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ABSTRACT

We introduce Velocity-Regularized Adam (VRAdam), a physics-inspired opti-
mizer for training deep neural networks that draws on ideas from quartic terms
for kinetic energy with its stabilizing effects on various system dynamics. Previ-
ous algorithms, including the ubiquitous Adam, operate at the so-called adaptive
edge of stability regime during training, leading to rapid oscillations and slowed
convergence of loss. However, VRAdam adds a higher order penalty on the learn-
ing rate based on the velocity such that the algorithm automatically slows down
whenever weight updates become large. In practice, we observe that the effective
dynamic learning rate shrinks in high-velocity regimes, and damping oscillations.
By combining this velocity-based regularizer for global damping with Adam’s
per-parameter scaling, we create a powerful hybrid optimizer. For this optimizer,
we provide rigorous theoretical analysis of operation at the edge of stability from
a physical and control perspective for the momentum. Furthermore, we derive
convergence bounds with the rateO(ln(N)/

√
N) for a stochastic non-convex ob-

jective under mild assumptions. We demonstrate that VRAdam exceeds the per-
formance against standard optimizers including AdamW. We benchmark various
tasks such as image classification, language modeling, and generative modeling
using diverse architectures and training methodologies including Convolutional
Neural Networks (CNNs), Transformers, and GFlowNets.

1 INTRODUCTION

Optimizing the parameters of deep neural networks remains a cornerstone of progress in machine
learning. Improving on the core idea of Stochastic Gradient Descent (SGD) (Sutskever et al., 2013),
adaptive methods like Adam (Adaptive Moment Estimation) (Kingma & Ba, 2015) have become
ubiquitous due to their practical effectiveness across diverse tasks and architectures. Despite its suc-
cess, the performance of Adam can be sensitive to hyperparameter choices and its training dynamics
can exhibit instabilities (Reddi et al., 2019). Furthermore, fully understanding the training dynam-
ics of deep neural networks remains an open challenge (Wang & Choromanska, 2025), and even
small improvements to existing optimization algorithms can often lead to significant reductions in
resource consumption.

One line of work, observed empirically, is that training often occurs at the edge of stability (Co-
hen et al., 2022; 2024), a regime for which the largest eigenvalue, also called sharpness, of the loss
Hessian equilibrates around a fixed value proportional to the inverse of the learning rate (LR). This
seems in contrast with common presumptions in classical optimization theory and has profound im-
plications for convergence speed, stability, and generalization. In classical optimization, higher LRs
lead to faster convergence at the cost of oscillations or divergence if stability constraints (depending
on the loss landscape) are violated (Boyd & Vandenberghe, 2004). This pathological behavior of
optimizers, like AdamW, leads to instabilities and a slowed decrease of the loss.

These challenges motivate the exploration of alternative optimization strategies. In line with the ori-
gins of machine learning itself (Hopfield, 1982; Ackley et al., 1985), one promising avenue draws
inspiration from physics. For that, the optimization trajectory is conceptualized as a discretized
motion of a particle within the high-dimensional loss landscape. Both from the structure of the “po-
tential” landscape and the discretization, instabilities may arise from excessive “velocity” or overly
large step sizes. This perspective suggests that mechanisms from high-energy and non-classical
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physics applied to optimization can improve aspects of stability. Building upon the established suc-
cess of momentum, which incorporates velocity into gradient updates, recent ideas have explored a
maximal velocity, drawing parallels to the speed of light in the theory of special relativity (França
et al., 2020).

This work introduces a class of physics-inspired optimizers, termed Velocity-Regularized Adam
(VRAdam), designed to improve upon the stability and performance of standard adaptive methods
(Kingma & Ba, 2015; Loshchilov & Hutter, 2017). Inspired by quartic terms used to model kinetic
energy in more stable systems such as classical time crystals (Shapere & Wilczek, 2012) and heavy
quark modeling using non-relativistic quantum chromodynamics (NRQCD) (Braaten, 1997) known
for their unique stability properties, VRAdam adapts this as a heuristic and introduces a novel reg-
ularization mechanism. This mechanism controls the effective learning rate η via penalizing high
velocity, namely ηt = α0/(1 + min(β3||vt||2, α1)).

Equipped with this new optimizer, VRAdam, we probe its dynamics at the adaptive edge of stability,
observe faster convergence, and analyze its sharpness empirically against AdamW and Sharpness
Aware Minimization (SAM) (Foret et al., 2021). We also introduce rigorous theoretical analysis of
the global uniform exponential stability of momentum (Weber et al., 2024) as well as a physics-
inspired Lyapunov candidate derived from our Lagrangian that demonstrates stability properties.
With well-tuned hyperparameters, we benchmark VRAdam against AdamW, RAdam (Liu et al.,
2020), SGD with Nesterov momentum and RMSProp (Ruder, 2017) on image classification with
the CIFAR-10 dataset and the convolutional neural network architecture, on language modeling with
transformers on the WikiText2 dataset, and a generative modeling task with GFlowNets and report
improved performance on all tasks. We also report increased target-to-loss against AdamW on large
scale training for language models such as GPT (Brown et al., 2020) with marginal computational
increase in overhead.

With this work, we contribute:

• VRAdam, a physics-inspired and interpretable modification to AdamW,

• Adaptive edge of stability analysis of VRAdam with faster convergence and associated
empirical and theoretical evidence from momentum analysis,

• Convergence bound for non-convex stochastic objective,

• VRAdam outperforms AdamW and other optimizers on a wide range of benchmarks.

2 BACKGROUND

Edge of stability. The training of deep neural networks does not follow classical optimization trajec-
tories when trained with full-batch gradient descent (GD). However, during training, these models
experience a surprising phase called the edge of stability (EoS). In this phase, the loss Hessian’s
largest eigenvalue (λmax) rises to approximately 2/η, the numerical stability limit determined by the
learning rate η. At EoS, the eigenvalue persists at this threshold, causing short-term, non-monotonic
oscillations in the loss function. Despite these oscillations, the model still achieves long-term de-
scent in the loss, though at the cost of slower convergence (Arora et al., 2022; Cohen et al., 2022).

More recently, empirical bounds on the adaptive edge of stability (AEoS) have been observed for
adaptive optimizers such as Adam (Cohen et al., 2024). Here, the relevant stability threshold in-
volves preconditioning the Hessian Ht, where the precondition is constructed from the exponential
moving average (EMA) of past element-wise squared gradients mt:

P−1
t Ht, Pt = diag (

√
mt + ε) , (1)

This adaptive preconditioning coincides with the learning rate scaling in Adam (see Alg. 1) and
scales down the step size in high-variance (typically high-curvature) directions as well as scales up
in low-variance ones. Since the local stability of an optimizer around a minimizer depends on the
eigenvalues of the quadratic Taylor approximation L(x) ≈ 1

2x
⊤Hx, Adam’s dynamics are shown

to be stable (Cohen et al., 2024) as long as
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λmax

(
P−1
t Ht

)
<

2 + 2β1
(1− β1) η

=
38

η
(β1 = 0.9) . (2)

However, as this threshold is attained, the adaptive oscillatory regime can slow final convergence,
as the optimizer continually adjusts its preconditioner to maintain stability as well (Song & Yun,
2023).

Physical origins of exotic Lagrangians. To better comprehend and navigate the edge of stability
regime, we can draw inspiration from the physics governing complex optimization scenarios. The
deep insights provided by the interplay of physics and machine learning frameworks have been
demonstrated in various scenarios, such as the improved interpretation of Neural Tangent Kernels
(NTK) through Langevin dynamics (Avidan et al., 2025). One central concept in physics is the
Lagrangian L(x, v) = T (v)−V (x) of a system, which is a function of position x and velocity v and
(typically) defined as the difference between kinetic energy T and potential energy V from which
the equation of motion can be derived via the Euler-Lagrange equation. In this work, we investigate
non-standard Lagrangian formulations of physical phenomena with excellent stability conditions.
For example, the stability of seemingly disparate quantum systems like heavy quarkonia (described
by NRQCD) and classical time crystals share conceptual parallels rooted in higher-order velocity
terms. These terms fundamentally reshape energy landscapes by creating non-standard dispersion
relations, establishing invariant submanifolds in phase space where stable configurations emerge as
attractors or limit cycles. Further information regarding these systems are found in Appendix A.

3 METHOD

To translate this physics insight into an optimizer design, we identify the stabilizing aspects of such
phenomena such as the heavy-quark momentum with the optimizer’s global momentum buffer v.
Accordingly, we posit a kinetic energy of the form: TVRAdam(v) =

m
2 ∥v∥

2 + β3

4 ∥v∥
4, where m is

the mass and β3 is a tunable parameter. The Lagrangian then becomes

L(x, v) = m

2
v2 +

β3
4
v4 − V (x), (3)

for which we solve the Euler-Lagrange equation d
dt

∂L
∂v −

∂L
∂x = 0. We know that the loss of a neural

network with parameters x can be thought of as the potential landscape (Holderrieth et al., 2024),
such that ∂L

∂x = −∂V (x)
∂x = −∇Lloss (x).

The Euler-Lagrange equation then becomes

d

dt

[(
m+ β3∥v∥2

)
v
]
= −∇LLoss(x), (4)

which can be rearranged to

v̇ = −∇LLoss(x)/(m+ 3β3||v||2), ẋ = v (5)

where the dot corresponds to the time derivative. Rather than explicitly constructing an optimizer
based on an ordinary differential equation solver for Eq. 5 (via discretization and introduction of
dissipation, e.g. França et al. (2020)), we utilize the term, (1/(m + 3β3||v||2), and embed it as
a dynamic learning rate into AdamW, to enhance the successfully proven properties. Note that
this expression from Eq. 5 is derived for the 1-D case, where the dynamics v̇ is collinear with v. In
particular, this approach avoids choosing specific forms associated with various different integrators.
The full velocity regularized Adam is given in Alg. 1, where we highlight in blue the changes to
AdamW.

In Fig. 1, the vector field in Eq. 5 is plotted for the case of the loss function being a simple
quadratic. Compared to kinetic energy term without quartic velocity, the vector field is “squeezed”
in v direction, and the resulting trajectories are not circular. In this idealized setting, we can visu-
alize the performance of VRAdam and Adam simplified to VRMomentum and Momentum, which
corresponds to Alg. 1 without second-order moment estimates or bias corrections (setting mt = 1
and dropping lines 6, 8, and 9). After the first step, the lower step size of VRMomentum compared
to Momentum can be seen, which leads to fewer oscillations. For VRAdam, we obtain, through
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Algorithm 1 VRAdam optimizer. f(θ):
objective function; β1, β2 ∈ [0, 1); vt:
velocity estimate; mt: second-moment
estimate; ηt: dynamic learning rate
at step t; α0: maximal learning rate;
α0/(1 + α1): minimal learning rate; β3:
velocity penalizer

1: Input: f(θ), θ0, α0, α1, β1, β2, β3,
ϵ, λ

2: Initialize v0 ← 0, m0 ← 0
3: for t = 1, . . . , T do
4: gt ← ∇f(θt−1)
5: vt ← β1vt−1 + (1− β1)gt
6: mt ← β2mt−1 + (1− β2)g2t
7: ηt ← α0/(1 + min(β3||vt||2, α1))

8: v̂t ← vt/(1− βt
1)

9: m̂t ← mt/(1− βt
2)

10: θt ← θt−1(1−ηtλ)−ηt
v̂t√
m̂t + ϵ

11: end for
12: Output: θT

Figure 1: Vector field v̇ = −x/(1+3v2) and ẋ = v
derived by solving the Euler–Lagrange equation for
L = v2/2 + v4/4 − x2/2. Black lines are contin-
uous trajectories; blue/orange show VRMomentum
vs. Momentum steps.

reparameterization and modification, the dynamic learning rate ηt = α0/(1 + min(β3||vt||2, α1))
for timestep t, where α0 and α1 control the maximal and minimal LR respectively, and β3 as the
velocity penalizer. This is inspired by the bound introduced to v2 in physical setting as discussed in
Appendix A. The parameterization of LR, compared to the physically derived one, clips the velocity
to avoid getting stuck if gradients and therefore velocity become large. Weight decay is applied in
the traditional manner.

4 ANALYSIS

4.1 EMPIRICAL ANALYSIS

For this analysis, following Cohen et al. (2024), we train a ResNet 32 architecture on CIFAR-10 for
an image classification task, with VRAdam, Adam and SAM. The training is stopped as soon as the
training loss falls below 0.1 or an accuracy of 0.97 is reached. In Fig. 2 (a) and (b), the training
curves of VRAdam indicate faster convergence in both minimizing training loss as well as maxi-
mizing training accuracy as compared to Adam and SAM, known for sharpness minimization. The
training curves are smooth for both optimizers. When juxtaposed with the sharpness comparison
depicted in Fig. 2 (c), we observe that the maximum eigenvalue (sharpness) of the preconditioned
Hessian of the loss, remains adaptable to faster convergence due to the dynamic learning rate adjust-
ments induced by VRAdam.

The effective learning rate of VRAdam is shown in Fig. 2 (d). During the first 25 iterations, the
learning rate dynamically increases close to the maximal value allowed LR and then proceeds to
decrease while exhibiting oscillatory behavior as we converge to the minima. The bound on the
minimal LR is not active in this example, while the base LR of Adam stays constant throughout
training. As described in the seminal work of Schmidhuber et al., we note that minima with lower
sharpness are associated with better generalization (Hochreiter & Schmidhuber, 1997; Foret et al.,
2021). We can also observe, that VRAdam’s dynamic learning rate quickly moves to the maximal
LR to exploit the loss landscape optimally, while exploiting the trade-off between the adaptive edge
of stability and faster convergence.

4
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Figure 2: (a) Training loss curves for VRAdam, Adam, and SAM (Foret et al., 2021) of ResNet 32
on CIFAR-10 (b) training accuracy curves (c) plot of maximal eigenvalues of the loss Hessian (d)
effective learning rate during training. Hyperparameters for these plots are provided in Appendix
E.4.

4.2 STABILITY OF VRADAM

We analyze the behavior of VRAdam in the adaptive edge of stability regime compared to that of
Adam in a momentum ablation setting without parameter-scaling based on second order moments
estimates, bias corrections or weight decay. By simply adding weight decay, the admissible base
step is constrained, the rest of the proof remains as follows. We first give a quadratic warm-up
(Theorem 4.1); immediately after, we state a nonconvex corollary that replaces the global convexity
assumption by a trajectory-level curvature bound together with an analytical shift (decoupled weight
decay).

Objective Function: Minimal curvature assumption (used in the nonconvex corollary). Along
the realized trajectory, the Hessian satisfies a two-sided spectral bound

−mI ⪯ ∇2f(θt) ⪯ LI for all iterates θt,

for some m ≥ 0, L > 0. We include decoupled weight decay of strength λ ≥ 0 in the update
(Alg. 1, line 10). As a standard simplification, we analyze first the quadratic model

f(θ) =
1

2
(θ − θ∗)⊤H(θ − θ∗)

where H is a positive definite Hessian matrix. Let xt = θt − θ∗ be the error. The gradient is,
gt = ∇f(θt−1) = Hxt−1. Let µ = λmin(H) and L := λmax(H). From Algorithm 1, we know
that ηt ∈ H := [ηmin, α0] and ηmin = α0/ (1 + α1) > 0. Let β1 from Algorithm 1 be β for
this analysis. The following theorem and proof provides sufficient but not necessary conditions for
stability in discrete time. Thus proving a more restrictive case of the optimizer.
Theorem 4.1 (Uniform exponential stability of VRMomentum). Consider f(θ) with 0 ≺ H ⪯ LI .
Let VRMomentum be β ∈ [0, 1), β3 > 0, α0 > 0, α1 ∈ (0,∞], and set λ = 0 in this warm-up (no
weight decay in the matrix recursion). If α0L < B(β) = 2(1+β)

1−β or ηminL < B(β) if the LR clip
is active, then for any realization of {ηt} generated by the gate ηt = α0/(1 + min(β3∥vt∥2, α1)),
the origin is a globally uniformly exponentially stable equilibrium. Moreover, there exists a Com-
mon Quadratic Lyapunov Function (CQLF), V (z) = z⊤Pz with P ≻ 0 such that V (zt) ≤
(1− ϵ)V (zt−1) for some ϵ ∈ (0, 1).
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Proof. Define the 2d-state zt = (xt, vt) and the parameterized update matrix

A(η) :=

(
I − η(1− β)H −ηβI

(1− β)H βI

)
, zt = A(ηt)zt−1. (6)

Let H = Q⊤diag(hi)Q with 0 < µ ≤ hi ≤ L. In the eigenbasis of H , the dynamics split into d
identical 2× 2 subsystems that share the same scalar ηt and differ only by the curvature h ∈ [µ,L]:(

ξt
vt

)
= Ah(ηt)

(
ξt−1

vt−1

)
, Ah(η) :=

(
1− η(1− β)h −ηβ

(1− β)h β

)
. (7)

Hence it suffices to build a CQLF for the family {Ah(η) : h ∈ [µ,L], η ∈ H}.
For a fixed (h, η), the characteristic polynomial is

λ2 − (1 + β − η(1− β)h)λ+ β = 0, (8)

so the Schur criterion gives stability iff η(1− β)h < 2(1 + β). In particular, if

α0L < B :=
2(1 + β)

1− β
(A1)

then every Ah(η) with η ∈ H is Schur-stable. (This is the Adam/AEoS bound specialized to P = I
(Cohen et al., 2024))

Nonconvex Schur bound (minimal replacement). If, instead of the quadratic model, we assume
the trajectory-level curvature range h ∈ [−m,L] and include decoupled weight decay λ ≥ 0 in the
update, the same 2× 2 calculation yields the uniform sufficient condition

λ > m and α0

(
(1− β)L+ (1 + β)λ

)
< 2(1 + β) , (A1’)

Setting λ = 0 and m = 0 recovers equation A1.

We now produce P ≻ 0 such that

Ah(η)
⊤PAh(η)− P ⪯ −ϵI2 ∀η ∈ H,∀h ∈ [µ,L], (A2)

for some ϵ > 0. Take the block-diagonal, curvature-agnostic form

P = diag(p1I, p2I), p1 > 0, p2 > 0, (A3)

which lifts to Pd = diag(p1Id, p2Id) in 2d dimensions.

For a fixed (h, η), set

∆(η, h) := Ah(η)
⊤PAh(η)− P =

(
∆11 ∆12

∆12 ∆22

)
(9)

with

∆11(η, h) = p1(−2η(1− β)h+ η2(1− β)2h2) + p2(1− β)2h2, (10)

∆22(η, h) = p1η
2β2 + p2(β

2 − 1), (11)
∆12(η, h) = −p1ηβ(1− η(1− β)h) + p2β(1− β)h. (12)

∆11(η, h) = (1− β)h
[
− 2p1η + (1− β)h (p1η2 + p2)

]
. (13)

We first force strict negativity on the diagonal, uniformly over η ∈ H and h ∈ [µ,L]. Using the
bounds η ∈ [ηmin, α0] and h ∈ [µ,L], a sufficient pair of conditions for ∆11 ≤ −δ1 and ∆22 ≤ −δ2
is

(α2
0p1 + p2)L︸ ︷︷ ︸

upper bound for the h2-term

<
2ηmin

1− β
p1︸ ︷︷ ︸

lower bound for the linear h-term

, (A4)

p2(1− β2)︸ ︷︷ ︸
negative term magnitude

> p1α
2
0β

2︸ ︷︷ ︸
positive term bound

. (A5)

6
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(Here we used the worst cases η = α0 and h = L wherever they make the expression largest.)

Intersecting (A4)–(A5) with p1 = 1 gives a nonempty interval iff

α2
0L < 2(1 + β) ηmin ⇐⇒ α2

0β
2

1− β2
<

2ηmin

(1− β)L
− α2

0. (A6′)

Indeed, set p1 = 1 and choose any

p2 ∈
(
α2
0β

2

1− β2
,

2ηmin

(1− β)L
− α2

0

)
. (A7)

Next, to pass from diagonal negativity to matrix negativity, we use the Schur complement:

∆ ⪯ −ϵI2 ⇐⇒ ∆11 ≤ −ϵ, ∆22 −
∆2

12

∆11
≤ −ϵ. (13)

Under (A4)–(A5), ∆11 and ∆22 are uniformly ≤ −δ for some δ > 0. A direct (but routine) bound
gives, for all η ∈ H, h ∈ [µ,L],

∆2
12

−∆11
≤ β2(p1α0 + p2(1− β)L)2

2ηminp1 − (α2
0p1 + p2)(1− β)L

, (14)

and the right-hand side is strictly smaller than −∆22 when (A4)–(A5) hold with slack. Thus there
exists ϵ > 0 such that (A2) is satisfied.

For fixed h and P ≻ 0, the map

η 7→ Ah(η)
⊤PAh(η) = (A0 + ηA1)

⊤P (A0 + ηA1) (15)

is matrix-convex in η (its second derivative is 2A⊤
1 PA1 ⪰ 0). Therefore, if the inequality

Ah(η)
⊤PAh(η)− P ⪯ −ϵI2 (16)

holds at the endpoints η = ηmin and η = α0, it holds for all η ∈ [ηmin, α0]. Under (A6′), the choice
(A7) does exactly that.

The block choice Pd = diag(p1Id, p2Id) certifies

A(η)⊤PdA(η)− Pd ⪯ −ϵI2d ∀η ∈ H, (17)

hence the quadratic Lyapunov V (z) = z⊤Pdz yields

V (zt) ≤ (1− c)V (zt−1), c =
ϵ

λmax(Pd)
∈ (0, 1), (18)

which implies global uniform exponential stability and concludes the proof.

Corollary (Nonconvex stability via analytical shift). Assume along the VRAdam trajectory that
−mI ⪯ ∇2f(θt) ⪯ LI and include decoupled weight decay λ > m. If equation A1’ holds (with
α0 or ηmin), then every 2 × 2 eigen-direction block is Schur-stable uniformly over h ∈ [−m,L]
and η ∈ H, hence the origin is globally uniformly exponentially stable. (Setting λ = 0 and m = 0
reduces to equation A1.)

In the Appendix B, an alternative Lyapunov candidate based on Lagrangian physics is presented.

4.3 GLOBAL VS PER-PARAMETER UPDATES

We contrast two ways of modulating the step magnitude, namely, (i) per-parameter control via a
time-varying diagonal matrix (element-wise scaling), and (ii) a global scalar gate ηt that multi-
plies the entire (preconditioned) step as in Alg. 1. The global gate introduces key advantages in
the edge-of-stability regime. (1) Uniform Lyapunov stability under arbitrary scalar switch-
ing. In the momentum ablation on a quadratic, the global-gated dynamics decouple into identical

7
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2×2 blocksAh(ηt) in the eigenbasis of the Hessian (see the construction surrounding equation A2–
equation A3 and the Schur bound equation A1). Theorem 4.1 produces a curvature-agnostic Com-
mon Quadratic Lyapunov Function V (z) = z⊤Pz with P ≻ 0 independent of h and the time-
varying ηt∈ [ηmin, α0], certifying global uniform exponential stability whenever α0L <

2(1+β1)
1−β1

(or
the same with ηmin when the clip is active), i.e., the Schur condition equation A1. Hence stability
holds for any scalar gate sequence generated by Alg. 1. (See Sec. 4.2, Thm. 4.1.)

(2) Global, rotation-invariant control of AEoS with bounded steps. The velocity-based gate in
Alg. 1, derived from the quartic Lagrangian equation 3 and the collinear 1-D reduction equation 5,
implies a dimension-free bound on the update norm and raises the instantaneous stability threshold
whenever the measured velocity grows:

∥θt−θt−1∥ = ηt∥vt∥ ≤
α0

2
√
β3
, LEoS(t) =

2(1 + β1)

(1− β1)ηt
=

2(1 + β1)

(1− β1)α0

(
1+min{β3∥vt∥2, α1}

)
,

see App. B, Eqs. (45)–(46). Thus the method automatically retreats from instability as velocities
spike near AEoS and prevents runaway steps. Because the gate is scalar, these guarantees are or-
thogonally invariant and do not require the adaptive preconditioner to commute with the Hessian.
This mechanism aligns with the reduced ringing and sharpness observed empirically.

(3) Avoiding switched-anisotropy instabilities. Allowing the step to vary per coordinate corre-
sponds to a switched linear system with state matrix A(Dt), where Dt is a time-varying diagonal
scaling. Even if each fixed D yields a Schur-stable map (spectral radius < 1), products such as
A(D2)A(D1) can be unstable because the maps generally do not commute and the contraction
directions rotate across steps. A scalar ηt eliminates this failure mode: all directions are scaled iden-
tically, and the CQLF from Theorem 4.1 guarantees contraction under arbitrary scalar switching,
again under the same Schur bound equation A1 ( equation A2–equation A3).

4.4 CONVERGENCE ANALYSIS

In this section, we provide a convergence analysis of VRAdam by extending the work of Défossez
et al. (2022) on Adam. The main result is a probabilistic bound that VRAdam converges in expec-
tation to a stationary point for a nonconvex (and therefore also a convex) objective function under a
set of regularity assumptions and simplifications.

Setup: The objective function is given by F (θ) : Rd → R. ∇f are gradient estimates of F
such that E[∇f ] = ∇F . The random variable τN describes an index with probabilities given by
P[τ = j] ∝ 1 − βN−j

1 for j ∈ {0, 1, ..., N − 1}. The constants αmin = α0/(1 + α1) > 0 and
αmax = α0 > 0 correspond to the minimal and maximal possible learning rate at every step. F is
bounded from below, namely ∀θ, F (θ) ≥ F∗. The gradient estimates are almost surely bounded in
the ℓ∞-norm, namely ∥∇f∥∞ ≤ R −

√
ϵ. ∇F is L-Lipschitz-continuous in the ℓ2-norm, namely

∀θ, ϕ, ∥∇F (θ)−∇F (ϕ)∥2 ≤ L ∥θ − ϕ∥2. The weight decay parameter λ = 0 is set to zero. The
bias correction for the velocity v̂t ← vt/(1− βt

1) is not included. The hyperparameter β1, β2 fulfill
0 < β2 < 1, 0 ≤ β1 < β2 and the number of iterates satisfies N > β1/(1− β1).
Theorem 4.2 (Convergence of VRAdam). Given the six assumptions above, the iterates θt of Algo-
rithm 1 fulfill:

E
[
∥∇F (θτ )∥2

]
≤ 2R

F (θ0)− F∗

αmin Ñ
+ E

(
1
Ñ

ln
(
1 + R2

(1−β2)ϵ

)
− N

Ñ
ln(β2)

)
.

with Ñ = N − β1

1−β1
, and

E =
α2
maxdRL(1− β1)

αmin(1− β1/β2)(1− β2)
+

12αmaxdR2
√
1− β1

αmin(1− β1/β2)3/2
√
1− β2

+
2α3

maxdL
2β1

αmin(1− β1/β2) (1− β2)3/2
.

A proof can be found in the appendix C. The right-hand side of the bound converges to zero in
the limit of N → ∞ if αmin(N) ∝ N−1/2, αmax(N) ∝ N−1/2, and 1 − β2(N) ∝ N−1 to
leading order. For this scaling of hyperparameters, VRAdam has the same convergence rate of
O(ln(N)/

√
N) as Adam. While this convergence result provides a strong theoretical foundation,

benchmarking is key to understanding performance under realistic conditions.
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5 BENCHMARKS

We benchmark VRAdam against various optimizers on several datasets for various tasks with diverse
architectures. These benchmarks include image classification using a CNN in the CIFAR-10 dataset
(Krizhevsky & Hinton, 2009), language modeling with a Transformer architecture (Vaswani et al.,
2023) on the WikiText2 dataset (Merity et al., 2016), and Generative Flow Networks (GFLowNets)
(Avidan et al., 2025), on a grid world for sequence generation tasks (Chevalier-Boisvert et al., 2023),
and a training a large language model (LLM) such as the Generative Pretrained Transformer (GPT)
(Brown et al., 2020). These benchmarks represent a broad variety of deep learning architectures and
tasks, ranging from older techniques for image classification to much newer and actively emerg-
ing models and training techniques such as for GFLowNets. We focus on the comparison with
AdamW since its exceeding popularity and consistent performance but also report the performance
of stochastic gradient descent (SGD) with momentum (Qian, 1999), root mean square propagation
(RMSProp) (Ruder, 2017) and RAdam (Liu et al., 2020) for all tasks expect for the LLM bench-
mark. In particular, we demonstrate the excellent convergence properties as well as performance
improvements in most benchmarks for VRAdam (Table 1). Note that we run Bayesian optimization
for hyperparameter sweeps for the image classification, and language modeling tasks, with several
evaluations in close proximity to the found minimum, and the results are statistically significant.
We report the optimal value from this optimization procedure, however, we include shaded error
bars in the appendix. The Bayesian optimization for the hyperparameters was conducted with the
objective to minimize validation loss, however, we also report test loss. Hyperparameters for the
task involving GFlowNets were picked at random due to compute constraints. All details regarding
model training, setup and datasets along with error envelopes using multiple runs are provided in
Appendices E and G.

Method WikiText-2 Loss CIFAR-10 Loss GridWorld Flow Matching Loss
Validation Test Validation Test Validation Test

VRAdam 5.99 6.00 0.476 0.469 1.25 1.33
AdamW 6.47 6.50 0.522 0.565 2.41 3.60
RAdam 7.511 7.554 2.300 4.005 1.407 2.290
SGD+Nesterov NaN NaN 0.625 0.620 2.71 2.61
RMSProp NaN NaN 0.801 0.813 25.0 25.0

Table 1: Comparison of optimizer performance across three tasks: language modeling on WikiText-
2, image classification on CIFAR-10, and flow matching on GridWorld.

Method Training time (s) Validation Loss

AdamW 48549.56 3.511
VRAdam 48522.40 3.447

Table 2: Comparison of training time and validation loss for GPT-2 training.

LLM benchmark: In order to demonstrate the effectiveness of VRAdam for training large net-
works, such as large language models (Brown et al., 2020), we present the validation loss results of
VRAdam against that of AdamW and Lion when training a 124M parameter GPT-2 model on the
FineWebEdu-10B dataset from scratch (Penedo et al., 2024). In Table 2, we report the validation
loss after around 57000 steps or 2 epochs as well as the average training time per epoch on a H100
GPU using hyperparameters found in the Appendix.

Setting Model Dataset AdamW PPL VRAdam PPL Lion PPL

4-bit QLoRA LLaMA-2-7B OASST2 3.84 3.55 3.56
Full model GPT-2 Large (774M) GSM8K 4.12 3.53 3.67

Table 3: Additional LLM benchmarks comparing AdamW, VRAdam, and Lion (Chen et al., 2023) in
challenging fine-tuning regimes for OASST2 (instruction following) and GSM8K (math reasoning).
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Beyond the 124M GPT-2 pretraining setup, we also evaluate VRAdam in two more challenging
language-modeling regimes summarized in Table 3. First, we fine-tune a 7B LLaMA-2 model using
4-bit NF4 QLoRA on the OASST2 instruction-following dataset Touvron et al. (2023). This setting
lies close to the adaptive edge-of-stability: gradients are both low-precision and strongly stochas-
tic Hayou et al. (2024). We also perform full-parameter fine-tuning of GPT-2 Large (774M) on
GSM8K. These experiments indicate that VRAdam scales favorably from medium-sized to larger
LLMs, both in quantized low-rank adaptation and full-model fine-tuning settings. On GSM8K,
fine-tuning GPT-2-Large with VRAdam improves exact-match accuracy from 35% (AdamW) to
42% under the same training budget. On OASST2, in a 4-bit QLoRA setup for LLaMA-2-7B,
VRAdam improves an automatic instruction-following quality score from 72.3/100 to 78.5/100
compared to AdamW. This score combines lexical diversity, repetition, and response length over
50 held-out instructions.

6 RELATED WORK

Follow-up work on Adam The Adam optimizer was introduced in 2015 by Kingma & Ba (2015)
by combining the previously existing concepts of momentum and scaling a base LR for each param-
eter based on second-order moment estimates. The base learning rate, however, remains hard-coded
(potentially chosen through a learning rate scheduler) throughout training. Since then, several mod-
ifications to Adam have been introduced, such as NAdam (Dozat, 2016), RAdam (Liu et al., 2020),
Adabelief (Zhuang et al., 2020), and in particular AdamW (Loshchilov & Hutter, 2017), which rein-
troduces weight decay in its original intention. LARS (You et al., 2017) and LAMB (You et al.,
2020) compute learning rates for layers individually. More recent optimization techniques include
LION, an automatically discovered alternative to signed momentum (Chen et al., 2023), Sophia
(Liu et al., 2023), which uses estimated diagonal entries of the Hessian as a precondition, sharpness-
aware minimization methods (Foret et al., 2021), and a modified LR in Adam for reinforcement
learning (Ellis et al., 2024).

Understanding training dynamics, convergence analysis, and edge of stability Another line of
work focuses on understanding the dynamics of the training of deep neural networks as well as de-
rive convergence properties and guarantees for commonly used optimizers. Wang & Choromanska
(2025) provides a recent survey over the later and Reddi et al. (2019) provide an explicit convex
example for which Adam does not converge. A popularized framework for understanding training
dynamics in the continuous training flow and infinite network width limit was introduced in Jacot
et al. (2018), extended by finite width corrections in Huang & Yau (2020), and developed for graph
neural networks in Du et al. (2019). Lastly, the role of the edge of stability regime offers an empiri-
cally view and was analyzed in Cohen et al. (2024); Arora et al. (2022); Cohen et al. (2022); Damian
et al. (2022); Song & Yun (2023); Wang et al. (2022)

Symplectic Optimization This research area derives discrete-time optimization algorithms by dis-
cretizing continuous-time Hamiltonian or Lagrangian flows using symplectic integrators, which
exactly preserve the underlying geometric (symplectic) structure of the dynamical system. This
approach guarantees long-term stability, energy-preservation properties (or controlled energy dissi-
pation in the dissipative case), and can provide valuable insights into existing optimizers. Notable
work includes Betancourt et al. (2018); França et al. (2020); Maddison et al. (2018); Duruisseaux &
Leok (2023); Yuan & Zhang (2023).

7 DISCUSSION

Limitations The edge of stability regime remains not fully understood and questions regarding
generalization capabilities remain. We also have constrained compute resources.

Summary and future of work Motivated by physical perspectives for complex optimization scenar-
ios and stability conditions along with the adaptive edge of stability, we developed a new optimizer
VRAdam based on quartic kinetic energy terms. We analyzed its performance at the adaptive edge of
stability and benchmark it against several optimizers in particular AdamW on image classification,
language modeling, and a generative task using GFlowNets where we report improved performance
and robustness to hyperparameters. We hope that this work leads to further development of inter-
pretable optimizers using concepts from physics.
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A BOUNDING NRQCD

By explicitly breaking certain symmetries—Lorentz invariance in NRQCD and time-translation in
time crystals— higher-order kinetic terms paradoxically enhance stability through topological pro-
tection mechanisms and the generation of emergent length/time scales (Niemi, 2021; Guha & Ghose-
Choudhury, 2019).

As a demonstration of this phenomenon, we can consider Nonrelativistic QCD (NRQCD), which is
an effective field theory that expands full quantum chromodynamics in inverse powers of a heavy-
quark mass m (Assi et al., 2023). The bilinear heavy-quark Lagrangian L up to O(1/m3) reads,

LNRQCD = ψ†
(
iD0 −m+

D2

2m
+

D4

8m3
+ · · ·

)
ψ (19)

The corresponding Hamiltonian density is derived via Legendre transformation:

HNRQCD = ψ†
(
m− D2

2m
− D4

8m3
− · · ·

)
ψ (20)

For a rigorous analysis of the dispersion relation, we work in momentum space:

ψ(x⃗, t) =

∫
d3p

(2π)3
eip⃗·x⃗ψ̃(p⃗, t) (21)

In momentum space, the operators transform as:

D0 → −iE (time evolution operator) (22)
D→ ip⃗ (spatial covariant derivative) (23)

D2 → −p2 (squared spatial derivative) (24)

D4 → p4 (quartic spatial derivative) (25)

The energy eigenvalue equation derived from the Hamiltonian is:

Eψ̃(p⃗) =

(
m+

p2

2m
− p4

8m3
+O

(
1

m5

))
ψ̃(p⃗) (26)

This gives the NRQCD dispersion relation to order 1/m3:

ENRQCD(p) = m+
p2

2m
− p4

8m3
+O

(
1

m5

)
(27)
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A.1 ANALYSIS OF BOUNDEDNESS

The exact relativistic energy-momentum relation:

Erel(p) =
√
m2 + p2 (28)

Using Taylor series expansion for
√
1 + x where x = p2/m2:

√
1 + x = 1 +

1

2
x− 1

8
x2 +

1

16
x3 − 5

128
x4 +O(x5) (29)

Applying this to the relativistic energy:

Erel(p) = m

(
1 +

1

2

p2

m2
− 1

8

p4

m4
+O

(
p6

m6

))
(30)

Simplifying:

Erel(p) = m+
p2

2m
− p4

8m3
+O

(
p6

m5

)
(31)

For the non-relativistic approximation without the quartic term:

lim
p→∞

ENR(p)

Erel(p)
= lim

p→∞

m+ p2

2m√
m2 + p2

(32)

= lim
p→∞

m+ p2

2m

p
√

1 + m2

p2

(33)

=∞ (34)

This shows that the non-relativistic approximation without the quartic term diverges from the true
relativistic behavior.

The quartic term introduces a negative contribution to the energy that precisely cancels the fourth-
order term in the relativistic expansion:

ENRQCD(p) = m+
p2

2m
− p4

8m3
+O

(
p6

m5

)
(35)

Let’s define a parameter λ = p2/m2 (proportional to v2). For the NRQCD expansion to be valid,
we require λ≪ 1.

The second derivative of the NRQCD energy with respect to λ is:

d2ENRQCD

dλ2
= −m

4
+O(λ) (36)

the truncated dispersion is concave and has a finite maximum, so it does not increase unboundedly.

B PHYSICS ANALYSIS

In this section, we provide a stability analysis from starting with a physical perspective, starting
from our quartic Lagrangian from Eq. 3, we derive the 1D dynamics which we discretize implicitly
through the state-dependent step

ηt =
α0

1 + min(β3|vt|2, α1)
, vt = β1vt−1 +(1−β1)∇V (xt−1), xt = xt−1− ηtvt. (37)

For a quadratic potential V (x) = 1
2x

⊤Hx with 0 ≺ H ⪯ LI , we work in the eigenbasis H =

Q⊤diag(hi)Q. Writing coordinates as (xi, vi) and h ∈ (0, L], the one-dimensional update reads

v = β1u+ (1− β1)h, x, x+ = x− ηv, y := ηh, α := 1− β1, (38)
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where u := vt−1 and η ∈ [ηmin, α0] with ηmin = α0/(1+α1). We introduce an energy that mirrors
the quartic kinetic term and couples consistently to the curvature,

Eh(x, v) = 1

2
h, x2 + σ, xv +

γ

2h
, v2 +

δ

4
, v4, (39)

and set

σ = ζ,
β1
2
, ηmin, γ = ζ,

ηmin

1− β1
, δ ≥ α2

0

β3
, ζ ∈ (0, 1). (40)

A direct expansion of Eh(x+, v) − Eh(x, u) gives a quadratic form in (x, u) plus the quartic dif-
ference (v4 − u4)/4. Because the coefficients of the quadratic form are convex polynomials of
y = ηh, the worst case over y ∈ [ηminh, α0h] occurs at the endpoints. Evaluating there, and using
the adaptive edge-of-stability bound for momentum

α0L <
2(1 + β1)

1− β1
, (41)

one obtains constants cx, cu > 0 (depending only on β1, α0, ηmin) such that, uniformly for all
h ∈ [µ,L] and all η ∈ [ηmin, α0],

Eh(x+, v)− Eh(x, u) ≤ −, cx, h, x2−, cu,
u2

h
+
δ

4
, (v4 − u4). (42)

The gate implies η ≤ α0/(1+β3v
2) and hence 1

2η
2v2 ≤ α2

0/(8β3). The choice δ ≥ α2
0/β3 therefore

ensures that whenever |v| ≥ 1/
√
β3 the quartic contribution dominates any potential increase from

the discretization term and contributes strict dissipation; when |v| ≤ 1/
√
β3 the negative quadratic

terms already control the step. Summing over coordinates yields a global energy

E(x, v) =
∑

i = 1dEhi(xi, vi), (43)

and constants κ1, κ2, κ4 > 0 such that

E(xt, vt)− E(xt−1, vt−1) ≤ −κ1x⊤t−1Hxt−1 − κ2v⊤t−1H
−1vt−1 − κ4

d∑
i=1

max

{
0, v4t,i −

1

β2
3

}
.

(44)
This inequality formalizes the physical picture in Figure 1. The first two terms express
curvature-weighted exchange between potential and quadratic kinetic energy with net dissipation;
the quartic term is a brake that activates precisely in high-velocity regimes created near the adaptive
edge of stability. The same mechanism explains the reduction in ringing and the lower sharpness
observed in Figure 2: when |vt| grows, the gate reduces ηt and the quartic channel increases dissi-
pation, pushing the dynamics back to a low-velocity regime. Two immediate consequences follow
from the construction. First, the instantaneous adaptive stability threshold increases with the mea-
sured velocity:

LEoS(t) =
2(1 + β1)

(1− β1)ηt
=

2(1 + β1)

(1− β1)α0

(
1 + min(β3|vt|2, α1)

)
, (45)

so the method moves away from instability as oscillations grow. Second, each parameter update is
uniformly bounded in norm by the gate,

|xt − xt−1| = ηt|vt| =
α0|vt|

1 + β3|vt|2
≤ α0

2
√
β3
, (46)

which prevents runaway steps and is not available to classical momentum. These properties are
consistent with the design of Algorithm 1 and the empirical behavior reported in the analysis section.

C CONVERGENCE PROOF FOR VRADAM

The proof is based on the work of the proof in Défossez et al. (2022).

There, the authors derive in equation A.37 the bound
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1
2R

N∑
n=1

αn

Ωn

n−1∑
k=0

βk
1 E

[
∥Gn−k∥22

]
︸ ︷︷ ︸

A

≤ F (x0)− F∗

+ α2
NL

2
N∑

n=1

E
[
∥un∥22

]
︸ ︷︷ ︸

B

+
α3

NL2

4R
√
1−β1

N∑
n=1

n−1∑
l=1

E
[
∥un−l∥22

] n−1∑
k=l

βk
1√
k︸ ︷︷ ︸

C

+ 3αNR
√

1− β1
N∑

n=1

n−1∑
k=0

(
β1

β2

)k√
k + 1 E

[
∥Un−k∥22

]
︸ ︷︷ ︸

D

.

By bounding αn with αmin in expression A, and αN with αmax in expressions B,C,D we obtain
the final result. Although not included in the proof, the numerical impact of the velocity bias correc-
tion becomes negligible after the first few update steps and asymptotic behavior remains unchanged
(Défossez et al., 2022). It is well established that weight decay contributes to improved robust-
ness and generalization in practice and is therefore included here, despite a challenging theoretical
analysis.

D ABLATION ON KINETIC ENERGY POTENTIAL

Table 4 displays the test loss for higher powers k in the learning rate α0/(1 + min(β3||vt||k, α1)),
which correspond to fifth- to eighth-order terms in the kinetic energy. Training was performed on
CIFAR-10 for 10 Epochs with α0 = 0.005.

Table 4: Test Loss on CIFAR-10 for different kinetic energies

Power Test Loss
2 0.932
3 1.155
4 0.974
5 1.004
6 1.036

E HYPERPARAMETERS, DATASETS AND MODEL ARCHITECTURES

We recommend β3 = 1.0 and α1 = 10 as the default setting for VRAdam.

E.1 IMAGE CLASSIFICATION

This section details the comprehensive sweep for the CNN, on the CIFAR-10 dataset.

• Model: Convolutional Neural Network
• Dataset: CIFAR-10
• Hyperparameter sweep method: Bayesian optimization
• Optimization metric: validation loss

17
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Table 5: Dataset Splits during CNN Sweep

Dataset Split Configuration Description
Training 80% of the original CIFAR-10 training set (50,000 images).
Validation 20% of the original CIFAR-10 training set.
Test Full CIFAR-10 test set (10,000 images).

Table 6: Fixed Hyperparameters during CNN Comprehensive Sweep

Parameter Value
Model Architecture Convolutional Neural Network
Dataset CIFAR-10
Epochs 100
Batch Size 1024
Scheduler Type (AdamW) WarmupCosineAnnealing
Warmup Epochs 5
Warmup Factor 0.1
Scheduler η min 1× 10−5

VRAdam β1 0.9
VRAdam β2 0.999
VRAdam power 2
VRAdam weight decay 1× 10−5

VRAdam ϵ 1× 10−8

AdamW β1 0.9
AdamW β2 0.999
AdamW weight decay 1× 10−5

SGD momentum 0.9
SGD nesterov True
SGD weight decay 1× 10−5

RMSProp α 0.99
RMSProp 1× 10−8

RMSProp weight decay 1× 10−5

Table 7: Swept Hyperparameters during CNN Comprehensive Sweep

Optimizer Parameter Sweep Configuration Optimal Parameter
VRAdam α0 Log-uniform, Min: 1× 10−4, Max: 0.1 0.0846
VRAdam β3 Uniform, Min: 0.1, Max: 1.5 1.015
VRAdam α1 Integer Uniform, Min: 3, Max: 30 29
AdamW η Log-uniform, Min: 1× 10−5, Max: 1× 10−1 0.0625
SGD η Log-uniform, Min: 1× 10−5, Max: 1× 10−1 0.00784
RMSProp η Log-uniform, Min: 1× 10−5, Max: 0.1 1.78e-4

E.2 LANGUAGE MODELING

This section details the comprehensive sweep for the Transformer, on the WikiText-2 dataset.

• Model: Transformer
• Dataset: Wikitext-2
• Hyperparameter sweep method: Bayesian optimization
• Optimization metric: validation loss

18
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Table 8: Dataset Splits during Transformer Comprehensive Sweep

Dataset Split Configuration Description
Training Full WikiText-2 predefined training set.
Validation Full WikiText-2 predefined validation set.
Test Full WikiText-2 predefined test set.

Table 9: Fixed Hyperparameters during Transformer Comprehensive Sweep

Parameter Value
Model Architecture TransformerModel
Epochs 100
Batch Size 32
Seed 0
Scheduler Type WarmupCosineAnnealing
Warmup Epochs 5
Warmup Factor 0.1
Scheduler η 1× 10−5

Model sequence length 64
Model embed dimension 128
Model hidden dimension 256
VRAdam β1 0.9
VRAdam β2 0.999
VRAdam power 2
VRAdam weight decay 1× 10−5

VRAdam ϵ 1× 10−8

AdamW β1 0.9
AdamW β2 0.999
AdamW weight decay 1× 10−5

SGD sgd momentum 0.9
SGD sgd nesterov True
RMSProp α 0.1
RMSProp ϵ 1× 10−8

Table 10: Swept Hyperparameters during Transformer Comprehensive Sweep

Optimizer Parameter Sweep Configuration Optimal Parameter
VRAdam α0 Log-uniform, Min: 1× 10−5, Max: 0.1 1.55e-05
VRAdam β3 Uniform, Min: 0.1, Max: 5.0 3.35
VRAdam normgrad Values: [True, False] False
VRAdam α1 Integer Uniform, Min: 5, Max: 30 7
Adam η Log-uniform, Min: 1× 10−5, Max: 0.1 1.661e-05
SGD η Log-uniform, Min: 1× 10−5, Max: 1× 10−1 -
RMSProp η Log-uniform, Min: 1× 10−5, Max: 0.1 -

E.3 GENERATIVE MODELING WITH GFLOWNETS

Here we include the hyperparameters used for reporting the performance of the optimizers for the
GFlowNet.
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Table 11: Hyperparameters GFlowNets

Optimizer Parameter Value
VRAdam α0 0.01
VRAdam β3 1
VRAdam normgrad False
VRAdam α1 19
VRAdam weight decay 1× 10−5

AdamW weight decay 1× 10−5

AdamW η 0.01
SGD η 0.01
RMSProp η 0.01

E.4 EDGE OF STABILITY ANALYSIS

Table 12: Hyperparameters edge of stability analysis

Parameter Value
Model Architecture ResNet 32
Max iterations 20000
Batch Size 1000
Seed 0
Loss criterion Mean squared error
VRAdam α0 0.002
VRAdam β1 0.9
VRAdam β2 0.999
VRAdam β3 1
VRAdam power 2
VRAdam normgrad False
VRAdam α1 19
VRAdam ϵ 1× 10−7

Adam β1 0.9
Adam β2 0.999
Adam ϵ 1× 10−7

F COMPUTE RESOURCES

All experiments were run on Lambda cloud instances or the Google cloud platform (GCP). Exper-
iments were conducted either using a NVIDIA L4 GPU with 24 GB of GPU memory and 31 GB
of system memory or larger experiments were performed on a NVIDIA A10 with 24 GB of GPU
memory and 200 GB of system memory. The GPT benchmark was run on an NVIDIA H100 GPU.

G LOSS CURVES WITH ERROR ENVELOPES

Train and validation loss curves calculated using different run values for language modeling using
SGD Nesterov with momentum all generate NaN values. Visualization is not included.
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Figure 3: Train (left) and validation (right) loss curves with error envelopes calculated using different
run values for language modeling using AdamW.

Figure 4: Train (left) and validation (right) loss curves with error envelopes calculated using different
run values for language modeling using VRAdam.

Figure 5: Train (left) and validation (right) loss curves with error envelopes calculated using different
run values for language modeling using RMSProp. The dots on the top indicate NaN values.
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Figure 6: Train (right) curves with error envelopes calculated using different run values for image
classification using VRAdam. Test loss values (left) over different runs.

Figure 7: Train (right) curves with error envelopes calculated using different run values for image
classification using AdamW. Test loss values (left) over different runs.

Figure 8: Train (right) curves with error envelopes calculated using different run values for image
classification using SGD Nesterov with Momentum. Test loss values (left) over different runs.
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Figure 9: Train (right) curves with error envelopes calculated using different run values for image
classification using RMSProp. Test loss values (left) over different runs.
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H BACKGROUND ON PHASE SPACE, LAGRANGIANS, AND HAMILTONIANS

H.1 PHASE SPACE

In classical mechanics, the state of a dynamical system is completely described by a point in a high-
dimensional abstract space called phase space Kawai et al. (2007). For a system with N degrees of
freedom (e.g., the positions of multiple particles), the phase space is a 2N -dimensional space. Its
axes correspond to the generalized coordinates xi (representing positions) and their corresponding
generalized momenta pi. Each point (x, p) in phase space represents a unique, instantaneous state
of the system. The evolution of the system over time is then visualized as a trajectory traced out by
this point moving through phase space.

H.2 LAGRANGIAN FORMALISM

The Lagrangian formulation of classical mechanics describes the dynamics of a system using gen-
eralized coordinates and their time derivatives (velocities) Iro & Anderson (2003). The central
quantity in this formalism is the Lagrangian, L, which is a function of the system’s coordinates and
velocities. It is typically defined as the difference between the system’s kinetic energy, T , and its
potential energy, V :

L(x, v) = T (v)− V (x) (47)
where v = ẋ represents the velocity. The system’s path through its configuration space is determined
by the Principle of Least Action. This principle states that the actual trajectory taken by the system
between a starting time t1 and an ending time t2 is the one that minimizes the action integral, S:

S =

∫ t2

t1

L(x, ẋ, t) dt (48)

Applying the calculus of variations to find the path that minimizes this action integral yields the
fundamental Euler-Lagrange equations of motion:

d

dt

∂L
∂v
− ∂L
∂x

= 0 (49)

Evaluating derivatives requires treating x and ẋ = v as independent variables. This set of second-
order differential equations fully defines the system’s trajectory. In the context of deep learning
optimization, the potential energy V (x) is analogous to the loss function Lloss(θ), with the model
parameters θ serving as the coordinates x. Optimizing the loss function then corresponds to solving
the system of differential equations with a numerical integrator.

H.3 HAMILTONIAN FORMALISM

The Hamiltonian formalism offers an alternative, often more powerful, description of system dynam-
ics that is set within phase space, using coordinates x and momenta p as its fundamental variables.
The transition from the Lagrangian to the Hamiltonian framework is achieved via a mathematical
procedure known as a Legendre transformation Helliwell & Sahakian (2020). First, the general-
ized (or canonical) momentum p is defined as the partial derivative of the Lagrangian with respect
to the velocity:

p =
∂L
∂v

(50)

The Hamiltonian,H, is then defined as:

H(x, p) =
∑
i

pivi − L(x, v) (51)

For many standard physical systems where kinetic energy is a quadratic function of velocity and
potential energy is a function of position only, the Hamiltonian is equivalent to the total energy

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

of the system, H = T + V . The dynamics are then described by a pair of first-order differential
equations known as Hamilton’s equations:

ẋ =
∂H
∂p

(52)

ṗ = −∂H
∂x

(53)

These equations provide an elegant description of the flow of system states through phase space.
A key feature of this formalism is that it naturally describes systems that conserve energy (if H is
time-independent) and preserve the volume of phase space. This makes the Hamiltonian framework
exceptionally well-suited for analyzing the long-term stability of dynamical systems and serves as
the foundation for symplectic optimization methods.

I FURTHER DISCUSSION

Recent work by Defazio et al. (2024) introduces Schedule-Free optimizers (e.g., Schedule-Free SGD
and AdamW), which remove the need for explicit learning rate schedules by utilizing a specific
weighting of the iterate sequence. While both VRAdam and Schedule-Free methods aim to simplify
hyperparameter tuning by modifying how the step size and updates are handled, they operate through
fundamentally different mechanisms and target distinct dynamical regimes.

Mechanism: Averaging vs. Feedback Control. The core innovation of Schedule-Free methods
is an interpolation between primal and Polyak averaging, where the effective learning rate is de-
termined by a deterministic, time-dependent weighting scheme derived from online-to-batch con-
version guarantees. The effective step size in these methods is a function of the iteration index t,
simulating a decay schedule without a fixed horizon.

In contrast, VRAdam employs a state-dependent feedback mechanism. Our gating term, ηt =
α0/(1 + β3∥vt∥2), is not a explicit function of time, but strictly a function of the global momentum
buffer norm. Consequently, VRAdam reacts dynamically to the optimization trajectory: it actively
damps updates during periods of high oscillatory kinetic energy (common in the early training phase
or high-curvature regions) and relaxes the gate when the trajectory stabilizes. This creates a closed-
loop feedback control system rather than a pre-computed averaging schedule.

Theoretical Focus. The theoretical underpinning of Defazio et al. (2024) focuses on achieving
worst-case optimal convergence rates for convex Lipschitz problems. Our analysis focuses on the
Adaptive Edge of Stability (AEoS) (Cohen et al., 2024). We derive our update rule from a quartic
Lagrangian to ensure global exponential stability by enforcing a uniform bound on the parameter
update norm, ∥θt − θt−1∥, effectively raising the stability threshold in response to gradient bursts.

Finally, we note that these approaches are mechanistically orthogonal. The velocity-regularized gate
of VRAdam operates on the preconditioned gradient and could, in principle, be combined with the
iterate averaging schemes of Schedule-Free methods, though we leave such hybrid explorations to
future work.
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