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Abstract

Modern Vision-Language Models (VLMs) achieve impressive performance but are limited
by the quadratic complexity of self-attention, which prevents their deployment on edge
devices and makes their understanding of high-resolution images and long-context videos
prohibitively expensive. To address this challenge, we introduce LinMU (Linear-complexity
Multimodal Understanding), a VLM design that achieves linear complexity without using
any quadratic-complexity modules while maintaining the performance of global-attention-
based VLMs. LinMU replaces every self-attention layer in the VLM with the M-MATE
block: a dual-branch module that combines a bidirectional state-space model for global
context (Flex-MA branch) with localized Swin-style window attention (Local-Swin branch)
for adjacent correlations. To transform a pre-trained VLM into the LinMU architecture,
we propose a three-stage distillation framework that (i) initializes both branches with self-
attention weights and trains the Flex-MA branch alone, (ii) unfreezes the Local-Swin branch
and fine-tunes it jointly with the Flex-MA branch, and (iii) unfreezes the remaining blocks
and fine-tunes them using LoRA adapters, while regressing on hidden states and token-level
logits of the frozen VLM teacher. On MMMU, TextVQA, LongVideoBench, Video-MME,
and other benchmarks, LinMU matches the performance of teacher models, yet reduces
Time-To-First-Token (TTFT) by up to 2.7× and improves token throughput by up to 9.0×
on minute-length videos. Ablations confirm the importance of each distillation stage and
the necessity of the two branches of the M-MATE block. We also conduct distillation on
various VLM backbones to validate the universality of LinMU. The proposed framework
demonstrates that state-of-the-art multimodal reasoning can be achieved without quadratic
attention, thus opening up avenues for long-context VLMs that can deal with high-resolution
images and long videos.

1 Introduction

Recent advances in Vision-Language Models (VLMs) (Liu et al., 2023; Li et al., 2024; Chen et al., 2024d;
Wang et al., 2024b; Liu et al., 2025) have delivered outstanding multimodal understanding performance across
a wide range of image- and video-centric benchmarks, often matching or surpassing fully-supervised systems
through only few-shot prompting. VLMs have been widely deployed in various domains, including but not
limited to medicine (Tanno et al., 2025), remote sensing (Kuckreja et al., 2024), robotics (Kim et al., 2024),
autonomous driving (Jiang et al., 2025), agriculture (Arshad et al., 2025), and science education (Lu et al.,
2022). However, these achievements are accompanied by substantial computational overhead. Since global
self-attention scales quadratically with the number of tokens, processing minute-length, high-resolution videos
requires aggressive frame sampling or clusters of high-end GPUs, thus limiting the practical deployment of
current state-of-the-art models and motivating research into linear-complexity alternatives.

In this article, we seek to break the quadratic barrier for multimodal understanding. We propose LinMU
(Linear-complexity Multimodal Understanding), a framework that replaces every self-attention layer
in a VLM with a linear-complexity module while preserving model performance, as shown in Fig. 1. In-
spired by the recently introduced MATE block in LinGen (Wang et al., 2025b;a), we propose the M-MATE
(Multimodal-MATE) block, a linear-cost replacement for self-attention, as the building block of a multimodal
Transformer. The M-MATE block consists of two complementary branches: (i) a Flex-MA branch based on
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Figure 1: By replacing quadratic-complexity attention layers with our proposed M-MATE layers, LinMU
achieves linear complexity without sacrificing model performance.

the masked bidirectional Mamba2 model (Dao & Gu, 2024) for capturing long-range dependencies efficiently,
and (ii) a Local-Swin branch using 3D Swin attention (Liu et al., 2022) with a fixed small window size to
focus on short-range spatiotemporal correlations. Each M-MATE block runs in O(N) time with respect to
token count, inheriting linear scalability from the state-space model (SSM) and fixed-size window operations.
By replacing self-attention with M-MATE throughout the network, LinMU can handle significantly longer
contexts than traditional Transformers for a given compute budget.

Adopting a fully linear architecture risks degrading accuracy. Hence, we employ a careful knowledge distilla-
tion strategy to transfer the capabilities of a pretrained attention-based teacher model to LinMU. Specifically,
we distill from a strong VLM teacher to a LinMU student by reusing the teacher’s attention weights to ini-
tialize our M-MATE branches and then fine-tuning the student model in stages. We design a three-stage
distillation pipeline: (1) train the Flex-MA branch alone to mimic the teacher’s global attention behavior,
(2) train the Local-Swin branch together with the Flex-MA branch to recover local correlation modeling, and
(3) jointly fine-tune the entire M-MATE-augmented model (with other backbone layers tuned via low-rank
adapters) to close any remaining performance gap. During distillation, we optimize a combination of token-
level and sequence-level losses, aligning the student’s predictions with the teacher’s outputs (in the spirit
of cross-entropy with teacher soft targets and using teacher-generated sequences as pseudo-labels) (Wang
et al., 2024a). We also include a hidden feature alignment loss in the distillation objective to enable faster
convergence. This staged distillation framework ensures a smooth transition from quadratic-complexity at-
tention to linear-complexity M-MATE blocks without sacrificing understanding capability. We summarize
our contributions as follows:

• We present LinMU, the first multimodal (vision-language) model that achieves pure linear complex-
ity in input length by replacing self-attention with the M-MATE block without sacrificing model
performance. LinMU enables long-context video and image understanding (potentially minutes of
video) on modest hardware, providing much better scalability than the standard VLMs.

• We develop a multi-stage distillation framework to transfer knowledge from a standard Transformer-
based VLM into our linear architecture. By reusing the teacher’s projection weights to initialize
a masked bidirectional Mamba2 model (Flex-MA branch) and a 3D Swin-attention (Local-Swin
branch), and by employing carefully designed distillation losses, we preserve the accuracy of the
original teacher model to a great extent.

• We demonstrate, using challenging image and video understanding benchmarks, that LinMU achieves
performance on par with the teacher models (i.e., NVILA-8B-Video and Qwen2.5-VL-7B-Instruct)
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while significantly improving efficiency. In our experiments, LinMU maintains competitive perfor-
mance on tasks like MMMU, LongVideoBench, and Video-MME, and enables markedly faster in-
ference in terms of TTFT and token throughput, thus validating linear scalability. We also present
ablation studies that quantify the impact of each distillation stage and loss term, and confirm the
importance of M-MATE components (Flex-MA and Local-Swin branches) in maintaining teacher
performance.

Overall, LinMU illustrates that we can make multimodal Transformers linear without compromising their
remarkable understanding capabilities. This opens the door to scaling up context lengths (e.g., using more
video frames or higher-resolution features) and deploying VLMs in real-time or resource-constrained settings,
which was previously infeasible due to quadratic costs.

We organize the remainder of this article as follows. Section 2 surveys recent progress on VLMs and prior
efforts to make them more efficient. Section 3 introduces the LinMU framework, detailing the M-MATE
block and our three-stage distillation pipeline. Section 4 presents comprehensive experiments to evaluate
the performance and efficiency of LinMU, along with ablation studies that target the distillation stages, loss
terms, and block components. Finally, Section 5 concludes the article and outlines directions for future work.

2 Related Work

In this section, we situate our contribution within three complementary lines of research. First, we review
the evolution of modern VLMs, with emphasis on the high-capacity Transformer-based architectures (Sec-
tion 2.1). Second, we discuss methods that improve the efficiency of VLMs primarily through token pruning
and structural compression while keeping the underlying attention backbone unchanged (Section 2.2). Third,
we survey linear-complexity alternatives to attention, including state-space and recurrent architectures and
their deployment on VLMs, which are most closely related to our proposed framework (Section 2.3).

2.1 Large Vision-Language Models

Recent years have seen rapid progress in large VLMs, which couple a high-capacity language backbone
with a visual encoder through a multimodal projector and stacks of Transformer attention layers. Early
models, such as Flamingo (Alayrac et al., 2022), BLIP-2 (Li et al., 2023a), MiniGPT-4 (Zhu et al., 2023),
and LLaVA (Liu et al., 2023), established the now-standard recipe of using a frozen or lightly-tuned vision
encoder to produce visual tokens that are injected into a frozen or instruction-tuned large language model
(LLM).

Contemporary open-source models push this paradigm to higher capacity and broader modalities.
Qwen2-VL (Wang et al., 2024b) and the more recent Qwen2.5-VL (Bai et al., 2025) series extend the Qwen
language backbone with a streamlined encoder in the Visual Transformer (ViT) style and improved visual
projector, supporting images, documents, and videos at native resolution and long contexts. Qwen2.5-VL
achieves competitive performance on diverse benchmarks, such as MMMU (Yue et al., 2024) and Math-
Vista (Lu et al., 2023), while remaining fully Transformer-based, with quadratic attention in the LLM
decoder.

The LLaVA family follows a similar design but is trained almost entirely from open data. LLaVA-NeXT (Liu
et al., 2024b) improves reasoning, optical character recognition (OCR), and world knowledge over
LLaVA-1.5 (Liu et al., 2024a) and extends to video understanding. LLaVA-OneVision (Li et al., 2024)
further pushes performance by training on native-resolution images and providing a complete open training
pipeline.

Parallel to these, NVILA (Liu et al., 2025) introduces a “scale-then-compress” paradigm designed to opti-
mize the efficiency-accuracy frontier. Unlike traditional models that trade off resolution for speed, NVILA
first scales up spatial and temporal inputs to capture fine-grained details and then compresses these visual
tokens to maintain high throughput during inference. Meta’s Llama-3.2-Vision models (Dubey et al., 2024)
are optimized for high-accuracy image reasoning and document understanding with long context windows.
InternVL-2.5 (Chen et al., 2024c) optimizes the visual encoder (InternViT) specifically for semantic align-
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ment, which can reduce the number of visual tokens needed to convey the same amount of information
compared to vanilla CLIP encoders.

As discussed above, recent VLMs tend to explore unified architectures that handle images, documents, and
videos through scaling of parameter-count and context length. However, across almost all of these models,
the multimodal backbone is still built from standard self- and cross-attention Transformers. Hence, both
computation and memory scale quadratically with the total number of tokens, which becomes a growing
bottleneck as models move to high-resolution, multi-image, and video inputs.

2.2 Efficient Vision-Language Models with Attention

To mitigate the cost of quadratic attention without changing the core architecture, a large body of work
focuses on improving the efficiency of VLMs through token reduction, structural pruning, and other
model-compression techniques. These methods can be categorized into strategies that operate on the token
sequence (e.g., pruning and compression), network structure (e.g., layer pruning, distillation), and at system
level (e.g., quantization, KV-cache optimizations).

Visual token pruning and compression. A dominant line of work observes that visual tokens are
heavily redundant relative to text tokens and seeks to reduce the number of vision tokens that reach the
LLM. FastV (Chen et al., 2024b) proposes a plug-and-play inference procedure that discards roughly half
of the image tokens after the second layer, yielding substantial speedups while incurring minimal accuracy
loss. Instruction-Guided Visual Token Pruning (Huang et al., 2024) introduces a group-wise token pruning
module based on attention rollout, using the instruction to guide which vision tokens are pruned both within
the vision encoder and the LLM. LLaVA-PruMerge (Shang et al., 2025) proposes an adaptive reduction of
visual tokens using the sparsity of class-token attention. LLaVolta (Chen et al., 2024a) introduces a Visual
Context Compressor and a new training scheme, demonstrating that up to 70% of visual tokens can be
removed during testing while only incurring minor degradation. SparseVLM (Zhang et al., 2024a) proposes
a text-guided, training-free pruning mechanism that ranks visual tokens using self-attention with selected text
tokens and adaptively determines sparsification ratios per layer. Related works, such as FEATHER (Endo
et al., 2025) and CoViPAL (Tang et al., 2025), refine these ideas by considering layer-wise token importance
and contextual dependencies. PruneVid (Huang et al., 2025) and LLaVA-Scissor (Sun et al., 2025) further
deploy the token pruning idea to Video-centric VLMs.

Architectural compression. Beyond token-level sparsification, several works compress VLMs at the
architecture level. Short-LVLM (Ma et al., 2025) proposes a new pruning framework that identifies re-
dundant layers while compensating for cross-modal feature changes, providing training-free compression
that is model-agnostic and compatible with token-level methods. ECoFLaP (Sung et al., 2023) proposes
a coarse-to-fine layer-wise pruning scheme for large VLMs that first computes a global importance score
via zeroth-order gradient approximations to assign adaptive sparsity ratios across layers, and then performs
local unstructured pruning within each layer. Complementary to pruning, various works distill the visual
representation space of large VLM teachers (e.g., CLIP ViT-L/14) into lightweight students using small-
or mid-scale datasets, with a particular focus on preserving relative geometry in the joint vision–language
embedding space to maintain open-vocabulary out-of-distribution generalization (Li et al., 2023b).

Quantization and key-value (KV) cache optimization. Another line of efficiency work targets numer-
ical precision and cache storage rather than architecture. NVILA employs quantization in both the vision
encoder and the LLM backbone to reduce TTFT and improve token throughput. MBQ (Modality-Balanced
Quantization) (Li et al., 2025) observes that vision and language tokens in large VLMs have very differ-
ent sensitivity to quantization noise and thus uses gradient-based sensitivity indicators for each modality.
ReKV (Di et al., 2025) proposes a training-free approach that enables efficient streaming video question-
answering via in-context video window KV-cache retrieval. However, such a pure window-based perception
pattern for inputs incurs performance degradation.

In summary, most of the current efficiency efforts for VLMs retain the Transformer attention backbone. While
they dramatically reduce constant factors, the underlying complexity with respect to the remaining tokens
remains quadratic, and the attention mechanism itself is unchanged. Our work is complementary: Instead
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of compressing the token sequence or pruning layers on top of attention, we investigate a linear-complexity
module that can directly replace attention layers in existing VLM backbones.

2.3 Linear-Complexity Alternatives to Attention in VLMs

To address the quadratic complexity of attention, one line of work explores sparse or factorized attention to
handle longer inputs. In vision, local window attention and factorized space-time attention have been used
in video Transformers, such as Vision Longformer (Zhang et al., 2021) and Video Swin Transformer (Liu
et al., 2022), to reduce the cost of global attention. These approaches limit each token’s receptive field (e.g.,
attending only within a local patch or frame window), which yields linear or near-linear complexity per layer
but often requires adding some global layers to not hurt performance. For example, Video Swin Transformer
achieves linear scaling by restricting attention to non-overlapping windows, then shifting windows between
layers to propagate information. Such designs can be very effective, but purely local attention cannot cap-
ture long-range dependencies unless some global mechanism is present. For natural language processing,
BigBird (Zaheer et al., 2020) and Longformer (Beltagy et al., 2020) similarly use sparse attention patterns
(sliding windows, random or global tokens) to reach approximate linear complexity, with trade-offs in com-
pleteness of context modeling. In contrast, LinMU’s M-MATE block provides a global sequence mixing
through the MA-Flex branch and local neighbor focus through the Local-Swin branch, together achieving
full coverage of dependencies with linear cost.

Another line of work explores different computational patterns to achieve linear complexity, including linear
attention (Katharopoulos et al., 2020), SSMs (Gu et al., 2021; Gu & Dao, 2024), and recurrent architec-
tures (Peng et al., 2023; Sun et al., 2023). They have been explored for language modeling and other
modalities, but are hardly competitive with Transformers at scale without involving quadratic-complexity
layers.

Specifically, Mamba (Gu & Dao, 2024) introduces a selective SSM architecture that conditions the SSM
parameters on the input and implements a hardware-aware recurrent scan, achieving linear complexity in
sequence length and significantly higher throughput than Transformers for long sequences. Its successor
Mamba2 (Dao & Gu, 2024) has the attention format and is compatible with the efficient attention ker-
nels, such as FlashAttention (Dao et al., 2022) and XFormers (Lefaudeux et al., 2022). Building on this,
VMamba (Liu et al., 2024c) adapts Mamba to visual data by introducing Visual State-Space blocks and
a 2D Selective Scan module. VMamba traverses images along multiple scan directions to capture global
context with linear complexity. Subsequent works, such as Multi-Scale VMamba (Shi et al., 2024) and
Spatial-Mamba (Xiao et al., 2025), refine scanning strategies and multi-scale context aggregation.

Several recent works apply linear-time architectures directly to multimodal learning and VLMs.
VL-Mamba (Qiao et al., 2024) replaces the Transformer LLM with a pretrained Mamba language model
and introduces a MultiModal Connector with a Vision Selective Scan module, demonstrating competitive
performance with Transformer-based multimodal LLMs while enjoying linear scaling in sequence length and
faster inference. VisualRWKV (Hou et al., 2025) extends the RWKV linear recurrent neural network to
multimodal learning, proposing data-dependent recurrence, a “sandwich” visual prompting scheme, and a
2D image scanning mechanism to handle visual tokens.

To obtain better performance, hybrid architectures that interleave quadratic-complexity attention and linear-
complexity SSM layers are beginning to appear in both text-only and multimodal settings. Nemotron-Nano-2
models (Basant et al., 2025) replace some of the self-attention layers of a Transformer with Mamba-2 lay-
ers, achieving higher throughput on long-context reasoning while maintaining Transformer-level accuracy.
Nemotron-Nano-2 VL (Deshmukh et al., 2025) extends this hybrid Transformer-Mamba design to vision-
language tasks, such as video understanding and document intelligence, demonstrating that linear-time
modules can be integrated into competitive multimodal systems.

As discussed above, most existing linear-complexity VLMs typically take one of two approaches: (i) replacing
attention layers of the entire backbone with a linear-complexity alternative, e.g., Mamba or RWKV, which
often lags behind Transformer-based VLMs on complex vision understanding tasks due to the adjacency
preservation issue (see Sec. 3.1); or (ii) hybrid architectures that interleave attention layers with linear-
complexity layers, which still suffers from overall quadratic complexity. By contrast, LinMU replaces all
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attention layers in Transformer-based VLMs without compromising performance, especially on complex
vision tasks. By building on the M-MATE block design and a tailored distillation schedule, we show that
such a replacement is indeed possible for pre-trained VLMs on complex vision-language understanding tasks.

3 Methodology

In this section, we first describe our proposed architecture, LinMU, and then illustrate the distillation
framework to transform a global-attention-based pre-trained VLM into LinMU.

3.1 The LinMU Architecture

Despite the efficiency advantages of linear sequence layers, as in Mamba and RWKV, a known challenge is
applying them to large-scale vision tasks. Given the relatively better hardware efficiency of Mamba models
among the linear sequence layers (Dao & Gu, 2024), we focus on Mamba in the rest of this article. When
Mamba is fed image or video tokens (flattened from 2D/3D), it struggles with the adjacency preservation
issue: Spatially and temporally adjacent tokens become non-neighboring in the flattened sequence, causing
the model’s performance to degrade due to the inherent correlation precision decay over long distances (Wang
et al., 2025b). Prior works attempt to alleviate this problem through better token ordering (Hu et al., 2024;
He et al., 2024) or by mixing some regular attention layers with SSM layers (Basant et al., 2025). However,
these solutions either do not fully fix the adjacency preservation issue at a large scale or reintroduce quadratic
components.

Inspired by the MATE block in LinGen (Wang et al., 2025b), we propose replacing the self-attention block
in VLMs with an M-MATE block. As shown in Fig. 2, LinMU is an auto-regressive VLM composed of two
parts: Vision Encoder and Token Processor (i.e., LM Decoder). Because the implementation of the Vision
Encoder could be quite different across variant VLM backbones, to enable generalization, we leave the Vision
Encoder unchanged and replace attention layers in the Token Processor with our proposed M-MATE blocks.

The proposed M-MATE block builds on two branches: (I) The Flex-MA branch that uses bidirectional
Mamba2 for its linear complexity and throughput benefits. By applying a mask in the reverse direction, it
flexibly achieves causal correlations and global correlations for text tokens and vision tokens, respectively.
We mitigate adjacency preservation via Rotary Major-Scan (RMS) proposed in LinGen. (II) The Local-
Swin branch that uses 3D local Swin attention to directly tackle the adjacent correlations in modeling
immediate neighbor patches. The windows are fixed at a small size because it only needs to model adjacent
correlations, which keeps the complexity of this branch linear and makes it very efficient. In this way, LinMU
inherits the best of both worlds: global linear mixing and local precise attention.

3.1.1 Flex-MA Branch

This branch is built on Mamba2 (Dao & Gu, 2024), an SSM designed as a linear-complexity alternative to
attention. We choose Mamba2 for its linear-time complexity and its Transformer-format parameterization.
The latter makes it compatible with modern efficient attention kernels, such as FlashAttention and xFormers.
In addition, this Transformer format makes it easier to reuse attention weights in pre-trained models for
initialization.

In this branch, the input token sequence (e.g., a sequence of visual and textual embeddings) is first rearranged
by an RMS operation (Wang et al., 2025b). RMS permutes the tokens in a way that enables spatially or
temporally neighboring vision tokens to remain closer in the sequence (mitigating the adjacency preservation
issue of vanilla Mamba). The main difference between RMS and other existing special scan methods is that
it achieves this with only tensor reshaping operations and is much more friendly to hardware, thus is much
more efficient and incurs much less extra latency (Wang et al., 2025b). RMS only changes the order of vision
tokens. Assume the vision token tensor shape in the latent space is T ×H ×W (where T = 1 if it represents
an image), the index of token T [t][y][x] (t is always 0 for an image) in the rearranged 1D sequence in the
l-th layer is given by
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Figure 2: The overview of LinMU, in which the Vision Encoder is untouched but all the attention layers
in the Language Model (LM) Decoder are replaced with our proposed M-MATE blocks. Residual/gate
connections are not shown in this figure for brevity. The M-MATE block contains two parallel branches: (1)
an Flex-MA branch built around a bidirectional Mamba2 augmented with reverse direction token mask
and RMS token rearrangement, and (2) a Local-Swin branch that implements a local 3D Swin Attention
with a fixed window size. The Flex-MA branch provides efficient long-range sequence mixing with linear
complexity, while the Local-Swin branch focuses on adjacent spatial/temporal correlations to preserve local
consistency. Both branch outputs are summed to produce the M-MATE block output that replaces the
original self-attention output. Other parts of the LM Decoder (e.g., multi-layer perceptron, layer norms,
etc.) remain unchanged.

nl =


t · (H ·W ) + y ·W + x, if l mod 4 = 0
t · (H ·W ) + x ·H + y, if l mod 4 = 1
y · (T ·W ) + x · T + t, if l mod 4 = 2
x · (T ·H) + y · T + t, if l mod 4 = 3

Four different scanning patterns alternate in consecutive layers. When dealing with images, it reduces to
two different patterns from four. The permuted sequence is then fed to a bidirectional Mamba2 layer,
which computes an output sequence of the same length. Neither like the original (causal) Mamba that
was designed for unidirectional language modeling, nor the pure bidirectional version that produces a full
“attention-like” correlation map for vision tasks, we employ a vision-token maskMV in the reverse direction,
flexibly producing causal maps for text tokens and full maps for vision tokens, as shown in Fig. 3.

The masked bidirectional Mamba2 performs global, linear-time sequence mixing via recurrent state updates
run forward and backward. It does not compute explicit token-to-token similarity matrices but attains a
full-context receptive field suitable for multimodal understanding tasks. Importantly, the computation cost
of Mamba2 scales as O(Nd2) (where N is the number of tokens and d is the dimension of embeddings),
which is linear in N (Dao & Gu, 2024). The outputs of Mamba2 are finally inverse-permuted back (to undo
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Figure 3: The receptive field comparison between native Mamba2 (suitable for text-only tasks), bidirectional
Mamba2 (suitable for vision-only tasks), and our proposed masked flexible bidirectional Mamba2 (suitable
for multimodal tasks).

RMS) and passed on. Overall, the Flex-MA branch is responsible for capturing global dependencies (even
across hundreds of thousands of tokens) at low cost, albeit in a somewhat blurred fashion due to the limited
precision of SSMs for very long ranges.

Let ut ∈ Rd be the token with index t in the sequence after RMS permutation. A selective SSM layer defines
input-conditioned parameters (At, Bt, Ct) and updates as follows:

h→t = Ath→t−1 + Btut, y→t = Cth→t , (1)
h←t = Ãth←t+1 + B̃t(MV ⊙ ut), y←t = C̃th←t . (2)

Note that MV is a vision token mask that retains only vision tokens. We fuse the directions with a learned
gate:

yFlex
t = Wo

(
gt ⊙ h→t + (1− gt)⊙ h←t

)
. (3)

3.1.2 Local-Swin Branch

In parallel with the Flex-MA branch, each M-MATE block includes a local 3D swin attention module, as
shown in Fig. 4. It focuses on vision tokens and masks out text tokens. This is a form of multi-head
attention restricted to local neighborhoods spatially and temporally, inspired by Swin Transformer’s shifted
window approach (Liu et al., 2022). In practice, given the tokens arranged in a 3D index (frame × height ×
width for video, or 1 × height × width for images), the Local-Swin branch divides them into small windows
(e.g., 16× 4× 4 for long videos) and computes standard attention only among tokens within each window.
Because window size is fixed and very small (we use 16 × 4 × 4 volumes, for example), this attention is
linear in N (each token attends to a constant number of neighbors). The windows are shifted in consecutive
layers (similar to Swin) to allow cross-window connections over multiple M-MATE blocks. The Local-Swin
branch thus excels at modeling short-range and medium-range correlations: It ensures that immediately
adjacent pixels/patches and nearby frames are consistently processed, something the Flex-MA branch may
not guarantee due to token rearrangement to 1D sequences and long-range decay.

In the Local-Swin branch, vision tokens are reshaped to RF×H×W×d. For window size (τ, s, s) and stride
equal to window (non-overlap), we compute multi-head attention locally inside each (τ × s × s) block as
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Figure 4: Window division, shifting, and re-combination in the local 3D Swin attention. After window
shifting, tokens around the image/video edge are combined to form new attention windows, ensuring the
total number of windows remains constant.

Algorithm 1 M-MATE block forward
Require: tokens {zt}N

t=1, vision token mask MV

1: Flex-MA branch
2: {ut} ← RMS({zt})
3: {vFlex

t } ← Flex-BiMamba2({ut})
4: {yFlex

t } ← Rev-RMS({vt})
5: Local-Swin branch
6: {vLS

t } ← LocalSwin(MV ⊙ {zt}) ▷ alternately shifted fixed-size windows
7: {yLS

t } ← Pad({vLS
t }) ▷ padding from vision tokens to the full sequence

8: return yt = LayerNorm(λtyFlex
t + (1− λt)yLS

t ) ▷ λt is learnable

follows:

Attnwin(Q, K, V) = softmax
(

QK⊤√
dh

)
V.

In alternating layers, we use a shift of (⌊τ/2⌋, ⌊s/2⌋, ⌊s/2⌋) to enable cross-window links. The per-layer cost
is O(N · τ2s4d), i.e., linear in N for fixed local window size.

The output of this branch is fused with the Flex-MA branch output with a learned weight to produce the
final M-MATE block output, as shown in Alg. 1. By design, the M-MATE output has the same shape as
a standard attention output. Hence, it can be fed into the subsequent feed-forward network (FFN) and
residual connections exactly as in the original Transformer layer.

Crucially, both branches of the M-MATE block operate in parallel, and their combined cost is still linear.
The cost of the masked bidirectional Mamba2 is O(N) in sequence length, and the cost of the local 3D Swin
attention is also O(N) (with the fixed window size). By replacing all L self-attention layers in a Transformer
with the proposed M-MATE block, the overall complexity w.r.t. token number becomes O(L · N), instead
of O(L ·N2), enabling dramatic speedups for long sequences.

9
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Figure 5: Our proposed three-stage distillation pipeline to replace attention layers in pre-trained VLMs with
linear-complexity M-MATE blocks.

3.2 Distilling Pre-trained VLMs to LinMU

Although our proposed architecture achieves linear complexity, directly training a VLM with the new archi-
tecture from scratch would be very costly. We, therefore, propose a progressive distillation framework that
converts a pretrained Transformer-based VLM (teacher) into LinMU (student) by replacing each quadratic
self-attention layer with an M-MATE block of identical input/output size, as described in Alg. 2. Fig. 5
illustrates the overall replacement and the three-stage distillation schedule.

3.2.1 Weight Reuse Initialization

Simply swapping attention for randomly initialized M-MATE blocks degrades accuracy. Following the weight-
reuse spirit in MambaInLlama (Wang et al., 2024a) and LinGen-Uni (Wang et al., 2025a), we initialize student
M-MATE blocks from the teacher attention weights wherever possible.

Let the teacher attention layer ℓ have (flattened) projection matrices W ℓ
Q, W ℓ

K , W ℓ
V ∈ Rd×d and output

projection W ℓ
O ∈ Rd×d. For the Flex-MA (masked bidirectional Mamba2) branch, we reuse:

W ℓ
C ←W ℓ

Q, W ℓ
B ←W ℓ

K , W ℓ
X ←W ℓ

V , W ℓ
O,Flex ←W ℓ

O, (4)

where (W ℓ
C , W ℓ

B , W ℓ
X) are the dominant linear projections in Mamba2 (accounting for over 90% parameters),

while the state-transition parameters (e.g., A) use standard initialization and gates use identity initialization.

We initialize the Local-Swin branch as the teacher attention restricted to fixed local windows over vision
tokens as follows:

(W ℓ
Q,Swin, W ℓ

K,Swin, W ℓ
V,Swin, W ℓ

O,Swin)← (W ℓ
Q, W ℓ

K , W ℓ
V , W ℓ

O), (5)

while enforcing the Swin window mask. Intuitively, some of the teacher’s attention heads are likely specialized
to local structure (as commonly observed in early Transformer layers); hence, the Local-Swin branch can
inherit them. This weight reuse gives the student a head start, often starting in a regime not too far from
the teacher’s function.

3.2.2 Three-stage progressive distillation

We keep the teacher fT frozen and train the student fS via three stages that progressively increase trainable
capacity. Let A denote the set of replaced layers.

10
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Algorithm 2 Progressive Distillation from a Transformer VLM to LinMU
Require: Frozen teacher fT (self-attention); student fS (M-MATE); dataset D; temperature τ ; steps

(S1, S2, S3) for each stage
Require: Loss weights λhid, λtok, λseq, λsup
Ensure: Distilled LinMU fS

1: Weight reuse init: for each replaced layer ℓ, apply Eq. 4 and Eq. 5; initialize remaining Mamba2
parameters in the standard way.

2: Freeze all teacher params; freeze student backbone and vision encoder/projector.
3: Stage 1 (Flex-MA only): unfreeze θFlex; disable/freeze Local-Swin.
4: for s = 1 to S1 do
5: Sample minibatch (x, ygt) ∼ D
6: {hT

ℓ }, {zT,t} ← fT(x) ▷ no grad
7: {hS

ℓ }, {zS,t} ← fS(x)
8: Compute Lhid by Eq. 6 and Ltok by Eq. 7
9: L(1) ← λhidLhid + λtokLtok ▷ Eq. 10

10: Update θFlex with ∇L(1)

11: end for
12: Stage 2 (Flex-MA + Local-Swin): unfreeze θSwin; keep backbone frozen.
13: for s = 1 to S2 do
14: Sample minibatch (x, ygt) ∼ D
15: {hT

ℓ }, {zT,t} ← fT(x) ▷ no grad
16: {hS

ℓ }, {zS,t} ← fS(x)
17: Compute Lhid (Eq. 6), Ltok (Eq. 7)
18: L(2) ← λhidLhid + λtokLtok ▷ Eq. 11
19: Update (θFlex, θSwin) with ∇L(2)

20: end for
21: Stage 3 (LoRA fine-tune): insert LoRA in backbone; unfreeze θLoRA and all M-MATE params.
22: for s = 1 to S3 do
23: Sample minibatch (x, ygt) ∼ D
24: {zT,t} ← fT(x) and ỹ← Decode(fT, x) ▷ no grad
25: {zS,t} ← fS(x)
26: Compute Ltok (Eq. 7), Lseq (Eq. 8), and Lsup (if ygt available)
27: L(3) ← λtokLtok + λseqLseq + λsupLsup ▷ Eq. 13
28: Update (θM-MATE, θLoRA) with ∇L(3)

29: end for
30: return fS

Common loss terms. We use (i) layer-wise main path matching between the output of the M-MATE
block and the replaced attention layer:

Lhid = 1
|A|

∑
ℓ∈A

[
1
N

N∑
t=1

∥∥hS
ℓ,t − hT

ℓ,t

∥∥2
2

]
(6)

where {hS
ℓ,t}N

t=1 and {hT
ℓ,t}N

t=1 are the output of the student M-MATE block and the teacher attention module
at the ℓ-th layer, respectively. (ii) token-level knowledge distillation (KD) with temperature τ :

Ltok = τ2

T

T∑
t=1

KL
(
pτ

T,t ∥ pτ
S,t

)
, pτ

T,t = softmax(zT,t/τ) , pτ
S,t = softmax(zS,t/τ) , (7)

where z·,t are vocabulary logits at generation step t and T is the output length. We use this loss to keep
the student aligned on end-task predictions with the teacher model. (iii) sequence-level KD using a teacher-
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decoded pseudo target ỹ = Decode(fT, x):

Lseq = − 1
T

T∑
t=1

log pS(ŷt | x, ỹ<t) (8)

where ŷt is the output of the student model. This two-level KD (Ltok and Lseq, which are often denoted
as word-level and sequence-level loss, respectively) has been shown to be effective for distilling LLMs, as it
balances imitating the probability distribution with matching the single best sequence. (iv) ground-truth
task loss when the ground truth ygt is available:

Lsup = Ltask(ŷ, ygt) (9)

Stage 1: Flex-MA-only distillation. We freeze the entire student except the Flex-MA branch parame-
ters θFlex and freeze the Local-Swin branch. The objective emphasizes module-level imitation while retaining
end-task alignment:

min
θFlex

L(1) = λhid Lhid + λtok Ltok (10)

Matching {hT
ℓ,t}N

t=1 forces the Flex-MA branch to approximate the teacher attention effect at each replaced
layer, providing a strong and stable signal even when only a small subset of parameters is trainable.

Stage 2: Joint distillation of Flex-MA and Local-Swin. We unfreeze Local-Swin parameters θSwin
and train both branches jointly while keeping the rest of the backbone frozen. We initialize the Local-Swin
branch as aforementioned and allow it to learn to model the finer local details that the Flex-MA branch
might have missed due to the adjacency preservation issue. The Stage-2 objective is:

min
θFlex,θSwin

L(2) = λhid Lhid + λtok Ltok (11)

Because the Local-Swin branch starts from the teacher’s weights and the Flex-MA branch has been trained
in Stage 1, the joint optimization in Stage 2 converges quickly. We find that if we attempt to train both
branches from the start, the Flex-MA branch is less stable and harder to converge; by staging it, each branch
learns its role: Flex-MA first learns global context, then Local-Swin fills in local consistency. By the end of
Stage 2, the student’s M-MATE blocks can produce outputs very close to the teacher’s attention outputs for
each layer.

Stage 3: LoRA fine-tuning of the backbone. In the final stage, we unfreeze the rest of the student
model (the vision encoder and the corresponding projector are still fixed). However, instead of full fine-
tuning (which could be too costly and risk distorting the pretrained weights), we apply low-rank adaptation
(LoRA) (Hu et al., 2022) to these layers. For a frozen weight W ∈ Rdout×din , LoRA parameterizes

W ′ = W + ∆W, ∆W = BA, A ∈ Rr×din , B ∈ Rdout×r, (12)

and only (A, B) are trainable. We train all M-MATE parameters plus LoRA parameters θLoRA of FFNs in
the backbone with an objective that shifts emphasis to output-level alignment and (optionally) ground-truth
supervision:

min
θM-MATE,θLoRA

L(3) = λtok Ltok + λseq Lseq + λsup Lsup (13)

Note that at this stage, we incorporate Lseq and Lsup for better output distribution alignment but exclude
Lhid because other blocks in the student backbone are also being trained. This stage yields the final LinMU
model. Notably, because LoRA updates are lightweight, the original knowledge in the backbone is largely
preserved.

We set λhid = λtok = λseq = λsup = 0.5 in all the three stages mentioned above. In summary, weight
reuse provides a strong functional prior, while the three-stage schedule stabilizes optimization: Flex-MA

12



Under review as submission to TMLR

first learns to reproduce long-range/contextual effects, Local-Swin then specializes to local visual structure,
and LoRA fine-tuning adapts the remaining backbone to the new linear-complexity blocks with minimal
parameter updates. Through this distillation pipeline, LinMU learns to faithfully emulate the original
model’s attention-driven reasoning, but using only linear-complexity blocks. The outcome is a model that,
during inference, requires no quadratic attention computation and is, therefore, much more efficient on long
sequences (e.g., dealing with high-resolution images or long videos).

4 Experiments

In this section, we first introduce the general experimental setup in Sec. 4.1, including backbones, datasets,
and benchmarks that we use to deploy our framework, perform distillation, and evaluate performance. Then
in Sec. 4.2, we compare the performance and efficiency of our proposed framework with baseline models,
demonstrating that LinMU achieves a better balance between accuracy and efficiency. Finally, we provide
ablation experimental results to validate the effectiveness of the techniques proposed and design choices
made in our framework in Sec 4.3.

4.1 Experimental Setup

Backbones. For most experiments, we use NVILA-Video-8B as the teacher model to deploy our proposed
distillation framework and achieve linear complexity. It is an 8B-parameter VLM that exhibits competitive
performance on many image and video understanding benchmarks. For image benchmarks, we use NVILA-
8B as the teacher model instead; it is a checkpoint before the video-instruction tuning stage and focuses
more on image tasks. To demonstrate the generalization ability of LinMU, we further perform distillation on
Qwen2.5-VL-7B-Instruct (Bai et al., 2025), which has strong performance across various perception tasks,
including but not limited to long document understanding, video grounding, and OCR.

Datasets. Referring to the image and video instruction-tuning datasets of NVILA, we involve (1) the
single-image and multi-image subsets of OneVision-1.6M in LLaVA-OneVision (Li et al., 2024), which in-
clude around 1M samples; (2) LLaVa-Video-178K (Zhang et al., 2024b), which provides around 178K videos;
(3) the training set of ActivityNet-QA (excluding the test set), which includes around 60K question-answer
(QA) pairs on 6K videos as our distillation dataset. ActivityNet-QA is only involved in Stage 3. Note
that Qwen2.5-VL-7B-Instruct performs well across many downstream tasks, including long document under-
standing. Complete distillation of it requires building a comprehensive dataset including all its capabilities,
while our datasets here focus more on the domain that we target (i.e., multimodal understanding). Distilling
Qwen2.5-VL-7B-Instruct is a proof of concept that our proposed framework can be deployed on various VLM
backbones with a relatively standard model architecture design.

Benchmarks. We evaluate LinMU and baselines on a suite of image and video understanding tasks
to verify that LinMU achieves comparable performance to the teacher model while gaining efficiency.
(1) MMMU (Massive Multi-discipline Multimodal Understanding and Reasoning): A multimodal reason-
ing benchmark (Yue et al., 2024) spanning many academic subjects (e.g., science, math, engineering),
where models answer questions that require understanding images like diagrams, charts, tables, and fig-
ures alongside text. (2) TextVQA: A visual QA benchmark (Singh et al., 2019) focused on reading
and reasoning about text in images (scene text), not just recognizing objects. (3) ActivityNet-QA: A
video QA benchmark (Yu et al., 2019) built on ActivityNet videos, testing whether a model can an-
swer natural-language questions about actions/events in videos, often requiring temporal understanding.
(4) LongVideoBench: A benchmark (Wu et al., 2024) designed for long-form video understanding, em-
phasizing long-context temporal reasoning (tracking events across minutes-long videos rather than short
clips). (5) MLVU (Multi-task Long Video Understanding: A multi-task long-video understanding bench-
mark (Zhou et al., 2025) that evaluates a model’s ability to comprehend lengthy videos across tasks like QA
and other video-language understanding settings, stressing temporal reasoning over extended context. (6)
Video-MME (Video Multi-Modal Evaluation): A comprehensive evaluation suite (Fu et al., 2025) for video-
language models that uses standardized tests (often multiple-choice) to measure general video understanding
across diverse categories and video lengths.
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Table 1: Performance comparison between the student LinMU model, the teacher NVILA model, and other
baseline models. Note that GPT-4o is a strong closed-source baseline for reference.

MMMU TextVQA ActivityNet-QA LongVideoBench MLVU Video-MME
Models Size test pro val acc. score val test m-avg w/o sub. w/sub.
GPT-4o — 64.7 51.9 77.4 61.9 — 66.7 66.7 64.6 71.9 77.2
LLaVA-OV 7B 42.8 24.1 78.3 56.6 — 56.5 — 64.7 58.2 61.5
Qwen2-VL 8B 46.6 30.5 84.3 — — 55.6 56.8 65.5 63.3 69.0
InternVL2 8B 42.6 29.0 77.4 — — 54.6 — 64.0 56.3 59.3
NVILA 8B 44.4 27.8 80.1 60.9 3.7 57.7 58.7 70.1 64.2 70.0
LinMU-NV 8B 44.6 27.3 79.3 60.1 3.6 57.4 58.8 69.4 64.5 70.1

Training recipe. The distillation training is done on 8×A100 GPUs, using the AdamW optimizer. In
Stages 1 and 2, we use a Learning Rate (LR) of 5e-4 for M-MATE parameters (teacher backbone frozen).
In Stage 3, we apply LoRA (rank=8) to the backbone and use a smaller LR (2e-5). We stop Stage 1 after
10K steps (when the Flex-MA branch’s hidden alignment loss plateaus), Stage 2 after 15K more steps, and
Stage 3 after 25K steps. The total wall time for distilling NVILA-Video-8B is about 50 hours. We use the
same training recipe for Qwen2.5-VL-7B-Instruct.

4.2 Better Balance between Accuracy and Efficiency

Performance compared to teacher: Table 1 summarizes the performance of the student LinMU model
against the teacher NVILA model on image and video benchmarks. We also include GPT-4o (Hurst et al.,
2024) as a strong closed-source baseline, as well as other typical open-source baselines, including LLaVA-
OneVision (Li et al., 2024), Qwen2-VL (Wang et al., 2024b), and InternVL2 (Chen et al., 2024d), for reference.
LinMU achieves performance that is very close to the teacher across the board, even outperforming the
teacher model on a few benchmarks.

For example, on ActivityNet-QA, LinMU reaches 60.1% accuracy, essentially matching NVILA’s 60.9%.
On TextVQA, LinMU scores 79.3%, only slightly below the teacher’s 80.1%. On the test sets of MMMU
(44.6% vs. 44.4%) and LongVideoBench (58.8% vs. 58.7%), and across both settings of Video-MME (64.5%
vs. 64.2%; 70.1% vs. 70.0%), LinMU achieves slightly better performance than NVILA. Notably, LinMU
outperforms many other models of similar scale on these benchmarks, benefiting from the strong performance
of the teacher model. For instance, it outperforms the prior 7B model, LLaVA-OneVision, and the 8B model,
InternVL2. It is also on par with the recent Qwen2-VL model.

MMMU and Video-MME tests complex multi-step reasoning; MLVU and LongVideoBench specifically target
long video understanding, where the advantage of linear complexity is expected to be most useful. After
distillation, LinMU remains competitive on these benchmarks, while achieving linear complexity without
quadratic attention. This indicates that our distillation successfully transfers the needed capability from the
teacher to the linear student.

Inference efficiency: We measure the efficiency of VLMs in terms of TTFT and token throughput. TTFT
reflects the time required to generate the first output token after the VLM receives the input, and token
throughput describes the rate at which output tokens are generated. Note that standard attention with
modern efficient kernels, such as FlashAttention, already has a linear memory footprint with respect to
sequence length. Thus, replacing these attention layers with M-MATE blocks does not yield significant
memory savings. Thus, we focus on the latency reduction and throughput improvements they provide.

The scaling curves of TTFT and token throughput with respect to the input sequence length are shown in
Fig. 6. Results are measured on NVIDIA H100 GPUs. Note that we exclude the vision encoding time here
to highlight the LM Decoder cost that we are most interested in. Longer input sequences correspond to
higher-resolution images or longer videos. 216 input tokens correspond to an 85-second 24fps video (2048
frames) at 256×256 resolution with 16×16 spatial compression rate and 8× temporal compression rate. Fig. 6
validates the complexity gain of LinMU over the standard attention-based VLM architecture. The TTFT of
LinMU scales much more slowly than that of NVILA as the input length increases, achieving 2.7× speed-up
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(a) (b)

2.7x 9.0x

Figure 6: Efficiency comparison between the quadratic-complexity teacher model NVILA and the linear-
complexity student model LinMU: how (a) TTFT (lower is better) and (b) token throughput (higher is
better) scales as the input length increases. 216 input tokens correspond to an 85-second 24fps video at
256×256 resolution with 16×16 spatial compression rate and 8× temporal compression rate.

Table 2: Performance comparison between models at different training status. The performance of LinMU
gradually improves as the distillation proceeds. Finishing distillation in a single stage leads to a lower
performance under the same compute budget.

Training Status ActivityNet-QAacc. LongVideoBenchtest MLVU Video-MMEw/sub.
Initialization 39.3 29.4 48.7 43.2
Stage 1 48.7 38.5 58.3 52.9
Stage 1+2 56.7 52.7 65.2 63.4
Stage 1+2+3 60.1 58.8 69.4 70.1
All in one stage 57.3 54.2 66.8 67.0

when dealing with minute-length videos, even at low resolution. The speed-up of LinMU in terms of token
throughput is more significant: 9× higher than that of NVILA when dealing with a minute-length video
at 256×256 resolution. LinMU maintains almost the same token throughput as the input sequence length
increases, whereas NVILA’s token throughput drops significantly. Benefiting from the linear-complexity of
LinMU, the longer the input sequence is, the more speed-up LinMU can achieve. The efficiency gains imply
LinMU can enable longer-context reasoning (e.g., analyze an entire movie or an hour-long surveillance video
continuously) and can be deployed in scenarios where NVILA would be too slow (e.g., real-time robot
perception with limited compute). Note that LinMU achieves these gains while maintaining competitive
performance relative to NVILA across various tasks.

4.3 Ablation Studies

We conduct ablations to support our design choices in the distillation process, justify the M-MATE block
compositions, and validate the universality of our proposed LinMU framework.

Effect of distillation stages. We record performance improvement across the three distillation stages
to validate their effectiveness in Table 2. Even with only initialization, LinMU can finish some simple
understanding tasks. As distillation progresses, its performance across various tasks gradually improves. In
particular, Stage 1 forces the masked bidirectional Mamba2 to approximate global attention patterns, while
Stage 2 trains the model to fit local patterns using the Local-Swin branch. Stage 3 allows the backbone
to adapt to and calibrate the interactions between M-MATE blocks and the rest of the model. If we train
LinMU in a single stage (i.e., unfreeze both branches and the backbone from scratch, and train the student
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Table 3: Performance comparison between different distillation loss settings. Reducing the corresponding
factor to zero means eliminating that loss. The default setting (in the first row) achieves the best balanced
performance across various tasks.

λhid λseq λsup ActivityNet-QAacc. LongVideoBenchtest MLVU Video-MMEw/sub.
0.5 0.5 0.5 60.1 58.8 69.4 70.1
0.5 0.5 0 58.7 58.6 69.1 69.8
0.5 0 0.5 59.2 57.1 68.5 68.2
0 0.5 0.5 58.1 56.6 67.9 68.6

0.5 0.5 1 60.8 56.9 68.2 69.3
0.5 1 0.5 59.4 58.2 68.8 69.5
1 0.5 0.5 59.9 58.9 69.1 69.4

Table 4: Performance and efficiency comparison between different M-MATE branch settings. TTFT (s) and
token throughput (tokens/s) are measured at 32K input sequence length.

Flex-MA Local-Swin LongVideoBenchtest MLVU Video-MMEw/sub. TTFT token throughput
Yes Yes 58.8 69.4 70.1 1.723 93.46
Yes No 51.3 62.9 62.7 1.549 101.48
No Yes 30.2 45.4 36.1 0.987 133.43

model end-to-end), the student converges much more slowly and achieves lower final performance. This
indicates that the stage-wise distillation is important.

Loss function choices. We conduct distillation experiments with different loss function settings to investi-
gate the effectiveness of each loss term and compare their performance in Table 3. Note that the token-level
KD loss Ltok is the standard distillation loss; hence, it is always retained with λtok = 0.5. Results presented
in Table 3 indicate that eliminating any of the hidden feature loss Lhid, sequence-level loss Lseq, and ground-
truth task loss Lsup incurs performance degradation. Without the hidden feature loss Lhid, the student model
converges more slowly and reaches a lower final performance under the same compute budget. Removing
the sequence-level loss Lseq makes it harder for the student model to mimic the teacher model’s behavior.
The ground-truth task loss Lsup is especially helpful for improving the student performance on well-defined
tasks with ground-truth labels, such as ActivityNet-QA. Our combined loss gives the best results, echoing
findings from prior distillation research. We further explore increasing the factors of these loss terms from
0.5 to 1. Although increasing λsup improves the student performance on ActivityNet-QA, the performance
on other tasks suffers. Overall, our default setting (i.e., the first row in Table 3) achieves the best balance
among various tasks.

M-MATE block components. We validate the effectiveness and cost of the Flex-MA branch and the
Local-Swin branch in each M-MATE block in Table 4. If we drop the Local-Swin branch entirely (making
LinMU a pure Mamba2-based model), performance degrades: 51.3% on LongVideoBench (vs. 58.8% for full
LinMU) and 62.7% on Video-MME (vs. 70.1% for full LinMU). This is expected, as a pure SSM struggles with
fine local details in vision due to the adjacency preservation issue. The Local-Swin branch addresses this issue
and improves the model performance on dealing with complex vision tasks (e.g., long video understanding)
noticeably. Note that the Local-Swin branch maintains the linear complexity with respect to the number of
tokens and only introduces tiny extra latency (e.g., 10% TTFT increment). On the contrary, removing the
Flex-MA branch reduces TTFT and boosts token throughput significantly. However, this makes LinMU a
pure window-attention-based model with a fixed small window size. As shown in Table 4, in this case, the
model performance degrades significantly on all benchmarks. This indicates that it is infeasible to build a
powerful VLM solely using window attention with small window sizes. These ablations confirm that the dual-
branch design of M-MATE is critical for success: The Local-Swin branch addresses adjacent correlations,
and the Flex-MA branch addresses medium-range and long-range correlations efficiently.
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Table 5: Performance comparison between the teacher Qwen2.5-VL-7B-Instruct and the student LinMU
model. After distillation, LinMU maintains the good performance of Qwen on most tasks.

MMMU TextVQA LongVideoBench MLVU Video-MME
Models Size pro val val test m-avg w/o sub. w/sub.
Qwen2.5-VL 7B 38.3 84.9 56.0 57.3 70.2 65.1 71.6
LinMU-Qwen 7B 37.3 83.2 55.4 56.5 69.6 65.2 71.8

(a) (b)

2.3x
4.9x

Figure 7: Efficiency comparison between the quadratic-complexity teacher model Qwen2.5-VL-7B-Instruct
and the linear-complexity student model LinMU: how (a) TTFT (lower is better) and (b) token throughput
(higher is better) scales as the number of input video frames. The metrics are measured on the captioning
task for 256×256 videos.

VLM backbone besides NVILA. To validate the generalization ability of our proposed framework, we
further perform distillation on Qwen2.5-VL-7B-Instruct and transform it into the LinMU architecture to
achieve linear complexity. Performance comparison between the teacher and student models is shown in
Table 5. LinMU-Qwen still maintains the performance of the teacher model across various benchmarks. We
further benchmark the efficiency gain brought about by LinMU in Fig. 7. It illustrates that the TTFT and
token throughput of LinMU-Qwen scale much more slowly than the teacher model as the number of video
frames (i.e., the input sequence length) increases. LinMU achieves 2.3× (4.9×) speed-up in terms of TTFT
(token throughput) compared to the teacher model for 512-frame 256px videos. As the input video becomes
longer or higher-resolution, LinMU delivers larger speedups.

5 Conclusion

We introduced LinMU, a multimodal understanding model that achieves linear computational complexity in
sequence length by distilling Transformer self-attention layers into M-MATE blocks. LinMU demonstrates
that we can maintain high accuracy on challenging image-language and video-language tasks while elimi-
nating the quadratic overhead of attention. Through a carefully crafted distillation process, which includes
reusing pretrained weights, progressively training branches, and aligning the student with the teacher’s be-
havior at multiple levels, LinMU effectively learns to replace attention with a combination of an efficient
SSM and localized attention. Our experiments demonstrate that LinMU matches the performance of state-of-
the-art teacher VLMs (including NVILA-8B-Video and Qwen2.5-VL-7B-Instruct) on multiple benchmarks,
and substantially improves inference efficiency and scalability. These results are an encouraging sign that
Transformer-quality multimodal reasoning can be achieved with more computationally scalable architectures.

Moving forward, this work opens up several exciting new directions. An immediate next step is to explore
combining LinMU with token compression or adaptive input selection to further improve efficiency. Another
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direction is to extend linear multimodal modeling to native generative tasks, such as auto-regressive image
generation driven by a VLM. In addition, while we distilled from 7-8B teacher models, this framework could
also be applied to larger teachers (e.g., 33B) to train an efficient yet powerful student, or even to specialist
models in medical or robotics domains where long video analysis is needed. Finally, as linear architectures
mature, an important goal is to develop training paradigms that optimize linear models from scratch while
maintaining competitive accuracy. LinMU’s distillation results indicate that much of the self-attention
representational capacity can be transferred to a linear form; a longer-term objective is to design dedicated
training schemes (rather than directly inheriting Transformer recipes) that achieve this without relying on
a Transformer teacher. We hope our work motivates broader exploration of attention-free or attention-lite
multimodal models, making high-performing VLMs more accessible, faster, and better suited to ever-growing
context lengths in real-world applications.
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