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Phase of firing does not reflect temporal 
order in sequence memory of humans and 
recurrent neural networks
 

Stefanie Liebe    1,2,10 , Johannes Niediek    1,3,10, Matthijs Pals    4,5, 
Thomas P. Reber    1,6, Jennifer Faber1,7, Jan Boström8, Christian E. Elger    1, 
Jakob H. Macke4,5,9 & Florian Mormann    1 

The temporal order of a sequence of events has been thought to be reflected 
in the ordered firing of neurons at different phases of theta oscillations. Here 
we assess this by measuring single neuron activity (1,420 neurons) and local 
field potentials (921 channels) in the medial temporal lobe of 16 patients with 
epilepsy performing a working-memory task for temporal order. During 
memory maintenance, we observe theta oscillations, preferential firing 
of single neurons to theta phase and a close relationship between phase 
of firing and item position. However, the firing order did not match item 
order. Training recurrent neural networks to perform an analogous task, 
we also show the generation of theta oscillations, theta phase-dependent 
firing related to item position and, again, no match between firing and item 
order. Rather, our results suggest a mechanistic link between phase order, 
stimulus timing and oscillation frequency. In both biological and artificial 
neural networks, we provide evidence supporting the role of phase of firing 
in working-memory processing.

How do we maintain the temporal order of a sequence of events in 
memory? Performing this kind of task is an integral part of our ability 
to encode, maintain and retrieve memories within their spatial and 
temporal context. The medial temporal lobe (MTL) has been heavily 
implicated in memory processing at the neural level. For example, 
hippocampal neurons exhibit elevated, stimulus-specific spiking 
activity during the maintenance period of memory tasks1–3. Another 
hallmark neural signature of the MTL are oscillations in the frequency 
range of 2–8 Hz, commonly known as the theta band. Theta oscillations 
can be measured from local field potential (LFP) or intracortical elec-
troencephalogram/electrocorticogram and have been ubiquitously 
observed in many species during memory processing4,5. Specifically, 

the amount of oscillatory activity, that is, theta power, increases dur-
ing memory maintenance and correlates with memory load and task 
performance6.

Combined measurements of spiking and LFPs from MTL have 
further established an important link between single-neuron firing 
and theta oscillations: the firing of MTL neurons depends on theta 
phase—so-called spike-phase coupling—and phase of firing contains 
information about multiple spatial locations during sequential spatial 
encoding as well as spatial memory tasks in rodents4,7,8.

In analogy to spatial memory in rodents, it has been suggested that 
this so-called temporal code is also suitable to represent multi-item 
sequences during working memory of nonspatial information. 
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for the first position and appeared to systematically decrease with 
increasing sequence position (Fig. 1e). Interestingly, we observed a 
similar effect during the panel presentation. Here, spiking activity 
was largest whenever the units’ PS had been shown as the first within 
the initial sequence, even though a 4 × 4 picture grid was displayed 
(Fig. 1f). In contrast, during the delay period, spike rates did not dif-
fer between stimulus positions, although spiking was significantly 
elevated during the delay compared with the prestimulus baseline, 
suggesting maintenance-related activity (see also ref. 1), (Wilcoxon 
signed-rank-test, Z > 2.7, P < 0.001 for each region). To investigate 
whether stimulus position could be decoded from firing rates dur-
ing the three phases of each trial, we used a support vector machine 
(SVM) algorithm. Position could be decoded during the encoding 
and retrieval phases but not during delay (permutation test against 
shuffled position labels, P < 0.05 for sample/probe, P > 0.05 for delay, 
N = 199 shuffles; Supplementary Fig. 1).

In summary, MTL neurons show robust stimulus-specific encod-
ing responses during visual presentation. During encoding, decreased 
spiking with increased item position might be related to the so-called 
primacy effect that has been observed in serial memory for mesoscopic 
brain signals13. In contrast, no such differences were observed dur-
ing memory. Thus, the remembered item order does not seem to be 
reflected in systematic spike-rate changes in the MTL.

Theta oscillations and spike-phase coupling during memory
Previous studies have observed increases in theta oscillations, that is, 
power (2–8 Hz) during working-memory maintenance6. Thus, we first 
asked whether we find similar enhancements in our task. An exam-
ple time–frequency spectrogram recorded from the hippocampal 
site shown in Fig. 1 is plotted in Fig. 2a. A clear increase in theta power 
around 2.8 Hz throughout the delay is visible (median power base-
line versus delay, Wilcoxon signed-rank test, P < 0.01). We generally 
observed a similar effect comparing power across all LFP channels car-
rying stimulus-responsive units between baseline and delay (Wilcoxon 
signed-rank test, N = 217, Z = 3.7, P < 0.001; Supplementary Fig. 2a,b), 
which was most prominent in the HPC and EC (the proportion of chan-
nels exhibiting elevated theta during maintenance: HPC: 40%; EC: 
48%; PHC: 20%; AM: 36%, binomial test, P < 1 × 10−4 at α = 0.01 for every 
region). Thus, our results confirm earlier findings on memory-related 
theta power increases during working memory and provide the basis 
for our following analyses.

Combining single-unit and LFP recordings, we next analyzed spik-
ing as a function of theta phase (Fig. 2d). Spike-phase angles across the 
neuronal population showed a nonuniform distribution during the 
delay for all MTL regions (Rayleigh’s test, Z > 6.1, P < 0.01 for all four 
MTL regions), whereas this was only the case for hippocampal and 
AM neurons during prestimulus baseline (HPC: Z = 4.63; AM: Z = 4.09; 
both P < 0.05; PHC: Z = 3.21; EC: Z = 2.94; P > 0.05, after correcting for 
possible spike-rate differences between baseline and delay). Median 
phase angles also differed considerably between MTL regions during 
the delay. This was not the case during baseline at the population level 
(nonparametric multisample test comparing median angles between 
regions P > 46.2 and P < 10−10 for delay PS or not (NPS) and P = 7.63 and 
P > 0.05 for baseline, respectively), neither comparing spike-phase 
locking magnitude between individual units (median comparison 
Rayleigh-based Z scores on individual units, Wilcoxon signed-rank 
test, Z > 5.9, P < 1 × 10−9 or kappa Z > 2.7, P < 1 × 10−3 for all regions, see 
also Supplementary Fig. 2c). We also observed that theta modulation 
of spiking was elevated during maintenance if the PS was encoded in 
the stimulus sequence versus not (NPS trials; Fig. 2e).). This indicates 
that increased theta spike coupling is associated with memorizing 
specific stimulus information (Wilcoxon signed-rank test compar-
ing median values based on individual unit’s von Mises fits, N = 217, 
Z = 8.65, P < 0.001). In contrast, the strength of spike-phase coupling did 
not depend on serial stimulus position (Kruskal–Wallis test based on 

Specifically, a prominent computational model by Lisman and col-
leagues hypothesizes that the order of items held within memory is 
represented by spiking of sequentially reactivated neurons at different 
phases of theta oscillations9.

Indeed, human MTL neurons show preferential firing with respect 
to theta phase in memory tasks10, the magnitude of spike-phase cou-
pling is predictive of subsequent memory performance11 and spiking 
relative to theta phase contains nonspatial information, namely 
stimulus identity3,12. However, thus far it remains unclear how memo-
rizing the sequential order of multiple items is implemented at the 
neural level in the human MTL. In particular, it is unknown whether 
a sequence of memorized items is associated with (1) differences in 
theta-related phase of firing of single neurons and (2) whether the 
order of phase of firing matches the item order, as hypothesized by 
Lisman’s theory9.

Here, we sought to answer these questions by directly measuring 
both spiking of MTL neurons and LFPs while participants had to main-
tain the temporal order of a sequence of items in working memory. We 
also investigated potential underlying neural mechanisms by train-
ing recurrent neural networks (RNNs) to perform an analogous task, 
without explicitly instructing RNNs on how to solve it. Our results 
show emerging theta oscillations and spike-phase coupling in both 
recorded and modeled neural activity during working memory, where 
phase of firing is related to item position within a sequence. Surpris-
ingly, however, phase order did not match item order, in contrast to 
Lisman’s theory. Instead, our modeling suggests that phase order 
could arise as a function of stimulus onset asynchrony and oscilla-
tion frequency—a relationship we subsequently corroborated in our 
neural recordings. Our findings thus validate, but also challenge, a 
long-standing theory about the role of spiking and oscillations in 
memory function.

Results
No effect of item position on spike rate during working 
memory
We recorded spiking activity of 1,420 units and LFPs from 921 channels 
in MTL regions including the hippocampus (HPC), entorhinal cortex 
(EC), parahippocampal cortex (PHC) and amygdala (AM) in 16 patients 
with epilepsy undergoing presurgical seizure monitoring. Patients 
performed a sequential multi-item working-memory task (Fig. 1a). After 
a fixation period, four randomly chosen pictures out of a set of eight 
were sequentially presented to the patients for 200 ms each (400 ms 
between stimulus onsets). After this sequence and a subsequent delay 
period of 2,500 ms (±100 ms), a panel comprising four rows of picture 
sequences appeared, one of them matching the previously presented 
sequence. Patients indicated a match by pressing a key on a keyboard. 
Each patient performed markedly above chance but in a range that 
allowed us to compare neural activity for correct versus incorrect trials. 
Median reaction time (RT) showed a negative correlation with mean 
performance across subjects (Fig. 1b). In summary, our behavioral 
results indicate that subjects understood the task well and were gener-
ally attentive during participation.

While spike rates of MTL units are typically modulated by stimu-
lus identity, little is known about whether the sequential position of 
stimuli systematically affects spiking. To address this question, we 
identified 217 highly responsive units by comparing stimulus-evoked 
activity during encoding to a prestimulus baseline (HPC: N = 84; EC: 
N = 23; PHC: N = 55; AM: N = 55; Methods). An example response of 
such a unit is shown in Fig. 1c. The stimulus-evoked activity of this 
unit differed substantially in response to the PS at each of the four 
positions within the sequence (Fig. 1d) during encoding, with the 
largest evoked response at the end position of the sequence and no 
modulation during delay or the probe period. Assessing spiking across 
all stimulus-responsive units for the PS at each item position, how-
ever, we found that stimulus-evoked responses were typically largest 
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individual values, P > 0.05, chi-squared of <3.9; Fig. 2f). Taken together, 
memory maintenance was associated with increased theta spike-phase 
locking, where phase-of-firing distributions became less uniform as 
units showed more similar phase preferences during the delay. For 

individual units, increased spike-phase coupling was specific to the 
encoded stimulus. Interestingly, similar to our spike-rate analyses, 
the magnitude of phase coupling was not systematically related to the 
position of the stimulus within a sequence.
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Fig. 1 | Experimental paradigm, behavioral performance and spike rate 
modulation. a, The experimental design of the multi-item temporal-order 
working-memory task. b, Left: individual mean percentage correct (pc) per 
session (mean pc 77%, s.d. 17,8%) for each patient and session (N data points 
correspond to 21 sessions, from 16 patients) compared with chance performance 
at 25% (dashed red line). Binomial test, P = 2.8 × 10−61, one sided. The black circle 
shows the average across subjects and median RTs for correct (c) versus incorrect 
(nc) trials, box plots are centered at the median and depict the interquartile 
range; whiskers represent 1.5 times the interquartile range, that is, a Tukey 
box plot. Right: median RTs plotted against mean percentage correct with 
least-squares linear fit and s.e.m. show a negative correlation (Spearman rank 
correlation coefficient −0.69, P = 6.7 × 10−4 two sided, median RT 4,514 ms, s.d. 
1,328 ms). c, Spike waveform density plot (microV, microVolt), raster plots and 
peristimulus time histograms (PSTH) from a hippocampal unit to all stimuli 
shown in one session. The vertical lines correspond to stimulus onset. This unit 
showed a significant rate increase to only one of the eight stimuli (PS, one-

sided Wilcoxon signed-rank test, P = 4.3 × 10−13). d, Spiking activity of the same 
unit across the entire trial period in response to the PS shown at four different 
positions within the sequence (one-way repeated measures analysis of variance, 
F = 3.05, P = 0.03 during the stimulus period). e, Convolved peristimulus time 
histogram and s.e.m. (Z score relative to baseline) in response to the PS of each 
individual neuron, averaged across all stimulus-responsive units for the entire 
trial period (sequence position color coded). f, Median spike rates for each 
stimulus position (pos.) and specific trial periods. The box plots are centered 
at the median and depict interquartile range, whiskers represent 1.5 times the 
interquartile range (Tukey box plot, Kruskal–Wallis nonparametric analysis of 
variance, on stimulus-evoked response, chi-squared of 7.96,P = 0.04, probe panel 
chi-squared of 39.5, P = 1.35 × 10−8, delay chi-squared of 2.55, P > 0.05, N = 217 
visually responsive neurons). Note that the stimuli used in the experiments 
cannot be displayed for copyright reasons and have been replaced by thumbnails 
generated with stable diffusion (https://huggingface.co/spaces/stabilityai/
stable-diffusion).
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Phase of firing depends on sequence position
We next focused on the temporal relationship between theta oscil-
lations and spiking. We asked whether the preferred phase of fir-
ing during the delay varies with item position in a sequence, one 
of the central model predictions by Lisman and Idiart9. Analyzing 
spike-phase histograms, we found differences in single units’ pre-
ferred phase of firing depending on the sequence position of the 
PS (Fig. 3). We quantified this relationship by computing the circu-
lar variance explained (Vex; Methods) between phases at different 
sequence positions. To assess statistical significance for each unit, 
we compared Vex with a null distribution derived from randomly 
shuffling position labels (Fig. 3).

Next, we investigated theta phase differences between stimulus 
positions of a particular item (a neuron’s PS) during working mem-
ory as a function of theta frequency. We specifically targeted highly 
stimulus-selective neurons, aiming at identifying a clear link between 
encoding and maintaining a specific stimulus in memory. Overall, 
neurons exhibited phase differences between sequence positions in 
all investigated theta bands and MTL regions (Fig. 4a). Vex was largest 
in the lower theta frequency range (2–3 Hz), in line with earlier find-
ings investigating spike-phase coupling encoding stimulus identity3 
(see also Fig. 4b). Critically, we found a similar effect choosing only 
the one theta frequency per unit–LFP pair for which we observed the 
highest oscillatory power increase from baseline to delay (paired t-test, 
t = 2.52, P < 0.02 across all units; Fig. 4d). This analysis not only accounts 
for variance in oscillatory peaks between LFP channels10 and the num-
ber of statistical comparisons when analyzing multiple frequencies, 
but also uses an independent criterion for selecting a specific theta 
frequency. We also repeated the analysis separately for groups of cor-
rect and incorrect trials to test whether the effect was related to task 
performance. Indeed, the normalized difference in Vex (measured as 
the effect size Hedges’ g between nonshuffled and shuffled conditions) 
was significantly enhanced only for correct, but not for incorrect trials 
(permutation test, P < 0.05; Fig. 4c). Finally, we repeated all analyses 
for neurons exhibiting low stimulus selectivity. Here, phase separation 
between positions was not as apparent, in line with our reasoning that 

visual responsiveness to multiple items confounds a clear spike-phase 
relationship to a particular item under study (Supplementary Fig. 3).

Next, we tested whether sequence position can be decoded from 
phase of firing, employing the same SVM algorithm as described 
above. This analysis represents a different approach since it does not 
necessarily assume a linear relationship between phase and stimulus 
position (per neuron). For individual units, average decoding per-
formance was better than chance (25%; Fig. 4e). We obtained similar 
results using population activity for highly stimulus-selective units, 
while this was not the case across the less stimulus-selective popula-
tion. Additionally, decoding performance was similarly high in hip-
pocampal, enthorinal and parahippocampal units, but substantially 
lower in the AM (Fig. 4f).

Finally, we investigated the relationship between the magnitude 
of spike-phase locking and encoding of position by phase. Similar to 
previous studies (for example, ref. 11), we observed that phase lock-
ing is enhanced during memory processing. At the same time, we 
found that different phases encode multiple stimulus positions during 
working-memory maintenance. To assess how these seemingly contra-
dictory effects are related, we computed the rank correlation between 
mean kappa values derived from theta-related spiking across four 
stimulus positions versus variance explained Vex. Here, we observed 
a negative correlation between the two measures (Spearman’s rho 
−0.4183 and −0.5066, P < 10−4; Supplementary Fig. 4a,b, upper row). 
In contrast, when computing kappa separately for each position (and 
averaging afterward), we did not observe this correlation (Spearman’s 
rho −0.02 and −0.1895, P > 0.05; Supplementary Fig. 4a,b, lower rows). 
These results demonstrate that a more limited phase range (that is, 
higher spike-phase locking) is associated with worse encoding of stimu-
lus positions. Interestingly, this effect appears to be mediated by larger 
phase separation between item positions rather than a higher kappa, 
that is, stronger phase locking per position and suggests a seeming 
tradeoff between phase locking and sequence coding. Future studies 
may investigate whether and how this relationship is influenced by 
other factors, for example, the number of items whose order needs 
to be remembered.

Fr
eq

ue
nc

y

4

9

 20

 46

108

–8
–6
–4
–2
0
2
4
6
8

–2

0

2

–0.5

0

0.5

–1
0
1

PHC

–1
0
1

–1
0
1

EC

–1

0

1

–1
0
1

–0.5

0

0.5

LF
P 

ch
an

ne
ls

AM

HPC

Z 
sc

or
e

2.7 14.3 107.6

HPC

PHC

AM

EC

Z score

5

Ka
pp

a

0

0.2

0.4

0.6

1

Position
2 3 4

a

b

c e

f

Frequency (Hz)

–5

–4

–3

–2

–1

0

1

2

3

4

Z score

0
0.

4
0.

8 1.2 4.
0 Time (s)

  0.2

  0.4

d

π/2

3/2π

π 0

π/2

3/2π

π/2

3/2π

π

π

π0

0

0

π/2

3/2π

HPC

PHC AM

EC

Baseline Delay PS/NPS Delay PS/NPS

0.2
0.4 0.4

  0.2

  0.2
  0.4

2.0
2.2
2.4

10-4

Preferred theta phasePr
op

or
tio

n 
pe

r b
in

PS NPS

Ka
pp

a

0
0.1
0.2
0.3
0.4
0.5

1.8
1.6
1.4

**

NS

hS lS

40

Frequency (Hz)

Fig. 2 | Theta oscillation and spike-phase modulation during sequence 
maintenance. a, An example normalized time–frequency spectrum (power Z 
score relative to baseline) in anterior HPC (the same recording site as in Fig. 1) 
showing a sustained increase in theta power during the delay. b, Normalized 
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Taken together, several lines of analyses suggest that phase of 
firing indeed differs depending on the serial position of maintained 
memory items, as predicted by Lisman’s model, and that this is more 
clearly observed for neurons showing higher stimulus selectivity.

Phase of firing order does not correspond to item order
Figure 4g,h summarizes our analyses regarding the central prediction 
of the Lisman model, namely a match between phase and item order 
within a sequence. We first show the phase distribution across neurons 

per stimulus position, normalized by subtracting the mean phase across 
all positions (Fig. 4g). Hence, if item position matched phase order, 
this would result in an equivalent ordering of phases across neurons. 
However, this was not the case. Similarly, when analyzing phase order 
for individual neurons using mean phase of firing per position, we found 
that approximately 15% of units exhibited the stimulus-equivalent 
consecutive phase order (circular ordering clockwise, that is, 1, 2, 3, 4), 
18.4% of unit–channel pairs showed the reverse order (that is, 4, 3, 2, 
1) with both proportions not significantly different from the expected 
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chance probability of 1/6 for a specific order (chi-squared test of propor-
tions, P > 0.05; Fig. 4h). Thus, while Lisman’s model proposes an equiva-
lence between phase and stimulus order during working memory, this 
was not reflected in our empirical results. We also assessed the phase 
range used to encode item positions in memory. Figure 4i shows the 
mean phase distributions across neurons with phases sorted based on 
the preferred phase-of-firing order of each neuron (instead of actual 
item position). As expected from our spike-phase coupling results, 
the phase range representing all positions spanned only a fraction of 
the entire cycle (110°, interquartile range, 55.6°). Remarkably, within 
this range phase differences were equally distributed (median phase 
difference between neighboring-position pairs 27.7°, 27.4° and 24.9°, 
median time shifts 21.2 ms, 20.4 ms and 20.6 ms, Kruskal–Wallis test 
chi-squared of <0.1, P > 0.05; Fig. 4j). On the one hand, these findings 
support the notion that phase-coupled spiking might have a larger 
impact on target regions and foster effective communication and neu-
ral plasticity14. At the same time, equal phase differences provide an 
efficient way to maximize the representation of information in phase 
space, in our case four different item positions.

Taken together, our analyses reveal position-dependent 
phase-of-firing differences at the single-unit level during working 
memory. However, while our results support a phase-of-firing code 
for representing sequential items in memory, as suggested by the 

Lisman model, we find no equivalence regarding the ordering of spike 
phase and position. This seems difficult to reconcile with the theory, 
which clearly predicts a correspondence between phase of firing and 
stimulus order.

Phase modulation in a trained RNN model
RNNs have previously been used to investigate neural computations 
during various cognitive tasks, including memory tasks15–18. We used 
RNNs to assess potential neural mechanisms underlying our find-
ings by training rate-based RNNs on a task analogous to the one used 
during neural recordings. In brief, four out of eight input units were 
sequentially activated during each trial, mimicking the presentation 
of stimuli in the experiment. This was followed by a constant delay and 
a presentation of the four initial stimuli, in either a matching (‘correct’) 
or nonmatching (‘incorrect’) order (Fig. 5b).

We subsequently analyzed neural activity of the trained networks in 
a similar fashion as our neural data. First, we asked whether our models 
also exhibit oscillatory activity. We defined the model’s LFP (Fig. 5c) 
as the summed absolute synaptic input to all neurons19. We observed 
oscillatory power within our trained networks at a low-frequency range 
typically peaking between 0.4 and 2 Hz (Fig. 5d), with an increase in 
power during delay compared with baseline (Wilcoxon rank -sum test, 
P < 0.01). To make the models comparable to our empirical data, we 
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b, An RNN schematic on an example trial. The colored lines correspond to 
different stimulus inputs. c, An example LFP extracted from a trained network 
and averaged time–frequency spectrum of trained RNN activity showing theta 
power. d, The average power extracted from models without regularization 
(top) and with regularization (bottom). e, Raster plots (spikes sampled from 
rate activity) and mean rate (colored lines) of a stimulus-selective model neuron 
shows a clear evoked response at each stimulus position, as well as oscillatory 
activity during delay. f, Examples of phase histograms of recurrent units 
during delay show different peaks of activity related to stimulus position. g, 
The circular variance explained (Vex) between stimulus positions is elevated at 
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shuffled position labels. h, A schematic showing stimulus-induced phase reset 
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used a novel regularization term to steer the frequency of the naturally 
occurring oscillations (Methods). For each of four frequencies (1.5, 2.04, 
2.75 and 3.73 Hz), we trained ten models regularized to have oscillatory 
power at that frequency, of which 26 (6, 7, 5 and 8, respectively) models 
exhibited peak oscillatory power within 0.5 Hz of their regularization 
frequency (Fig. 5d, bottom). Next, we identified units with increased 
firing rate during stimulus presentation that were also selectively 
responding to a specific stimulus. Over all 40 regularized models, on 
average 155 ± 3.5 (mean ± s.e.m., N = 40) out of 200 trained units exhib-
ited stimulus-responsive behavior (Wilcoxon signed-rank test, baseline 
versus stimulus presentation time, P < 0.001; example unit in Fig. 5e).

After demonstrating that RNNs exhibit both oscillations and stimu-
lus selectivity, we investigated phase coupling in our model, focusing 
on the 26 models that successfully learned to oscillate at their regu-
larization frequency. We created a model-based variant of spike-phase 
histograms by binning normalized firing rates above the 50th percentile 
of stimulus selective units during the delay with respect to a sinusoidal 
reference oscillation. Similar to our experimental data, the rate of the 
stimulus-selective units was coupled to the reference oscillation phase 
and the phase of peak rate differed between sequence positions (Fig. 5f). 
As in our empirical results, we quantified this effect by computing the 
circular variance explained (Vex) between item positions. We typically 
observed a significant increase in Vex compared with shuffled position 
labels during the delay (Permutation Test, P < 0.05, N = 26; Fig. 5g). For 
the majority of these units (71.88%), phase order did not match item 
order within the sequence, similar to our neural recordings.

Our results demonstrate qualitative similarities between neu-
ral data and model activity and show order-dependent (but not 
order-preserving) phases in a neural network trained on a sequential 
memory task. Can our models help us understand how these nonor-
dered phase relationships emerge? We noticed in our models that the 
theta oscillation of stimulus-selective units was systematically reset 
by the onset of their PS, and then remained at this phase during the 
delay period (Fig. 5e). In this case, the phase of such a unit, relative to 
an ongoing reference oscillation, is determined by the timing of the 
stimulus with respect to the reference oscillation. In other words, when 
successive stimuli are shown, the phase of firing to multiple stimuli at 
a specific stimulus onset asynchrony (SOA)—depending on the oscil-
lation frequency—cannot always be contained within one oscillatory 
cycle. Thus, a phase reset leads to a specific phase order as a function 
of the timing of the stimuli with respect to the reference oscillation 
frequency (Fig. 5h). To test this hypothesis in our RNNs, we computed 
the phase orders of stimulus-selective units in models regularized to 
oscillate at one of four frequencies. For each model, we computed the 
phase order used for eight different SOAs (Fig. 5i). This gave us 11,593 
units for which we predicted 56% of phase orders correctly (permuta-
tion test using shuffled frequencies and SOAs across units, P < 0.001; 
Supplementary Fig. 5c). In line with our hypothesis, we observed that 
different phase orders emerged in our models as a function of oscilla-
tion frequency and SOA (Fig. 5i).

Finally, we probed this relationship in our empirical neural data. For 
each stimulus-selective unit, we obtained the order of phase of firing at 
the theta frequency for which it exhibited the strongest phase differences 
between item positions (based on Vex). Subsequently, we quantified how 
many of these units exhibited a phase order as predicted by the frequency 
of the theta oscillation and the SOA used during the experiment. For a 
significant proportion of units, we were indeed able to predict the phase 
order correctly (25.2%, N = 87, permutation test using shuffled labels 
between frequency and ordering, P < 0.05). Taken together, our analyses 
link the phase order to the ratio between cycle duration of the oscillation 
and the SOA for both model and recorded neurons.

Discussion
In this study, we tested a long-standing theory on the role of spiking 
and theta oscillations during sequence memory using single-unit and 

LFP recordings in human MTL as well as RNNs. We observed that spike 
rates did not vary with item position during memory maintenance. 
Instead, neurons exhibited robust spike-phase coupling to ongoing 
theta oscillation, where the preferred phase of individual neurons fir-
ing differed between item positions but did not reflect item order. 
Importantly, position encoding by spike phase depended on memory 
performance, emphasizing its behavioral relevance. When comparing 
neurons’ phase of firing at their local theta oscillation, we were not 
mixing different theta oscillations between neighboring electrodes. 
Nevertheless, whether phase shifts might also have resulted from 
micro-architectural differences (for example, CA1/CA3 within the HPC) 
cannot be answered with our recording approach.

RNN-based neural activity after training in an analogous task 
resembled many of our empirical findings. This included strong stim-
ulus selectivity during encoding, emerging theta oscillations, phase 
coupling during memory maintenance and, importantly, phase dif-
ferences related to item position, where phase-of-firing order again 
did not match the item order of the sequence. Why would sequence 
position be represented by phase of firing if the order is not preserved? 
A possible explanation is that sequence replay during memory does 
not necessarily reflect the (physical) stimulus order, but is altered, for 
example, through learning, thus rather reflecting internal processing 
states20. Similarly, MTL neurons do not stringently encode physical 
space or time21. Our findings are consistent with this notion: if there 
is an arbitrary—yet consistent—spike-phase relationship per neuron 
between different positions, then relational coding, as in reading out 
the position of stimulus A (from neuron X responding to stimulus A) 
versus the position of stimulus B (from neuron Y responding to stimu-
lus B) would still be possible at the population level. Still, our results 
might contradict previous investigations on sequence memory using 
intracranial electroencephalography and magnetoencephalography 
that report theta-dependent gamma activity and corresponding item 
and phase order22,23. However, neither study explicitly required subjects 
to memorize temporal order nor did they measure SUA. Specifically, 
whether gamma activity indeed reflects selective responses to different 
visual stimuli during memory, such as those we have demonstrated for 
spiking neurons in the MTL, remains unresolved24.

How are our results related to short-term memory studies in 
rodents? Several studies report reliable, event-specific sequential 
firing of hippocampal assemblies in nonspatial memory tasks, where 
neurons’ sequential firing order did, however, not reflect their place 
field order25,26. To approximate sequential firing relative to item order 
in our data, we analyzed cross-correlograms for item-selective pairs 
of neurons during encoding and delay (Supplementary Figs. 7 and 8). 
While we observed that item order was reflected in equivalent time 
lags during encoding, this was not the case during delay, which might 
indicate independent rate and temporal coding in human sequence 
memory27. Moreover, in our model and data, oscillation frequency 
was relevant in predicting a particular phase order, whereas in rodents 
spiking of place cells relative to theta oscillations appears to stay con-
stant at a range of theta frequencies28. Finally, Lisman’s original model 
assumes a shared theta oscillation across all neurons within one net-
work. It is, however, unlikely for us to simultaneously record multiple 
visually selective neurons belonging to a shared theta rhythm due to 
the undersampling of neurons in our study and the known variability 
of theta oscillations throughout the MTL29. This limits the interpreta-
tion of relative phase offsets between neurons. Nevertheless, for a 
given neuron theta recorded at the same microwire is preserved across 
trials and Lisman’s model, equivalently, predicts theta-phase offset 
to increase monotonically with stimulus position, which we did not 
observe. Ultimately, a direct comparison between human and rodent 
studies will only be possible if high-density recordings of single-unit 
networks become available in human recordings.

Similar to our experimental findings, RNNs could maintain sequen-
tial information in working memory using ‘nonordered’ oscillatory 
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phase of firing. Importantly, our models provide a potential mechanis-
tic explanation for phase order through stimulus-induced phase reset, 
a phenomenon that has indeed been observed in MTL neurons30–32. Our 
modeling results are also in line with connectionist models implicating 
phase offsets of multiple oscillators in encoding serial position as well 
as oscillating neural networks that use a phase-of-firing code33,34. For 
RNN models, we provide a novel and alternative coding mechanism of 
working-memory content through emergent oscillatory dynamics in 
addition to known point, line and plane attractor dynamics35,36.

Taken together, our findings corroborate an important prediction 
of Lisman’s model—namely that the serial position of memory items is 
encoded in phase of firing, even if their order is not preserved. Thus, 
theta oscillations could indeed provide a temporal frame of reference 
for relating the ‘what’ to the ‘when’ as has been suggested previously21. 
Similarly, theta cycles could function as a ‘separator’ between sequen-
tial memory items to facilitate readout by downstream regions and thus 
subserve both efficient encoding and routing of information within 
working memory14,37. Ultimately, our observations point to a more 
general role of temporal coding based on oscillations within the MTL.
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Methods
Sixteen patients (nine female, seven male, median age of 42 and 
45 years, respectively) with chronic, intractable epilepsy were 
implanted with depth electrodes to undergo seizure monitoring for 
presurgical evaluation. All subjects gave their written, informed con-
sent to participate in the experiments. Subjects performed either 224 
trials or 112 trials (one subject) of a modified Sternberg task as illus-
trated in Fig. 1a. Stimuli were displayed using Octave (https://gnu.org/
octave) on a Debian 8 operating system (www.debian.org). On each 
trial, a fixation cross appeared for 1,000 ms. This was followed by a 
temporal sequence of four different stimuli that were chosen randomly 
on every trial out of a set of eight stimuli in total, during which subjects 
had to maintain fixation. Pictures were chosen based on a prescreening 
session 1–4 h before this experiment38. Pictures contained mostly 
natural images depicting photographs of people, places or objects. 
Within the sequence, each stimulus was presented for 200 ms with an 
interstimulus interval of 200 ms. The presentation of the fourth stimu-
lus was followed by a delay period showing a blank black screen. The 
delay period ranged between 2,400 and 2,600 ms (median of 2,500 ms, 
interquartile range of 100 ms). Finally, a stimulus panel simultaneously 
showing four possible stimulus sequences was shown on the screen, 
one of which matched the sequence previously shown (chance level of 
0.25). Subjects were instructed to press a key number indicating the 
row of the matching sequence. Each of the eight different stimuli used 
was presented equally often at each of the four temporal positions (for 
details, see the Supplementary Information). The recording techniques 
presented here have been described in detail in previous studies (for 
example, refs. 38,39). In brief, we recorded the raw voltage traces from 
nine microwires (eight high-impedance recording electrodes, one 
low-impedance reference; AdTech) protruding from the shaft of depth 
electrodes at a sampling rate of 32 kHz. Signals were amplified and 
recorded using a Neuralynx ATLAS system and referenced against one 
of the low-impedance reference electrodes. Data analysis was per-
formed using custom-written functions as well as the CircStatsToolbox 
written for MATLAB version R2014b as well as the pycircstats toolbox 
written for Python40,41. Data figures were partially produced by the 
gramm plotting toolbox written for MATLAB42. Unless otherwise stated, 
we are showing Tukey box plots, that is, centered at median and depict-
ing interquartile range, whiskers represent 1.5 times the interquartile 
range. Spike analyses: throughout the manuscript, we use the terms 
‘neuron’, ‘unit’ and ‘cell’ equivalently to describe the recorded responses 
of presumed neuronal spiking. We use spiking equivalently to firing, 
to describe neuronal activity of single neurons. Model units describe 
the output activity of the artificial RNN units. Whenever multiple com-
parisons were performed, P values were corrected using the Simes 
procedure43. Spike sorting was performed semi-manually using Wave-
clus 2.0 and Combinato44. On the basis of thorough manual visual 
inspection of waveforms, we removed unit recordings that were con-
taminated by artifacts or were temporally unstable over the course of 
the recording, which resulted in a pseudo-population of 1,420 units 
from 921 unique LFP channels in MTL regions (HPC: N = 564, 376, 40%; 
EC: N = 251, 161, 18%; PHC: N = 213, 138, 15% and AM: N = 392, 246, 28%, 
units and channels, respectively). To assess whether a unit significantly 
responded to a stimulus, we compared spiking activity during pres-
timulus baseline (−500 ms before the first stimulus) with the stimulus 
period, and a unit was defined as responsive if there was a significant 
increase in spike rate relative to baseline (P < 0.001; for details see the 
Supplementary Information). We identified N  = 217 highly 
stimulus-responsive units (N = 84 hippocampal units, N = 55 AM units, 
N = 55 parahippocampal units and N = 23 entorhinal units). The stimulus 
eliciting the largest firing rate increase relative to baseline is the PS and 
we compared PS versus NPS trials (where the PS had not been part of 
the sequence during encoding) to compare stimulus-specific effects. 
Since neurons could be responsive to multiple items, we separated two 
groups of neurons (‘high’ selectivity versus ‘low’ selectivity) based on 

a median split of the normalized difference in activity between the PS 
and the stimulus that elicited the second largest response (for details 
see the Supplementary Information). LFP analysis and spike-phase 
coupling: spectral analyses were similar to a previous report37. In brief, 
we obtained the time–frequency decomposition of the downsampled 
(1,000 Hz) LFP signal using complex Morlet wavelets (c = 7 wavelet 
oscillations) and extracted from the analytical signal the instantaneous 
amplitude and phase as a function of time and frequency. Changes in 
power during the delay were assessed by transforming the raw power 
spectra to the Z-score scale relative to baseline power. Delay spectra, 
as shown in Fig. 2b, were obtained by averaging across 1,500 ms before 
probe onset (equal to spiking activity window). For the spike-phase 
analyses, we focused on theta frequencies over a wide range of frequen-
cies starting with 1.5, 1.75, 2.03, 2.37, 2.8, 3.2, 3.7, 4.4, 5.1, 5.9, 6.9 and 
8 Hz. We analyzed simultaneously recorded spiking and LFP from the 
same microwire for 217 channel–unit pairs with 175 unique LFP chan-
nels. We used a baseline period of 1,000 ms and a delay period of 
2,000 ms for comparisons (choosing the last 2 s before probe onset 
and leaving a minimum of 500 ms interval post stimulus offset). Cir-
cular analyses used Rayleigh’s test of uniformity and estimated the 
magnitude of spike-phase coupling using the concentration parameter 
kappa based on von Mises function fits to spike distributions across 
phase bins (for details, see the Supplementary Information). We per-
formed several control analyses to test and account for possible 
spike-rate differences between conditions (Supplementary Informa-
tion). To analyze whether the preferred phase of firing during the delay 
differed from stimulus positions during encoding, we obtained 
trial-based estimates of the mean preferred phase of spiking during 
the delay for each neuron during trials showing the PS of that unit within 
the sequence. We subsequently computed the circular variance 
explained between different experimental conditions (in our case 
stimulus positions 1–4) by quantifying the ratio of variance within 
conditions relative to the variance across conditions. We chose this 
nonparametric measure as it does not necessarily assume an underlying 
von Mises distribution. We defined circular variance within condition 
(that is, position) as Vw

j = 1 − |||
1
N j
∑N j

k=1eiθk
||| , where Nj is the number of trials 

in condition j, the index k runs across all trials of condition j and θk is 
the mean phase of spiking in trial k. We subsequently calculated the 
mean variance within conditions as Vw = 1

N
∑4

j=1N jVw
j , where N is the 

total number of trials and Nj the number of trials within condition j. 
While there were typically 28 trials in each condition, an unequal num-
ber of trials could potentially arise from the fact that trials during which 
no spikes were detected did not contribute to the mean phase estimate 
(on average 10% of trials across neurons). We further defined circular 
variance across all conditions as Va = 1 − ||

1
N
∑N

k=1eiθk || where k runs across 
all N trials. We finally computed the circular-variance explained per 
neuron as Vex = 1 − Vw

Va
. For nonparametric statistical comparisons, we 

also obtained a random distribution of Vex by shuffling trial labels 
N = 1,999 times between different conditions based on random permu-
tations. We repeated this procedure for every unit using all trials, and 
separately for correct and incorrect trials (including the respective 
shuffle-based random distributions to account for trial-count differ-
ences between these two conditions). We also obtained an estimate 
for the proportion of units showing a significantly larger Vex compared 
with their shuffled distribution. A unit was defined as significant if the 
true Vex exceeded the shuffled Vex estimates in at least 95% of the cases 
(P < 0.05) for at least two frequencies. To obtain confidence intervals 
on proportion estimates, we created surrogate distributions of units 
using a bootstrap procedure (with replacement, as implemented by 
bootstrp in MATLAB 2014b, N = 1,999) comparing the units’ Vex and 
respective shuffled distributions for each drawn sample (Supplemen-
tary Fig. 6e). To estimate phase order, we first subtracted the mean 
phase across positions from each position’s phase, thereby anchoring 
all phases relative to 0° phase (see also Fig. 4g). We subsequently sorted 
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phases counter-clockwise in an ascending order and obtained the 
stimulus-position index for the sorted phases accordingly. A phase 
order was defined as equivalent to position order if the relative ordering 
along the circle matched the stimulus order (expected by chance in 
one-sixth of cases), and reverse if the reverse stimulus order was 
matched (likewise expected in one-sixth of cases). For decoding analy-
sis to test whether stimulus position can also be decoded from phase 
of spiking, we used a SVM (radial basis function kernel, one versus one 
encoding scheme) algorithm as implemented in MATLAB 2014b. Here, 
phase of spiking served as the predictor matrix to predict one of four 
possible binary class labels (that is, stimulus position) (chance perfor-
mance 25%). Data were randomly partitioned into training and test sets 
for cross-validation (85% and 15%, respectively). Decoding performance 
was statistically compared with performance after shuffling true class 
labels across trials, that is, randomly assigning position indices to trial 
phases (N = 101). In addition to single-unit decoding, we also created a 
pseudo-population of units by pooling all units across sessions and 
theta frequencies. To estimate the effect size of position decoding 
between regions, we calculated the difference between true perfor-
mance in standard deviation units (Hedges’ g, as described above) and 
obtained confidence intervals based on bootstrapping with N = 1,999 
repetitions.

Recurrent network model
Model definition. Our models consist of recurrent networks of N 
firing-rate units

τ ∘ dx (t)
dt

= −x (t) + Jϕ (x (t)) + Iu (t) +√2τσ2ξ ∘ ξ, (1)

where τ ∈ ℝN, is a vector of time constants, ∘ indicates element-wise 
multiplication, x(t) ∈ ℝN  denotes the current of each unit, ϕ is the 
element-wise (nonlinear) activation function, J ∈ ℝN×N is the recurrent 
weight matrix specifying the connectivity between units in the network, 
I ∈ ℝN×Nin is the input weight matrix specifying the connectivity from 
stimulus input to recurrent units and u(t) ∈ ℝNin  is the time-varying 
stimulus input. ξ denotes N Gaussian noise processes with zero mean 
and unit variance, representing intrinsic network noise scaled by σξ . 
An overview of all parameters can be seen in Supplementary Table 1.

We implemented biophysical constraints on the weight matrix J 
in line with previous work45. We allowed neurons to have either only 
excitatory or only inhibitory outgoing connections (Dale’s law; Sup-
plementary Information).

Task. We adapted the task performed by the human participants such 
that it could be readily performed by an RNN, keeping the information 
that had to be maintained during the delay period (four stimuli and 
their order) identical. The input to the network at a particular time step, 
u(t), was always 000, except during the stimuli and probe periods. During 
these periods four out of eight stimuli were activated sequentially for 
0.2 s by setting the corresponding entry in the vector u(t) to 1. The 
activated stimuli were randomly chosen (without replacement) with 
equal probability every trial. After a delay period, the same four stimuli 
as during the stimulus period were shown, but now either in a different 
order (randomly drawn) or in the same order, with equal probability.

Training procedure. During training we simulated equation (1), using 
the Euler method with step size Δt, giving us at time step n

xn+1 = (1 − α) ∘ xn + α ∘ (Jϕ (xn) + Iun) +√2ασ2ξ ∘ ϵ,

with ϵ∼𝒩𝒩 (0, I)  and ααα  is an N-dimensional vector whose ith element  
is Δt

τi
. The network’s output is described by a linear readout of the firing 

rates yn = w⊺xn with w∈ℝN.
For the network to perform the task, it had to determine whether 

the order of the initial sequence of stimuli matched the sequence 

presented after the delay period. We defined a scalar ̂y  that was either 
1 (match) or −1 (non-match) during the decision period.

We defined the loss of a single trial as

ℒ= 1
∑T

n=1 mn

T
∑
n=1

mn(yn − ̂yn)
2
+ λFRregFR + λoscregosc, (2)

where T is the number of discrete time steps in one trial, m is a mask 
that is 1 during the decision period, otherwise 0. Here the reg terms 
denotes regularizers applied with corresponding weights λ. We applied 
an L2 penalty on the rates to prevent implausible saturation of the 
activation function regFR =

1
NT

∑T
n=1∑

N
i=1 ϕ(x

n
i )

2
 and additional regulari-

zation to control the model’s oscillation frequency (equation (3)).
We optimized parameters of the network by minimizing equation 

(2) using gradient descent until 95% accuracy was reached on a valida-
tion set (details in the Supplementary Information).

Computing LFPs in RNNs. LFPs as recorded from the brain are gen-
erated from currents of neurons embedded in a three-dimensional 
space, where the exact arrangement of neurons hugely influences 
the recorded signal. Neurons in our model, however, are completely 
agnostic to physical space. Mazzoni19 compared various LFP proxies 
for standard leaky-integrate-and-fire (LIF) networks, and found that 
a specific linear combination of the LIF synaptic currents provides an 
accurate LFP proxy. However, the authors also suggested a simpler 
proxy that is plainly the (absolute) summed AMPA and GABA cur-
rents. Given that our units have even less detail then the LIF neurons, 
we calculated the LFP in line with this, by taking the summed absolute 
synaptic input as LFP

LFPn =
N
∑
i=1

N
∑
j=1

|| Jij||ϕ (xnj ) .

To systematically analyze the effect of oscillation frequency on the 
representations used by our model, we developed a new loss term to 
promote an LFP with a peak at a specified frequency during training. 
This allows one to shift the natural oscillation frequency of the model 
to a specific frequency. We applied this regularization to all models 
described in the main text.

For every training iteration we computed the LFP. To make the loss 
term amplitude-invariant, we first normalized the LFP thus 

LFP
n
= LFPn−μLFP

√2σLFP
. We then took the norm of the Fourier component at a 

specified frequency

regosc = −
‖
‖‖‖
1
T

T
∑
n=1

LFP
n
exp−i2πfoscnΔt

‖
‖‖‖
, (3)

where fosc is the regularization frequency in Hz. We selected four fre-
quencies congruent with the range of frequencies found in our experi-
mental data, and trained ten models for each frequency (1.5, 2.04, 2.75 
and 3.73 Hz). Sixty-five percent of these models (26 out of 40; 6, 7, 5 and 
8 for each frequency, respectively) exhibited peak oscillatory power 
within 0.5 Hz of their regularization frequency. For these models, the 
power at target frequency increased from 0.13 ± 0.022 to 0.68 ± 0.048 
(mean ± s.e.m, N = 26), after training.

Model analysis. Analysis of the data output was performed in Python 
using the pycircstat package41 as well as custom-written code. For the sub-
sequent analysis, we first generated 224 unique stimulus combinations 
matching the number of trials in the experiment. Half were randomly 
assigned to be match trials (the later four stimuli are presented in the 
same order as the initial stimuli) and the other half were assigned to be 
non-match trials (the order in which the initial and post-delay stimuli 
were presented differed). We repeated the analysis performed on the 
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experimental data with the following adaptions to account for the model 
having a continuous firing rate instead of discrete spikes (Supplemen-
tary Information). For the rate-phase histograms (Fig. 5f) the reference 
oscillation was a sine wave, with a fixed phase at the onset of the last 
stimulus, and frequency matching the frequency with highest power in 
the models’ LFP spectra. For the analysis investigating frequency-related 
effects (Fig. 5g), we used only the 26 models that successfully learned 
to oscillate at their regularization frequency (peak oscillatory power 
within 0.5 Hz of their regularization frequency). For Fig. 5h, we analyzed 
an effect that is directly based on the oscillation frequency models used 
to encode stimuli, thus here we only included models with a Vex at a fre-
quency within 0.2 Hz of the applied regularization frequency (giving 
us N = 4.7 ± 1.2, mean ± s.d. models per SOA–frequency combination).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Raw data from medical patients are not publicly available to protect 
patients’ privacy under the European General Data Protection Regu-
lation. Data to reproduce the main figures and analysis of this study 
are publicly available via GitHub at https://github.com/mackelab/
sequence_memory_NN.

Code availability
Custom code for the RNN model as well as analysis code to repro-
duce main figures have been uploaded and are available via GitHub at 
https://github.com/mackelab/sequence-memory. Custom MATLAB 
code to reproduce main figures and analyses have been provided and 
uploaded and are available via GitHub at https://github.com/mackelab/
sequence_memory_NN.
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Neurophysiological data were recorded using Behnke-Fried depth electrodes (AdTech, Racine, WI) equipped with microwire bundles 

protruding from the tip of the electrodes (3-5 mm). Data were amplified and recorded using a 256-channel ATLAS amplifier (Neuralynx, 

Bozeman, MT) and the Pegasus software (version 2.1.1, Neuralynx, Bozeman, MT). Stimuli were displayed using Octave (https://gnu.org/

octave) 3.x series, on a Debian 8 operating system (www.debian.org). 

Data analysis Spike extraction and sorting was performed using Combinato (no version, https://github.com/jniediek/combinato). Statistical analyses were 

conducted in MATLAB 2014b and 2022b,  including the Statistics and Machine Learning Toolbox  (The MathWorks, Natick, MA) and Python  

(tensorflow2015, Scipy 1.2), Matlab toolboxes for circular statistics (CircStatsToolbox, Philipp Berens (2024). Circular Statistics Toolbox https://

www.mathworks.com/matlabcentral/fileexchange/10676-circular-statistics-toolbox-directional-statistics), MATLAB Central File Exchange and  

Python Toolbox PyCircStat (https://github.com/circstat/pycircstat), Gramm data visualization toolbox  (https://www.mathworks.com/

matlabcentral/fileexchange/54465-gramm-data-visualization-toolbox). Custom MATLAB code to reproduce the main figures and analysis of 

this study are publicly available on GitHub: https://github.com/mackelab/sequence_memory_NN. Custom Python code to reproduce 

modelling results and analysis are available on GitHub under : https://github.com/mackelab/sequence-memory

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

• All code to establish and train the recurrent neural network model as well as analysis code to produce figure 5 are available under  https://github.com/mackelab/

sequence-memory 

 

• Data to reproduce the main figures and analyses of this study are publicly available on GitHub: 

https://github.com/mackelab/sequence_memory_NN 

 

• Raw data from medical patients are not publicly available to protect patients’ privacy under the European General Data Protection Regulation  

 

 

 

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 

and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Sex of participants: 9 female, 7 male, according to clinical reports. Gender was not assessed explicitly. Our study did not 

include gender-specific analyses. 

Reporting on race, ethnicity, or 

other socially relevant 

groupings

Subjects were chosen based on clinical assessment only (recruitment) and no records of race or ethnicity were made. We do 

not expect for these factors to affect our results or play a role in our scientific questions. 

Population characteristics median age = 42 (female) /45 (male) years, other information on population characteristics was not assessed. In this study, 

no characteristics of the population were included as covariates.

Recruitment The study represents a 'rare-opportunity' sample. Participants are medical patients with therapy - refractory temporal lobe 

epilepsy that were chosen by an interdisciplinary medical board at the Department of Epileptology, University Hospital Bonn, 

Germany (Neurologists, Neurosurgeons, Neuroradiologists) to be eligible of undergoing invasive intracranial EEG Monitoring 

for presurgical evaluation of epilepsy surgery using macro electrodes. The corresponding author(s) were not part of this 

decision. Patients were asked and gave their written consent to participate in the invasive iEEG recordings as well as the 

additional implantation of micro electrodes after being asked by the main author(s) to record single neuron activity and local 

field potentials and participate in the experiments. Patients were informed that they could withdraw from research at any 

time, and without any impact on their clinical care.  

All patients gave informed written consent to participate in this study in accordance with the Medical Institutional Review 

Board of the University of Bonn, Germany. Only patients over the age of 18 years were recruited. 

Ethics oversight Ethics Oversight held and study approved by the Medical Institutional Review Board of the University of Bonn (accession 

number 095/10 for single-unit recordings in humans in general and 249/11 for the current paradigm in particular). 

Adheration to the guidelines of the Declaration of Helsinki. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No a-priori sample-size calculation was performed. In our total sample, we recorded activity from 1420 units on 921 unique LFP channels in  

Our comprehensive dataset easily complies with or exceeds current standards in the field of human single unit recordings (e.g., Jamali et al., 

Nature, 2024; Qasim et al., Cell, 2021). However, how many patients were recruited to participate in this study was based on an approximate 

assessment of how many neurons we needed to make statistically sound conclusions. Here, the first goal was to gather a sufficiently large 

sample (N>100 neurons) for statistical robustness with high recording quality (good single unit spike isolation, free of artifact, robust /stable 
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spiking across the duration of the experiment) distributed  approximately equally across all participants for higher validity/reliability of results. 

The second goal was to gain a sample of neurons (N>100) for which we would obtain robust responses to presented stimuli. Based on 

previous experience and in line with aforementioned studies,  this is the case for about 15-20% of sampled neurons. The quality of data also 

highly depends on correct electrode placement by the neurosurgeon and the number of implanted electrodes (i.e. macroelectrodes) , which is 

not determined by the experimenters but medical personnel. 

Data exclusions No subjects were excluded from the study. As part of the preprocessing, single unit activity and LFPs were visually screened for artifacts and 

rejected when contaminated before analyses specific to the experiment. Further data selection was done for scientific reason and is described 

in the Methods section of the manuscript.

Replication We reproduced several effects known from previous studies in the field that are prerequisites for our novel analyses (e.g. theta power 

increase or spike filed coupling during memory maintenance). For several analyses yielding crucial results / conclusions we performed 

equivalent, yet non-identical analyses, obtaining the same results (e.g. using a traditional measure of explained variance as well as a machine 

learning based decoding algorithms on preferred phase of firing). To enhance repilicability and robustness,  analysis concepts, analysis code 

and results were discussed and agreed upon by multiple authors. Whenever possible, findings were replicated at the single subject level (for 

example behavioral analysis) and single neuron / single LFP channel level (for example visual responses to stimuli) as well as across the 

population. 

Randomization No randomization procedure was involved and all subjects performed the identical experimental protocol (except for visual stimuli chosen). 

Blinding Since the experimental paradigm did not involve a 'control' group, participants were equally aware and carrying out the identical conditions. 

Moreover, our experimental design did not involve manipulation or withholding knowledge about information as part of the study. Therefore, 

blinding does not apply.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches, 

gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the 

number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe 

the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor 

was applied.

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If 

plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Authentication Describe any authentication procedures for each seed stock used or novel genotype generated. Describe any experiments used to 

assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism, 

off-target gene editing) were examined.

Plants
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