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Abstract

Knowledge graph embedding (KGE) models
are designed for the task of link prediction,
which aims to infer missing triples by learn-
ing accurate representations for entities and re-
lations within a knowledge graph. However,
existing KGE research largely overlooks the is-
sue of probability calibration, leading to uncal-
ibrated probability estimates that fail to reflect
the true correctness of predicted triples, poten-
tially resulting in erroneous decisions. More-
over, current calibration methods are not well-
suited for KGE models, and no dedicated prob-
ability calibration method has been specifically
designed for them. In this paper, we propose
KGE Calibrator (KGEC), the first probability
calibration method tailored for KGE models
to enhance the trustworthiness of their predic-
tions. To achieve this, we introduce a Jump
Selection Strategy that improves efficiency by
selecting the most informative instances while
filtering out less significant ones. We also pro-
pose Multi-Binning Scaling, which models dif-
ferent probability levels separately to increase
the model’s capacity and flexibility. Addition-
ally, we propose a Wasserstein distance-based
loss function to further boost calibration per-
formance. Extensive experiments across mul-
tiple datasets demonstrate that KGEC consis-
tently outperforms existing calibration methods
in terms of both effectiveness and efficiency,
making it a promising solution for probability
calibration in KGE models.

1 Introduction

Knowledge graphs (KGs) are essential resources
for a wide range of knowledge-driven tasks, includ-
ing semantic search (Xiong et al., 2017), knowl-
edge reasoning (Liu et al., 2021), question answer-
ing (Shen et al., 2019; Ye et al., 2023), and reading
comprehension (Yang et al., 2019; Meng et al.,
2023). Prominent large-scale KGs such as YAGO
(Suchanek et al., 2007), DBpedia (Lehmann et al.,

Query: (Greece, _member_of_domain_region, ?)
True answer: sibyl

Ranked candidate entities | Uncalibrated scores
Greece -0.1873
Holy_See -0.2946
sibyl -0.5992
Colosseum -0.8017
Sistine_Chapel -0.8683

Figure 1: A real example from the WN18RR (Dettmers
et al., 2018) dataset, where ranked candidate entities and
their corresponding uncalibrated scores are produced by
TransE (Bordes et al., 2013) model. In this example, the
correct tail entity “sibyl” is ranked third, demonstrating
that existing KGE models perform well under ranking
metrics. However, all predicted scores are negative,
indicating a lack of trustworthy probability estimates
and highlighting the need for probability calibration in
KGE models.

2015), and Freebase (Bollacker et al., 2008) encom-
pass millions of entities and hundreds of millions
of relational facts, which are typically structured as
sets of <head entity, relation, tail entity> triples.

However, most KGs are incomplete due to ex-
traction errors and limited input resources. This
makes link prediction, also known as knowledge
graph completion, crucial for inferring missing
links and improving KG quality. To this end,
knowledge graph embedding (KGE) models such
as TransE (Bordes et al., 2013) and ComplEx
(Trouillon et al., 2016) tackle this problem by learn-
ing latent representations of entities and relations to
score the plausibility of candidate triples. Beyond
link prediction, KGE models have demonstrated
remarkable success across diverse applications, in-
cluding entity alignment (Sun et al., 2018) and
canonicalization (Shen et al., 2022).

While the accuracy of KGE models has seen sig-

nificant advancements, the critical issue of probabil-
ity calibration remains largely overlooked. Specifi-



cally, KGE models should output calibrated proba-
bilities alongside their predictions. However, they
typically produce uncalibrated scores (Pezeshkpour
et al., 2020; Tabacof and Costabello, 2020). This
stems from link prediction being framed as a rank-
ing task, where metrics like HITS@N and Mean
Rank (MR) prioritize relative ordering while ig-
noring the reliability of output scores. As a result,
models can assign implausible scores to correct
entities yet still perform well, as shown in Figure 1.
Such limitations hinder their use in high-stakes do-
mains such as drug and protein target discovery
(Zeng et al., 2022; Mohamed et al., 2020), where
trustworthy probabilities are essential.

To address this critical issue, increasing attention
has been directed toward the probability calibration
task of KGE models, which aims to convert the
uncalibrated scores assigned to candidate triples
into well-calibrated probability estimates. As a
post-processing technique, calibration improves the
trustworthiness of link prediction results, making
them more reliable for downstream applications.
However, probability calibration in KGE poses
unique challenges compared to traditional classifi-
cation. Image classification datasets like CIFAR-
100 (Krizhevsky et al., 2009) or document classi-
fication datasets like SST (Socher et al., 2013) in-
volve tens or hundreds of classes. In contrast, KGE
tasks treat each entity as a distinct class, leading to
massive class spaces (e.g., FBISK and WN18 have
14,951 and 40,943 entities, respectively). This high
cardinality leads to tiny per-class probabilities and
makes the calibration process extremely sensitive.
Even minor perturbations can distort the original
ranking and negatively impact link prediction per-
formance. Therefore, preserving the original rank-
ing quality becomes a critical requirement, posing
a distinctive challenge for probability calibration
in the KGE setting.

Despite its importance and unique challenges,
probability calibration in KGE remains largely un-
derexplored. Prior studies (Tabacof and Costabello,
2020; Pezeshkpour et al., 2020) have shown that
popular KGE models produce poorly calibrated
scores, resulting in unreliable probability estimates.
Several off-the-shelf calibration methods, such as
Platt Scaling, Isotonic Regression, and Tempera-
ture Scaling, have been evaluated (Safavi et al.,
2020; Zhu et al., 2022), but these methods are de-
signed for standard classifiers and are not well-
suited to the scale and ranking-sensitive nature of
KGE. A few works have explored calibration in spe-

cific tasks, including triple classification (Tabacof
and Costabello, 2020), relation prediction (Safavi
etal., 2020), and low-dimensional entity expit trans-
formations (Wang et al., 2021). However, no exist-
ing approach offers a calibration method explicitly
tailored to the probabilistic characteristics of KGE
models. This leaves a critical gap in improving the
trustworthiness of KGE-based link prediction.

To fill this gap, we propose KGE Calibrator
(KGEC), the first probability calibration method
tailored specifically for KGE models. To enhance
training efficiency under the large-scale class space
characteristic of KGE, we introduce the Jump Se-
lection Strategy, which selects the most informative
instances while discarding less significant ones. To
increase model expressiveness and better captures
the ranking-sensitive nature of KGE predictions,
we propose Multi-Binning Scaling, which mod-
els different probability levels separately, thereby
increasing model capacity and flexibility. Addition-
ally, we propose a Wasserstein distance-based loss
function to further boost calibration performance.
To the best of our knowledge, this is the first use of
the Wasserstein distance for probability calibration.

Contributions. Our major contributions can be
summarized as follows:

e We evaluate nine widely used post-processing
calibration methods and find that four of them are
unsuitable for entity prediction due to their poor
performance, which alters the original link predic-
tion results after calibration.

e We propose KGEC, the first probability calibra-
tion method specifically designed for KGE models,
which addresses the challenge of large class space
in calibration while preserving the original ranking
performance.

e A thorough experimental study over four
datasets demonstrates that KGEC consistently out-
performs existing calibration methods in both per-
formance and efficiency.

2 Related Work

Probability Calibration in KGE Models. Sev-
eral studies have highlighted the lack of well-
calibrated probability estimates in KGE models.
Early work by (Tabacof and Costabello, 2020)
and (Pezeshkpour et al., 2020) showed that widely
used KGE models are poorly calibrated in triple
classification tasks. To address this, (Tabacof
and Costabello, 2020) applied Platt Scaling (Platt
et al., 1999) and Isotonic Regression (Zadrozny



and Elkan, 2002), while (Safavi et al., 2020) ex-
plored Matrix Scaling and Vector Scaling (Guo
et al., 2017) in relation prediction. A broader evalu-
ation by (Zhu et al., 2022) tested additional off-the-
shelf calibration techniques, including Histogram
Binning (Zadrozny and Elkan, 2001), Beta Calibra-
tion (Kull et al., 2017), and Temperature Scaling
(Guo et al., 2017) for triple classification. Further-
more, (Rao, 2021) examined calibration under both
closed-world and open-world assumptions. While
these works shed light on the calibration issue in
KGE, they all rely on existing techniques origi-
nally designed for traditional classification prob-
lems. None propose a calibration method specif-
ically tailored for KGE models, leaving a critical
gap in the literature.

Expit Transformations. Expit transformations
aim to convert uncalibrated scores into probabilities
using functions such as the Sigmoid (Nickel et al.,
2015; Tabacof and Costabello, 2020; Zhu et al.,
2022) and Softmax (Pezeshkpour et al., 2020).
More approaches include neighborhood interven-
tion consistency (NIC) (Wang et al., 2021) and min-
max scaling (Rao, 2021). However, recent research
has shown that even when expit-transformed scores
can be interpreted as probabilities, they are still un-
calibrated and unreliable (Zhu et al., 2022). As
a result, these expit transformations are generally
viewed as a preliminary step, typically followed by
a dedicated calibration method such as Platt Scaling
or Isotonic Regression. In fact, (Zhu et al., 2022)
concluded that expit transformations are ineffective
in most cases and suggested probability calibration
as a better approach. Following this direction, our
work focuses exclusively on probability calibration
and does not include expit transformations as part
of our method design.

3 Preliminaries

3.1 Knowledge Graph

A knowledge graph (KG) G = {¢} contains a set
of triples £ = (h,r,t), where each triple includes
a head entity h € &£, atail entity ¢ € £, and a
relation 7 € R connecting head and tail. £ and
‘R refer to the set of all entities and relations of G
respectively. N = |£] and M = |R| denote the
number of entities and relations respectively.

3.2 Knowledge Graph Embeddings

Knowledge graph embedding (KGE) models aim
to represent each head entity h, relation r, and tail

entity ¢ from a KG G as d-dimension continuous
embeddings h, r, and t € R<. Each KGE model
defines a model-specific score function v that as-
signs a score to each triple £ = (h, r, t) based on its
corresponding embeddings, i.e., 1(§) = ¥ (h,r, t).
Table 3 in Appendix A lists the score functions of
the most popular KGE models.

3.3 Link Prediction

Link prediction, the primary task for KGE mod-
els, includes entity and relation prediction. Entity
prediction is more challenging due to the large num-
ber of candidate entities. For example, WN18RR
(Dettmers et al., 2018) contains 40,943 entities but
only 11 relations. This paper focuses on the more
difficult entity prediction task. To be specific, the
entity prediction includes head and tail prediction.
For head prediction, given a query of the form
(?,7,t), each entity e; € £ becomes a potential can-
didate for the head entity. The trained KGE model
assigns a score 1(&;) to each triple & = (e;, 7, t),
where e; is a candidate head entity, and r and ¢ are
the given relation and tail entity. These scores are
then ranked, with higher-ranked triples being more
plausible, indicating that the corresponding entity
e; is a likely answer to the query (7,7, t). The task
of tail entity prediction could be defined in a similar
manner.

4 KGE Calibrator

In this section, we present our proposed method,
KGE Calibrator (KGEC). We begin with the in-
troduction of our proposed Jump Selection Strat-
egy and Multi-Binning Scaling, thereafter describe
the Wasserstein distance-based loss function subse-
quently.

4.1 Jump Selection Strategy

To improve training efficiency in the context of
large-scale class spaces inherent to KGE tasks, it is
crucial to focus on the most informative instances
while discarding less significant one during train-
ing the calibration method. Inspired by (Shen et al.,
2022), we propose the Jump Selection Strategy,
which selects the most significant instances for
training rather than using all available instances.
This Jump Selection Strategy is summarized in Al-
gorithm 1, and we elaborate it as follows.

Given a query set Q = {q1, ..., Gi, -.., N } Where
¢ = (7,7i,t;), and a set of candidate entities
& = {e1,...,ei,...,ep}, we first generate candi-
date triples &;; = (ej,7;,t;) for all 7 and j (line 1



Algorithm 1 Jump Selection Strategy

Input: A set of queries Q = {q1,...,¢i, .-, qN },
where ¢; = (7,7, t;) fori = 1,..., N, a set
candidate entities £ = {e1, ..., €j, ..., eps } for
j=1,..., M, atrained KGE model v

1: Generate candidate triples for each query:
fij A (ejvri’ti)

2: Compute uncalibrated scores for each query:
zij < P(&ij) = ¥(ej,Tis t)

3: Form the uncalibrated scores into a score vec-
tor: X; < {xﬂ, ey Ligy eeny sz}

4: Compute probabilities: P; <+ ogy(X;) for
each query

5: Form the uncalibrated probabilities into a prob-
ability matrix: P < {Py,...,P;,..., Py}

6: Sort P in descending order by row to obtain
P

7. for j =1to M — 1do

Jj < Drr(Pj || Pjt1)

9: end for

10: J* < arg m]ax J;

11: p* < P

Output: Selected index J* and its corresponding
probability p* for calibration

in Algorithm 1). The KGE model v is then used
to compute uncalibrated scores x;; = 1(&;;) for
each candidate triple, forming a score vector X; for
each query ¢; (lines 2 — 3 in Algorithm 1). These
scores are transformed into probability vectors P;
via the Softmax function ogj,, and assembled into
a probability matrix P (lines 4 — 5 in Algorithm
1). We then sort each row of P in descending order
to obtain P (line 6 in Algorithm 1), so that higher
probabilities appear first. To identify the most in-
formative instance, we compute the Jump Measure
Jjj for each adjacent column pair in the sorted prob-
ability matrix P using KL divergence (lines 7 —
8 in Algorithm 1). The index J* corresponding
to the maximum Jump Measure is then selected,
and its associated probability vector p* = P is
used as the most informative sample for subsequent
calibration training (lines 9 — 11 in Algorithm 1).

4.2 Multi-Binning Scaling

Temperature Scaling (TS) (Guo et al., 2017) is a
widely used post-hoc calibration method due to its
simplicity and its ability to preserve the original
model’s ranking order, which is an essential prop-
erty in the KGE link prediction task. TS achieves

this by scaling the uncalibrated probabilities us-
ing a single scalar temperature parameter 7' > 0,
thereby maintaining the relative ordering of scores.
However, TS suffers from limited expressiveness,
as it applies the same transformation regardless
of the input probability magnitude (e.g., both 0.1
and 0.9 are scaled identically), which can lead to
suboptimal calibration performance.

To address this limitation, we introduce Multi-
Binning Scaling (MBS), a more flexible approach
that maintains the ranking-preserving property of
TS while improving calibration quality. Inspired
by histogram binning (Zadrozny and Elkan, 2001),
we partition the uncalibrated probabilities p* =
{p},...,p},...,pN } into W mutually exclusive bins
Bi,...,B,, ..., Byy. Each bin is associated with
an independent scalar temperature parameter 7.
Uncalibrated probabilities falling into bin B,, are
calibrated using:

pi = osm (P} /T2), (1)

where ogps denotes the Softmax function. The
squared temperature form follows convention
in temperature-based calibration and provides
smoother gradient behavior.

To define bin boundaries, we divide the interval
[0, 1] into W equal-length segments:

O=a1<ax<...<awy1 =1, (2)

so that bin B,, corresponds to the interval
(G, aw+1]. In this paper, we adopt uniformly
divided equal-length intervals for bin boundaries
to maintain simplicity. More advanced strategies,
such as adaptive bin boundaries, are left for future
exploration.

For probability vectors p~ = f’j where j # J*
(i.e., those not selected by Jump Selection Strategy),
we reuse the temperature parameter 7;,, associated
with p* to calibrate them. This design avoids the
overhead of rebinning and retraining temperature
parameters, while ensuring that the original ranking
produced by the model remains unaffected. Over-
all, MBS combines the ranking-preserving prop-
erty of TS with the expressiveness of bin-based
transformations, enabling more accurate and ro-
bust calibration for KGE link prediction without
compromising original ranking performance.

4.3 Optimization

While Kullback—Leibler (KL) divergence is a com-
monly used loss function in deep learning, it poses



notable limitations for probability calibration in
KGE models. This is particularly evident in high-
cardinality tasks such as entity prediction, where
each entity corresponds to a unique class and the
class space can include tens of thousands of can-
didate entities. First, in such large class spaces,
the predicted probabilities for most entities are ex-
tremely small. When the true label probability g; is
nonzero but the predicted probability p; approaches
zero, the corresponding KL loss becomes negligi-
ble. This results in near-zero loss values for many
informative instances, reducing their impact during
training and weakening the effectiveness of cali-
bration. Second, KL divergence towards infinity
when p; > 0 and ¢; approaches zero, causing the
loss to diverge toward infinity. In practice, this
can cause gradient instability or explosion, particu-
larly in sparse or imbalanced prediction scenarios.
These issues compromise the robustness and relia-
bility of probability calibration in KGE. A detailed
analysis is provided in Appendix B.

To address these issues, we propose using the
Wasserstein distance as the loss function for KGEC.
Unlike KL divergence, the Wasserstein distance
provides a more stable and geometrically mean-
ingful way to compare probability distributions by
considering the minimum cost of transforming one
distribution into another. This perspective is es-
pecially valuable in calibration, where we aim to
align uncalibrated scores with true probability dis-
tributions while preserving their structure.

The Wasserstein distance models calibration as
an optimal transport (OT) problem, where the goal
is to find the most efficient way to move probabil-
ity mass from the uncalibrated distribution p* to
the target distribution ¢g. The feasible set of trans-
port plans is defined by the transportation polytope
U(p*, q), which contains all nonnegative transport
matrices P:

Up*,q) = {P e R¥P1, =p*,P'1, = q},
3)
where 1, € R? is a vector of ones.

Given a cost matrix M € R4¥4, the Wasserstein
distance is defined as the minimum transport cost
required to map p* to ¢ using the transport matrix
P.
min

Dwp(p*,q) = pn

m,n

“)
where (-,-) stands for the Frobenius dot-product
and M,,,, = |p}, — qn| represents the absolute

(Pa M) = Epm,an,na

difference between the m-th and n-th elements of
p* and q.

To improve computational efficiency, we use the
Sinkhorn distance (Cuturi, 2013), which provides
a fast approximation to the constrained Wasser-
stein distance by introducing entropy regulariza-
tion. Given the OT plan P* and cost matrix M, the
Sinkhorn distance is defined as follows:

Dsp(p*,q) = (P, M), 5)

where A > 0 is the weight for entropy regulariza-
tion. The OT plan P is obtained by solving:

1
P> = argmin (P, M) — ~h(P),  (6)
PEU(p*q) A

where h(P) is the entropy of P. The solution P*
computed iteratively via Sinkhorn normalization
(Cuturi, 2013) as follows:

ut :p* @ (KTvt71)7

7
ot = g0 (Kuf), @

where © indicates element-wise division, ¢ denotes
the iteration time, and K = exp(—%) is the ker-
nel matrix with entropy regularization weight .
Finally, the optimal transport plan P* is given by:

P* = diag(v") K diag(u'), (8)

This Sinkhorn-regularized Wasserstein loss enables
more stable optimization and improves calibra-
tion performance, particularly under the large class
space settings encountered in KGE tasks.

S Experiments

For the experiments, we first introduce three key
research questions (RQs), and then use our exper-
imental results to address each of these questions
individually.

e RQ1: Which of the existing post-processing
calibration methods can not affect the KGE results?

e RQ2: Can our proposed KGEC method sur-
pass the performance of existing methods while
preserving the original ranking quality?

¢ RQ3: Is our proposed KGEC method efficient?

Section 5.1 details the datasets used in our ex-
periments, along with the training and learning
processes for both the link prediction models and
calibration functions. Section 5.2 presents the rank-
ing results evaluation for RQ1. Section 5.3 presents
the effectiveness evaluation for RQ2. Section 5.4
discusses the training time and memory usage for
RQ3.



5.1 Experimental Setting
5.1.1 datasets

We evaluate our proposed model on four popu-
lar datasets, which are commonly used to evalu-
ate link prediction, where FB15K (Bordes et al.,
2013) and FB15K-237 (Toutanova and Chen, 2015)
were extracted from Freebase (Bollacker et al.,
2008), WN18 (Bordes et al., 2013) and WN18RR
(Dettmers et al., 2018) were extracted from Word-
Net (Miller, 1995). Note that FB15K-237 and
WNI18RR are subsets of FB15K and WN18, re-
spectively, in which near-same and near-reverse re-
lations have been removed. These datasets are pub-
licly available, and already partitioned into training,
validation and testing splits. The statistics of them
are summarized into Table 4 in Appendix C.

5.1.2 KGE models

To evaluate our proposed model, we leverage
four famous KGE models in our experiments, i.e.,
TransE (Bordes et al., 2013), DistMult (Yang et al.,
2015), ComplEx (Trouillon et al., 2016), and Ro-
tatE (Sun et al., 2019) The score functions of them
are shown in Table 3. It is noted that any KGE mod-
els could be employed as the input of our KGEC
model, as long as it could encode triples into em-
beddings and get their scores. Therefore, choosing
different KGE models is not the focus of this paper
and left for future exploration.

5.1.3 Calibration baselines

All calibration baselines are listed as follows.

o Platt Scaling (PS) (Platt et al., 1999) is a para-
metric approach to calibration, which is based on
transforming the non-probabilistic outputs of a bi-
nary classifier to calibrated confidence scores.

e Histogram Binning (HB) (Zadrozny and
Elkan, 2001) is a simple non-parametric calibra-
tion method. All uncalibrated predictions are di-
vided into mutually exclusive bins, where each bin
is assigned a calibration score.

o I[sotonic Regression (IR) (Zadrozny and Elkan,
2002) is a strict generalization of histogram binning
in which the bin boundaries and bin predictions are
jointly optimized.

e Bayesian Binning into Quantiles (BBQ)
(Naeini et al., 2015) is a extension of histogram
binning using the concept of Bayesian model aver-
aging.

e Matrix Scaling (MS) and Vector Scaling (VS)
(Guo et al., 2017) are two multi-class extensions of
Platt scaling.

e Temperature Scaling (TS) (Guo et al., 2017)
is the simplest extension of Platt scaling, uses a
single scalar parameter 7' > 0 for all candidates.

e Meta-Cal (Ma and Blaschko, 2021) integrates
bipartite-ranking model with selective classifica-
tion to improve calibration map.

e Parametrized Temperature Scaling (PTS)
(Tomani et al., 2022) is the generalization of tem-
perature scaling by computing prediction-specific
temperatures, parameterized by a neural network.

In this work, we focus exclusively on post-hoc
probability calibration methods to preserve the orig-
inal ranking of KGE models. As such, techniques
that modify model training, such as regulization
(Ahn et al., 2019), ensemble (Lakshminarayanan
et al., 2017), MC-dropout (Gal and Ghahramani,
2016) and mixup (Thulasidasan et al., 2019), are
beyond the scope of this study. Additionally, we
fail to report results for Beta Calibration (Kull
et al., 2017) due to its extremely high computa-
tional cost. For instance, even on the smallest
dataset (WN18RR), this method required over 60
hours to complete, rendering it impractical for our
large-scale experiments. Lastly, we clarify that this
work focuses solely on probability calibration and
does not consider expit transformations, such as
replacing the Softmax function with Sigmoid or
NIC (Wang et al., 2021). These transformations
are thus fall outside the scope of our study.

5.1.4 Evaluation measures

Evaluating calibration performance requires both
reliable metrics to detect miscalibration and ef-
fective techniques to fix such distortion. In this
work, we adopt three widely used evaluation met-
rics: Expected Calibration Error (ECE) (Naeini
et al., 2015), Adaptive Calibration Error (ACE)
(Nixon et al., 2019), and Negative Log-Likelihood
(NLL). Each metric captures different aspects of
calibration quality. Due to space constraints, we
refer readers to (Naeini et al., 2015; Nixon et al.,
2019) for detailed formulations. To give an over-
all evaluation of each method, we calculate the
average of each metric for different dataset and
different KGE models as Average, which is a stan-
dard comprehensive metric for the task of KGE
calibration.

5.1.5 Setting details

To ensure a fair comparison, all baselines and met-
rics we used are from third-party frameworks or
their original codes. Specifically, the code of PS,



HB, IR, BBQ, and TS are from net:cal'. The code
of MS and VS and all metrics are calculated by
the TorchUncertainty?. The code of Meta-Cal® and
PTS* is from their official code. For the hyper-
parameter setting of KGEC, the number of bins
is set to 10, the learning rate is set to 0.01, the
batch size is set to 32, the initial temperature for
each bin is set to 1.0 and the optimizer is AdamW
(Loshchilov and Hutter, 2019). Except for VS, MS,
and TS which uses the Multiclass setting, all other
baselines use the One-vs-all setting to avoid unac-
ceptable training time. We follow the closed world
assumption in our experiments. This is because the
open world assumption requires a label for each
triplet, which is missing in existing datasets. All ex-
perimental results are the average values obtained
after running 10 times. We make the source code
used in this paper publicly available for future re-
search’.

5.2 Accuracy Affection Study for RQ1

Table 1 presents the results of the TransE model
across various datasets after applying different cal-
ibration methods. The Uncal row represents the
original, uncalibrated results, 1 indicates an im-
provement, while | indicates a decline compared
to the original uncalibrated results. Among the
reported evaluation metrics: A lower Mean Rank
(MR) indicates better performance. Higher val-
ues of Mean Reciprocal Rank (MRR), HITS@1,
HITS@3, and HITS@10 indicate better perfor-
mance. For more results of other KGE models
across various datasets after applying different cali-
bration methods are shown in Table 8, Table 9 and
Table 10.

From the experimental results in Table 1, we
can see that (1) HB, IR, BBQ, MS, and Meta-Cal
significantly degrade performance across all four
datasets, making them unsuitable as calibrators
for KGE models in the entity prediction task; (2)
KGEC maintains the ranking accuracy across all
datasets, demonstrating their effectiveness as the
most suitable calibration methods for this task; (3)
PS, VS, and TS either preserve or slightly improve
accuracy on WN18 and WN18RR and generally
do not lead to performance deterioration; (4) VS

! https://efs-opensource.github.io/calibration-
framework/build/html/index.html

*https://torch-uncertainty.github.io

3https://github.com/maxc01/metacal/tree/master

“https://github.com/tochris/pts-uncertainty

Shttps://anonymous.4open.science/t/KGE-Calibrator-
D780/README.md

Table 1: Effect of different calibration methods on
the performance of the TransE model across various
datasets.

Method MR MRR HITS@] HITS@3 HITS@10
WN18
Uncal 263 0.772 0.706 0.807 0.920
PS 260 1 0.772 0.706 0.807 0.920
HB 15299 | 0225 0212 0.236] 0240
IR 14590 | 0251, 0.232] 0267, 0279
BBQ 15178 | 0218 0.200 ] 0233 0244 |

Vs 258 1 0.772  0.706 0.807 0.920

MS 16483 | 0.013) 0.005] 0.013) 0.029 |
TS 260 T 0.772 0.706 0.807 0.920
Meta-Cal 1784 | 0.718 | 0.657] 0749 0.856 |
PTS 2116 L 0751 0.706 0775 0.849 |
KGEC 263 0.772 0.706 0.807 0.920
WNISRR
Uncal 3437 0.223 0.014 0.401 0.528
PS 3437 0.223 0.014 0.401 0.528
HB 19455 0.071, 0.0531 0.087, 0.099 |
IR 18143 | 0.102, 0.0801 0.119)  0.139 |
BBQ 18196 | 0.071, 0.0501 0.085]  0.105 ]
Vs 34211 02241 0.014 0.401 0.529
MS 18178 | 0.009 | 0.003]  0.008 | 0.020 |

TS 3437 0.223 0.014 0.401 0.528
Meta-Cal 3437 0.223 0.014 0.401 0.528
PTS 3437 0.223 0.014 0.401 0.528
KGEC 3437 0.223 0.014 0.401 0.528

FBI5K
Uncal 40 0.731 0.646 0.793 0.865
PS 40 0.731 0.646 0.793 0.865
HB 22751 0570 0510 0.614] 0.670 |
IR 982 | 0.615] 0530, 0675 0.761 ]
BBQ 12750 0589 0509 0.646 | 0.726 |
VS 41 ] 0.730 | 0.646 0791 0.862 |
MS 3687 0.038) 0.024] 0.039, 0.061]
TS 40 0.731 0.646 0.793 0.865
Meta-Cal 1149 0.677 | 0.604] 0.735] 0.787 |
PTS 40 0.731 0.646 0.793 0.865
KGEC 40 0.731 0.646 0.793 0.865
FBI5K-237
Uncal 173 0.330  0.231 0.368 0.527
PS 173 0330  0.231 0.368 0.527
HB 3497 0289 0224 0321 0416
IR 2141 0309 02341 0343 0455
BBQ 2335 0280] 0209, 0310 0422
Vs 173 0.330  0.231 0.368 0.527
MS 3704 0.033, 0.014] 0.032, 0.070]
TS 173 0.330  0.231 0.368 0.527
Meta-Cal 1231 0308 | 0218] 0.344| 0.490 |
PTS 173 0.330  0.231 0.368 0.527
KGEC 173 0330  0.231 0.368 0.527

slightly degrades performance on FB15K and PTS
on WN18, but given that the decline is minor and it
performs well on other datasets, its overall impact
remains acceptable.

5.3 Effectiveness Study for RQ2

Table 2 presents the calibration performance of
various methods across multiple KGE models and
datasets. Notably, baselines such as HB, IR, BBQ,
MS, and Meta-Cal are excluded, due to their detri-
mental impact on ranking performance, as shown in
Section 5.2. Since preserving the original ranking
order is essential in KGE settings, these calibra-
tion methods that degrade ranking performance are
considered unsuitable for practical deployment and
omitted from further evaluation.

Overall, across all datasets and models, KGEC


https://efs-opensource.github.io/calibration-framework/build/html/index.html
https://efs-opensource.github.io/calibration-framework/build/html/index.html
https://torch-uncertainty.github.io
https://github.com/maxc01/metacal/tree/master
https://github.com/tochris/pts-uncertainty
https://anonymous.4open.science/r/KGE-Calibrator-D780/README.md
https://anonymous.4open.science/r/KGE-Calibrator-D780/README.md

Table 2: Effect of different calibration methods on the performance of various KGE models across multiple datasets.
For ECE, ACE, and NLL, lower values indicate better calibration performance.

ECE TransE ComplEx DistMult RotatE Average
WNI18 WNISRR FBI5SK FBI5K-237 | WNI8 WNISRR FBI5SK FBI5K-237 | WNI8 WNISRR FBI5SK FBI5K-237 | WNI8 WNISRR FBI5SK FBI5K-237
Uncal  0.502 0.265 0.580 0.212 0.852  0.424 0.696 0.228 0.528 0.389 0.694 0.221 0.429 0.385 0.684 0.224 0.457
PS 0.634 0.031 0.530 0.218 0.854 0427 0.701 0.229 0.529 0.394 0.700 0.222 0.876 0.425 0.722 0.235 0.483
Vs 0.706 0.014 0.646 0.231 0.852 0424 0.697 0.228 0.528 0.389 0.695 0.215 0.944 0.413 0.739 0.239 0.498
TS 0.634 0.031 0.680 0.203 0.852 0.424 0.701 0.228 0.528 0.389 0.700 0.221 0.687 0.384 0.722 0.223 0.475
PTS  0.523 0.013 0.530 0.231 0.854 0430 0.060 0.214 0456  0.393 0.526 0.778 0.337 0.425 0.221 0.365 0.397
KGEC 0.171 0.280 0.459 0.150 0.838 0.418 0.678 0.189 0446  0.383 0.683 0.178 0.467 0.307 0.466 0.094 0.388
ACE TransE ComplEx DistMult RotatE Average
WNIS8 WNISRR FBISK FBISK-237 | WNI8 WNISRR FBISK FBI5K-237 | WNIS WNISRR FBISK FBI5K-237 | WNI8S WNISRR FBISK FBI5K-237
Uncal  0.506 0.274 0.565 0.180 0.852  0.424 0.696 0.228 0.528 0.389 0.694 0.220 0.429 0.385 0.684 0.224 0.455
PS 0.628 0.033 0.530 0.217 0.854 0427 0.701 0.229 0.529 0.394 0.700 0.222 0.876 0.425 0.722 0.235 0.483
Vs 0.506 0.274 0.565 0.180 0.852 0.424 0.697 0.228 0.528 0.389 0.694 0.215 0.429 0.385 0.684 0.224 0.455
TS 0.628 0.033 3312 0.154 0.852 0423 0.701 0.228 0.528 0.389 0.700 0.220 0.687 0.384 0.722 0.222 0.636
PTS 0516 0.013 0.530 0.231 0.854  0.424 0.060 0.207 0446  0.391 0.522 0.778 0.337 0.418 0.221 0.363 0.394
KGEC 0.131 0.277 0.293 0.082 0.833 0.418 0.465 0.207 0.457 0.383 0.516 0.199 0.467 0.306 0.466 0.063 0.348
NLL TransE ComplEx DistMult RotatE Average
WNIS8 WNISRR FBISK FBI5SK-237 | WNI8 WNISRR FBISK FBI5K-237 | WNIS WNISRR FBISK FBI5K-237 | WNIS WNISRR FBISK FBI5SK-237
Uncal  2.891 6.582 3911 5.396 6.892 7.815 5.954 7.513 7.447 7.858 5.919 7.705 1.376 6.145 4.090 5.750 5.828
PS 3.839 7.304 3.829 5.836 8.831 8.974 7.093 8.438 9.117 9.065 7.257 8.621 3350  7.364 4.799 6.271 6.874
\S / / / / 6.892 7.814 5.952 7.510 7446 7.857 5.916 7.692 1.376 / / / 6.495
TS 3.839 7.304 1.285 4.909 6.892 7.802 7.093 7.513 7.447 7.856 7.257 7.704 2.069 6.121 4.799 5.617 5.969
PTS / 9.181 3.829 9.448 9.314 9.171 1.906 5.714 / 9.496 4.847 / / / / / 6.990
KGEC  2.462 5.965 2.536 2.889 4.350 6.965 1.357 2911 2.843 7.119 1.319 3.106 1.036 4.698 2.033 2.743 3.396

consistently achieves the lowest average ECE,
ACE, and NLL, clearly outperforming all competi-
tive baselines. Key findings from Table 2 include:
(1) Limited effectiveness of simple baselines: PS,
VS, and TS often perform worse than the uncali-
brated models. Their poor performance is likely
due to their low model capacity, which is insuf-
ficient to capture complex calibration patterns in
high-cardinality KGE settings. (2) Improved re-
sults with PTS: PTS shows marked improvement
over simple baselines by predicting temperature
parameters adaptively using a neural network. This
flexibility enables better handling of distributional
variation, leading to improved calibration perfor-
mance. (3) Superior performance of KGEC: KGEC
achieves the best overall results across all metrics
and datasets. Its combination of Jump Selection
Strategy, Multi-Binning Scaling, and Wasserstein
distance-based loss function effectively addresses
the challenges of KGE calibration while preserving
ranking quality.

5.4 Efficiency Study for RQ3

Table 5 and Table 6 report the training time and
memory usage of different calibration methods
across multiple KGE models and datasets. All
methods are evaluated on CPU-only environments
to ensure fair comparison.

Key Observations from these two tables: (1)
KGEC is the most efficient model in both training
time and memory usage, consistently outperform-
ing all baseline methods. (2) VS and TS exhibit
comparable efficiency, with slightly longer training
times than KGEC, which can be attributed to their

simple parametric structures. (3) PTS incurs signifi-
cantly higher computational costs, both in time and
memory, despite its strong calibration performance.
This high overhead may limit its applicability in
large-scale or resource-constrained scenarios. (4)
PS is the slowest method, largely due to the im-
mense number of classes in KGE settings, which
makes binary logistic regression computationally
expensive.

5.5 Ablation Study, Sensitivity Analysis, and
Case Study

Due to space limitations, additional experiments,
including the ablation study, sensitivity analysis,
and case study, are provided in the Appendix.
Please refer to Appendix D, E, and F for details.

6 Conclusion

In this paper, we propose KGEC, the first prob-
ability calibration method specifically designed
for KGE models. KGEC integrates a Wasserstein
distance-based loss function, a multi-binning scal-
ing module, and a jump selection strategy to ef-
fectively calibrate the predictive probabilities of
KGE models without sacrificing ranking perfor-
mance. Comprehensive experiments across multi-
ple KGE models and benchmark datasets demon-
strate that KGEC significantly outperforms existing
calibration baselines in terms of effectiveness and
efficiency. Overall, KGEC establishes a strong
and efficient foundation for trustworthy link predic-
tion. Future work may explore its applicability to
dynamic knowledge graphs or integrating it with
uncertainty-aware reasoning systems.



Limitations

While KGEC achieves strong performance in cali-
brating probability estimates for KGE models, sev-
eral limitations remain:

(1) Limited Exploration of Expit Transfor-
mation Functions. In this work, we adopt the
Softmax function as the expit transformation, as
our primary focus is on the calibration method it-
self. However, alternative approaches, such as NIC
(Wang et al., 2021) and min-max normalization
(Rao, 2021), may further improve performance and
merit exploration in future work.

(2) Task-Specific Calibration Considerations.
KGEC is optimized for static entity prediction tasks
in knowledge graphs. Its effectiveness in other
KGE-based applications, such as multi-hop rea-
soning, fact verification, or temporal/dynamic KG
settings, remains untested. These tasks may require
adaptation or redesign of the calibration strategy
to accommodate different data characteristics and
evaluation protocols.

(3) Limited Evaluation Across Advanced
KGE Architectures. While KGEC has been ex-
tensively evaluated on several representative KGE
models (e.g., TransE, DistMult, ComplEx, and Ro-
tatE), its generalization to more complex architec-
tures, such as hyperbolic embeddings, graph neural
networks, or transformer-based KGE models, has
not yet been studied. Extending KGEC to these set-
tings poses challenges in modeling and scalability,
and is an important direction for future work.
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A Score functions of popular KGE
models

For popular KGE models, we show the score func-
tions of them in Table 3.



Table 3: Score functions of popular KGE models, where
|I|| denotes the Ly norm, () denotes the generalized
dot product, t* denotes the complex conjugate of t,
Re refers to the real part of a complex number, and o
denotes the Hadamard product.

KGE model Score function
TransE (Bordes et al., 2013) —[[h+r—t|
DistMult (Yang et al., 2015) (r,h,t)

ComplEx (Trouillon et al., 2016) ~ Re((r,h,t*))
RotatE (Sun et al., 2019) —|hor —t|

B Handling Zero Probabilities in KL
Divergence

Let p and ¢ be two discrete probability distributions
over a finite set X. The Kullback—Leibler (KL)
divergence from g to p is defined as:

=2 _ () )

zeX

Dxi(p || q)

While this expression is well-defined when both
p(z) > 0and ¢(x) > 0, edge cases involving zero
probabilities require special attention. Below, we
analyze two important cases.

Case 1: p(z) =0

When p(z) = 0, the corresponding term in the
summation becomes:

0

q(z)

Although log 0 is undefined, this term is conven-
tionally set to zero. This is justified by the limit:

0-log

lim wlog — = 0.

U
u—0+ q(x)
Hence, for numerical stability and analytical con-
sistency, we define:

p(z)

p(z)log @)

Case 2: ¢(z) = O and p(z) > 0

This case is more problematic. If p(z) > 0 and
q(z) = 0, the logarithmic term becomes:

=0 whenp(z)=0.

log @ = 400,
q(z)
which leads to:
p(x)
p(z)log —= = +o0
(=) q(z)

Thus, the KL divergence is undefined (i.e., infinite)
in this case. Formally:
Dxi(p || q) = +o0

if 3z € X such that p(z) > 0 and g(x) = 0.
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Table 4: Statistics of the used KGE datasets.

dataset #Entity #Relation #Training #Validation #Testing

WNI18 40,943 18 141,442 5,000 5,000
WNISRR 40,943 11 86,835 3,034 3,134
FB15K 14,951 1,345 483,142 50,000 59,071
FB15K-237 14,541 237 272,115 17,535 20,466
Summary

Each term p(z) log %

interpreted as follows:

in the KL divergence is

o If p(x) = 0, the term is defined as 0 (by con-
vention via limiting argument).

 If p(xz) > 0 and g(x) = 0, the term is +o0,
causing the entire divergence to diverge.

Thus, the KL divergence is finite if and only if the
support of p is a subset of the support of g¢:

ZP( ) log ¢
Dxvr(pll q) =
+oo,

p(x)
q(x)>

ifg(x) >0
otherwise.

This behavior makes KL divergence highly sensi-
tive to support mismatch. In high-cardinality tasks
such as entity prediction in KGs, sparse output
distributions and zero-valued targets frequently oc-
cur. This can cause instability during training, par-
ticularly in gradient-based optimization, and may
compromise calibration performance if not handled
appropriately.

C Statistics of the used KGE datasets

The statistics of the used KGE datasets are summa-
rized into Table 4.

D Ablation Study

To assess the individual contribution of each com-
ponent in KGEC, we perform a comprehensive
ablation study across five key metrics: ECE, ACE,
NLL, training time, and memory usage. Figure 2
reports the average performance across all datasets
and KGE models, providing an overall comparison
of model variants. Detailed experimental results for
each component on individual datasets and KGE
models are presented in Table 11.

We evaluate the following four variants: (1)
KGEC: The full model, incorporating all com-
ponents—Jump Selection Strategy (JSS), Multi-
Binning Scaling (MBS), and the Wasserstein
distance-based loss. (2) KGEC-loss: Replaces the
Wasserstein loss with KL divergence while retain-
ing JSS and MBS. (3) KGEC-loss-MBS: Further



Table 5: Training time in seconds taken to calibrate entity prediction using different methods. Best and second-
ranked results are in bold and underlined, respectively. For fair comparison, these results are obtained using CPU

only.

Method

TransE

ComplEx

DistMult

RotatE

WNI§ WNISRR FBISK FBI5K-237

WNI8 WNISRR FBISK FBISK-237

WNI§ WNISRR FBISK FBI5K-237

WNI8 WNISRR FBISK FBI5K-237

Average

PS

Vs

TS
PTS

50551.471  32130.612 66566.552  22756.968
2.857 1.893 25.357 3493
5.235 3.207 20.037 6.475

3452440  2123.849  16769.166  5856.000

44484280 27740.023  66631.859  20060.975
2.661 1.620 16.228 3218
5.063 3.121 18.825 6.276

3432436 2122273 16510.019  5764.345

48902.412  31739.057 58074230  21682.032
4.114 1.914 20.779 3.456
5.180 3.204 19.734 6.412

3450.331 2120.555 16898.528  5868.468

46162.422  30198.810 65506.688  20522.725
2.656 1.706 25.995 3.277
5.456 3.171 20.646 6.345

3425.148  2113.001 16802.984  5853.287

40856.945
1.577
8.649

7035.177

KGEC

2.727 1.776 10.873 3.602

2.698 1.727 10.560 3.624

2.741 1.696 10.645 3.705

2.662 1.658 10.758 4.003

4.716

Table 6: Memory usage in MBs taken to calibrate entity prediction using different methods. Best and second-ranked
results are in bold and underlined, respectively. For fair comparison, these results are obtained using CPU only.

Method

TransE

ComplEx

DistMult

RotatE

WNI8 WNISRR FBI5SK FBI5K-237

WNI8 WNISRR FBISK FBI5K-237

WNI8 WNISRR FBISK FBI5K-237

WNI8 WNISRR FBISK FBI5K-237

Average

PS

Vs

TS
PTS

1564.336
84.477
1562.625
6655.574

950.762  5706.102
84.383 86.098
948453 5703.750

7017.359  11154.340

1948.508
84.348
1947.629
9554.723

1948.664
80.770
1945.566
9629.871

1566.598
82.059
1562.984
6804.816

950.270  5706.832
83.152 86.918
949.285  5703.047

7022.313  10185.500

949.633  5705.828
83.883 80.883

948.504  5704.801
6696.055  10180.105

1947.574
81.320
1945.828
9407.988

1565.820
83.609
1562.340
6957.012

1566.477
80.570
1562.914
7047.270

950.793  5706.875
83.145 86.152

948.566  5703.359
7074.051 10521.520

1948.371
80.941

1944.730

8659.395

2542715
83.204
2540.274
8410.493

KGEC

30.484 28.289 7.570 15.273

26.652 32.176 9.535 15.285

34.316 32.047 10.531 13.492

34.320 32.191 7.551 16.930

21.665

removes MBS, retaining only JSS and KL diver-
gence. (4) KGEC-loss-MBS-JSS: The base version
using only KL divergence, without any of the pro-
posed enhancements.

Key Observations: (1) Full Model Superiority:
KGEC achieves the best performance across all
five metrics. It yields the lowest calibration errors
(ECE = 0.388, ACE = 0.348, NLL = 3.396) while
maintaining high efficiency (training time = 4.716s,
memory usage = 21.665MB). (2) Impact of Wasser-
stein Loss: Comparing KGEC to KGEC-loss re-
veals substantial calibration improvements, validat-
ing the advantage of using Wasserstein distance
over KL divergence in high-cardinality, ranking-
sensitive KGE settings. This supports our hypoth-
esis that the Wasserstein-based objective is better
suited to the probability distribution landscape of
KGE. (3) Effect of MBS: Removing MBS (KGEC-
loss vs. KGEC-loss-MBS) degrades ECE (from
0.450 to 0.487) and NLL (from 4.960 to 5.590),
indicating that MBS enhances calibration by mod-
eling probability intervals more effectively. In-
terestingly, ACE improves after removing MBS.
This anomaly may arise because the KL divergence
used in KGEC-loss amplifies ACE more than ex-
pected, suggesting ACE is especially sensitive to
the choice of loss function. (4) Efficiency Gain
from JSS: While KGEC-loss-MBS and KGEC-
loss-MBS-JSS exhibit similar calibration perfor-
mance, the inclusion of JSS dramatically reduces
training time (from 65.871s to 4.659s) and memory
usage (from 97.608MB to 20.032MB), confirm-
ing JSS’s effectiveness in improving computational
efficiency.

Overall, all three components are essential for

balancing calibration performance and computa-
tional cost. MBS and Wasserstein loss enhance

calibration performance, while JSS ensures scala-
bility. The full KGEC model delivers the strongest
overall performance.

E Sensitivity Analysis

To assess the robustness and stability of our pro-
posed KGEC method, we conduct a comprehen-
sive sensitivity analysis by varying three critical
hyperparameters: the number of bins, the initial
temperature, and the learning rate. We evaluate
the impact of each parameter on three calibration
metrics, i.e., ECE, ACE, and NLL, across all KGE
models and datasets. Results are summarized in
Tables 12, 13, and 14.

Effect of the Number of Bins. We vary the num-
ber of bins from 1 to 20. Table 12 shows that
using only one bin (equivalent to vanilla tempera-
ture scaling) results in poor performance across all
metrics, highlighting its limited flexibility. As the
number of bins increases, KGEC becomes more
expressive and better calibrated. The best average
performance is observed at 19 bins (ECE = 0.352,
ACE = 0.343, NLL = 3.361), though results are
stable within the 10-20 bin range. This confirms
the importance of multi-binning for modeling di-
verse score distributions, while also indicating that
KGEC is robust to bin selection within a reasonable
interval.

Effect of Initial Temperature. We examine ini-
tial temperature values ranging from 0 to 2.0. As
shown in Table 13, extreme initializations (e.g., 0.0
or 2.0) lead to degraded performance due to opti-
mization instability. An initial temperature of 1.0
yields the best results (ECE = 0.388, ACE = 0.348,
NLL = 3.396), aligning with standard practice in
temperature scaling (Guo et al., 2017). The results
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Table 7: Summary table for calibration method used by related works.

Calibration method

Parametric method

Used works

Isotonic Regression (Zadrozny and Elkan, 2002) No
Histogram Binning (Zadrozny and Elkan, 2001) No
Beta Calibration (Kull et al., 2017) Yes
Platt Scaling (Platt et al., 1999) Yes
Matrix Scaling (Guo et al., 2017) Yes
Vector Scaling (Guo et al., 2017) Yes
Temperature Scaling (Guo et al., 2017) Yes

(Tabacof and Costabello, 2020), (Wang et al., 2021), (Zhu et al., 2022)

(Zhu et al., 2022)
(Zhu et al., 2022)

(Tabacof and Costabello, 2020), (Wang et al., 2021), (Zhu et al., 2022)

(Safavi et al., 2020)
(Safavi et al., 2020)
(Zhu et al., 2022)

ECE

ACE

NLL

1.2 4

0.487 0.487

0.5

Training Time / s

1.074

Memory Usage / MB

5.590
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Figure 2: Ablation study of KGEC components across five evaluation metrics: ECE, ACE, NLL, training time
(seconds), and memory usage (MB). Lower values indicate better performance.

indicate that KGEC is relatively insensitive to this
hyperparameter, as long as it is initialized within a
moderate range.

Effect of Learning Rate. Table 14 presents re-
sults under learning rates ranging from 0.001 to 0.1.
We find that too small learning rates (e.g., 0.001)
may underfit the calibration model, while overly
large values (e.g., 0.1) can cause instability and
degraded performance. The learning rate of 0.01
achieves the best overall calibration (ECE = 0.388,
ACE = 0.348, NLL = 3.396), striking a balance
between convergence speed and stability.

Summary. Across all experiments, KGEC
demonstrates strong robustness to hyperparame-
ter variations. The best performance is consistently
achieved with moderate hyperparameter values: a
bin count between 10 and 20, an initial temperature
near 1.0, and a learning rate around 0.01. These
findings suggest that KGEC is both stable and prac-
tical, requiring minimal hyperparameter tuning for
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Query: (Greece, _member_of_domain_region, ?)
True answer: sibyl
Ranked candidate entities | Uncalibrated scores | Calibrated probabilities
Greece -0.1873 0.0302
Holy_See -0.2946 0.0272
sibyl -0.5992 0.0200
Colosseum -0.8017 0.0164
Sistine_Chapel -0.8683 0.0153
Roman -1.1427 0.0116
Italy -1.1464 0.0116
Rome -1.1873 0.0111
Seven_Hills_of_Rome -1.3174 0.0098
augur -1.3962 0.0090

Figure 3: Case 1 from the WN18RR dataset using the
TransE model.

optimal performance across diverse KGE models
and datasets.

F Case Study

To illustrate the practical benefits of KGEC cali-
bration, we present two representative case stud-
ies from the WN18RR dataset using the TransE



Table 8: Effect of different calibration methods on
the performance of the ComplEx model across various
datasets.

Method MR MRR  HITS@] HITS@3 HITS@I0
WNIS
Uncal 311 0.893 0854 0925 0953
PS 31l 0.893 0854 0925 0953
HB 14328 0274] 0262 0285 0.289
IR 14094 | 0290 0280, 0298] 0304
BBQ 13657, 0236] 0.194] 0271, 0306
VS 3051 0893 0854 0925 0953
MS  16825) 0011, 0004, 0012, 0.022]
TS 311 0.893 0854 0925 0953
Meta-Cal 1260, 0.851) 0.813] 0880, 0.908 |
PTS 311 0.893 0854 0925 0953
KGEC 311 0.893 0854 0925 0953
WNISRR
Uncal 5469 0469 0428 0486 0552
PS 5469 0469 0428 0486  0.552
HB 18836 0107, 0100, 0.112] 0.118]
IR 182441 0103 0090, 0110 0124
BBQ 18200 0.087) 0076 0097 0.105]
VS 54474 0469 0428 0486  0.552
MS 181910 0009] 0.003] 0.009] 0.020]
TS 5469 0469 0428 048  0.552
Meta-Cal 6416 0445) 0407) 0459 0.522
PTS 5469 0469 0428 048  0.552
KGEC 5469 0469 0428 0486 0552
FBISK
Uncal 45 0770 0703 0816  0.885
PS 45 0770 0703 0816  0.885
HB  1747] 0610, 0543) 0661, 0724
IR 970, 0652 0579 0704, 0780
BBQ 797  0597) 0509 0656, 0757
Vs 431 0770 0703 0816  0.8861
MS 3693, 0025] 0010, 0024 0.055]
TS 45 0770 0703 0816  0.885
Meta-Cal 484 | 0715 0.651] 0.759) 0.826]
PTS 45 0770 0703 0816  0.885
KGEC 45 0770 0703 0816  0.885
FBI5K-237
Uncal 166 0322 0230 0352 0511
PS 166 0322 0230 0352 0511
HB  2882) 0274] 0201, 0305 0420
IR 2185 0296] 02201 0328) 0449
BBQ 1661 0249] 0.176] 0273, 0399
Vs 166 0322 0230 0352 05121
MS 3704 0033] 0014 0032, 0070
TS 166 0322 0230 0352 0511
Meta-Cal 267 0310 0218) 0339] 0498 |
PTS 166 0322 0230 0352 0511
KGEC 166 0322 0230 0352 0511

model, as shown in Figure 3 and Figure 4. These
examples highlight how calibrated probabilities of-
fer more interpretable and informative confidence
scores compared to raw, uncalibrated scores.

Case 1: (Greece, _member_of_domain_region,
?) The ground-truth answer for this query is sibyl,
which is ranked third among the candidate enti-
ties based on the model’s raw scores. However,
the uncalibrated scores do not reflect a meaningful
confidence distribution, with the top-ranked entity
Greece receiving a score of —0.1873 and the cor-
rect answer sibyl receiving —0.5992, a difference
that is difficult to interpret probabilistically.

After applying KGEC calibration, the corre-
sponding probabilities become more interpretable:

e Greece: 0.0302
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Table 9: Effect of different calibration methods on
the performance of the DistMult model across various
datasets.

Method MR MRR  HITS@] HITS@3 HITS@10
WNIS
Uncal 227 0.685 0529 0829 0933
PS 227 0.685 0529 0829 0933
HB 14718 0240 0216, 0262] 0271
IR 14271] 0260 02370 0279] 0294
BBQ  13614] 0201] 0.54] 0232 0293 ]
VS 2241 0685 0529 0829 0933
MS 16984 0.011] 0004, 0012] 0.022]
S 227 0.685 0529 0829 0933
Meta-Cal 770  0.663) 0.508] 0.805,  0.908 |
PTS 240 0685 0529 0829 0932
KGEC 227 0.685 0529 0829 0933
WNISRR
Uncal 4912 0439 0394 0453 0532
PS 49091 0439 0394 0453  0.532
HB 19006 0.100) 00901 0.108) 0.117]
IR 181741 0099 00831 0.109] 0.124 |
BBQ  18192] 0.088] 00731 0.100/ 0.109 |
VS 4888+ 0439 0394 0453 0532
MS  18172) 0.009] 0003, 0.009] 0.020
TS 49091 0439 0394 0453  0.532
Meta-Cal 6157 0406, 0366] 0419 0493 |
PTS 49091 0439 0394 0453  0.532
KGEC 49091 0439 0394 0453 0532
FBISK
Uncal 41 0.768  0.701 0813  0.884
PS 41 0.768  0.701 0813  0.884
HB  1528) 0630 0562, 0679] 0748
IR 952 0667, 0599 0713, 0787
BBQ 692 0603, 0512 0.659] 0775
Vs 391 0768  0.701 08141  0.8851
MS  3693] 0025) 0010, 0.024] 0055
TS 41 0768 0701 0813  0.884
Meta-Cal 202 0746 ] 0680, 0790 0.861 |
PTS 41 0768  0.701 0813  0.884
KGEC 41 0.768  0.701 0813  0.884
FBI5K-237
Uncal 174 0309 0222 0337 0484
PS 174 0309 0222 0337 0484
HB  2695) 0256 0.184] 0286, 0.401]
IR 2156 0280 02051 0311} 0427
BBQ 1562 0235) 0.163] 0259] 0378
VS 1721 0305 0216 0333 0484
MS  3704] 0033] 0014 0032 0070
TS 174 0309 0222 0337 0484
Meta-Cal 259 |  0.300) 0213] 0327) 0474]
PTS 5659 0222] 0222  0222] 0223]
KGEC 174 0309 0222 0337 0484

* Holy See: 0.0272
* sibyl (true answer): 0.0200

These calibrated probabilities clearly reflect the
uncertainty inherent in the model’s prediction. Al-
though the correct answer is not ranked first, its
probability is close to that of the top candidates,
suggesting it is still a plausible prediction. This
shows that KGEC can better express confidence
levels, especially in cases with closely competing
candidates.

Case 2: (North_Atlantic_Treaty_Organization,
_member_meronym, ?) In this case, the true an-
swer is Netherlands, which is correctly ranked sec-
ond. The raw score of the correct answer (1.6756)
is only slightly lower than that of the top-ranked
entity North Atlantic Treaty Organization (1.9763),



Table 10: Effect of different calibration methods on
the performance of the RotatE model across various
datasets.

Method MR MRR  HITS@I HITS@3 HITS@I0
WNIS
Uncal 270 0950 0944 0952  0.960
PS 270 0950 0944 0952  0.960
HB 13910 0279 0263) 0294) 0299
IR 13962 0297 0286, 0308] 0313
BBQ 13801, 0271] 0253 0286, 0297
Vs 270 0950 0944 0952  0.960
MS 16626 0013] 0005 0013 0027
TS 270 0950 0944 0952  0.960
Meta-Cal 1917 0905] 0904| 0905, 0.905 ]
PTS 474 0949 | 0944 0951 ] 0958
KGEC 270 0950 0944 0952  0.960
WNISRR
Uncal 3421 0476 0429 0496 0570
PS 3421 0476 0429 04971 0570
HB 187191 0.114) 0.104) 0.122) 0.127]
IR 18047 0118, 0.103] 0.128] 0.143]
BBQ 18189 0.086| 0073] 0095 0.105]
VS 3422 0476 0429 04971  0.570
MS  18195] 0.009) 0.003] 0008 0020
TS 3421 0476 0429 04971 0.570
Meta-Cal 6168 | 0448 | 0409 | 0464 | 0523 ]
PTS 3776 0474] 0429 0493 | 0.564 |
KGEC 3421 0476 0429 04971 0570
FBISK
Uncal 41 0791 0739 0825 088l
PS 41 0791 0739 0825 088l
HB  1843] 0.642) 0588, 0.682) 0.731]
IR 961  0.696] 0.635] 0741 0799
BBQ  1027] 0662 0599 0709 0.768 |
Vs 42] 0791 0739  0.825  0.880 )
MS 3693 0.025) 0010, 0024 0055
TS 41 0791 0739 0825 0881
Meta-Cal 457  0750) 0700, 0783 | 0.835]
PTS  1122] 0763] 0739 0782 0.801
KGEC 41 0791 0739 0825 088l
FBI5K-237
Uncal 178 0336 0239 0374 0530
PS 178 0336 0239 0374 0530
HB 3458 0285, 0221) 0317, 0412]
IR 21310 0307) 0232] 0340) 0455]
BBQ 2292 0275 0204 0305 0415]
VS 179, 0336 0239 0374 0530
MS 3704 0033 0014 0032 0070
TS 178 033 0239 0374 0530
Meta-Cal 246 | 0328 0232] 0365, 0522
PTS 179 0336 0239 0374 0530
KGEC 178 0336 0239 0374 0530

but the significance of this difference is unclear
without proper calibration.

With KGEC, the calibrated probabilities provide
a more informative picture:

* North Atlantic Treaty Organization: 0.3756
e Netherlands (true answer): 0.2781
e European Union: 0.1382

Here, although the true answer is not ranked first,
its calibrated probability is still relatively high,
reflecting the model’s uncertainty and partially
shared semantics among top candidates. This en-
ables downstream applications to interpret and po-
tentially leverage multiple candidates rather than
over-committing to the top-1 prediction.
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Query: ('North_Atlantic_Treaty_Organization, _member_meronym, ?)
True answer: Netherlands
Ranked candidate entities | Uncalibrated scores | Calibrated probabilities
N°”h—:§fn’i‘§;—igr:eaty—o 1.9763 0.3756
Netherlands 1.6756 0.2781
European_Union 0.9763 0.1382
Benelux 0.9763 0.1382
Apeldoorn -0.4998 0.0316
Leiden -0.5236 0.0308
Frisian_Islands -0.5844 0.0290
Friesland -0.6578 0.0270
Netherlander -0.6780 0.0264
British_Commonwealth -0.7083 0.0256

Figure 4: Case 2 from the WN18RR dataset using the
TransE model.

Insights. These case studies demonstrate that:

* KGEC enhances the interpretability of model
outputs by transforming unnormalized scores
into well-calibrated probabilities.

* It allows more accurate reflection of confi-
dence levels, particularly in ambiguous or
competitive ranking situations.

* Even when the top-1 prediction is incorrect,
KGEC highlights alternative candidates with
meaningful confidence, which is valuable for
applications such as knowledge graph reason-
ing, question answering, and downstream en-
semble methods.

Overall, these cases exemplify the effectiveness of
KGEC in improving the trustworthiness and usabil-
ity of KGE models.



Table 11: Effect of each component in KGEC on the performance and efficiency of various KGE models across
multiple datasets. For all the five metrics, the lower the better.

ECE TransE ComplEx DistMult RotaiE Average
WNIS _WNISRR FBISK FBISK-237 | WNIS WNISRR FBISK FBISK-237 | WNIS WNISRR FBISK FBI3K-237 | WNIS _WNISRR FBISK FBI5K-237
KGEC-loss-MBS-JSS 0642 0.195  0.637 0213 0852 0423 0691 0228 0528 0389  0.689 0.220 0805 0383 0671 0222 0.437
KGEC-loss-MBS ~ 0.634  0.196  0.637 0213 0852 0423 0691 0.228 0528 038  0.688 0.220 0821 038 0672 0222 0.487
KGEC-loss 0611 0196 0408 0.199 0824 0377 0689 0.161 0501 0388 0683 0.165 0813 0327 0642 0215 0.450
KGEC 0071 0280 0459 0.150 0833 0418 0678 0.189 0446 0383 0683 0.178 0467 0307 0466 0.094 0.388
ACE TransE ComplEx DistMult RotatE Average
WNIS__WNISRR _FBISK FBISK-237 | WNIS _WNISRR _FBISK FBISK-237 | WNIS _WNISRR _FBISK FBI3K-237 | WNIS__WNISRR _FBISK FBISK-237
KGEC-loss-MBS-JSS 0517 0285 0.636 0.168 0852 0423 0691 0227 0527 0389 0688 0.220 0405 0383 0636 0220 0.454
KGEC-losss-MBS 0516 0.285  0.630 0.168 0852 0423 069 0227 0527 038 0688 0.220 0402 038 0636 0.220 0454
KGEC-loss 0510 0283  7.651 0.943 0823 0350 0670 0.161 0501 0388  0.666 0.163 0401 0278 3.092 0308 1.074
KGEC 0131 0277 0293 0.082 0833 0418 0465 0.207 0457 0383 0516 0.199 0467 0306 0466 0.063 0.348
NLL TransE ComplEx DistMult RotalEl Average
WNIS__WNISRR _FBISK FBISK-237 | WNIS _WNISRR _FBISK FBISK-237 | WNIS _WNISRR _FBISK _FBI3K-237 | WNIS__WNISRR _FBISK _FBISK-237
KGEC-loss-MBS-JSS 2827 6544 3.270 5177 6830 7777 5329 7.294 7384 7820 5294 7.485 1313 6107 3465 5531 5.590
KGEC-losssMBS ~ 2.83%4 6544 3310 5.189 6831 7778 5311 7.300 7384 7812 5265 7479 1304 6107 3470 5521 5.590
KGEC-loss 2834 6330 0687 4.093 4856 7.636 6732 3811 5407 7772 6444 3.950 1300 6327 5014 6.156 4.960
KGEC 2462 5965 2536 2.889 4350 6965 1357 2911 2843 7019 1319 3.106 1036 4698 2033 2743 3.396
Training Time /3 TransE ComplEx DistMult RotatE Average
WNIS__WNISRR _FBISK FBISK-237 | WNIS _WNISRR _FBISK FBISK-237 | WNIS _WNISRR FBISK FBI3K-237 | WNIS__WNISRR FBISK FBISK-237
KGEC-loss-MBS-JSS  39.769  24.194 139544 54700 | 40996 23856 148.151  50.186 | 39.602 24557 147.145 52021 | 39.659 24270 153269 52023 | 65.871
KGEC-loss-MBS ~ 2.894 1638 11442 3598 2714 1611 10.166 3.546 2.661 1645 10.147 3.603 2825 1608  10.760 3.695 4.659
KGEC-loss 2785 1676 10.305 3.598 2915 1650 10.246 3597 2660  1.644  10.490 3.527 2671 1605 10747 3578 4.606
KGEC 2727 1776 10873 3.602 2698 1727 10.560 3.624 2741 1696 10.645 3.705 2662 1658 10758 4.003 4716
Memory Usage / MB TransE ComplEx DistMult RotatE Average
WNIS__WNISRR _FBISK FBI3K-237 | WNIS _WNISRR _FBISK FBISK-237 | WNIS _WNISRR FBISK FBI3K-237 | WNIS _WNISRR _FBISK _FBISK-237
KGEC-loss-MBS-JSS  161.801 126,141 58465 50965 | 170859 [111.168 41953 65574 | 174496 124086 56414 56473 | 160.766 94270 45000  63.301 | 97.608
KGEC-loss-MBS 29027  27.121 6871 17969 | 31258 26676  7.535 10391 | 25426 27184 8750 14277 | 32906 30742 6422 17961 | 20.032
KGEC-loss 29414 27145 6.898 18016 | 25645 26879  8.145 10375 | 32254 26613 8695 14320 | 32754 30965 10172 17316 | 20.350
KGEC 30484 28289 7.570 15273 | 26652 32176 9.535 15285 | 34316 32047 10531 13492 | 34320 32191 7.551 16930 | 21.665
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Table 12: Effect of different number of bins in KGEC on the performance of various KGE models across multiple
datasets. For all the three metrics, the lower the better.

ECE TransE ComplEx DistMult RotatE Average
WNI8 WNISRR FBI5SK FBI5K-237 | WNI8 WNISRR FBISK FBI5K-237 | WNIS WNISRR FBISK FBI5SK-237 | WNIS WNISRR FBI5SK FBIS5SK-237
Bin=1  0.702 0.196 0.586 0.198 0.851 0.422 0.642 0.227 0.527 0.389 0.687 0.221 0.904 0.382 0.663 0.222 0.489
Bin=2  0.305 0.316 0.581 0.184 0.850 0.422 0.677 0.190 0.521 0.387 0.683 0.219 0.476 0.305 0.671 0.105 0.431
Bin=3 0214 0.238 0.498 0.183 0.848 0.422 0.677 0.190 0.515 0.385 0.683 0.180 0.467 0.293 0.653 0.101 0.409
Bin=4  0.245 0.249 0.491 0.180 0.848 0.421 0.677 0.190 0.447 0.385 0.682 0.179 0.486 0.286 0.646 0.098 0.407
Bin=5  0.235 0.262 0.479 0.182 0.848 0.420 0.677 0.189 0.447 0.385 0.682 0.179 0.470 0.297 0.622 0.102 0.405
Bin=6  0.211 0.260 0.514 0.170 0.848 0.419 0.677 0.189 0.447 0.384 0.682 0.179 0.487 0.290 0.584 0.112 0.403
Bin=7  0.159 0.273 0.457 0.147 0.848 0.418 0.678 0.189 0.447 0.384 0.682 0.179 0.451 0.304 0.593 0.104 0.394
Bin=8  0.194 0.269 0.460 0.161 0.848 0.418 0.678 0.189 0.446 0.384 0.682 0.179 0.464 0.307 0.529 0.126 0.396
Bin=9  0.181 0.276 0.444 0.160 0.841 0.418 0.678 0.189 0.446 0.384 0.683 0.178 0.464 0.305 0.498 0.157 0.394
Bin=10 0.171 0.280 0.459 0.150 0.833 0.418 0.678 0.189 0.446 0.383 0.683 0.178 0.467 0.307 0.466 0.094 0.388
Bin=11 0.164 0.283 0.416 0.137 0.833 0.418 0.678 0.189 0.446 0.383 0.683 0.178 0.476 0.316 0.491 0.093 0.387
Bin=12  0.163 0.281 0.388 0.162 0.833 0418 0.678 0.189 0.446 0.383 0.683 0.178 0.475 0.316 0.475 0.100 0.386
Bin=13  0.148 0.287 0.370 0.123 0.835 0418 0.678 0.189 0.446 0.383 0.683 0.178 0.471 0.317 0.459 0.086 0.379
Bin=14 0.125 0.293 0.376 0.140 0.835 0.417 0.677 0.189 0.446 0.382 0.683 0.178 0.472 0.319 0.458 0.116 0.381
Bin=15 0.102 0.294 0.336 0.129 0.824 0.417 0.678 0.189 0.446 0.381 0.682 0.178 0.475 0.318 0.461 0.076 0.374
Bin=16 0.154 0.296 0.349 0.061 0.769 0.416 0.677 0.189 0.446 0.379 0.682 0.178 0.472 0.319 0.494 0.087 0.373
Bin=17 0.120 0.296 0.313 0.064 0.764 0.415 0.585 0.189 0.446 0.377 0.682 0.178 0.478 0.324 0.490 0.091 0.363
Bin=18 0.115 0.293 0.256 0.085 0.749 0.415 0.589 0.189 0.446 0.377 0.640 0.178 0.472 0.325 0.489 0.134 0.360
Bin=19 0.113 0.293 0.256 0.084 0.749 0.415 0.579 0.189 0.446 0.377 0.603 0.178 0.482 0.326 0.488 0.062 0.352
Bin=20 0.135 0.298 0.261 0.073 0.753 0.416 0.580 0.189 0.445 0.376 0.577 0.178 0.478 0.319 0.493 0.046 0.351
ACE TransE ComplEx DistMult RotatE Average
WNI18 WNISRR FBI5SK FBISK-237 | WNI§ WNISRR FBISK FBI5K-237 | WNIS WNISRR FBISK FBI5K-237 | WNIS WNISRR FBISK FBI5K-237
Bin=1  0.598 0.285 0.565 0.158 0.851 0.422 0.633 0.227 0.527 0.389 0.686 0.221 0.385 0.382 0.602 0.220 0.447
Bin=2 0318 0.323 0.406 0.128 0.849 0.422 0.494 0.217 0.519 0.387 0.538 0.217 0.476 0.242 0.495 0.093 0.383
Bin=3  0.232 0.243 0.378 0.104 0.848 0.422 0.491 0.217 0.511 0.385 0.533 0.217 0.467 0.226 0.471 0.076 0.364
Bin=4  0.171 0.253 0.328 0.097 0.848 0.421 0.488 0.213 0.460 0.385 0.530 0.213 0.449 0.281 0.450 0.082 0.354
Bin=5 0.155 0.264 0.307 0.099 0.848 0.420 0.484 0.211 0.460 0.385 0.529 0.210 0.458 0.297 0.441 0.069 0.352
Bin=6  0.125 0.262 0.261 0.083 0.848 0.419 0.481 0.210 0.460 0.384 0.527 0.204 0.457 0.290 0.454 0.070 0.346
Bin=7  0.135 0.271 0.277 0.061 0.848 0.418 0.478 0.209 0.460 0.384 0.526 0.204 0.451 0.304 0.419 0.067 0.345
Bin=8  0.129 0.267 0.264 0.080 0.848 0.418 0.475 0.208 0.457 0.384 0.522 0.203 0.464 0.307 0.456 0.072 0.347
Bin=9  0.142 0.274 0.270 0.085 0.841 0.418 0.471 0.208 0.457 0.384 0.521 0.200 0.463 0.305 0.454 0.099 0.349
Bin=10 0.131 0.277 0.293 0.082 0.833 0.418 0.465 0.207 0.457 0.383 0.516 0.199 0.467 0.306 0.466 0.063 0.348
Bin=11 0.111 0.280 0.278 0.076 0.833 0.418 0.460 0.207 0.457 0.383 0.513 0.199 0.461 0.316 0.491 0.061 0.347
Bin=12  0.107 0.278 0.259 0.100 0.833 0.418 0.456 0.207 0.457 0.383 0.508 0.199 0.475 0.316 0.475 0.061 0.346
Bin=13 0.128 0.284 0.240 0.077 0.834 0.418 0.450 0.206 0.457 0.383 0.503 0.197 0.471 0.316 0.459 0.059 0.343
Bin=14 0.113 0.291 0.238 0.088 0.834 0.417 0.446 0.205 0.455 0.382 0.497 0.196 0.471 0.319 0.458 0.062 0.342
Bin=15 0.107 0.292 0.239 0.086 0.823 0.417 0.441 0.204 0.455 0.381 0.492 0.195 0.475 0.318 0.461 0.057 0.340
Bin=16 0.111 0.294 0.234 0.063 0.767 0.416 0.436 0.204 0.455 0.379 0.486 0.194 0.472 0.319 0.494 0.053 0.336
Bin=17  0.100 0.296 0.237 0.064 0.762 0.415 0.550 0.204 0.453 0.377 0.481 0.193 0.478 0.324 0.490 0.053 0.342
Bin=18 0.119 0.293 0.248 0.083 0.746 0.415 0.576 0.204 0.453 0.377 0.466 0.192 0.471 0.325 0.489 0.075 0.346
Bin=19 0.115 0.293 0.247 0.090 0.746 0.415 0.534 0.203 0.453 0.377 0.482 0.192 0.482 0.326 0.488 0.046 0.343
Bin=20 0.107 0.298 0.249 0.073 0.750 0.416 0.557 0.203 0.450 0.376 0.553 0.192 0.478 0.319 0.493 0.048 0.348
NLL TransE ComplEx DistMult RotatE Average
WNIS8 WNISRR FBISK FBISK-237 | WNI8S WNISRR FBISK FBI5K-237 | WNIS WNISRR FBISK FBI5SK-237 | WNIS WNISRR FBISK FBISK-237
Bin=1  2.544 6.543 3.910 4.774 6.524 7.496 3.589 7.208 6.944 7.947 5.152 8.395 1.165 6.078 3.184 5.515 5.436
Bin=2  2.865 6.212 3.076 3.365 5.963 7.513 1.350 2.908 5.477 7.578 1.314 6.650 1.281 4.606 1.989 3.056 4.075
Bin=3 2712 6.265 2.986 3.290 5.633 7.513 1.350 2.908 4913 7.338 1.315 3.101 1.184 4.472 2.042 2.774 3.737
Bin=4  2.605 6.185 2.845 3.191 5.633 7.299 1.351 2.909 2.843 7.338 1315 3.101 1.100 4.745 1.974 2911 3.584
Bin=5  2.537 6.109 2.766 3.061 5.633 7.202 1.351 2.909 2.843 7.338 1.315 3.102 1.088 4.821 2.011 2713 3.550
Bin=6  2.523 6.085 2.642 3.062 5.633 7.123 1.352 2.909 2.843 7.200 1.316 3.104 1.062 4.716 2.083 2.643 3518
Bin=7  2.515 6.023 2.641 3.112 5.633 7.009 1.352 2910 2.843 7.200 1.316 3.104 1.038 4.787 1.939 2.672 3.506
Bin=8  2.499 6.024 2.607 2.956 5.656 7.001 1.353 2910 2.844 7.200 1317 3.104 1.051 4.772 2.039 2.580 3.495
Bin=9 2493 5.987 2.602 2.895 4.835 6.965 1.355 2.910 2.843 7.200 1.317 3.105 1.035 4.711 2.011 2473 3.421
Bin=10 2.462 5.965 2.536 2.889 4.350 6.965 1.357 2911 2.843 7.119 1.319 3.106 1.036 4.698 2.033 2.743 3.396
Bin=11 2.466 5.944 2.532 2.898 4.350 6.965 1.358 2911 2.843 7.119 1319 3.106 1.013 4.754 2.123 2.743 3.403
Bin=12 2448 5.943 2.529 2.798 4.350 6.929 1.359 2911 2.843 7.114 1.321 3.106 1.043 4.731 2.037 2.666 3.383
Bin=13  2.447 5919 2.486 2.871 4.415 6.933 1.360 2911 2.843 7.114 1.323 3.107 1.022 4.714 1.959 2772 3.387
Bin=14 2437 5.889 2.482 2.809 4.415 6.867 1.363 2912 2.845 7.027 1.326 3.108 1.017 4.714 1.941 2.593 3.359
Bin=15 2438 5.880 2.498 2.803 3.987 6.867 1.363 2912 2.845 6.935 1.329 3.108 1.024 4.689 1.942 2.813 3.340
Bin=16 2.449 5.870 2.463 2.883 2.931 6.773 1.366 2912 2.845 6.813 1.331 3.109 1.014 4.684 2.060 2.669 3.261
Bin=17 2434 5.859 2.487 2.855 2.873 6.726 2.678 2913 2.846 6.722 1.333 3.109 1.023 4.722 2.030 2.638 3.328
Bin=18 2.449 5.865 2.513 2.779 2.711 6.724 2.860 2913 2.846 6.722 1.860 3.110 1.010 4.715 2.012 2.509 3.350
Bin=19 2.445 5.862 2.498 2.745 2.711 6.733 2.569 2913 2.846 6.682 2.235 3.110 1.029 4.706 1.996 2702 3.361
Bin=20 2438 5.842 2.489 2.791 2.749 6.734 2.710 2913 2.849 6.635 2.743 3.110 1.014 4.611 2.010 2.818 3.404
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Table 13: Effect of different initial temperature parameters in KGEC on the performance of various KGE models
across multiple datasets. For all the three metrics, the lower the better.

ECE TransE ComplEx DistMult RotatE Average
WNIS8 WNISRR FBISK FBI5K-237 | WNIS WNISRR FBISK FBI5K-237 | WNIS WNISRR FBISK FBI5K-237 | WNIS WNISRR FBISK FBI5K-237
0.382 0.582 0.405 0.213 0.699 0.374 0.677 0.190 0.447 0.349 0.683 0.180 0.118 0.322 0.612 0.237 0.404
0.382 0.582 0.312 0.213 0.699 0.374 0.677 0.190 0.447 0.349 0.683 0.180 0.118 0.389 0.670 0.236 0.406
0.337 0.014 0.626 0.221 0.699 0.374 0.678 0.189 0.447 0.349 0.683 0.179 0.603 0.420 0.719 0.239 0.424
0.696 0.013 0.626 0.221 0.699 0.374 0.678 0.189 0.447 0.349 0.683 0.179 0.939 0.428 0.719 0.239 0.467
0.705 0.014 0.627 0.221 0.699 0.374 0.678 0.189 0.447 0.349 0.683 0.178 0.944 0.426 0.729 0.239 0.469
0.706 0.014 0.645 0.221 0.699 0.279 0.678 0.189 0.447 0.222 0.683 0.178 0.944 0.397 0.709 0.239 0.453
0.706 0.268 0.624 0.233 0.699 0.348 0.678 0.189 0.447 0.336 0.683 0.178 0.944 0.320 0.668 0.239 0.472
0.706 0.390 0.566 0.233 0.699 0.384 0.678 0.189 0.447 0.356 0.683 0.178 0.907 0.244 0.597 0.239 0.468
0.706 0.424 0.520 0.226 0.793 0.404 0.678 0.189 0.446 0.370 0.683 0.178 0.355 0.215 0.530 0.173 0.431
0.444 0.342 0.496 0.200 0.823 0.412 0.678 0.189 0.446 0.376 0.683 0.178 0.402 0.273 0.492 0.124 0.410
0.171 0.280 0.459 0.150 0.833 0.418 0.678 0.189 0.446 0.383 0.683 0.178 0.467 0.307 0.466 0.094 0.388
0.199 0.232 0.419 0.109 0.848 0.420 0.678 0.189 0.446 0.386 0.683 0.178 0.547 0.331 0.495 0.098 0.391
0.278 0.195 0.365 0.073 0.849 0.422 0.606 0.189 0.485 0.388 0.683 0.178 0.608 0.350 0.528 0.101 0.394
0.340 0.165 0.335 0.051 0.850 0.423 0.592 0.189 0.513 0.388 0.683 0.178 0.656 0.362 0.551 0.106 0.399
0.390 0.141 0.360 0.064 0.851 0.424 0.618 0.189 0.519 0.390 0.683 0.178 0.696 0.373 0.568 0.108 0.409
0.430 0.122 0.388 0.082 0.852 0.425 0.599 0.190 0.524 0.390 0.602 0.178 0.727 0.382 0.581 0.133 0.413
0.463 0.105 0.411 0.097 0.852 0.425 0.625 0.209 0.525 0.391 0.597 0.178 0.752 0.390 0.594 0.128 0.421
0.491 0.090 0.429 0.110 0.852 0.425 0.611 0.213 0.526 0.391 0.609 0.193 0.773 0.395 0.609 0.150 0.429
0.515 0.079 0.447 0.121 0.853 0.426 0.607 0.223 0.527 0.392 0.611 0.186 0.791 0.400 0.622 0.162 0.435
0.534 0.069 0.462 0.133 0.853 0.426 0.616 0.223 0.527 0.392 0.614 0.198 0.807 0.404 0.631 0.167 0.441
0.550 0.061 0.475 0.141 0.853 0.426 0.644 0.225 0.528 0.392 0.613 0.209 0.820 0.407 0.638 0.172 0.447
ACE TransE ComplEx DistMult RotatE Average
WNIS WNISRR FBISK FBI5K-237 | WNI8 WNISRR FBI5SK FBI5K-237 | WNIS WNISRR FBISK FBI5K-237 | WNIS WNISRR FBISK FBI5K-237
init=0  55.708  27.896 26.189 4.896 0.679 0.163 0.515 0.226 0.471 0.240 0.547 0.228 50.620 3.966 4.828 1.306 11.155
init=0.1 37.388  18.451 12.026 4.896 0.679 0.163 0.515 0.226 0.471 0.240 0.547 0.228 27.979  3.158 4.275 1.278 7.032
8.518 4.825 2.672 1.805 0.688 0.160 0.467 0.210 0.458 0.238 0.517 0.201 8.266 1911 2.159 0.995 2.131
4.237 2.449 2,671 1.805 0.688 0.160 0.466 0.208 0.458 0.238 0.517 0.200 3453 1.006 2.154 0.995 1.357
2.585 1.508 2.646 1.814 0.688 0.160 0.465 0.208 0.457 0.238 0.516 0.200 1.404 0.483 0.288 0.995 0916
1.535 0.994 0.311 1.795 0.688 0.265 0.465 0.207 0.457 0.208 0.516 0.200 0.726 0.195 0.298 0.995 0.616
0.947 0.721 0.249 0.392 0.688 0.347 0.465 0.207 0.457 0.335 0.516 0.200 0.314 0.119 0.327 0.994 0.455
0.573 0.542 0.242 0.290 0.689 0.384 0.465 0.207 0.457 0.355 0.516 0.199 0.105 0.152 0.362 0.994 0.408
0.307 0.422 0.257 0.209 0.792 0.404 0.465 0.207 0.457 0.369 0.516 0.199 0.230 0.213 0.402 0.113 0.348
0.144 0.339 0.275 0.141 0.822 0.412 0.465 0.207 0.457 0.376 0.516 0.199 0.366 0.273 0.427 0.070 0.343
0.131 0.277 0.293 0.082 0.833 0418 0.465 0.207 0.457 0.383 0.516 0.199 0.467 0.306 0.466 0.063 0.348
0.200 0.230 0.309 0.050 0.847 0.420 0.465 0.207 0.457 0.386 0.516 0.199 0.547 0.331 0.495 0.064 0.358
0.278 0.195 0.331 0.042 0.848 0.422 0.582 0.207 0.478 0.388 0.516 0.199 0.608 0.350 0.528 0.088 0.379
0.340 0.167 0.359 0.048 0.850 0.423 0.493 0.207 0.509 0.388 0.516 0.199 0.656 0.362 0.551 0.094 0.385
0.390 0.145 0.385 0.059 0.851 0.424 0.607 0.207 0.516 0.390 0.517 0.199 0.696 0.373 0.568 0.095 0.401
0.430 0.126 0.409 0.074 0.851 0.425 0.563 0.197 0.523 0.390 0.501 0.199 0.727 0.382 0.581 0.122 0.406
0.463 0.110 0.429 0.094 0.852 0.425 0.618 0.209 0.525 0.391 0.509 0.199 0.752 0.390 0.594 0.116 0.417
0.491 0.096 0.445 0.109 0.852 0.425 0.593 0.211 0.526 0.391 0.597 0.199 0.773 0.395 0.609 0.142 0.429
0.515 0.086 0.462 0.121 0.853 0.426 0.584 0.222 0.527 0.392 0.600 0.197 0.791 0.400 0.622 0.158 0.435
0.534 0.076 0.474 0.133 0.853 0.426 0.604 0.222 0.527 0.392 0.606 0.200 0.807 0.404 0.631 0.163 0.441
0.550 0.068 0.485 0.141 0.853 0.426 0.644 0.224 0.528 0.392 0.604 0.203 0.820 0.407 0.638 0.169 0.447
NLL TransE ComplEx DistMult RotatE Average
WNI18 WNISRR FBISK FBI5K-237 | WNI8 WNISRR FBISK FBI5K-237 | WNI8 WNISRR FBISK FBI5K-237 | WNI8S WNISRR FBI5K FBI5K-237
1.977 -0.694 0.791 2.287 3.210 1.349 2.908 2.841 3.253 1.314 3.099 -3.229 1.540 -0.515 1.145 1.223
2.230 -0.296 0.791 2.287 3.210 1.349 2.908 2.841 3.253 1314 3.099 -2.814 1.620 -0.452 1.150 1317
3.154 0.492 1.014 2.287 3.211 1.356 2.909 2.843 3.253 1.318 3.104 -1.858 1.738 -0.316 1.166 1.591
3.833 0.493 1.014 2.288 3211 1.356 2910 2.843 3.253 1319 3.104 -1.191 2238 -0.315 1.165 1.744
4312 0.498 1.012 2.288 3.211 1.356 2.910 2.843 3.253 1.319 3.104 -0.549 2.683 1.189 1.166 1.961
4.722 1.926 1.016 2.288 4.151 1.356 2910 2.843 4318 1319 3.105 -0.187 3.085 1.339 1.166 2.283
5.037 2.077 2.197 2.288 4.852 1.356 2.910 2.843 5.461 1319 3.105 0.125 3.460 1.501 1.166 2.574
5317 2.191 2374 2.288 5.459 1.356 2910 2.843 5.889 1319 3.105 0.395 3.839 1.682 1.167 2.744
5.560 2322 2.542 3.267 6.058 1.356 2.910 2.843 6.328 1319 3.105 0.637 4.125 1.825 2.429 3.042
5.773 2.434 2710 3.937 6.483 1.357 2910 2.843 6.642 1319 3.106 0.847 4.456 1.902 2.582 3.223
5.965 2.536 2.889 4.350 6.965 1.357 2911 2.843 7.119 1319 3.106 1.036 4.698 2.033 2.743 3.396
6.142 2.635 3.006 5.567 7.214 1.357 2911 2.844 7.429 1.319 3.106 1.219 4.929 2.149 2.727 3.575
6.302 2.743 3.155 5.739 7.427 2.960 2911 3.803 7.687 1319 3.106 1.383 5.144 2.293 3.136 3.871
6.453 2.844 3.328 6.148 7.606 2.410 2911 4.791 7.751 1.319 3.106 1.538 5312 2.407 3.201 4.006
6.597 2.934 3.421 6.262 7.852 3.194 2911 5.248 8.071 1319 3.106 1.688 5.502 2.499 3216 4.184
6.729 3.043 3.579 6.591 8.080 2.817 3.398 5.977 8213 2.415 3.106 1.819 5.678 2.578 3.521 4.425
6.863 3.137 3.715 6.859 8.228 3322 4.532 6.350 8.329 2.543 3.107 1.942 5.855 2.668 3.466 4.643
6.995 3211 3.834 6.977 8.418 3.058 4.880 6.663 8.459 3.156 4.061 2.056 6.014 2776 3.708 4.861
7.108 3.298 3.936 7.242 8.485 2979 6.043 7.090 8.595 3.186 3.850 2.165 6.183 2.880 3.883 5.034
7.221 3.376 4.053 7.456 8.669 3.164 5.999 7.228 8.794 3.245 4.284 2274 6.327 2.960 3.945 5.170
7.331 3.447 4.136 7.635 8.782 3.690 6.353 7515 8.882 3.230 5.035 2375 6.462 3.029 4.035 5.360
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Table 14: Effect of different learning rate in KGEC on the performance of various KGE models across multiple
datasets. For all the three metrics, the lower the better.

ECE TransE ComplEx DistMult RotatE Average
WNI8 WNISRR FBI5SK FBI5K-237 | WNIS WNISRR FBISK FBI5K-237 | WNI8 WNISRR FBISK FBI5K-237 | WNI8 WNISRR FBISK FBI5K-237
Ir=0.001  0.184 0.229 0.469 0.098 0.852 0.423 0.644 0.228 0.528 0.389 0.659 0.220 0.492 0.381 0.498 0.191 0.405
Ir=0.002  0.172 0.231 0.517 0.052 0.852 0.423 0.608 0.227 0.527 0.388 0.596 0.218 0.476 0.371 0.456 0.092 0.388
1Ir=0.003  0.199 0.265 0.534 0.099 0.851 0.423 0.593 0.226 0.527 0.388 0.594 0.212 0.481 0.361 0.467 0.092 0.395
1Ir=0.004  0.203 0.276 0.535 0.138 0.851 0.422 0.595 0.222 0.526 0.387 0.605 0.191 0.478 0.353 0.480 0.098 0.398
Ir=0.005 0.179 0.281 0.521 0.157 0.850 0.422 0.594 0.213 0.525 0.386 0.612 0.178 0.479 0.344 0.476 0.092 0.394
1Ir=0.006  0.202 0.286 0.520 0.160 0.849 0.421 0.678 0.207 0.522 0.386 0.683 0.178 0.477 0.333 0.483 0.091 0.405
1r=0.007  0.201 0.291 0.497 0.166 0.849 0.421 0.678 0.189 0.517 0.385 0.683 0.178 0.472 0.323 0.462 0.110 0.401
1Ir=0.008 0.188 0.287 0.491 0.163 0.846 0.419 0.678 0.189 0.495 0.384 0.683 0.178 0.466 0.317 0.455 0.127 0.398
1r=0.009  0.188 0.284 0.478 0.167 0.843 0.419 0.678 0.189 0.446 0.384 0.683 0.178 0.467 0.313 0.463 0.097 0.392
Ir=0.010 0.171 0.280 0.459 0.150 0.833 0.418 0.678 0.189 0.446 0.383 0.683 0.178 0.467 0.307 0.466 0.094 0.388
1Ir=0.020  0.152 0.246 0.380 0.064 0.699 0.392 0.678 0.189 0.446 0.353 0.683 0.178 0.514 0.273 0.560 0.239 0.378
Ir=0.030 0.184 0.228 0.460 0.080 0.699 0.374 0.677 0.189 0.446 0.349 0.683 0.178 0.562 0.289 0.606 0.238 0.390
Ir=0.040 0.244 0.211 0.507 0.114 0.699 0.374 0.678 0.189 0.446 0.349 0.683 0.178 0.598 0.290 0.638 0.097 0.393
1Ir=0.050  0.305 0.189 0.530 0.139 0.699 0.374 0.677 0.189 0.446 0.349 0.682 0.178 0.623 0.295 0.652 0.238 0.410
1Ir=0.060  0.342 0.163 0.554 0.212 0.699 0.364 0.677 0.189 0.446 0.205 0.683 0.178 0.635 0.330 0.674 0.237 0.412
1Ir=0.070  0.393 0.153 0.569 0.164 0.699 0.374 0.677 0.190 0.526 0.349 0.683 0.178 0.656 0.330 0.679 0.239 0.429
Ir=0.080 0.418 0.135 0.577 0.174 0.699 0.407 0.678 0.189 0.446 0.349 0.682 0.178 0.685 0.332 0.680 0.239 0.429
1Ir=0.090  0.456 0.130 0.584 0.184 0.826 0.374 0.677 0.189 0.446 0.385 0.683 0.178 0.716 0.350 0.693 0.237 0.444
Ir=0.100  0.494 0.108 0.590 0.193 0.699 0.374 0.677 0.189 0.527 0.349 0.683 0.178 0.742 0.331 0.696 0.239 0.442
ACE TransE ComplEx DistMult RotatE Average
WNI8 WNISRR FBI5SK FBI5K-237 | WNI8 WNISRR FBI5SK FBI5K-237 | WNIS WNISRR FBISK FBI5K-237 | WNI8 WNISRR FBI5SK FBI5K-237
Ir=0.001  0.220 0.237 0.276 0.098 0.852 0.423 0.644 0.227 0.527 0.388 0.659 0.219 0.492 0.380 0.498 0.190 0.396
1Ir=0.002 0.171 0.236 0.248 0.037 0.851 0.423 0.587 0.226 0.527 0.388 0.562 0.216 0.459 0.370 0.456 0.069 0.364
1r=0.003 0.119 0.263 0.247 0.049 0.851 0.423 0.513 0.225 0.526 0.388 0.547 0.205 0.457 0.361 0.445 0.069 0.356
1Ir=0.004  0.108 0.273 0.252 0.075 0.851 0.422 0.486 0.220 0.525 0.387 0.499 0.198 0.457 0.352 0.437 0.063 0.350
1Ir=0.005  0.109 0.278 0.256 0.092 0.850 0.422 0.527 0.211 0.524 0.386 0.497 0.199 0.461 0.344 0.440 0.067 0.354
1Ir=0.006  0.107 0.283 0.264 0.095 0.849 0.421 0.465 0.208 0.521 0.386 0.516 0.199 0.463 0.333 0.435 0.065 0.351
1Ir=0.007 0.112 0.288 0.264 0.101 0.849 0.421 0.465 0.207 0.514 0.385 0.516 0.199 0.465 0.323 0.448 0.066 0.351
Ir=0.008  0.122 0.284 0.272 0.097 0.845 0.419 0.465 0.207 0.488 0.384 0.516 0.199 0.466 0.317 0.452 0.071 0.350
1Ir=0.009  0.127 0.281 0.284 0.100 0.842 0.419 0.465 0.207 0.457 0.384 0.516 0.199 0.467 0.313 0.463 0.062 0.349
Ir=0.010  0.131 0.277 0.293 0.082 0.833 0.418 0.465 0.207 0.457 0.383 0.516 0.199 0.467 0.306 0.466 0.063 0.348
1Ir=0.020  0.146 0.244 0.400 0.048 0.689 0.392 0.465 0.207 0.457 0.352 0.517 0.199 0.514 0.273 0.560 0.994 0.404
1r=0.030  0.163 0.227 0.471 0.075 0.689 0.160 0.484 0.207 0.457 0.238 0.517 0.199 0.562 0.289 0.606 1.010 0.397
Ir=0.040 0.244 0.211 0.511 0.114 0.689 0.160 0.466 0.207 0.457 0.238 0.522 0.199 0.598 0.290 0.638 0.085 0.352
1Ir=0.050  0.305 0.191 0.535 0.139 0.689 0.160 0.486 0.207 0.457 0.238 0.529 0.199 0.623 0.295 0.652 1.115 0.426
Ir=0.060  0.342 0.167 0.554 2.220 0.689 0.364 0.493 0.207 0.457 0.189 0.519 0.199 0.635 0.330 0.674 1.067 0.569
1r=0.070  0.393 0.157 0.569 0.164 0.689 0.160 0.493 0.212 0.526 0.238 0.518 0.199 0.656 0.330 0.679 0.987 0.436
1r=0.080 0.418 0.139 0.577 0.174 0.689 0.407 0.469 0.207 0.457 0.238 0.533 0.199 0.685 0.332 0.680 0.986 0.449
1Ir=0.090  0.456 0.136 0.584 0.184 0.826 0.160 0.503 0.208 0.457 0.383 0.517 0.200 0.716 0.350 0.693 1.142 0.470
Ir=0.100  0.494 0.114 0.590 0.193 0.689 0.160 0.498 0.208 0.527 0.240 0.521 0.200 0.742 0.331 0.696 0.997 0.450
NLL TransE ComplEx DistMult RotatE Average
WNIS WNISRR FBISK FBI5K-237 | WNIS WNISRR FBI5SK FBI5K-237 | WNIS WNISRR FBI5K FBISK-237 | WNIS WNISRR FBISK FBI5K-237
=0.001 2751 6481 2.469 3771 6777 7749  3.691 7271 7279 7797 4071 7207 1254 5847 2159 4.410 5.061
Ir=0.002  2.505 6.267 2.341 3.233 6.634 7.665 3.006 6.945 7.073 1729 2.871 6.351 1.014 5.546 1.997 2.862 4.627
1Ir=0.003  2.471 6.029 2.309 3.034 6.514 7.599 2.511 6.618 6.818 7.646 2763 5.263 1.008 5.357 1.961 2.860 4.423
Ir=0.004 2.468 5.984 2311 2.924 6.292 7.493 2.301 5.853 6.526 7.562 2353 3.975 1.010 5.217 1.934 2.703 4.182
1Ir=0.005 2.473 5.966 2.331 2.865 6.188 7.455 2.587 4.799 6.230 7.495 2.256 3.106 1.019 5.101 1.942 2.817 4.039
Ir=0.006 2.464 5.947 2.353 2.853 5.874 7.356 1.357 4372 5.670 7.383 1.319 3.106 1.024 4.965 1.927 2.793 3.798
1Ir=0.007 2.462 5.931 2.406 2.834 5.773 7.280 1.357 2911 5.093 7.362 1.319 3.106 1.028 4.857 1.970 2.635 3.645
Ir=0.008  2.466 5.942 2.444 2.845 5.288 7.094 1.357 2911 4.088 7.253 1.319 3.106 1.032 4.800 1.984 2.573 3.531
Ir=0.009  2.465 5.951 2473 2.831 4.963 7.113 1.357 2911 2.843 7.203 1319 3.106 1.033 4.757 2.026 2711 3.441
Ir=0.010  2.462 5.965 2.536 2.889 4.350 6.965 1.357 2911 2.843 7.119 1.319 3.106 1.036 4.698 2.033 2743 3.396
Ir=0.020 2.519 6.087 3.006 3.237 2.288 5.673 1.356 2911 2.844 5.811 1.319 3.106 1.146 4.446 2.456 1.167 3.086
1Ir=0.030  2.579 6.160 3.362 3.546 2.288 3211 1.351 2.910 2.844 3.254 1.320 3.106 1.274 4.564 2.756 1.167 2.856
Ir=0.040 2.747 6.236 3.661 3.855 2.288 3.211 1.356 2910 2.844 3.254 1.320 3.106 1.370 4.575 3.027 3.067 3.052
1Ir=0.050  2.896 6.335 3.839 4.096 2.288 3211 1.352 2.910 2.844 3.254 1.315 3.106 1.436 4.608 3.173 1.159 2.989
Ir=0.060  2.990 6.475 4.068 0.967 2.288 5.092 1.350 2910 2.844 4.147 1.322 3.106 1.474 4.934 3.466 1.167 3.037
Ir=0.070  3.149 6.532 4.254 4.399 2.288 3211 1.350 2.909 6.683 3.253 1321 3.106 1.531 4.920 3.546 1.177 3352
1Ir=0.080  3.225 6.648 4.370 4.564 2.288 6.227 1.361 2.910 2.844 3.253 1.315 3.105 1.640  4.945 3.557 1.177 3.339
1Ir=0.090  3.366 6.692 4.495 4.759 4.059 3211 1.350 2.910 2.844 7.289 1.319 3.105 1.767 5.153 3.803 1.171 3.581
Ir=0.100 3.533 6.874 4.587 4.993 2.288 3211 1.350 2.910 7.271 3.253 1.321 3.105 1.887 4.928 3.867 1.174 3.534
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