully inherit 054

the in-context learning (ICL) capabilities of LLMs. 055

These capabilities are essential for emulating the 056

expert-driven workflow in material discovery. 057

Specifically, human experts typically begin with 058

a small set of known materials that share similar 059

properties and modify their composition or struc- 060

ture to achieve new design objectives. This process 061

closely mirrors the few-shot in-context learning 062

paradigm, where models generate new structures 063

by referencing a limited number of relevant exam- 064

ples. To verify this limitation, we compare GPT-3.5 065

Turbo and CrystalLLM on the P5 (Castelli et al., 066

2012) dataset under 0-shot and 3-shot prompts. As 067

shown in Fig. 1, GPT-3.5 struggles in the 0-shot 068

setting but improves markedly with 3-shot prompts, 069

demonstrating strong ICL behavior. In contrast, 070

CrystalLLM performs worse in the 3-shot setting 071

than in 0-shot setting, indicating its limited ability 072

to benefit from in-context examples. 073
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Motivated by these limitations, we aim to bridge074

the gap in applying ICL to crystal generation by075

proposing CrystalICL—the first crystal generation076

model explicitly designed to inherit and leverage077

the ICL-driven generalization capabilities of LLMs.078

To this end, we first introduce Space-group based079

Crystal Tokenization (SGS), a novel method that080

transforms 3D crystal structures into 1D text. Com-081

pared with traditional XYZ-format crystal struc-082

ture text (Flam-Shepherd and Aspuru-Guzik, 2023),083

SGS significantly improves LLMs’ ability to cap-084

ture and model crystal symmetry. Next, we present085

the Condition-Structure Aware Hybrid Crystal086

Instruction Tuning framework, which incorpo-087

rates three selection strategies to identify the most088

relevant crystal examples for downstream tasks.089

This framework effectively improves the model’s090

few-shot generation capability by allowing it to091

take advantage of informative contextual examples.092

Finally, to explicitly guide the model in learning093

the correspondence between crystal structures and094

their properties, we introduce the Multi-Task Crys-095

tal Instruction Tuning strategy. This approach096

integrates crystal property prediction instructions097

into the fine-tuning process, further enhancing the098

model’s ability to capture structure-property rela-099

tionships and improving performance in crystal100

generation tasks. Our main contributions are sum-101

marized as follows:102

⋆ We explore the underutilized in-context learning103

(ICL) capability of LLMs for crystal generation104

and introduce CrystalICL, the first approach to105

leverage LLMs’ few-shot reasoning abilities for106

material design, enabling efficient and adaptable107

crystal generation.108

⋆ To achieve this, we propose a tailored crystal to-109

kenization strategy and structure-aware instruc-110

tion tuning mechanisms, incorporating template-111

based and multitask learning to collectively en-112

hance CrystalICL’s ICL reasoning capabilities.113

⋆ Experimental results on four publicly avail-114

able datasets across diverse domains and scales115

demonstrate the effectiveness of CrystalICL in116

both zero-shot and few-shot learning scenarios.117

2 Preliminary118

2.1 Crystal Generation119

The crystal structure is characterized by the geom-120

etry of the arrangement of particles within the unit121

cells. A unit cell is defined as the smallest repeating122

unit that preserves the full symmetry of the crystal123

structure. Given a unit cell containing N atoms, it 124

can be described by the triplet M = (A,X,L), 125

where A = [a1,a2, . . . ,aN ]T ∈ RN×K rep- 126

resents a list of atomic types in one-hot encod- 127

ing format (K is the number of possible atomic 128

types), X = [x1,x2, . . . ,xN ]T ∈ RN×3 con- 129

tains the Cartesian coordinates of the atoms, and 130

L = [l1, l2, l3]
T ∈ R3×3 is the lattice matrix that 131

describes the periodicity of the crystal. The infinite 132

periodic crystal structure is represented as follows: 133

{(a′
i,x

′
i)|a′

i = ai,x
′
i = xi + kL, ∀k ∈ Z1×3},

(1) 134

where the elements of the integer vector k represent 135

integral 3D translations along their corresponding 136

lattice directions in L. 137

In order to reflect the periodicity of the crystal 138

structure, it is convenient to use the lattice vectors 139

(l1, l2, l3) to replace the standard orthogonal Carte- 140

sian basis. In this case, the Cartesian coordinates 141

x =
∑3

i=1 fili can be replaced by the fractional 142

coordinate vector f = [f1, f2, f3] ∈ [0, 1)3. In this 143

work, we adopt the fractional coordinate system 144

and describe the crystal as M = (A,F,L), where 145

the matrix F ∈ [0, 1)N×3 contains the fractional 146

coordinates of all atoms in the unit cell. This work 147

focuses on two primary tasks: 148

Conditional Crystal Generation: Given a 149

dataset {(Mj , sj)}nj=1, where sj denotes a spe- 150

cific property of Mj , our goal is to develop a con- 151

ditional generative model pθ(·|s) that generates 3D 152

crystal structures with the specified property s. 153

Unconditional Crystal Generation: Given a 154

dataset {Mj}nj=1, our goal is to develop an uncon- 155

ditional generative model pθ(·) that can generate a 156

collection of crystals with a distribution similar to 157

the training set. 158

2.2 Crystal Instruction Tuning 159

Given a set of n crystal materials D = 160

{(Mj , sj)}nj=1, the goal of crystal instruction tun- 161

ing is to fine-tune the LLM fθ by fitting the training 162

instruction set SD constructed from D as a collec- 163

tion of (input, output) pairs. The fine-tuned model 164

is then expected to generate crystals with specific 165

properties s (conditional generation) and generate 166

new crystal structures similar to those in the train- 167

ing set (unconditional generation). 168

3 Method 169

In this section, we introduce the proposed Crys- 170

talICL, as illustrated in Fig. 2. First, we discuss 171
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Structure Text
Instruction: Below is a description of a bulk material. [The chemical
formula is ZnO2].Generate the space group symbol, a description of the
lengths and angles of the lattice vectors and then the element type and
coordinates for each atom within the lattice:

Instruction: Below is three description of bulk materials. 
First Example:
The chemical formula is MgSe2. 
[Crys Str-1] 
Second Example:

The chemical formula is ZnSe2.
...
The chemical formula is ZnO2. Based on the three examples provided,
generate the space group symbol, a description of the lengths and angles
of the lattice vectors, along with the element type and coordinates for
each atom within the lattice: 

Zero-Shot Generation Instruction

Few-Shot Generation Instruction

Property Prediction Instruction
Instruction: Below is a partial description of a bulk material where
the chemical formula has been replaced with the string "[MASK]":
The chemical formula is [MASK].
[Crys Str]
Generate the chemical formula that could replace [MASK] in the bulk
material:

Pretrained

Llama-2

LoRA

Output: [Crys Str]

Output: [Crys Str]

Output: ZnO2

Cross-Domain Conditional Generation

Conditional Generation

Unconditional Generation

Hybrid Instruction Tuning

Downstream tasks

SpaceGroup Based Crystal Tokenization

Materials
Pa-3
5.0 5.0 5.0
90 90 90
Zn
0.00 0.00 0.00
O
0.09 0.59 0.91

String

Encoding

Example 1:  Select by Condition

Example 2+: Select by Decreasing Structure Si-

            milarity with Example 1

Condition-Structure Aware Demonstrations

Condition Aware Demonstrations
Example 1+: Select by ConditionZnO2

Finetuned LLM

Condition-Structure Aware Hybrid Crystal Instruction Set

Multi-Task Crystal Instruction Set

Loss:

Merge atoms with the 
same Wyckoff positions

Wyckoff Positions of Pa-3 (No. 205)

4a: (0, 0, 0) (1/2, 0, 1/2)

    (0, 1/2, 1/2) (1/2, 1/2, 0)

4b: (1/2, 1/2, 1/2) (0, 1/2, 0)

    (1/2, 0, 0) (0, 0, 1/2)

8c: (x,x,x) (-x+1/2,-x,x+1/2) 

    (-x,x+1/2,-x+1/2) (x+1/2,-x+1/2,-x)

    (-x,-x,-x) (x+1/2,x,-x+1/2)

    (x,-x+1/2,x+1/2) (-x+1/2,x+1/2,x)

24d: ...

Compute Space Group
WyckoffElement x y z

4a Zn 0 0.5 0.5

8c O 0.41 0.09 0.91

Space Group

Pa-3 (No. 205)

String  Format

Query Wycko-ff Position

Figure 2: The illustration of our proposed CrystalICL. CrystalICL begins by using a space-group based crystal
tokenization method to transform 3D crystal structures into a text format suitable for input into LLMs. Secondly,
CrystalICL constructs a condition-structure aware hybrid crystal instruction set, which includes both zero-shot and
few-shot instructions. The few-shot instructions combine various example selection strategies, which query the K
most relevant demonstrations for prompt design tailored to crystal generation tasks. Finally, CrystalICL incorporates
a crystal property prediction instruction set, which combines with the crystal generation instruction set to form a
multi-task crystal instruction set.

data_ZnO2
_symmetry_space_group_name_H-M'P 1'
_cell_length_a   4.9573
_cell_length_b   4.9573
_cell_length_c   4.9573
_cell_angle_alpha   90.0000
_cell_angle_beta   90.0000
_cell_angle_gamma   90.0000
_symmetry_Int_Tables_number   1
_chemical_formula_structural   ZnO2
_chemical_formula_sum   'Zn4 O8'
_cell_volume   121.8267
_cell_formula_units_Z   4
loop_
 _symmetry_equiv_pos_site_id
 _symmetry_equiv_pos_as_xyz
  1  'x, y, z'

5.0 5.0 5.0
90 90 90
Zn
0.16 0.79 0.43
Zn
0.66 0.79 0.93
Zn
0.66 0.29 0.43
Zn
0.16 0.29 0.93
O
0.58 0.38 0.85
O
0.25 0.20 0.35

Pa-3
5.0 5.0 5.0
90 90 90
Zn
0.00 0.00 0.00
O
0.09 0.59 0.91

ZnO2

O
0.08 0.70 0.02
O
0.75 0.88 0.52
O
0.58 0.70 0.35
O
0.25 0.88 0.85
O
0.08 0.38 0.52
O
0.75 0.20 0.02

XYZ Format

CIF Format

loop_
 _atom_site_type_symbol
 _atom_site_label
 _atom_site_symmetry_multiplicity
 _atom_site_fract_x
 _atom_site_fract_y
 _atom_site_fract_z
 _atom_site_occupancy
  Zn  Zn0  1  0.0000  0.5000  0.5000  1
  Zn  Zn1  1  0.5000  0.5000  0.0000  1
  Zn  Zn2  1  0.5000  0.0000  0.5000  1
  Zn  Zn3  1  0.0000  0.0000  0.0000  1
  O   O4   1  0.4126  0.0874  0.9126  1
  O   O5   1  0.0874  0.9126  0.4126  1
  O   O6   1  0.9126  0.4126  0.0874  1
  O   O7   1  0.5874  0.5874  0.5874  1
  O   O8   1  0.4126  0.4126  0.4126  1
  O   O9   1  0.0874  0.5874  0.9126  1
  O   O10  1  0.9126  0.0874  0.5874  1
  O   O11  1  0.5874  0.9126  0.0874  1

SGS Format

Random Translation Merge atoms with the 
same Wyckoff positions

Description

Property:

Formula: ZnO2

Energy Above Hull: 0.135 eV/atom

Band Gap: 2.16 eV

Formation Energy: -0.960 eV/atom


Symmetry:

Crystal System: Cubic

International Number: 205

Symbol:  Pa-3


Lattice:

a: 4.96 Å  b: 4.96 Å  c: 4.96 Å

α: 90.00º  β: 90.00º  ɣ: 90.00º

Volume: 121.83 Å³

Atom:

Zn
0.00 0.50 0.50
Zn
0.50 0.50 0.00
Zn
0.50 0.00 0.50
Zn
0.00 0.00 0.00
O
0.41 0.09 0.91
O
0.09 0.91 0.41

O
0.91 0.41 0.09
O
0.59 0.59 0.59
O
0.41 0.41 0.41
O
0.09 0.59 0.91
O
0.91 0.09 0.59
O
0.59 0.91 0.09

Wyckoff Positions of Group Pa-3 (No. 205)

4a: (0, 0, 0) (1/2, 0, 1/2)

    (0, 1/2, 1/2) (1/2, 1/2, 0)

4b: (1/2, 1/2, 1/2) (0, 1/2, 0)

    (1/2, 0, 0) (0, 0, 1/2)

8c: (x,x,x) (-x+1/2,-x,x+1/2) 

    (-x,x+1/2,-x+1/2) (x+1/2,-x+1/2,-x)

    (-x,-x,-x) (x+1/2,x,-x+1/2)

    (x,-x+1/2,x+1/2) (-x+1/2,x+1/2,x)

24d: ...

Wyckoff Element x y z

4a Zn 0 0.5 0.5

8c O 0.41 0.09 0.91

Figure 3: Comparison of three methods (CIF, XYZ,
SGS(ours)) for converting crystal structures to text.

a space-group based crystal tokenization method172

designed to reduce the complexity of modeling173

crystal symmetry within LLMs (in Sec. 3.1). Next,174

we elaborate on a condition-structure aware hybrid175

crystal instruction tuning framework, which effec-176

tively enhances the ICL capabilities of LLMs for177

crystal generation tasks (in Sec. 3.2). Finally, we178

introduced a multi-task crystal instruction tuning179

strategy, which strengthens the model’s ability to180

capture the relationship between crystal structures181

and their properties (in Sec. 3.3).182

3.1 Space-group based Crystal Tokenization183

To address the challenge of converting complex184

unit cell structures into text formats suitable for185

language models, we propose a novel space-group186

based crystal tokenization method (SGS) that re-187

duces the complexity of crystal symmetry model-188

ing for LLMs. Existing formats, such as CIF (Hall189

et al., 1991) and XYZ (Flam-Shepherd and Aspuru- 190

Guzik, 2023), exhibit notable limitations: CIF files, 191

as highly formatted documents, include complex 192

structures and a large number of specialized tokens 193

thereby increasing the complexity of fine-tuning 194

LLMs. Meanwhile, the XYZ format represents the 195

fractional coordinates of all atoms within the unit 196

cell, requiring the model to implicitly learn intri- 197

cate symmetry relationships among atomic posi- 198

tions without structural guidance. Therefore, these 199

limitations exacerbate the difficulty of crystal gen- 200

eration tasks and hinder model performance. 201

Our method simplifies the crystal structure 202

text by leveraging the concept of Wyckoff posi- 203

tions (LIPSON, 1949) in crystallography. A Wyck- 204

off position is defined as a set of points whose site 205

symmetry groups are all conjugate subgroups of 206

one another. The space group uniquely determines 207

the types of Wyckoff positions present in a crys- 208

tal. Therefore, given the space group, atoms of 209

the same element occupying the same Wyckoff po- 210

sition can be represented by a single atom. This 211

decomposes the task of predicting the fractional 212

3D coordinates of all atoms in the unit cell into 213

two components: modeling the correspondence be- 214

tween the space group and Wyckoff positions, and 215

predicting the Wyckoff positions of atoms within 216

the unit cell. 217

Specifically, our space-group based crystal struc- 218

ture text consists of three components: the space 219

group symbol, the lattice parameters, and the ele- 220

ment symbols and fractional coordinates for atoms 221
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at each Wyckoff position. An example of crystal222

string formatting is shown in Fig. 3. By replacing223

multiple atoms sharing the same Wyckoff position224

with a single representative atom, our method re-225

duces the number of atomic coordinates that need226

to be generated and eliminates the need to enforce227

strict symmetry constraints during the atomic co-228

ordinate generation process, thereby lowering the229

difficulty of modeling crystallographic symmetry.230

This transformation simplifies the modeling of crys-231

tal symmetry, enabling LLMs to focus on key struc-232

tural features, thereby reducing the complexity of233

the generation task and improving generation per-234

formance.235

3.2 Condition-Structure Aware Hybrid236

Crystal Instruction Tuning237

Following the crystal tokenization process, the sub-238

sequent step is to construct an instruction tuning set239

SD for the crystal generation tasks. The tuning set240

consists of two components: the zero-shot instruc-241

tion tuning set SDz and the few-shot instruction242

tuning set SDf
. In accordance with the standard243

protocol for instruction fine-tuning (Gruver et al.,244

2024; Zhang et al., 2023), the zero-shot crystal gen-245

eration instruction set SDz can be constructed from246

the given dataset D using the following prompt247

template Tz = {Q,R}, where Q represents the248

query and R denotes the response, providing the249

necessary contextual information for the task.:250

### Instruction: Below is a description
of a bulk material. [Condition
Description]. Generate the space
group symbol, a description of the
lengths and angles of the lattice
vectors and then the element type
and coordinates for each atom within
the lattice:

↪→

↪→

↪→

↪→

↪→

↪→

↪→

### Response: [Crystal String].

We have shown how instruction fine-tuning can251

guide LLMs in zero-shot crystal generation tasks.252

However, the lack of contextual learning in zero-253

shot settings prevents the model from fully leverag-254

ing its powerful ICL capabilities, thus limiting its255

potential in crystal generation. To address this lim-256

itation, we propose a few-shot instruction design257

method that incorporates crystal structures from258

the target generation domain into the prompt. The259

key idea is to use a small set of target-domain crys-260

tal structures as demonstrations to guide the model261

in generating similar crystal structures, thereby en- 262

hancing its conditional generation capabilities. 263

To achieve this, given a set of crystal properties 264

S = {s1, s2, · · · , sn} serving as generation con- 265

ditions, we explore three different strategies for 266

selecting K representative crystals: 267

Condition-based selection. The first strategy 268

filters the dataset based on the specified prop- 269

erties, ensuring that the selected crystals meet 270

the given generation conditions S. For chemi- 271

cal formula, anonymized representations (e.g., ex- 272

pressing CaTiO3 as ABC3) are used to generalize 273

composition-based filtering. For discrete proper- 274

ties such as space group, crystals are selected by 275

exact property matching. For continuous properties 276

like band gap, we rank the crystals in ascending 277

order of the absolute difference between their prop- 278

erty values and the target condition, selecting those 279

closest to the desired value. 280

Structure-based selection. In contrast, this 281

strategy does not rely on explicit property con- 282

straints but instead retrieves structurally similar 283

crystals from the dataset. A crystal is randomly 284

chosen as an anchor crystal, and the CrystalNN 285

fingerprint (Zimmermann and Jain, 2020) is com- 286

puted for all other crystals. The top K − 1 crystals 287

with the smallest euclidean distance to the anchor 288

crystal are then selected, ensuring that structurally 289

similar K crystals serve as few-shot examples. 290

Condition-Structure based selection. To bal- 291

ance property consistency and structural similar- 292

ity, this strategy combines the strengths of both 293

approaches. We first filter the dataset to obtain 294

crystals that meet the specified conditions and ran- 295

domly select a crystal as anchor. Then, we retrieve 296

the K − 1 crystals with the highest structural simi- 297

larity to the anchor based on euclidean distance in 298

the CrystalNN fingerprint space. The final few-shot 299

example set consists of the anchor crystal and its 300

K− 1 nearest neighbors, facilitating both property- 301

conditioned and structure-aware generation. 302

By integrating the above three selection strate- 303

gies, we construct the few-shot example set and 304

extend the zero-shot instruction template to obtain 305

the few-shot template Tf : 306

### Instruction: Below is three
description of bulk materials.↪→

### First Example:
### [Condition Description-1]
### [Crys Str-1]
### ...
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### [Condition Description]. Based on
the three examples provided,
generate the space group symbol, a
description of the lengths and
angles of the lattice vectors, along
with the element type and
coordinates for each atom within the
lattice:

↪→

↪→

↪→

↪→

↪→

↪→

↪→

### Response: [Crystal String].

Given the constructed condition-structure aware307

instruction template Tf , the few-shot crystal gen-308

eration instruction set SDf
can be generated by309

applying Tf to each sample in D. The fine-tuning310

instruction set SD is obtained by combining the311

zero-shot instruction set SDz with the few-shot in-312

struction set SDf
. The pre-trained LLM can then313

be fine-tuned by optimizing the following training314

loss:315

L(θ) =
∑

(Qi,Ri)∈SD

− log fθ(Ri|Qi), (2)316

where fθ represents the pre-trained LLM param-317

eterized by θ. In practice, fθ is initialized using318

Llama2-7b-chat, and LoRA (Hu et al., 2022) is em-319

ployed to accelerate the training process. Further320

details can be found in Appendix E.321

3.3 Multi-Task Crystal Instruction Tuning:322

Property Prediction Auxiliary Task323

In the previous section, we introduce a condition-324

structure aware hybrid crystal instruction tuning325

framework that enhances ICL ability by integrat-326

ing hybrid example selection methods. However,327

the model still lacks explicit supervision for learn-328

ing the intrinsic mapping between crystal structures329

and their physicochemical properties, which is criti-330

cal for generating accurate and meaningful crystals.331

To address this limitation, we propose a multi-task332

crystal instruction tuning strategy that incorporates333

the property prediction auxiliary task. In addition334

to the primary crystal generation task, this auxiliary335

task trains the model to predict key crystal proper-336

ties based on the crystal structure text. We define337

the property prediction template Tp as follows:338

### Instruction: Below is a partial
description of a bulk material where
the [Property] has been replaced
with the string "[MASK]":

↪→

↪→

↪→

### The [Property] is [MASK].
### [Crys Str]

### Generate the [Property] that could
replace [MASK] in the bulk material:↪→

### Response: [Property Value].

By jointly optimizing both crystal generation 339

and property prediction tasks, the model learns to 340

internalize structural patterns and their correspond- 341

ing physical attributes, improving both generation 342

accuracy and property consistency. 343

4 Experiment 344

In our experiments, we aim to address five key re- 345

search questions: RQ1: Can CrystalICL effectively 346

inherit the ICL capabilities of LLMs and leverage 347

limited examples in the prompt to improve perfor- 348

mance in the conditional crystal generation task? 349

RQ2: Can CrystalICL effectively utilize its ICL 350

capabilities to achieve cross-domain conditional 351

generation? RQ3: How does CrystalICL perform 352

in the unconditional crystal generation task com- 353

pared to existing baselines? RQ4: How do dif- 354

ferent types of instructions in the tuning set affect 355

CrystalICL’s ICL ability? RQ5: How do different 356

example selection strategies during inference affect 357

the performance of CrystalICL? 358

4.1 Experimental Setup 359

Datasets. We evaluate the conditional generation 360

task on four crystal generation datasets: MP20 361

(Jain et al., 2013), MP30 (Gruver et al., 2024), P5 362

(Castelli et al., 2012), and C24 (Pickard, 2020). 363

For the unconditional generation task, following 364

the previous work (Xie et al., 2022; Jiao et al., 365

2023), we evaluate on MP20, P5, and C24. De- 366

tailed dataset information is provided in Appendix 367

B. For the conditional generation task, we employ 368

the Success Rate as the evaluation metric. For the 369

unconditional generation task, we evaluate perfor- 370

mance across three key aspects: Validity, Coverage 371

and Property Distribution. Further details can be 372

found in Appendix C. 373

Baselines. For the conditional crystal genera- 374

tion task, we use CrystalLLM (Gruver et al., 2024) 375

as the baseline model. For the unconditional crys- 376

tal generation task, we select CDVAE (Xie et al., 377

2022), DiffCSP (Jiao et al., 2023), and CrystalLLM 378

as the baseline models. 379

4.2 Conditional Generation Evaluation 380

To address RQ1, we conduct evaluations of condi- 381

tional generation task across four datasets. Specifi- 382

cally, we select the properties of crystals from the 383
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Dataset Method
Success Rate

Pretty Formula Space Group Formation Energy Band Gap
Mean Std. Mean Std. Mean Std. Mean Std.

MP20

CrystalLLM (XYZ) 0.9394 0.0099 0.0640 0.0078 0.8475 0.0169 0.6637 0.0129
CrystalICL (XYZ) 0-Shot 0.9578 0.0067 0.0868 0.0098 0.8751 0.0048 0.6655 0.0233
CrystalICL (XYZ) 3-Shot 0.9906 0.0050 0.0886 0.0151 0.9125 0.0072 0.7087 0.0165

CrystalLLM (SGS) 0.4513 0.0218 0.8726 0.0097 0.7984 0.0144 0.6373 0.0159
CrystalICL (SGS) 0-Shot 0.7218 0.0135 0.9881 0.0050 0.9049 0.0170 0.7023 0.0146
CrystalICL (SGS) 3-Shot 0.8868 0.0077 0.9908 0.0033 0.9392 0.0094 0.7453 0.0263

MP30

CrystalLLM (XYZ) 0.9699 0.0019 0.0799 0.0087 0.8297 0.0091 0.6732 0.0211
CrystalICL (XYZ) 0-Shot 0.9536 0.0066 0.0926 0.0158 0.8485 0.0093 0.6767 0.0273
CrystalICL (XYZ) 3-Shot 0.9922 0.0028 0.1083 0.0089 0.9461 0.0056 0.7454 0.0139

CrystalLLM (SGS) 0.5008 0.0253 0.9006 0.0098 0.8030 0.0177 0.6687 0.0220
CrystalICL (SGS) 0-Shot 0.7162 0.0118 0.9827 0.0052 0.8642 0.0143 0.6782 0.0053
CrystalICL (SGS) 3-Shot 0.9641 0.0075 0.9956 0.0028 0.9789 0.0043 0.7943 0.0098

Table 1: The conditional sample performance on MP20 and MP30.
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Figure 4: The conditional sample performance on P5
and C24.
test set as generation conditions, and use exam-384

ples from the training set as demonstrations in the385

few-shot prompt. Further details can be found in386

Appendix C. Each fine-tuned model is evaluated387

through five iterations of 1,000-sample testing, and388

Tab. 1 and Fig. 4 summarize the mean performance389

metrics along with their standard deviation across390

these iterations. Based on the experimental results,391

we summarize two key conclusions:392

CrystalICL is effective and reliable. As shown393

in Tab. 1 and Fig. 4, CrystalICL exhibits superior394

performance in conditional crystal generation task395

across various crystal structure text formats and396

datasets of different domains and scales. In contrast397

to CrystalLLM, which experiences a significant per-398

formance drop in zero-shot scenarios for chemical399

formula generation using SGS-format crystal struc-400

ture text, our CrystalICL shows a smaller decline,401

demonstrating its robustness across different for-402

mats of crystal structure text. Furthermore, Crystal-403

ICL shows a marked improvement in performance404

in few-shot scenarios compared to zero-shot scenar-405

ios, effectively validating its successful inheritance406

of the ICL capabilities of LLMs.407

SGS proves to be an effective method for crys-408

tal tokenization. The results indicate that, com-409

pared to XYZ-format crystal structure text, SGS410

significantly enhances LLMs’ ability to generate411

crystals conditioned on the space group, while 412

performance for chemical-formula based tasks is 413

slightly reduced. This highlights the effective- 414

ness of our space-group based crystal tokenization 415

method in simplifying the complexity of model- 416

ing crystal symmetry. Furthermore, on both the 417

MP20 and MP30 datasets, the SGS-based approach 418

outperforms in crystal physicochemical property 419

conditioned generation tasks, demonstrating the 420

importance of crystal symmetry in modeling the 421

relationship between crystal structures and their 422

properties. Additionally, the use of XYZ-format 423

crystal structure text results in notably poor per- 424

formance in space-group conditioned generation 425

across multiple datasets, supporting our view raised 426

in Sec. 3.1 that including the 3D coordinates of all 427

atoms in the crystal structure text exacerbates the 428

challenge of modeling crystal symmetry in LLMs. 429

4.3 Cross-domain Conditional Generation 430

Evaluation 431

To address RQ2, we design a cross-domain con- 432

ditional generation scenario for evaluation. The 433

model is trained on the MP20 dataset, while testing 434

is conducted on randomly selected crystals from 435

the test sets of P5 and C24, using their properties 436

as generation conditions. 437

With the use of SGS, CrystalICL effectively 438

leverages its ICL capabilities to achieve cross- 439

domain conditional generation. As shown in Fig. 440

5, the performance of the cross-domain conditional 441

generation task experiences a significant decline 442

when compared to the domain-specific conditional 443

generation task shown in Fig. 4. This is primar- 444

ily due to the considerable differences between 445

the MP20, P5, and C24 datasets. Specifically, all 446

crystals in the P5 dataset share the same chem- 447
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Figure 5: The cross-domain conditional generation per-
formance on P5 and C24.

ical formula ABX3, and only four space groups448

are involved. In the C24 dataset, all crystals con-449

sist solely of carbon atoms. Moreover, most of450

the crystals in P5 and C24 do not exist in real-451

ity, making it challenging to transfer knowledge452

from the MP20 dataset to these datasets. How-453

ever, it is encouraging to observe that when us-454

ing SGS-format crystal structure text, Crystal-455

ICL demonstrates remarkable cross-domain per-456

formance in space-group conditioned generation,457

with almost no performance degradation compared458

to domain-specific conditional generation task. Ad-459

ditionally, when compared to CrystalLLM, Crys-460

talICL exhibits a smaller performance decline in461

the chemical-formula conditioned generation task,462

showcasing its stronger generalization ability.463

4.4 Unconditional Generation Evaluation464

To answer RQ3, we use the unconditional genera-465

tion prompt to sample 10,000 structures from each466

fine-tuned model and attempt to parse them into467

CIF files based on the generated samples. If a sam-468

pled string cannot be parsed as a valid CIF, the469

sample is rejected and re-sampled.470

CrystalICL demonstrates a superior ability to471

capture the relationship between crystal struc-472

tures and their properties. As shown in Tab. 2,473

we evaluate the performance of unconditional crys-474

tal generation task across multiple datasets. The re-475

sults indicate that, compared to CrystalLLM, Crys-476

talICL generates crystal structures whose property477

distributions exhibit a much closer alignment with478

those in the training sets across all three datasets.479

This demonstrates the effectiveness of CrystalICL480

in learning both crystal structure and property dis-481

tributions. It also validates the impact of incorporat-482

ing few-shot crystal generation instructions into the483

instruction tuning set for modeling crystal distribu-484

tions. Additionally, SGS-format crystal structure485

text reduce the distributional differences in den-486

sity and formation energy across all three datasets,487

demonstrating the effectiveness of SGS in model-488

Dataset Method
Validity Check ↑ Coverage ↑ Property Distribution ↓

Composition Structural Valid Recall Precision wdist(ρ) wdist(E) wdist(Nel)

MP20

CDVAE 0.8514 0.9999 0.8514 0.9896 0.9946 0.6445 0.2617 1.1567
DiffCSP 0.8182 0.9983 0.8172 0.9957 0.9967 0.1907 0.1394 0.5703

CrystalLLM(XYZ) 0.9019 0.9630 0.8697 0.9839 0.9931 1.3315 0.4503 0.1811
CrystalICL(XYZ) 0.8922 0.9792 0.8747 0.9840 0.9949 1.2175 0.3818 0.1756
CrystalLLM(SGS) 0.8433 0.9570 0.8144 0.9944 0.9847 0.8356 0.3544 0.1743
CrystalICL(SGS) 0.8655 0.9859 0.8555 0.9949 0.9926 0.6039 0.2568 0.1359

P5

CDVAE 0.9841 1.0000 0.9841 0.9897 0.9852 0.0664 0.0474 0.1350
DiffCSP 0.9848 0.9999 0.9845 0.9947 0.9820 0.0462 0.0532 0.0301

CrystalLLM(XYZ) 0.9896 1.0000 0.9896 0.9915 0.9856 0.1755 0.0448 0.0196
CrystalICL(XYZ) 0.9940 1.0000 0.9940 0.9905 0.9898 0.2269 0.0284 0.0200
CrystalLLM(SGS) 0.9895 1.0000 0.9895 0.9918 0.9880 0.1443 0.0155 0.0333
CrystalICL(SGS) 0.9916 1.0000 0.9916 0.9908 0.9872 0.1692 0.0089 0.0644

C24

CDVAE 1.0000 1.0000 1.0000 0.9990 0.8416 0.1497 0.2206 -
DiffCSP 1.0000 1.0000 1.0000 0.9990 0.9642 0.0548 0.0415 -

CrystalLLM(XYZ) 1.0000 0.8893 0.8893 0.2182 0.0005 0.0691 30.8053 -
CrystalICL(XYZ) 1.0000 0.9282 0.9282 0.5458 0.0052 0.0395 29.4212 -
CrystalLLM(SGS) 1.0000 0.9574 0.9574 0.9916 0.7965 0.0707 3.0564 -
CrystalICL(SGS) 1.0000 0.9669 0.9669 0.9921 0.8928 0.0593 1.3061 -

Table 2: The unconditional sample performance.

ing the relationship between crystal structures and 489

properties. Particularly, for the C24 dataset, which 490

consists entirely of carbon-based materials, SGS 491

significantly alleviates the difficulty for LLMs in 492

modeling crystal structure distributions, leading to 493

a substantial improvement in precision and recall 494

on this dataset. 495

4.5 Effect of Instruction Types in the Tuning 496

Set 497

To investigate RQ4, we conduct an ablation study 498

to analyze how different instruction types affect 499

conditional crystal generation performance. Specif- 500

ically, to better align with real-world ICL scenarios, 501

we train on the MP20 and select demonstrations 502

from the MP30 (an extension of MP20), examin- 503

ing the influence of various instruction types on 504

performance during the training process, with the 505

results presented in Tab. 3. In this study, C, F, and 506

CF correspond to the three demonstration selection 507

strategies introduced in Sec. 3.2, Rand represents 508

the random selection strategy, and noAux refers 509

to the removal of the property prediction auxiliary 510

instruction set described in Sec. 3.3. 511

Hybrid instruction tuning effectively en- 512

hances the capabilities of CrystalICL across var- 513

ious scenarios. Experimental results indicate that 514

variants using a single example selection strategy 515

during fine-tuning, such as F, CF, and C, show 516

poorer performance in zero-shot scenarios. How- 517

ever, in the few-shot setting, the performance re- 518

mains consistent with that in the zero-shot scenario, 519

demonstrating that randomly example selection 520

strategy leads to failing to derive task-relevant in- 521

formation from the demonstrations, thus losing ICL 522

capability. Additionally, removing the property pre- 523

diction instructions from the tuning set results in 524

a decline in zero-shot performance, highlighting 525

the importance of explicitly designing instructions 526

to guide the model in learning the relationship be- 527

tween crystal structures and their properties. 528
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Scenario Method
Success Rate

Pretty Formula Space Group Formation Energy Band Gap
Mean Std. Mean Std. Mean Std. Mean Std.

0-Shot

Rand 0.7364 0.0133 0.9916 0.0026 0.9082 0.0147 0.7006 0.0247
F 0.2966 0.0039 0.6446 0.0169 0.8039 0.0170 0.6239 0.0149

CF 0.6854 0.0081 0.9850 0.0039 0.8836 0.0186 0.7077 0.0126
C 0.6620 0.0180 0.9788 0.0035 0.8917 0.0082 0.6941 0.0213

noAux 0.4167 0.0227 0.3740 0.0178 0.8370 0.0047 0.6742 0.0156

CrystalICL 0.7390 0.0313 0.9904 0.0040 0.9104 0.0084 0.7017 0.0218

3-Shot

Rand 0.7430 0.0140 0.9883 0.0023 0.9083 0.0103 0.6982 0.0180
F 0.5425 0.0146 0.8436 0.0154 0.8144 0.0105 0.6473 0.0145

CF 0.4878 0.0062 0.3681 0.0202 0.8528 0.0115 0.6991 0.0156
C 0.9340 0.0075 0.9954 0.0016 0.9669 0.0073 0.7789 0.0214

noAux 0.9347 0.0078 0.9959 0.0010 0.9647 0.0090 0.7765 0.0253

CrystalICL 0.9214 0.0104 0.9948 0.0033 0.9685 0.0087 0.7687 0.0146

Table 3: Impact of different instruction types in the 3-
Shot Setting.

Method
Success Rate

Pretty Formula Space Group Formation Energy Band Gap
Mean Std. Mean Std. Mean Std. Mean Std.

FR 0.7284 0.0131 0.9807 0.0041 0.9064 0.0079 0.6957 0.0173
F 0.7273 0.0116 0.9846 0.0014 0.9020 0.0061 0.6981 0.0246
R 0.7441 0.0147 0.9871 0.0046 0.9107 0.0094 0.7120 0.0167

CFR 0.8417 0.0057 0.9925 0.0041 0.9457 0.0047 0.7237 0.0124
CF 0.8445 0.0106 0.9931 0.0026 0.9346 0.0061 0.7327 0.0036
CR 0.9024 0.0046 0.9950 0.0028 0.9532 0.0084 0.7655 0.0111
C 0.9214 0.0104 0.9948 0.0033 0.9685 0.0087 0.7687 0.0146

Table 4: Impact of different example selection strategies
in the 3-Shot Setting.

4.6 Effect of Example Selection Strategies529

During Inference530

To answer RQ5, we conduct experiments to evalu-531

ate the impact of different example selection strate-532

gies and the number of examples. The experimental533

setup follows the same configuration as described534

in Sec. 4.5. The results of these strategies under535

the 3-shot setting are presented in Tab. 4. Specifi-536

cally, C, F, and CF correspond to the three example537

selection strategies introduced in Sec. 3.2, while R538

refers to the random selection of examples or the539

shuffling of the selected examples order. Based on540

the experimental results in Tab. 4 and Tab. 5, we541

summarize two conclusive findings as follows:542

Providing appropriate demonstrations is cru-543

cial for crystal generation. The results in Tab. 4544

demonstrate that shuffling the order of examples545

reduces the success rate of conditional generation,546

confirming the effectiveness of using generation547

conditions and CrystalNN fingerprints as criteria548

for example selection. Moreover, the condition-549

based prompt construction strategy achieves the550

best performance, highlighting the importance of551

providing similar examples in conditional crystal552

generation task.553

The number of demonstrations has an in-554

significant impact on crystal generation task.555

Tab. 5 presents the influence of the number of556

examples on conditional generation performance,557

evaluating both random selection and condition-558

based selection strategies for prompt construction.559

The results indicate that the number of examples se-560

lected during generation has no significant impact561

Method
Success Rate

Pretty Formula Space Group Formation Energy Band Gap
Mean Std. Mean Std. Mean Std. Mean Std.

1Shot-R 0.7360 0.0177 0.9866 0.0041 0.9026 0.0066 0.7070 0.0160
2Shot-R 0.7310 0.0084 0.9865 0.0066 0.9072 0.0054 0.7023 0.0120
3Shot-R 0.7441 0.0147 0.9871 0.0046 0.9107 0.0094 0.7120 0.0167

1Shot-C 0.9376 0.0039 0.9946 0.0024 0.9731 0.0045 0.8009 0.0235
2Shot-C 0.9410 0.0119 0.9954 0.0020 0.9683 0.0036 0.7777 0.0068
3Shot-C 0.9214 0.0104 0.9948 0.0033 0.9685 0.0087 0.7687 0.0146

Table 5: Impact of different shot numbers.

on the model’s cross-domain conditional genera- 562

tion capability. 563

5 Related work 564

5.1 Equivariant Diffusion model-based 565

Crystal Generation Methods 566

Periodicity and symmetry are fundamental charac- 567

teristics of crystals, which have a decisive impact 568

on their physical properties. Therefore, ensuring 569

the SE(3) equivariance of the crystal generation 570

process is crucial for crystal generation task (Han 571

et al., 2024). To address this challenge, equivariant 572

diffusion models (Xie et al., 2022; Jiao et al., 2023, 573

2024) have emerged as a leading method for gener- 574

ating stable crystal materials in recent years, owing 575

to their ability to harness the physical symmetries 576

inherent in periodic material structures. 577

5.2 Language model-based Crystal 578

Generation Methods 579

In recent years, LLMs trained on large-scale unsu- 580

pervised corpora have demonstrated unprecedented 581

powerful capabilities across various tasks, which 582

has stimulated researchers’ interest in the potential 583

of language models in learning effective "world 584

models" for crystal chemistry. Several studies (An- 585

tunes et al., 2024; Gruver et al., 2024) have begun 586

to explore the capabilities of language models in 587

the field of crystal generation. 588

6 Conclusion 589

In this work, we propose CrystalICL, a crystal gen- 590

eration model designed to effectively inherit the 591

in-context learning (ICL) generalization ability of 592

LLMs. CrystalICL leverages the Wyckoff position 593

to simplify the modeling of crystal symmetry and 594

constructs an instruction fine-tuning set that har- 595

nesses the ICL capabilities of LLMs for crystal 596

generation tasks. Extensive experiments on four 597

crystal generation benchmarks demonstrate the ICL 598

capabilities of CrystalICL on conditional and un- 599

conditional generation tasks across domains. 600
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7 Limitations601

The limitations of our work are as follows:602

• In this study, we have demonstrated that Crys-603

talICL effectively inherits the ICL capabilities604

of LLMs for crystal generation tasks. How-605

ever, future research may explore how to ex-606

tend the ICL capabilities of LLMs to other607

crystal-related tasks, such as crystal property608

prediction, and work towards the development609

of a unified large model for crystal research.610

• Our proposed space-group based crystal tok-611

enization method reveals a trade-off between612

chemical formula and space group conditional613

generation tasks. Further exploration of crys-614

tal structure text that are more suitable for615

LLMs may prove to be a promising research616

direction.617

• Additionally, while LLM-based crystal gener-618

ation methods show potential in crystal gener-619

ation tasks, their ability to model crystal sym-620

metry may be limited by the current capacity621

of LLMs to process numerical coordinates622

effectively. Therefore, future studies should623

delve deeper into enhancing the capability of624

LLMs in processing numerical information,625

which could significantly improve their per-626

formance in crystal generation tasks.627

References628

Luis M Antunes, Keith T Butler, and Ricardo Grau-629
Crespo. 2024. Crystal structure generation with au-630
toregressive large language modeling. Nature Com-631
munications, 15(1):1–16.632

Kohei Shinohara Atsushi Togo and Isao Tanaka.633
2024. Spglib: a software library for crystal sym-634
metry search. Sci. Technol. Adv. Mater., Meth.,635
4(1):2384822–2384836.636

Keith T Butler, Daniel W Davies, Hugh Cartwright,637
Olexandr Isayev, and Aron Walsh. 2018. Machine638
learning for molecular and materials science. Nature,639
559(7715):547–555.640

Ivano E Castelli, David D Landis, Kristian S Thygesen,641
Søren Dahl, Ib Chorkendorff, Thomas F Jaramillo,642
and Karsten W Jacobsen. 2012. New cubic per-643
ovskites for one-and two-photon water splitting using644
the computational materials repository. Energy & En-645
vironmental Science, 5(10):9034–9043.646

Chi Chen, Weike Ye, Yunxing Zuo, Chen Zheng, and 647
Shyue Ping Ong. 2019. Graph networks as a univer- 648
sal machine learning framework for molecules and 649
crystals. Chemistry of Materials, 31(9):3564–3572. 650

Kishalay Das, Subhojyoti Khastagir, Pawan Goyal, 651
Seung-Cheol Lee, Satadeep Bhattacharjee, and Niloy 652
Ganguly. 2025. Periodic materials generation using 653
text guided joint diffusion model. In The Thirteenth 654
International Conference on Learning Representa- 655
tions, ICLR. OpenReview.net. 656

Gautam R Desiraju. 2002. Cryptic crystallography. Na- 657
ture materials, 1(2):77–79. 658

Daniel Flam-Shepherd and Alán Aspuru-Guzik. 2023. 659
Language models can generate molecules, materials, 660
and protein binding sites directly in three dimensions 661
as xyz, cif, and PDB files. CoRR, abs/2305.05708. 662

Nate Gruver, Anuroop Sriram, Andrea Madotto, An- 663
drew Gordon Wilson, C. Lawrence Zitnick, and 664
Zachary W. Ulissi. 2024. Fine-tuned language mod- 665
els generate stable inorganic materials as text. In 666
The Twelfth International Conference on Learning 667
Representations, ICLR 2024, Vienna, Austria, May 668
7-11, 2024. OpenReview.net. 669

Sydney R Hall, Frank H Allen, and I David Brown. 670
1991. The crystallographic information file (cif): a 671
new standard archive file for crystallography. Foun- 672
dations of Crystallography, 47(6):655–685. 673

Jiaqi Han, Jiacheng Cen, Liming Wu, Zongzhao Li, 674
Xiangzhe Kong, Rui Jiao, Ziyang Yu, Tingyang 675
Xu, Fandi Wu, Zihe Wang, Hongteng Xu, Zhewei 676
Wei, Yang Liu, Yu Rong, and Wenbing Huang. 677
2024. A survey of geometric graph neural networks: 678
Data structures, models and applications. CoRR, 679
abs/2403.00485. 680

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan 681
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and 682
Weizhu Chen. 2022. Lora: Low-rank adaptation of 683
large language models. In The Tenth International 684
Conference on Learning Representations, ICLR 2022, 685
Virtual Event, April 25-29, 2022. OpenReview.net. 686

Anubhav Jain, Shyue Ping Ong, Geoffroy Hautier, Wei 687
Chen, William Davidson Richards, Stephen Dacek, 688
Shreyas Cholia, Dan Gunter, David Skinner, Ger- 689
brand Ceder, et al. 2013. Commentary: The materials 690
project: A materials genome approach to accelerating 691
materials innovation. APL materials, 1(1). 692

Rui Jiao, Wenbing Huang, Peijia Lin, Jiaqi Han, Pin 693
Chen, Yutong Lu, and Yang Liu. 2023. Crystal struc- 694
ture prediction by joint equivariant diffusion. In Ad- 695
vances in Neural Information Processing Systems 36: 696
Annual Conference on Neural Information Process- 697
ing Systems 2023, NeurIPS 2023, New Orleans, LA, 698
USA, December 10 - 16, 2023. 699

Rui Jiao, Wenbing Huang, Yu Liu, Deli Zhao, and Yang 700
Liu. 2024. Space group constrained crystal gener- 701
ation. In The Twelfth International Conference on 702

9

https://doi.org/10.1080/27660400.2024.2384822
https://doi.org/10.1080/27660400.2024.2384822
https://doi.org/10.1080/27660400.2024.2384822
https://openreview.net/forum?id=AkBrb7yQ0G
https://openreview.net/forum?id=AkBrb7yQ0G
https://openreview.net/forum?id=AkBrb7yQ0G
https://doi.org/10.48550/ARXIV.2305.05708
https://doi.org/10.48550/ARXIV.2305.05708
https://doi.org/10.48550/ARXIV.2305.05708
https://doi.org/10.48550/ARXIV.2305.05708
https://doi.org/10.48550/ARXIV.2305.05708
https://doi.org/10.48550/ARXIV.2403.00485
https://doi.org/10.48550/ARXIV.2403.00485
https://doi.org/10.48550/ARXIV.2403.00485
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9


Learning Representations, ICLR 2024, Vienna, Aus-703
tria, May 7-11, 2024. OpenReview.net.704

Walter Kohn and Lu Jeu Sham. 1965. Self-consistent705
equations including exchange and correlation effects.706
Physical review, 140(4A):A1133.707

Zeming Lin, Halil Akin, Roshan Rao, Brian Hie,708
Zhongkai Zhu, Wenting Lu, Nikita Smetanin, Robert709
Verkuil, Ori Kabeli, Yaniv Shmueli, et al. 2023.710
Evolutionary-scale prediction of atomic-level pro-711
tein structure with a language model. Science,712
379(6637):1123–1130.713

H. LIPSON. 1949. Crystal structures. Nature,714
163(4147):622–622.715

Shyue Ping Ong, William Davidson Richards, Anub-716
hav Jain, Geoffroy Hautier, Michael Kocher, Shreyas717
Cholia, Dan Gunter, Vincent L. Chevrier, Kristin A.718
Persson, and Gerbrand Ceder. 2013. Python mate-719
rials genomics (pymatgen): A robust, open-source720
python library for materials analysis. Computational721
Materials Science, 68:314–319.722

Chris J Pickard. 2020. Airss data for carbon at 10gpa723
and the c+ n+ h+ o system at 1gpa. (No Title).724

Izumi Takahara, Kiyou Shibata, and Teruyasu Mi-725
zoguchi. 2024. Generative inverse design of crys-726
tal structures via diffusion models with transformers.727
CoRR, abs/2406.09263.728

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-729
bert, Amjad Almahairi, Yasmine Babaei, Nikolay730
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti731
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-732
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,733
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,734
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-735
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan736
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,737
Isabel Kloumann, Artem Korenev, Punit Singh Koura,738
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-739
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-740
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-741
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-742
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,743
Ruan Silva, Eric Michael Smith, Ranjan Subrama-744
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-745
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,746
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,747
Melanie Kambadur, Sharan Narang, Aurélien Ro-748
driguez, Robert Stojnic, Sergey Edunov, and Thomas749
Scialom. 2023. Llama 2: Open foundation and fine-750
tuned chat models. CoRR, abs/2307.09288.751

Logan Ward, Ankit Agrawal, Alok Choudhary, and752
Christopher Wolverton. 2016. A general-purpose ma-753
chine learning framework for predicting properties754
of inorganic materials. npj Computational Materials,755
2(1):1–7.756

Tian Xie, Xiang Fu, Octavian-Eugen Ganea, Regina757
Barzilay, and Tommi S. Jaakkola. 2022. Crystal dif-758
fusion variational autoencoder for periodic material759

generation. In The Tenth International Conference on 760
Learning Representations, ICLR 2022, Virtual Event, 761
April 25-29, 2022. OpenReview.net. 762

Weitong Zhang, Xiaoyun Wang, Weili Nie, Joe Eaton, 763
Brad Rees, and Quanquan Gu. 2023. Moleculegpt: 764
Instruction following large language models for 765
molecular property prediction. In NeurIPS 2023 766
Workshop on New Frontiers of AI for Drug Discovery 767
and Development. 768

Yizhen Zheng, Huan Yee Koh, Maddie Yang, Li Li, Lau- 769
ren T. May, Geoffrey I. Webb, Shirui Pan, and George 770
Church. 2024. Large language models in drug dis- 771
covery and development: From disease mechanisms 772
to clinical trials. CoRR, abs/2409.04481. 773

Nils ER Zimmermann and Anubhav Jain. 2020. Local 774
structure order parameters and site fingerprints for 775
quantification of coordination environment and crys- 776
tal structure similarity. RSC advances, 10(10):6063– 777
6081. 778

A Failure Example 779

The following is an example of a failed 0-shot gen- 780

eration by GPT-3.5 Turbo: 781

### Instruction:
### Example:
### a b c
### alpha beta gamma
### atom
### x y z
### atom
### x y z
### Below is a description of a bulk

material. The chemical formula is
SnReN3. The spacegroup number is 221.
Generate a description of the
lengths and angles of the lattice
vectors and then the element type
and coordinates for each atom within
the lattice. The answer should
contain only the element symbol and
the number, and should be formatted
as given in the example:

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

### Response:
### Description of lattice vectors:
### a = 5.67 Å
### b = 5.67 Å
### c = 5.67 Å
### alpha = 90°
### beta = 90°
### gamma = 90°
###
### Element type and coordinates:
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### Sn 0.00 0.00 0.00
### Re 0.50 0.50 0.50
### N 0.25 0.25 0.25
### N 0.75 0.75 0.75
### N 0.00 0.50 0.00
### N 0.50 0.00 0.50

From the above failed example, it is evident that782

despite providing example structures in the prompt783

and specifying that the response should contain784

only element symbols and numbers, the output gen-785

erated by GPT-3.5 Turbo still included special sym-786

bols such as ’=’, ’Å’, and ’°’, as well as the English787

phrase "Description of lattice vectors:". This il-788

lustrates that a general pretrained large language789

model, without fine-tuning, struggles to adhere to790

the instructions and generate the desired crystal791

structure text.792

B Details of Datasets793

We selected four datasets with diverse domains794

and scales to comprehensively evaluate the model’s795

performance. We apply the standard split as used796

in previous work (Xie et al., 2022; Gruver et al.,797

2024) for all of our experiments.798

The MP20 dataset is derived from the Materials799

Project (Jain et al., 2013) and contains 45,231 ma-800

terials with varying structural and compositional801

characteristics, covering 89 elements and unit cells802

ranging from 1 to 20 atoms. Following the previous803

work (Xie et al., 2022), we only select structures804

with formation energy smaller than 2 eV/atom and805

energy above the hull smaller than 0.08 eV/atom.806

All materials in MP20 have been relaxed using807

density functional theory (DFT). The dataset analy-808

sis indicates that most materials exhibit thermody-809

namic stability and have been successfully synthe-810

sized in experiments.811

The MP30 dataset (Gruver et al., 2024) is also812

derived from the Materials Project and comprises813

127,609 crystal structures. The dataset spans a wide814

range of materials, with unit cells containing 1 to815

30 atoms. Compared to MP20, MP30 includes a816

more extensive collection of structures, capturing817

a broader diversity of compositions. All crystal818

structures in MP30 have been relaxed using DFT to819

ensure reliable structural and energetic information,820

facilitating its application in crystal generation and821

property prediction tasks.822

The Perov-5 (P5) dataset (Castelli et al., 2012)823

consists of 18,928 perovskite materials that share824

the same structure but differ in chemical composi- 825

tion. It includes 56 elements, with each unit cell 826

containing 5 atoms. Perovskite materials typically 827

follow the general chemical formula ABX3, where, 828

in an ideal cubic structure, the A atoms occupy 829

the corner positions, the B atoms are located at 830

the body center, and the X atoms are positioned 831

at the face centers. Due to their wide range of 832

applications, perovskites have attracted significant 833

attention in photovoltaics, catalysis, and electron- 834

ics. All structures in P5 have been relaxed using 835

DFT. The resulting relaxed structures can deviate 836

significantly from the ideal perovskite structures. 837

Additionally, a significant portion of these mate- 838

rials are not thermodynamically stable, meaning 839

they are prone to decomposition into more stable 840

phases and are thus challenging to synthesize ex- 841

perimentally. 842

The Carbon-24 (C24) dataset comprises carbon 843

structures generated through the ab initio random 844

structure search (AIRSS) (Pickard, 2020) method 845

under a pressure of 10 GPa. While all materials 846

in this dataset are composed exclusively of carbon, 847

they exhibit considerable structural diversity. The 848

dataset includes materials with unit cells containing 849

between 6 and 24 atoms. Consistent with previous 850

work (Xie et al., 2022), we retain only the 10% of 851

structures with the lowest energy per atom from the 852

original dataset to create C24. All 10,153 structures 853

in C24 have been optimized using DFT. The most 854

stable structure under 10 GPa is diamond, whereas 855

most remaining structures are thermodynamically 856

unstable, although some may be kinetically sta- 857

ble. However, the majority of these structures are 858

unlikely to be experimentally synthesizable. 859

C Evaluation Metrics 860

For the evaluation of conditional crystal genera- 861

tion, we follow previous studies (Takahara et al., 862

2024; Das et al., 2025) and adopt the success rate 863

as the primary evaluation metric. On the MP30 864

dataset, we focus on the conditional generation on 865

chemical formula, space group, formation energy, 866

and band gap, as these properties can be easily vali- 867

dated or approximated. On the P5 and C24 datasets, 868

we restrict the conditional constraints to chemical 869

formula and space group due to limitations in the 870

available data. Chemical formula validation is per- 871

formed by directly counting the atomic composi- 872

tion in the generated structures. Space group is 873

determined using the SpacegroupAnalyzer module 874
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from the pymatgen (Ong et al., 2013) library. For-875

mation energy and band gap are estimated using876

MEGNet (Chen et al., 2019) models trained on the877

Materials Project (Jain et al., 2013) dataset. Specif-878

ically, for formation energy, a generated sample is879

considered successful if its formation energy shares880

the same sign as the input condition (Das et al.,881

2025). For band gap, a sample is deemed valid882

if the absolute difference between the generated883

value and the input condition is less than 0.5 eV.884

For the P5 and C24 datasets, since many materials885

in these datasets are derived from DFT calculations886

and do not exist in reality, their physicochemical887

properties may not be accurately estimated. There-888

fore, the evaluation for these datasets is limited to889

chemical formula and space group.890

For the unconditional generation task, we fol-891

low prior work (Xie et al., 2022; Jiao et al., 2023)892

and evaluate performance across three key aspects:893

validity metrics, coverage metrics, and property894

distribution metrics. Validity metrics are catego-895

rized into structural validity and compositional va-896

lidity. Structural validity is determined based on897

non-overlapping atomic radii, where overlap is de-898

fined as the distance between two atoms being less899

than half the sum of their radii. Compositional va-900

lidity ensures that the generated structure has a net901

neutral charge, as only charge-neutral structures902

are considered valid. Coverage metrics include903

recall and precision, which are computed based904

on CrystalNN fingerprints (Zimmermann and Jain,905

2020) and normalized Magpie fingerprints (Ward906

et al., 2016). Recall measures how many ground-907

truth materials are correctly predicted, while preci-908

sion assesses the quality of the generated materials.909

Property distribution metrics are evaluated using910

the Wasserstein distance for three key properties:911

density ρ, formation energy per atom E, and the912

number of distinct element types Nel within the913

unit cell. These metrics provide a comprehensive914

assessment of how well the generated crystal struc-915

tures align with real-world material distributions.916

D Baseline917

CrystalLLM (Gruver et al., 2024) finetunes Llama-918

2 on crystal structure texts in XYZ format, explor-919

ing both unconditional and conditional crystal gen-920

eration tasks in zero-shot settings, thus highlighting921

the potential of LLMs in crystal generation. CD-922

VAE (Xie et al., 2022) proposes a VAE framework923

that first predicts the invariant lattice parameters924

and then generates the atom types and coordinates 925

via a score-based decoder. DiffCSP (Jiao et al., 926

2023) jointly generates the lattices and atom coor- 927

dinates. 928

E Training Hyperparameters 929

To efficiently fine-tune Llama2-7b-chat, this study 930

employs the LoRA technique with a rank of 8, an 931

alpha value of 32, and a dropout rate of 5e-2. The 932

learning rate follows a cosine annealing schedule 933

with an initial value of 5e-4. During training, dif- 934

ferent batch sizes and epochs are used based on 935

the dataset characteristics. For the MP20 and C24 936

datasets, a batch size of 1 is used with 10 training 937

epochs. Due to the larger scale and extended train- 938

ing time required for the MP30 dataset, the batch 939

size remains set to 1, while the number of training 940

epochs is limited to 3. For the P5 dataset, where 941

all crystal structures contain only five atoms per 942

unit cell, a batch size of 4 is used with 10 train- 943

ing epochs to accelerate training. In the inference 944

stage, batch sizes are adjusted based on the specific 945

generation task. The batch size is set to 6 for cross- 946

domain conditional generation, 8 for conditional 947

generation, and 32 for unconditional generation. 948

Additionally, both the top-p sampling parameter 949

and the temperature are set to 0.9. All training 950

and inference processes are conducted on a single 951

Nvidia L40 48G GPU. 952

F Computational Cost of SGS 953

Preprocessing 954

To address concerns regarding the potential com- 955

putational overhead introduced by the use of space- 956

group based tokenization (SGS), we provide de- 957

tailed runtime statistics for the conversion of CIF 958

files to SGS format across various crystal datasets. 959

The SGS preprocessing involves the identifica- 960

tion of space groups and Wyckoff positions for each 961

crystal structure. This step is executed as a one- 962

time offline transformation using pymatgen (Ong 963

et al., 2013) and spglib (Atsushi Togo and Tanaka, 964

2024), accelerated by 32-process parallelization via 965

the pandarallel library. 966

Table 6 reports the wall-clock times for convert- 967

ing commonly used datasets on a server equipped 968

with 4×Intel(R) Xeon(R) Gold 5120 CPUs @ 969

2.20GHz. As shown, SGS preprocessing is com- 970

putationally efficient even for large-scale datasets. 971

For example, the MP30 dataset, which includes 972

over 140k crystals, can be converted in under 8 973
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Dataset Dataset Size Conversion Time (s)

MP20 43k 142.57
MP30 144k 442.73

P5 19k 20.94
C24 10k 12.93

Table 6: Preprocessing time for CIF-to-SGS conversion
using 32-process parallelism.

minutes. For smaller datasets, the conversion typ-974

ically completes within seconds. Therefore, the975

computation of Wyckoff positions introduces min-976

imal overhead and does not pose a bottleneck for977

practical usage.978

G Details of Instructions979

Our instruction fine-tuning dataset consists of two980

components: the instruction section and the re-981

sponse section. The instruction section provides a982

description of the task, specifies the required output983

format, and may include optional few-shot exam-984

ples. Depending on the specific fine-tuning task,985

the output can be either a textual representation of986

the crystal structure or a specific crystal property987

value. Below are examples illustrating different988

tasks from the four instruction fine-tuning datasets.989

The following is an example of a 0-shot condi-990

tional generation instruction based on the MP20991

dataset:992

### Instruction: Below is a description
of a bulk material. The chemical
formula is LiCuCO3. The energy above
the convex hull is 0.0469. The
spacegroup number is 67. The
formation energy per atom is -1.681.
The band gap is 1.7254. Generate the
space group symbol, a description of
the lengths and angles of the
lattice vectors and then the element
type and coordinates for each atom
within the lattice:

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

### Response:
### Cmme
### 5.3 6.3 8.8
### 90 90 90
### Li
### 0.00 0.25 0.64
### Cu
### 0.25 0.25 0.00
### C

### 0.00 0.25 0.28
### O
### 0.22 0.25 0.21
### O
### 0.00 0.25 0.43

The following is an example of a 3-shot condi- 993

tional generation instruction from the P5 dataset: 994

### Below is three description of bulk
materials.↪→

### First Example:
### The chemical formula is BeBaO2F. The

spacegroup number is 123.↪→

### P4/mmm
### 4.9 4.9 4.9
### 90 90 90
### Ba
### 0.50 0.50 0.50
### Be
### 0.00 0.00 0.00
### O
### 0.00 0.50 0.50
### F
### 0.50 0.50 0.00
### Second Example:
### The chemical formula is ZrMoO2N. The

spacegroup number is 123.↪→

### P4/mmm
### 4.0 4.0 4.0
### 90 90 90
### Zr
### 0.00 0.00 0.00
### Mo
### 0.50 0.50 0.50
### N
### 0.50 0.50 0.00
### O
### 0.00 0.50 0.50
### Third Example:
### The chemical formula is NiNaO2F. The

spacegroup number is 123.↪→

### P4/mmm
### 4.2 4.2 4.2
### 90 90 90
### Na
### 0.50 0.50 0.50
### Ni
### 0.00 0.00 0.00
### O
### 0.00 0.50 0.50
### F
### 0.50 0.50 0.00
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### The chemical formula is MgAgO2F. The
spacegroup number is 123. Based on
the three examples provided,
generate the space group symbol, a
description of the lengths and
angles of the lattice vectors, along
with the element type and
coordinates for each atom within the
lattice:

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

### Response:
### P4/mmm
### 4.2 4.2 4.2
### 90 90 90
### Mg
### 0.00 0.00 0.00
### Ag
### 0.50 0.50 0.50
### O
### 0.00 0.50 0.50
### F
### 0.50 0.50 0.00

The following is an example of an unconditional995

generation instruction from the C24 dataset:996

### Instruction: Below is a description
of a bulk material. Generate the
space group symbol, a description of
the lengths and angles of the
lattice vectors and then the element
type and coordinates for each atom
within the lattice:

↪→

↪→

↪→

↪→

↪→

↪→

### Response:
### Amm2
### 4.0 2.5 11.9
### 90 90 90
### C
### 0.19 0.00 0.67
### C
### 0.29 0.00 0.98
### C
### 0.30 0.00 0.23
### C
### 0.31 0.00 0.55
### C
### 0.00 0.00 0.32
### C
### 0.00 0.00 0.90

The following is an example of a crystal property997

prediction instruction from the MP30 dataset:998

### Instruction: Below is a partial
description of a bulk material where
the energy above the convex hull has
been replaced with the string
"[MASK]":

↪→

↪→

↪→

↪→

### The energy above the convex hull is
[MASK].↪→

### P4/mmm
### 4.0 4.0 10.1
### 90 90 90
### Rb
### 0.00 0.00 0.50
### Zn
### 0.00 0.50 0.16
### P
### 0.50 0.50 0.28
### P
### 0.00 0.00 0.00
### Generate the energy above the convex

hull that could replace [MASK] in
the bulk material:

↪→

↪→

### Response: 0.0

H Evaluation on Physical and Chemical 999

Realism 1000

To more comprehensively evaluate the physical 1001

and chemical realism of generated crystal struc- 1002

tures, we supplement the success rate metric with 1003

three additional evaluation criteria: atomic overlap, 1004

symmetry adherence, and energy-based feasibility 1005

check. Atomic overlap reflects the extent to which 1006

generated atoms are placed unrealistically close to 1007

one another, indicating physical invalidity of the 1008

resulting structure. Symmetry adherence measures 1009

how well the generated structure conforms to the 1010

intended space group, reflecting consistency with 1011

the specified generation condition. Energy-based 1012

feasibility check evaluates whether the generated 1013

crystal exhibits a negative formation energy, which 1014

is a necessary condition for thermodynamic stabil- 1015

ity. 1016

Method
Atomic Overlap ↓ Symmetry Adherence ↑ energy-based feasibility check ↑
Mean Std. Mean Std. Mean Std.

CrystalLLM (XYZ) 0.0974 0.0100 0.2562 0.0090 0.8179 0.0205
CrystalICL (XYZ) 0-Shot 0.0840 0.0087 0.3102 0.0213 0.8411 0.0049
CrystalICL (XYZ) 3-Shot 0.0731 0.0052 0.3492 0.0188 0.8795 0.0091

CrystalLLM (SGS) 0.0868 0.0067 0.8290 0.0091 0.7753 0.0161
CrystalICL (SGS) 0-Shot 0.0390 0.0037 0.9600 0.0028 0.8776 0.0170
CrystalICL (SGS) 3-Shot 0.0290 0.0058 0.9666 0.0054 0.9151 0.0124

Table 7: Evaluation of physical and chemical realism
on MP20.

To assess physical and chemical realism, we ap- 1017

ply these metrics in a conditional generation task 1018
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on the MP20 dataset. As shown in Table 7, our1019

method consistently achieves stronger performance1020

across all three metrics. In the few-shot SGS set-1021

ting, the model generates structures with notably1022

reduced atomic overlap and a symmetry adherence1023

success rate exceeding 96%. Furthermore, over1024

91.5% of the generated crystals exhibit negative for-1025

mation energy. These results demonstrate that the1026

proposed SGS representation and instruction tun-1027

ing strategies significantly improve the structural1028

validity and physical plausibility of the outputs.1029

I License1030

Llama-2 (Touvron et al., 2023) is distributed under1031

the LLaMA 2 Community License Agreement by1032

Meta. The MEGNet model (Chen et al., 2019) is1033

released under the BSD-3-Clause license. The py-1034

matgen (Ong et al., 2013) is released under the MIT1035

license. The Materials Project (Jain et al., 2013)1036

dataset, the P5 (Castelli et al., 2012) dataset and1037

the C24 (Pickard, 2020) dataset are released under1038

the Creative Commons Attribution 4.0 license. All1039

resources are used solely for academic research, in1040

accordance with their licensing terms.1041
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