

000 001 002 003 004 005 006 007 008 009 010 A PHYSICS-INSPIRED OPTIMIZER: VELOCITY REGU- LARIZED ADAM

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 We introduce Velocity-Regularized Adam (VRAdam), a physics-inspired opti-
012 mizer for training deep neural networks that draws on ideas from quartic terms
013 for kinetic energy with its stabilizing effects on various system dynamics. Previ-
014 ous algorithms, including the ubiquitous Adam, operate at the so-called adaptive
015 edge of stability regime during training, leading to rapid oscillations and slowed
016 convergence of loss. However, VRAdam adds a higher order penalty on the learn-
017 ing rate based on the velocity such that the algorithm automatically slows down
018 whenever weight updates become large. In practice, we observe that the effective
019 dynamic learning rate shrinks in high-velocity regimes, and damping oscillations.
020 By combining this velocity-based regularizer for global damping with Adam’s
021 per-parameter scaling, we create a powerful hybrid optimizer. For this optimizer,
022 we provide rigorous theoretical analysis of operation at the edge of stability from
023 a physical and control perspective for the momentum. Furthermore, we derive
024 convergence bounds with the rate $\mathcal{O}(\ln(N)/\sqrt{N})$ for a stochastic non-convex ob-
025 jective under mild assumptions. We demonstrate that VRAdam exceeds the per-
026 formance against standard optimizers including AdamW. We benchmark various
027 tasks such as image classification, language modeling, and generative modeling
028 using diverse architectures and training methodologies including Convolutional
029 Neural Networks (CNNs), Transformers, and GFlowNets.

030 1 INTRODUCTION

031 Optimizing the parameters of deep neural networks remains a cornerstone of progress in machine
032 learning. Improving on the core idea of Stochastic Gradient Descent (SGD) (Sutskever et al., 2013),
033 adaptive methods like Adam (Adaptive Moment Estimation) (Kingma & Ba, 2015) have become
034 ubiquitous due to their practical effectiveness across diverse tasks and architectures. Despite its suc-
035 cess, the performance of Adam can be sensitive to hyperparameter choices and its training dynamics
036 can exhibit instabilities (Reddi et al., 2019). Furthermore, fully understanding the training dynam-
037 ics of deep neural networks remains an open challenge (Wang & Choromanska, 2025), and even
038 small improvements to existing optimization algorithms can often lead to significant reductions in
039 resource consumption.

040 One line of work, observed empirically, is that training often occurs at the edge of stability (Cohen et al., 2022; 2024), a regime for which the largest eigenvalue, also called sharpness, of the loss
041 Hessian equilibrates around a fixed value proportional to the inverse of the learning rate (LR). This
042 seems in contrast with common presumptions in classical optimization theory and has profound im-
043 plications for convergence speed, stability, and generalization. In classical optimization, higher LRs
044 lead to faster convergence at the cost of oscillations or divergence if stability constraints (depending
045 on the loss landscape) are violated (Boyd & Vandenberghe, 2004). This pathological behavior of
046 optimizers, like AdamW, leads to instabilities and a slowed decrease of the loss.

047 These challenges motivate the exploration of alternative optimization strategies. In line with the ori-
048 gins of machine learning itself (Hopfield, 1982; Ackley et al., 1985), one promising avenue draws
049 inspiration from physics. For that, the optimization trajectory is conceptualized as a discretized
050 motion of a particle within the high-dimensional loss landscape. Both from the structure of the “po-
051 tential” landscape and the discretization, instabilities may arise from excessive “velocity” or overly
052 large step sizes. This perspective suggests that mechanisms from high-energy and non-classical

physics applied to optimization can improve aspects of stability. Building upon the established success of momentum, which incorporates velocity into gradient updates, recent ideas have explored a maximal velocity, drawing parallels to the speed of light in the theory of special relativity (França et al., 2020).

This work introduces a class of physics-inspired optimizers, termed Velocity-Regularized Adam (VRAdam), designed to improve upon the stability and performance of standard adaptive methods (Kingma & Ba, 2015; Loshchilov & Hutter, 2017). Inspired by quartic terms used to model kinetic energy in more stable systems such as classical time crystals (Shapere & Wilczek, 2012) and heavy quark modeling using non-relativistic quantum chromodynamics (NRQCD) (Braaten, 1997) known for their unique stability properties, VRAdam adapts this as a heuristic and introduces a novel regularization mechanism. This mechanism controls the effective learning rate η via penalizing high velocity, namely $\eta_t = \alpha_0 / (1 + \min(\beta_3 \|v_t\|^2, \alpha_1))$.

Equipped with this new optimizer, VRAdam, we probe its dynamics at the adaptive edge of stability, observe faster convergence, and analyze its sharpness empirically against AdamW and Sharpness Aware Minimization (SAM) (Foret et al., 2021). We also introduce rigorous theoretical analysis of **the global uniform exponential stability** of momentum (Weber et al., 2024) as well as a **physics-inspired** Lyapunov candidate derived from our Lagrangian that demonstrates stability properties. With well-tuned hyperparameters, we benchmark VRAdam against AdamW, RAdam (Liu et al., 2020), SGD with Nesterov momentum and RMSProp (Ruder, 2017) on image classification with the CIFAR-10 dataset and the convolutional neural network architecture, on language modeling with transformers on the WikiText2 dataset, and a generative modeling task with GFlowNets and report improved performance on all tasks. We also report increased target-to-loss against AdamW on large scale training for language models such as GPT (Brown et al., 2020) with marginal computational increase in overhead.

With this work, we contribute:

- VRAdam, a physics-inspired and interpretable modification to AdamW,
- Adaptive edge of stability analysis of VRAdam with faster convergence and associated empirical and theoretical evidence from momentum analysis,
- Convergence bound for non-convex stochastic objective,
- VRAdam outperforms AdamW and other optimizers on a wide range of benchmarks.

2 BACKGROUND

Edge of stability. The training of deep neural networks does not follow classical optimization trajectories when trained with full-batch gradient descent (GD). However, during training, these models experience a surprising phase called the edge of stability (EoS). In this phase, the loss Hessian's largest eigenvalue (λ_{\max}) rises to approximately $2/\eta$, the numerical stability limit determined by the learning rate η . At EoS, the eigenvalue persists at this threshold, causing short-term, non-monotonic oscillations in the loss function. Despite these oscillations, the model still achieves long-term descent in the loss, though at the cost of slower convergence (Arora et al., 2022; Cohen et al., 2022).

More recently, empirical bounds on the adaptive edge of stability (AEoS) have been observed for adaptive optimizers such as Adam (Cohen et al., 2024). Here, the relevant stability threshold involves preconditioning the Hessian H_t , where the precondition is constructed from the exponential moving average (EMA) of past element-wise squared gradients m_t :

$$P_t^{-1} H_t, \quad P_t = \text{diag}(\sqrt{m_t} + \varepsilon), \quad (1)$$

This adaptive preconditioning coincides with the learning rate scaling in Adam (see Alg. 1) and scales down the step size in high-variance (typically high-curvature) directions as well as scales up in low-variance ones. Since the local stability of an optimizer around a minimizer depends on the eigenvalues of the quadratic Taylor approximation $L(x) \approx \frac{1}{2}x^\top H x$, Adam's dynamics are shown to be stable (Cohen et al., 2024) as long as

108

$$\lambda_{\max}(P_t^{-1}H_t) < \frac{2+2\beta_1}{(1-\beta_1)\eta} = \frac{38}{\eta} \quad (\beta_1 = 0.9). \quad (2)$$

111

112 However, as this threshold is attained, the adaptive oscillatory regime can slow final convergence,
 113 as the optimizer continually adjusts its preconditioner to maintain stability as well (Song & Yun,
 114 2023).

115 **Physical origins of exotic Lagrangians.** To better comprehend and navigate the edge of stability
 116 regime, we can draw inspiration from the physics governing complex optimization scenarios. The
 117 deep insights provided by the interplay of physics and machine learning frameworks have been
 118 demonstrated in various scenarios, such as the improved interpretation of Neural Tangent Kernels
 119 (NTK) through Langevin dynamics (Avidan et al., 2025). One central concept in physics is the
 120 Lagrangian $\mathcal{L}(x, v) = T(v) - V(x)$ of a system, which is a function of position x and velocity v and
 121 (typically) defined as the difference between kinetic energy T and potential energy V from which
 122 the equation of motion can be derived via the Euler-Lagrange equation. In this work, we investigate
 123 non-standard Lagrangian formulations of physical phenomena with excellent stability conditions.
 124 For example, the stability of seemingly disparate quantum systems like heavy quarkonia (described
 125 by NRQCD) and classical time crystals share conceptual parallels rooted in higher-order velocity
 126 terms. These terms fundamentally reshape energy landscapes by creating non-standard dispersion
 127 relations, establishing invariant submanifolds in phase space where stable configurations emerge as
 128 attractors or limit cycles. Further information regarding these systems are found in Appendix A.

129

3 METHOD

131

132 To translate this physics insight into an optimizer design, we identify the stabilizing aspects of such
 133 phenomena such as the heavy-quark momentum with the optimizer’s global momentum buffer v .
 134 Accordingly, we posit a kinetic energy of the form: $T_{\text{VRAdam}}(v) = \frac{m}{2}\|v\|^2 + \frac{\beta_3}{4}\|v\|^4$, where m is
 135 the mass and β_3 is a tunable parameter. The Lagrangian then becomes

136
137

$$\mathcal{L}(x, v) = \frac{m}{2}v^2 + \frac{\beta_3}{4}v^4 - V(x), \quad (3)$$

138

139 for which we solve the Euler-Lagrange equation $\frac{d}{dt}\frac{\partial\mathcal{L}}{\partial v} - \frac{\partial\mathcal{L}}{\partial x} = 0$. We know that the loss of a neural
 140 network with parameters x can be thought of as the potential landscape (Holderrieth et al., 2024),
 141 such that $\frac{\partial\mathcal{L}}{\partial x} = -\frac{\partial V(x)}{\partial x} = -\nabla L_{\text{loss}}(x)$.

142

The Euler-Lagrange equation then becomes

143
144

$$\frac{d}{dt}[(m + \beta_3\|v\|^2)v] = -\nabla L_{\text{Loss}}(x), \quad (4)$$

145

which can be rearranged to

147

$$\dot{v} = -\nabla L_{\text{Loss}}(x)/(m + 3\beta_3\|v\|^2), \dot{x} = v \quad (5)$$

148

149 where the dot corresponds to the time derivative. Rather than explicitly constructing an optimizer
 150 based on an ordinary differential equation solver for Eq. 5 (via discretization and introduction of
 151 dissipation, e.g. França et al. (2020)), we utilize the term, $(1/(m + 3\beta_3\|v\|^2))$, and embed it as
 152 a dynamic learning rate into AdamW, to enhance the successfully proven properties. **Note that**
 153 this expression from Eq. 5 is derived for the 1-D case, where the dynamics \dot{v} is collinear with v . In
 154 particular, this approach avoids choosing specific forms associated with various different integrators.
 155 The full velocity regularized Adam is given in Alg. 1, where we highlight in blue the changes to
 156 AdamW.

157

158 In Fig. 1, the vector field in Eq. 5 is plotted for the case of the loss function being a simple
 159 quadratic. Compared to kinetic energy term without quartic velocity, the vector field is “squeezed”
 160 in v direction, and the resulting trajectories are not circular. In this idealized setting, we can visualize
 161 the performance of VRAdam and Adam simplified to VRMomentum and Momentum, which
 162 corresponds to Alg. 1 without second-order moment estimates or bias corrections (setting $m_t = 1$
 163 and dropping lines 6, 8, and 9). After the first step, the lower step size of VRMomentum compared
 164 to Momentum can be seen, which leads to fewer oscillations. For VRAdam, we obtain, through

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

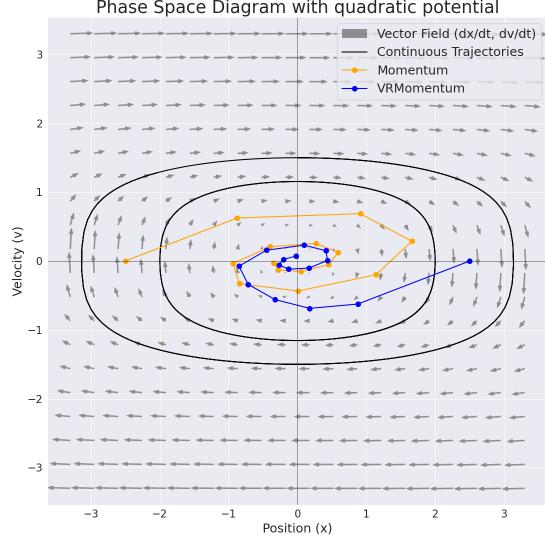
Algorithm 1 VRAdam optimizer. $f(\theta)$: objective function; $\beta_1, \beta_2 \in [0, 1)$; v_t : velocity estimate; m_t : second-moment estimate; η_t : dynamic learning rate at step t ; α_0 : maximal learning rate; $\alpha_0/(1 + \alpha_1)$: minimal learning rate; β_3 : velocity penalizer

```

1: Input:  $f(\theta)$ ,  $\theta_0$ ,  $\alpha_0$ ,  $\alpha_1$ ,  $\beta_1$ ,  $\beta_2$ ,  $\beta_3$ ,  $\epsilon$ ,  $\lambda$ 
2: Initialize  $v_0 \leftarrow 0$ ,  $m_0 \leftarrow 0$ 
3: for  $t = 1, \dots, T$  do
4:    $g_t \leftarrow \nabla f(\theta_{t-1})$ 
5:    $v_t \leftarrow \beta_1 v_{t-1} + (1 - \beta_1) g_t$ 
6:    $m_t \leftarrow \beta_2 m_{t-1} + (1 - \beta_2) g_t^2$ 
7:    $\eta_t \leftarrow \alpha_0 / (1 + \min(\beta_3 \|v_t\|^2, \alpha_1))$ 
8:    $\hat{v}_t \leftarrow v_t / (1 - \beta_1^t)$ 
9:    $\hat{m}_t \leftarrow m_t / (1 - \beta_2^t)$ 
10:   $\theta_t \leftarrow \theta_{t-1} (1 - \eta_t \lambda) - \eta_t \frac{\hat{v}_t}{\sqrt{\hat{m}_t} + \epsilon}$ 
11: end for
12: Output:  $\theta_T$ 

```

Figure 1: Vector field $\dot{v} = -x/(1 + 3v^2)$ and $\dot{x} = v$ derived by solving the Euler–Lagrange equation for $\mathcal{L} = v^2/2 + v^4/4 - x^2/2$. Black lines are continuous trajectories; blue/orange show VRMomentum vs. Momentum steps.



reparameterization and modification, the dynamic learning rate $\eta_t = \alpha_0 / (1 + \min(\beta_3 \|v_t\|^2, \alpha_1))$ for timestep t , where α_0 and α_1 control the maximal and minimal LR respectively, and β_3 as the velocity penalizer. This is inspired by the bound introduced to v^2 in physical setting as discussed in Appendix A. The parameterization of LR, compared to the physically derived one, clips the velocity to avoid getting stuck if gradients and therefore velocity become large. Weight decay is applied in the traditional manner.

4 ANALYSIS

4.1 EMPIRICAL ANALYSIS

For this analysis, following Cohen et al. (2024), we train a ResNet 32 architecture on CIFAR-10 for an image classification task, with VRAdam, Adam and SAM. The training is stopped as soon as the training loss falls below 0.1 or an accuracy of 0.97 is reached. In Fig. 2 (a) and (b), the training curves of VRAdam indicate faster convergence in both minimizing training loss as well as maximizing training accuracy as compared to Adam and SAM, known for sharpness minimization. The training curves are smooth for both optimizers. When juxtaposed with the sharpness comparison depicted in Fig. 2 (c), we observe that the maximum eigenvalue (sharpness) of the preconditioned Hessian of the loss, remains adaptable to faster convergence due to the dynamic learning rate adjustments induced by VRAdam.

The effective learning rate of VRAdam is shown in Fig. 2 (d). During the first 25 iterations, the learning rate dynamically increases close to the maximal value allowed LR and then proceeds to decrease while exhibiting oscillatory behavior as we converge to the minima. The bound on the minimal LR is not active in this example, while the base LR of Adam stays constant throughout training. As described in the seminal work of Schmidhuber *et al.*, we note that minima with lower sharpness are associated with better generalization (Hochreiter & Schmidhuber, 1997; Foret *et al.*, 2021). We can also observe, that VRAdam’s dynamic learning rate quickly moves to the maximal LR to exploit the loss landscape optimally, while exploiting the trade-off between the adaptive edge of stability and faster convergence.

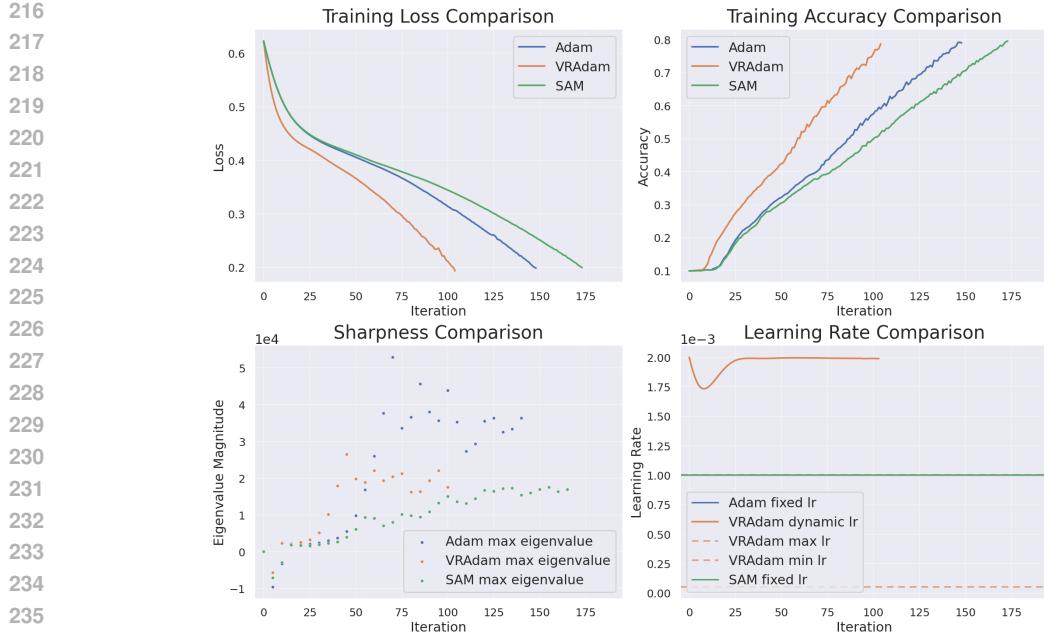


Figure 2: (a) Training loss curves for VRAdam, Adam, and SAM (Foret et al., 2021) of ResNet 32 on CIFAR-10 (b) training accuracy curves (c) plot of maximal eigenvalues of the loss Hessian (d) effective learning rate during training. Hyperparameters for these plots are provided in Appendix E.4.

4.2 STABILITY OF VRADAM

We analyze the behavior of VRAdam in the adaptive edge of stability regime compared to that of Adam in a momentum ablation setting without parameter-scaling based on second order moments estimates, bias corrections or weight decay. By simply adding weight decay, the admissible base step is constrained, the rest of the proof remains as follows. **We first give a quadratic *warm-up* (Theorem 4.1); immediately after, we state a nonconvex corollary that replaces the global convexity assumption by a trajectory-level curvature bound together with an analytical shift (decoupled weight decay).**

Objective Function: Minimal curvature assumption (used in the nonconvex corollary). Along the realized trajectory, the Hessian satisfies a two-sided spectral bound

$$-mI \preceq \nabla^2 f(\theta_t) \preceq L I \quad \text{for all iterates } \theta_t,$$

for some $m \geq 0$, $L > 0$. We include decoupled weight decay of strength $\lambda \geq 0$ in the update (Alg. 1, line 10). As a standard simplification, we analyze first the quadratic model

$$f(\theta) = \frac{1}{2}(\theta - \theta^*)^\top H(\theta - \theta^*)$$

where H is a positive definite Hessian matrix. Let $x_t = \theta_t - \theta^*$ be the error. The gradient is, $g_t = \nabla f(\theta_{t-1}) = Hx_{t-1}$. Let $\mu = \lambda_{\min}(H)$ and $L := \lambda_{\max}(H)$. From Algorithm 1, we know that $\eta_t \in \mathcal{H} := [\eta_{\min}, \alpha_0]$ and $\eta_{\min} = \alpha_0/(1 + \alpha_1) > 0$. Let β_1 from Algorithm 1 be β for this analysis. The following theorem and proof provides sufficient but not necessary conditions for stability in discrete time. Thus proving a more restrictive case of the optimizer.

Theorem 4.1 (Uniform exponential stability of VRMomentum). *Consider $f(\theta)$ with $0 \prec H \preceq LI$. Let VRMomentum be $\beta \in [0, 1]$, $\beta_3 > 0$, $\alpha_0 > 0$, $\alpha_1 \in (0, \infty]$, and set $\lambda = 0$ in this warm-up (no weight decay in the matrix recursion). If $\alpha_0 L < B(\beta) = \frac{2(1+\beta)}{1-\beta}$ or $\eta_{\min} L < B(\beta)$ if the LR clip is active, then for any realization of $\{\eta_t\}$ generated by the gate $\eta_t = \alpha_0/(1 + \min(\beta_3\|v_t\|^2, \alpha_1))$, the origin is a globally uniformly exponentially stable equilibrium. Moreover, there exists a Common Quadratic Lyapunov Function (CQLF), $V(z) = z^\top P z$ with $P \succ 0$ such that $V(z_t) \leq (1 - \epsilon)V(z_{t-1})$ for some $\epsilon \in (0, 1)$.*

270 *Proof.* Define the 2d-state $z_t = (x_t, v_t)$ and the parameterized update matrix
 271

$$272 \quad A(\eta) := \begin{pmatrix} I - \eta(1 - \beta)H & -\eta\beta I \\ (1 - \beta)H & \beta I \end{pmatrix}, \quad z_t = A(\eta_t)z_{t-1}. \quad (6)$$

273
 274 Let $H = Q^\top \text{diag}(h_i)Q$ with $0 < \mu \leq h_i \leq L$. In the eigenbasis of H , the dynamics split into d
 275 identical 2×2 subsystems that share the same scalar η_t and differ only by the curvature $h \in [\mu, L]$:
 276

$$277 \quad \begin{pmatrix} \xi_t \\ v_t \end{pmatrix} = A_h(\eta_t) \begin{pmatrix} \xi_{t-1} \\ v_{t-1} \end{pmatrix}, \quad A_h(\eta) := \begin{pmatrix} 1 - \eta(1 - \beta)h & -\eta\beta \\ (1 - \beta)h & \beta \end{pmatrix}. \quad (7)$$

278 Hence it suffices to build a CQLF for the family $\{A_h(\eta) : h \in [\mu, L], \eta \in \mathcal{H}\}$.
 279

280 For a fixed (h, η) , the characteristic polynomial is
 281

$$282 \quad \lambda^2 - (1 + \beta - \eta(1 - \beta)h)\lambda + \beta = 0, \quad (8)$$

283 so the Schur criterion gives stability iff $\eta(1 - \beta)h < 2(1 + \beta)$. In particular, if
 284

$$285 \quad \alpha_0 L < B := \frac{2(1 + \beta)}{1 - \beta} \quad (A1)$$

286 then every $A_h(\eta)$ with $\eta \in \mathcal{H}$ is Schur-stable. (This is the Adam/AEoS bound specialized to $P = I$
 287 (Cohen et al., 2024))

288 **Nonconvex Schur bound (minimal replacement).** If, instead of the quadratic model, we assume
 289 the trajectory-level curvature range $h \in [-m, L]$ and include decoupled weight decay $\lambda \geq 0$ in the
 290 update, the same 2×2 calculation yields the uniform sufficient condition
 291

$$292 \quad \boxed{\lambda > m \quad \text{and} \quad \alpha_0((1 - \beta)L + (1 + \beta)\lambda) < 2(1 + \beta)}, \quad (A1')$$

293 **Setting $\lambda = 0$ and $m = 0$ recovers equation A1.**
 294

295 We now produce $P \succ 0$ such that
 296

$$297 \quad A_h(\eta)^\top P A_h(\eta) - P \preceq -\epsilon I_2 \quad \forall \eta \in \mathcal{H}, \forall h \in [\mu, L], \quad (A2)$$

298 for some $\epsilon > 0$. Take the block-diagonal, curvature-agnostic form
 299

$$300 \quad P = \text{diag}(p_1 I, p_2 I), \quad p_1 > 0, p_2 > 0, \quad (A3)$$

301 which lifts to $P_d = \text{diag}(p_1 I_d, p_2 I_d)$ in $2d$ dimensions.
 302

303 For a fixed (h, η) , set
 304

$$305 \quad \Delta(\eta, h) := A_h(\eta)^\top P A_h(\eta) - P = \begin{pmatrix} \Delta_{11} & \Delta_{12} \\ \Delta_{12} & \Delta_{22} \end{pmatrix} \quad (9)$$

306 with
 307

$$308 \quad \Delta_{11}(\eta, h) = p_1(-2\eta(1 - \beta)h + \eta^2(1 - \beta)^2h^2) + p_2(1 - \beta)^2h^2, \quad (10)$$

$$309 \quad \Delta_{22}(\eta, h) = p_1\eta^2\beta^2 + p_2(\beta^2 - 1), \quad (11)$$

$$310 \quad \Delta_{12}(\eta, h) = -p_1\eta\beta(1 - \eta(1 - \beta)h) + p_2\beta(1 - \beta)h. \quad (12)$$

$$311 \quad \Delta_{11}(\eta, h) = (1 - \beta)h \left[-2p_1\eta + (1 - \beta)h(p_1\eta^2 + p_2) \right]. \quad (13)$$

312 We first force strict negativity on the diagonal, uniformly over $\eta \in \mathcal{H}$ and $h \in [\mu, L]$. Using the
 313 bounds $\eta \in [\eta_{\min}, \alpha_0]$ and $h \in [\mu, L]$, a sufficient pair of conditions for $\Delta_{11} \leq -\delta_1$ and $\Delta_{22} \leq -\delta_2$
 314 is
 315

$$316 \quad \underbrace{(\alpha_0^2 p_1 + p_2)L}_{\text{upper bound for the } h^2\text{-term}} < \underbrace{\frac{2\eta_{\min}}{1 - \beta} p_1}_{\text{lower bound for the linear } h\text{-term}}, \quad (A4)$$

$$317 \quad \underbrace{p_2(1 - \beta^2)}_{\text{negative term magnitude}} > \underbrace{p_1\alpha_0^2\beta^2}_{\text{positive term bound}}. \quad (A5)$$

(Here we used the worst cases $\eta = \alpha_0$ and $h = L$ wherever they make the expression largest.)

Intersecting (A4)–(A5) with $p_1 = 1$ gives a nonempty interval iff

$$\alpha_0^2 L < 2(1 + \beta) \eta_{\min} \iff \frac{\alpha_0^2 \beta^2}{1 - \beta^2} < \frac{2\eta_{\min}}{(1 - \beta)L} - \alpha_0^2. \quad (\text{A6}')$$

Indeed, set $p_1 = 1$ and choose any

$$p_2 \in \left(\frac{\alpha_0^2 \beta^2}{1 - \beta^2}, \frac{2\eta_{\min}}{(1 - \beta)L} - \alpha_0^2 \right). \quad (\text{A7})$$

Next, to pass from diagonal negativity to matrix negativity, we use the Schur complement:

$$\Delta \preceq -\epsilon I_2 \iff \Delta_{11} \leq -\epsilon, \quad \Delta_{22} - \frac{\Delta_{12}^2}{\Delta_{11}} \leq -\epsilon. \quad (13)$$

Under (A4)–(A5), Δ_{11} and Δ_{22} are uniformly $\leq -\delta$ for some $\delta > 0$. A direct (but routine) bound gives, for all $\eta \in \mathcal{H}, h \in [\mu, L]$,

$$\frac{\Delta_{12}^2}{-\Delta_{11}} \leq \frac{\beta^2(p_1 \alpha_0 + p_2(1 - \beta)L)^2}{2\eta_{\min} p_1 - (\alpha_0^2 p_1 + p_2)(1 - \beta)L}, \quad (14)$$

and the right-hand side is strictly smaller than $-\Delta_{22}$ when (A4)–(A5) hold with slack. Thus there exists $\epsilon > 0$ such that (A2) is satisfied.

For fixed h and $P \succ 0$, the map

$$\eta \mapsto A_h(\eta)^\top P A_h(\eta) = (A_0 + \eta A_1)^\top P (A_0 + \eta A_1) \quad (15)$$

is matrix-convex in η (its second derivative is $2A_1^\top P A_1 \succeq 0$). Therefore, if the inequality

$$A_h(\eta)^\top P A_h(\eta) - P \preceq -\epsilon I_2 \quad (16)$$

holds at the endpoints $\eta = \eta_{\min}$ and $\eta = \alpha_0$, it holds for all $\eta \in [\eta_{\min}, \alpha_0]$. Under (A6'), the choice (A7) does exactly that.

The block choice $P_d = \text{diag}(p_1 I_d, p_2 I_d)$ certifies

$$A(\eta)^\top P_d A(\eta) - P_d \preceq -\epsilon I_{2d} \quad \forall \eta \in \mathcal{H}, \quad (17)$$

hence the quadratic Lyapunov $V(z) = z^\top P_d z$ yields

$$V(z_t) \leq (1 - c)V(z_{t-1}), \quad c = \frac{\epsilon}{\lambda_{\max}(P_d)} \in (0, 1), \quad (18)$$

which implies **global uniform exponential stability** and concludes the proof.

Corollary (Nonconvex stability via analytical shift). Assume along the VRAdam trajectory that $-mI \preceq \nabla^2 f(\theta_t) \preceq LI$ and include decoupled weight decay $\lambda > m$. If equation A1' holds (with α_0 or η_{\min}), then every 2×2 eigen-direction block is Schur-stable uniformly over $h \in [-m, L]$ and $\eta \in \mathcal{H}$, hence the origin is globally uniformly exponentially stable. (Setting $\lambda = 0$ and $m = 0$ reduces to equation A1.)

In the Appendix B, an alternative Lyapunov candidate based on Lagrangian physics is presented.

4.3 GLOBAL VS PER-PARAMETER UPDATES

We contrast two ways of modulating the step magnitude, namely, (i) *per-parameter* control via a time-varying diagonal matrix (element-wise scaling), and (ii) a *global* scalar gate η_t that multiplies the entire (preconditioned) step as in Alg. 1. The global gate introduces key advantages in the edge-of-stability regime. **(1) Uniform Lyapunov stability under arbitrary scalar switching.** In the momentum ablation on a quadratic, the global-gated dynamics decouple into identical

378 2×2 blocks $A_h(\eta_t)$ in the eigenbasis of the Hessian (see the construction surrounding equation A2–
 379 equation A3 and the Schur bound equation A1). Theorem 4.1 produces a curvature-agnostic Common
 380 Quadratic Lyapunov Function $V(z) = z^\top P z$ with $P \succ 0$ independent of h and the time-
 381 varying $\eta_t \in [\eta_{\min}, \alpha_0]$, certifying *global uniform* exponential stability whenever $\alpha_0 L < \frac{2(1+\beta_1)}{1-\beta_1}$ (or
 382 the same with η_{\min} when the clip is active), i.e., the Schur condition equation A1. Hence stability
 383 holds for *any* scalar gate sequence generated by Alg. 1. (See Sec. 4.2, Thm. 4.1.)

384 **(2) Global, rotation-invariant control of AEoS with bounded steps.** The velocity-based gate in
 385 Alg. 1, derived from the quartic Lagrangian equation 3 and the collinear 1-D reduction equation 5,
 386 implies a dimension-free bound on the update norm and raises the instantaneous stability threshold
 387 whenever the measured velocity grows:

$$389 \|\theta_t - \theta_{t-1}\| = \eta_t \|v_t\| \leq \frac{\alpha_0}{2\sqrt{\beta_3}}, \quad L_{\text{EoS}}(t) = \frac{2(1+\beta_1)}{(1-\beta_1)\eta_t} = \frac{2(1+\beta_1)}{(1-\beta_1)\alpha_0} \left(1 + \min\{\beta_3 \|v_t\|^2, \alpha_1\}\right),$$

391 see App. B, Eqs. (45)–(46). Thus the method *automatically retreats from instability* as velocities
 392 spike near AEoS and prevents runaway steps. Because the gate is scalar, these guarantees are or-
 393 thogonally invariant and do not require the adaptive preconditioner to commute with the Hessian.
 394 This mechanism aligns with the reduced ringing and sharpness observed empirically.

395 **(3) Avoiding switched-anisotropy instabilities.** Allowing the step to vary per coordinate corre-
 396 sponds to a switched linear system with state matrix $A(D_t)$, where D_t is a time-varying diagonal
 397 scaling. Even if each fixed D yields a Schur-stable map (spectral radius < 1), products such as
 398 $A(D_2)A(D_1)$ can be *unstable* because the maps generally do not commute and the contraction
 399 directions rotate across steps. A scalar η_t eliminates this failure mode: all directions are scaled iden-
 400 tically, and the CQLF from Theorem 4.1 guarantees contraction under *arbitrary* scalar switching,
 401 again under the same Schur bound equation A1 (equation A2–equation A3).

403 4.4 CONVERGENCE ANALYSIS

405 In this section, we provide a convergence analysis of VRAdam by extending the work of Défossez
 406 et al. (2022) on Adam. The main result is a probabilistic bound that VRAdam converges in expec-
 407 tation to a stationary point for a nonconvex (and therefore also a convex) objective function under a
 408 set of regularity assumptions and simplifications.

409 **Setup:** The objective function is given by $F(\theta) : \mathbb{R}^d \rightarrow \mathbb{R}$. ∇f are gradient estimates of F
 410 such that $\mathbb{E}[\nabla f] = \nabla F$. The random variable τ_N describes an index with probabilities given by
 411 $\mathbb{P}[\tau = j] \propto 1 - \beta_1^{N-j}$ for $j \in \{0, 1, \dots, N-1\}$. The constants $\alpha_{\min} = \alpha_0/(1+\alpha_1) > 0$ and
 412 $\alpha_{\max} = \alpha_0 > 0$ correspond to the minimal and maximal possible learning rate at every step. F is
 413 bounded from below, namely $\forall \theta, F(\theta) \geq F_*$. The gradient estimates are almost surely bounded in
 414 the ℓ_∞ -norm, namely $\|\nabla f\|_\infty \leq R - \sqrt{\epsilon}$. ∇F is L-Lipschitz-continuous in the ℓ_2 -norm, namely
 415 $\forall \theta, \phi, \|\nabla F(\theta) - \nabla F(\phi)\|_2 \leq L \|\theta - \phi\|_2$. The weight decay parameter $\lambda = 0$ is set to zero. The
 416 bias correction for the velocity $\hat{v}_t \leftarrow v_t / (1 - \beta_1^t)$ is not included. The hyperparameter β_1, β_2 fulfill
 417 $0 < \beta_2 < 1, 0 \leq \beta_1 < \beta_2$ and the number of iterates satisfies $N > \beta_1/(1 - \beta_1)$.

418 **Theorem 4.2** (Convergence of VRAdam). *Given the six assumptions above, the iterates θ_t of Algo-
 419 rithm 1 fulfill:*

$$421 \mathbb{E}[\|\nabla F(\theta_\tau)\|^2] \leq 2R \frac{F(\theta_0) - F_*}{\alpha_{\min} \tilde{N}} + E\left(\frac{1}{\tilde{N}} \ln\left(1 + \frac{R^2}{(1-\beta_2)\epsilon}\right) - \frac{N}{\tilde{N}} \ln(\beta_2)\right).$$

423 with $\tilde{N} = N - \frac{\beta_1}{1-\beta_1}$, and

$$425 E = \frac{\alpha_{\max}^2 dRL(1-\beta_1)}{\alpha_{\min}(1-\beta_1/\beta_2)(1-\beta_2)} + \frac{12 \alpha_{\max} dR^2 \sqrt{1-\beta_1}}{\alpha_{\min}(1-\beta_1/\beta_2)^{3/2} \sqrt{1-\beta_2}} + \frac{2 \alpha_{\max}^3 dL^2 \beta_1}{\alpha_{\min}(1-\beta_1/\beta_2)(1-\beta_2)^{3/2}}.$$

428 A proof can be found in the appendix C. The right-hand side of the bound converges to zero in
 429 the limit of $N \rightarrow \infty$ if $\alpha_{\min}(N) \propto N^{-1/2}$, $\alpha_{\max}(N) \propto N^{-1/2}$, and $1 - \beta_2(N) \propto N^{-1}$ to
 430 leading order. For this scaling of hyperparameters, VRAdam has the same convergence rate of
 431 $\mathcal{O}(\ln(N)/\sqrt{N})$ as Adam. While this convergence result provides a strong theoretical foundation,
 432 benchmarking is key to understanding performance under realistic conditions.

432 **5 BENCHMARKS**
 433

434 We benchmark VRAdam against various optimizers on several datasets for various tasks with diverse
 435 architectures. These benchmarks include image classification using a CNN in the CIFAR-10 dataset
 436 (Krizhevsky & Hinton, 2009), language modeling with a Transformer architecture (Vaswani et al.,
 437 2023) on the WikiText2 dataset (Merity et al., 2016), and Generative Flow Networks (GFlowNets)
 438 (Avidan et al., 2025), on a grid world for sequence generation tasks (Chevalier-Boisvert et al., 2023),
 439 and a training a large language model (LLM) such as the Generative Pretrained Transformer (GPT)
 440 (Brown et al., 2020). These benchmarks represent a broad variety of deep learning architectures and
 441 tasks, ranging from older techniques for image classification to much **newer and actively emerging**
 442 models and training techniques such as for GFlowNets. We focus on the comparison with
 443 AdamW since its exceeding popularity and consistent performance but also report the performance
 444 of stochastic gradient descent (SGD) with momentum (Qian, 1999), root mean square propagation
 445 (RMSProp) (Ruder, 2017) and RAdam (Liu et al., 2020) for all tasks expect for the LLM bench-
 446 mark. In particular, we demonstrate the **excellent convergence** properties as well as performance
 447 improvements in most benchmarks for VRAdam (Table 1). Note that we run *Bayesian optimization*
 448 for *hyperparameter sweeps* for the image classification, and language modeling tasks, with several
 449 evaluations in close proximity to the found minimum, and the results are statistically significant.
 450 We report the optimal value from this optimization procedure, however, we include shaded error
 451 bars in the appendix. The Bayesian optimization for the hyperparameters was conducted with the
 452 objective to minimize validation loss, however, we also report test loss. Hyperparameters for the
 453 task involving GFlowNets were picked at random due to compute constraints. All details regarding
 454 model training, setup and datasets along with error envelopes using multiple runs are provided in
 455 Appendices E and G.

Method	WikiText-2 Loss		CIFAR-10 Loss		GridWorld Flow Matching Loss	
	Validation	Test	Validation	Test	Validation	Test
VRAdam	5.99	6.00	0.476	0.469	1.25	1.33
AdamW	6.47	6.50	0.522	0.565	2.41	3.60
RAdam	7.511	7.554	2.300	4.005	1.407	2.290
SGD+Nesterov	NaN	NaN	0.625	0.620	2.71	2.61
RMSProp	NaN	NaN	0.801	0.813	25.0	25.0

463 Table 1: Comparison of optimizer performance across three tasks: language modeling on WikiText-
 464 2, image classification on CIFAR-10, and flow matching on GridWorld.
 465

Method	Training time (s)	Validation Loss
AdamW	48549.56	3.511
VRAdam	48522.40	3.447

471 Table 2: Comparison of training time and validation loss for GPT-2 training.
 472

473 **LLM benchmark:** In order to demonstrate the effectiveness of VRAdam for training large net-
 474 works, such as large language models (Brown et al., 2020), we present the validation loss results of
 475 VRAdam against that of AdamW and Lion when training a 124M parameter GPT-2 model on the
 476 FineWebEdu-10B dataset from scratch (Penedo et al., 2024). In Table 2, we report the validation
 477 loss after around 57000 steps or 2 epochs as well as the average training time per epoch on a H100
 478 GPU using hyperparameters found in the Appendix.
 479

Setting	Model	Dataset	AdamW PPL	VRAdam PPL	Lion PPL
4-bit QLoRA	LLaMA-2-7B	OASST2	3.84	3.55	3.56
Full model	GPT-2 Large (774M)	GSM8K	4.12	3.53	3.67

484 Table 3: Additional LLM benchmarks comparing AdamW, VRAdam, and Lion (Chen et al., 2023) in
 485 challenging fine-tuning regimes for OASST2 (instruction following) and GSM8K (math reasoning).

486 Beyond the 124M GPT-2 pretraining setup, we also evaluate VRAdam in two more challenging
 487 language-modeling regimes summarized in Table 3. First, we fine-tune a 7B LLaMA-2 model using
 488 4-bit NF4 QLoRA on the OASST2 instruction-following dataset Touvron et al. (2023). This setting
 489 lies close to the adaptive edge-of-stability: gradients are both low-precision and strongly stochastic
 490 Hayou et al. (2024). We also perform full-parameter fine-tuning of GPT-2 Large (774M) on
 491 GSM8K. These experiments indicate that VRAdam scales favorably from medium-sized to larger
 492 LLMs, both in quantized low-rank adaptation and full-model fine-tuning settings. On GSM8K,
 493 fine-tuning GPT-2-Large with VRAdam improves exact-match accuracy from 35% (AdamW) to
 494 42% under the same training budget. On OASST2, in a 4-bit QLoRA setup for LLaMA-2-7B,
 495 VRAdam improves an automatic instruction-following quality score from 72.3/100 to 78.5/100
 496 compared to AdamW. This score combines lexical diversity, repetition, and response length over
 497 50 held-out instructions.

498 6 RELATED WORK

501 **Follow-up work on Adam** The Adam optimizer was introduced in 2015 by Kingma & Ba (2015)
 502 by combining the previously existing concepts of momentum and scaling a base LR for each param-
 503 eter based on second-order moment estimates. The base learning rate, however, remains hard-coded
 504 (potentially chosen through a learning rate scheduler) throughout training. Since then, several mod-
 505 ifications to Adam have been introduced, such as NAdam (Dozat, 2016), RAdam (Liu et al., 2020),
 506 Adabelief (Zhuang et al., 2020), and in particular AdamW (Loshchilov & Hutter, 2017), which rein-
 507 troduces weight decay in its original intention. LARS (You et al., 2017) and LAMB (You et al.,
 508 2020) compute learning rates for layers individually. More recent optimization techniques include
 509 LION, an automatically discovered alternative to signed momentum (Chen et al., 2023), Sophia
 510 (Liu et al., 2023), which uses estimated diagonal entries of the Hessian as a precondition, sharpness-
 511 aware minimization methods (Foret et al., 2021), and a modified LR in Adam for reinforcement
 512 learning (Ellis et al., 2024).

513 **Understanding training dynamics, convergence analysis, and edge of stability** Another line of
 514 work focuses on understanding the dynamics of the training of deep neural networks as well as de-
 515 rive convergence properties and guarantees for commonly used optimizers. Wang & Choromanska
 516 (2025) provides a recent survey over the later and Reddi et al. (2019) provide an explicit convex
 517 example for which Adam does not converge. A popularized framework for understanding training
 518 dynamics in the continuous training flow and infinite network width limit was introduced in Jacot
 519 et al. (2018), extended by finite width corrections in Huang & Yau (2020), and developed for graph
 520 neural networks in Du et al. (2019). Lastly, the role of the edge of stability regime offers an empiri-
 521 cally view and was analyzed in Cohen et al. (2024); Arora et al. (2022); Cohen et al. (2022); Damian
 522 et al. (2022); Song & Yun (2023); Wang et al. (2022)

523 **Symplectic Optimization** This research area derives discrete-time optimization algorithms by dis-
 524 cretizing continuous-time Hamiltonian or Lagrangian flows using symplectic integrators, which
 525 exactly preserve the underlying geometric (symplectic) structure of the dynamical system. This
 526 approach guarantees long-term stability, energy-preservation properties (or controlled energy dissis-
 527 pation in the dissipative case), and can provide valuable insights into existing optimizers. Notable
 528 work includes Betancourt et al. (2018); Fran  a et al. (2020); Maddison et al. (2018); Duruisseaux &
 529 Leok (2023); Yuan & Zhang (2023); Wang et al. (2022)

530 7 DISCUSSION

531 **Limitations** The edge of stability regime remains not fully understood and questions regarding
 532 generalization capabilities remain. We also have constrained compute resources.

533 **Summary and future of work** Motivated by physical perspectives for complex optimization scenar-
 534 ios and stability conditions along with the adaptive edge of stability, we developed a new optimizer
 535 VRAdam based on quartic kinetic energy terms. We analyzed its performance at the adaptive edge of
 536 stability and benchmark it against several optimizers in particular AdamW on image classification,
 537 language modeling, and a generative task using GFlowNets where we report improved performance
 538 and robustness to hyperparameters. We hope that this work leads to further development of inter-
 539 pretable optimizers using concepts from physics.

540 REFERENCES
541

542 David H. Ackley, Geoffrey E. Hinton, and Terrence J. Sejnowski. A learning algorithm for boltz-
543 man machines. *Cognitive Science*, 9(1):147–169, 1985.

544 Sanjeev Arora, Zhiyuan Li, and Abhishek Panigrahi. Understanding gradient descent on edge of
545 stability in deep learning, 2022. URL <https://arxiv.org/abs/2205.09745>.

546 Benoît Assi, Bernd A. Kniehl, and Joan Soto. Matching the standard model to heavy-quark ef-
547 fective theory and nonrelativistic qcd. *Nuclear Physics B*, 992:116173, July 2023. ISSN 0550-
548 3213. doi: 10.1016/j.nuclphysb.2023.116173. URL <http://dx.doi.org/10.1016/j.nuclphysb.2023.116173>.

549 Yehonatan Avidan, Qianyi Li, and Haim Sompolinsky. Connecting ntk and nngp: A unified theo-
550 retical framework for wide neural network learning dynamics, 2025. URL <https://arxiv.org/abs/2309.04522>.

551 Michael Betancourt, Michael I. Jordan, and Ashia C. Wilson. On symplectic optimization. *arXiv
552 preprint arXiv:1802.03653*, 2018.

553 Stephen Boyd and Lieven Vandenberghe. *Convex optimization*. Cambridge university press, 2004.

554 Eric Braaten. Introduction to the nrqcd factorization approach to heavy quarkonium, 1997. URL
555 <https://arxiv.org/abs/hep-ph/9702225>.

556 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
557 wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
558 Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
559 Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
560 Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
561 Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL
562 <https://arxiv.org/abs/2005.14165>.

563 Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi Dong,
564 Thang Luong, Cho-Jui Hsieh, Yifeng Lu, et al. Symbolic discovery of optimization algorithms.
565 *Advances in neural information processing systems*, 36:49205–49233, 2023.

566 Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo Perez-Vicente, Lucas Willems,
567 Salem Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld: Mod-
568 ular & customizable reinforcement learning environments for goal-oriented tasks. In *Advances in
569 Neural Information Processing Systems 36, New Orleans, LA, USA*, December 2023.

570 Jeremy M. Cohen, Simran Kaur, Yuanzhi Li, J. Zico Kolter, and Ameet Talwalkar. Gradient descent
571 on neural networks typically occurs at the edge of stability, 2022. URL <https://arxiv.org/abs/2103.00065>.

572 Jeremy M. Cohen, Behrooz Ghorbani, Shankar Krishnan, Naman Agarwal, Sourabh Medapati,
573 Michal Badura, Daniel Suo, David Cardoze, Zachary Nado, George E. Dahl, and Justin Gilmer.
574 Adaptive gradient methods at the edge of stability, 2024. URL <https://arxiv.org/abs/2207.14484>.

575 Alex Damian, Eshaan Nichani, and Jason D Lee. Self-stabilization: The implicit bias of gradient
576 descent at the edge of stability. *arXiv preprint arXiv:2209.15594*, 2022.

577 Aaron Defazio, Xingyu Alice Yang, Harsh Mehta, Konstantin Mishchenko, Ahmed Khaled, and
578 Ashok Cutkosky. The road less scheduled, 2024. URL <https://arxiv.org/abs/2405.15682>.

579 Timothy Dozat. Incorporating nesterov momentum into adam. 2016.

580 Simon S Du, Kangcheng Hou, Russ R Salakhutdinov, Barnabas Poczos, Ruosong Wang, and Keyulu
581 Xu. Graph neural tangent kernel: Fusing graph neural networks with graph kernels. *Advances in
582 neural information processing systems*, 32, 2019.

594 Valentin Duruisseaux and Melvin Leok. Practical perspectives on symplectic accelerated optimization.
 595 *Optimization Methods and Software*, 38(6):1230–1268, 2023. doi: 10.1080/10556788.2023.
 596 2214837.

597 Alexandre Défossez, Léon Bottou, Francis Bach, and Nicolas Usunier. A simple convergence proof
 598 of adam and adagrad, 2022. URL <https://arxiv.org/abs/2003.02395>.

600 Benjamin Ellis, Matthew T Jackson, Andrei Lupu, Alexander D Goldie, Mattie Fellows, Shimon
 601 Whiteson, and Jakob Foerster. Adam on local time: Addressing nonstationarity in rl with relative
 602 adam timesteps. *Advances in Neural Information Processing Systems*, 37:134567–134590, 2024.

603 Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimiza-
 604 tion for efficiently improving generalization. In *Advances in Neural Information Processing Sys-
 605 tems (NeurIPS)*, 2021.

606 Guilherme França, Jeremias Sulam, Daniel Robinson, and René Vidal. Conformal symplectic and
 607 relativistic optimization. *Advances in Neural Information Processing Systems*, 33:16916–16926,
 608 2020.

609 Partha Guha and A Ghose-Choudhury. Construction of the classical time crystal lagrangians from
 610 sisyphus dynamics and duality description with the liénard type equation, 2019. URL <https://arxiv.org/abs/1911.11626>.

611 Soufiane Hayou, Nikhil Ghosh, and Bin Yu. The impact of initialization on lora finetuning dynamics,
 612 2024. URL <https://arxiv.org/abs/2406.08447>.

613 Thomas M Hellwell and Vatche V Sahakian. *Modern classical mechanics*. Cambridge University
 614 Press, 2020.

615 Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. *Neural Computation*, 9(1):1–42, 1997. doi:
 616 10.1162/neco.1997.9.1.1.

617 Peter Holderrieth, Yilun Xu, and Tommi Jaakkola. Hamiltonian score matching and generative
 618 flows, 2024. URL <https://arxiv.org/abs/2410.20470>.

619 John J. Hopfield. Neural networks and physical systems with emergent collective computational
 620 abilities. *Proceedings of the National Academy of Sciences*, 79(8):2554–2558, 1982.

621 Jiaoyang Huang and Horng-Tzer Yau. Dynamics of deep neural networks and neural tangent hier-
 622 archy. In *International conference on machine learning*, pp. 4542–4551. PMLR, 2020.

623 H Iro and K Anderson. Modern approach to classical mechanics. *Appl. Mech. Rev.*, 56(6):B80–B81,
 624 2003.

625 Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
 626 eralization in neural networks. *Advances in neural information processing systems*, 31, 2018.

627 Ryoichi Kawai, Juan MR Parrondo, and C Van den Broeck. Dissipation: The phase-space perspec-
 628 tive. *Physical review letters*, 98(8):080602, 2007.

629 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In *Proceedings
 630 of the 3rd International Conference on Learning Representations (ICLR)*, San Diego, CA, USA,
 631 May 2015. URL <https://arxiv.org/abs/1412.6980>. arXiv:1412.6980.

632 Alex Krizhevsky and Geoffrey E. Hinton. Learning multiple layers of features from tiny im-
 633 ages. Technical Report TR-2009-003, University of Toronto, 2009. URL <https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf>.

634 Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic
 635 second-order optimizer for language model pre-training. *arXiv preprint arXiv:2305.14342*, 2023.

636 Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei
 637 Han. On the variance of the adaptive learning rate and beyond. In *8th International Conference
 638 on Learning Representations, ICLR 2020*, 2020.

648 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint*
 649 *arXiv:1711.05101*, 2017.

650

651 Chris J. Maddison, Daniel Paulin, Yee Whye Teh, Brendan O'Donoghue, and Arnaud Doucet.
 652 Hamiltonian descent methods. *arXiv preprint arXiv:1809.05042*, 2018.

653

654 Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
 655 models, 2016.

656

657 Antti J. Niemi. Time crystals: From schrödinger to sisyphus, 2021. URL <https://arxiv.org/abs/2109.06091>.

658

659 Guilherme Penedo, Hynek Kydlíček, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin
 660 Raffel, Leandro Von Werra, and Thomas Wolf. The fineweb datasets: Decanting the web for
 661 the finest text data at scale. In *The Thirty-eight Conference on Neural Information Processing*
 662 *Systems Datasets and Benchmarks Track*, 2024. URL <https://openreview.net/forum?id=n6SCKn2QaG>.

663

664 Ning Qian. On the momentum term in gradient descent learning algorithms. *Neural Networks*,
 665 12(1):145–151, 1999. ISSN 0893-6080. doi: [https://doi.org/10.1016/S0893-6080\(98\)00116-6](https://doi.org/10.1016/S0893-6080(98)00116-6). URL <https://www.sciencedirect.com/science/article/pii/S0893608098001166>.

666

667 Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. *arXiv*
 668 *preprint arXiv:1904.09237*, 2019.

669

670 Sebastian Ruder. An overview of gradient descent optimization algorithms, 2017. URL <https://arxiv.org/abs/1609.04747>.

671

672 Alfred Shapere and Frank Wilczek. Classical time crystals. *Physical Review Letters*, 109(16),
 673 October 2012. ISSN 1079-7114. doi: 10.1103/physrevlett.109.160402. URL <http://dx.doi.org/10.1103/PhysRevLett.109.160402>.

674

675 Minhak Song and Chulhee Yun. Trajectory alignment: understanding the edge of stability phe-
 676 nomenon via bifurcation theory. *arXiv preprint arXiv:2307.04204*, 2023.

677

678 Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initial-
 679 ization and momentum in deep learning. In *International conference on machine learning*, pp.
 680 1139–1147. PMLR, 2013.

681

682 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 683 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
 684 Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
 685 Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
 686 Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
 687 Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
 688 Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
 689 Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
 690 Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
 691 Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
 692 Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
 693 Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
 694 2023. URL <https://arxiv.org/abs/2307.09288>.

695

696 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
 697 Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023. URL <https://arxiv.org/abs/1706.03762>.

698

699 Jing Wang and Anna Choromanska. A survey of optimization methods for training dl models: The-
 700 retorical perspective on convergence and generalization, 2025. URL <https://arxiv.org/abs/2501.14458>.

702 Zixuan Wang, Zhouzi Li, and Jian Li. Analyzing sharpness along gd trajectory: Progressive sharp-
 703 ening and edge of stability. *Advances in Neural Information Processing Systems*, 35:9983–9994,
 704 2022.

705 Marc Weber, Bahman Gharesifard, and Christian Ebenbauer. Inferring global exponential stability
 706 properties using lie-bracket approximations, 2024. URL <https://arxiv.org/abs/2409.03871>.

709 Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks, 2017.
 710 URL <https://arxiv.org/abs/1708.03888>.

711 Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
 712 Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep learn-
 713 ing: Training bert in 76 minutes, 2020. URL <https://arxiv.org/abs/1904.00962>.

715 Ya-xiang Yuan and Yi Zhang. Symplectic discretization approach for developing new proximal
 716 point algorithm. *arXiv preprint arXiv:2308.03986*, 2023.

717 Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar C Tatikonda, Nicha Dvornek, Xenophon Pa-
 718 pademetris, and James Duncan. Adabelief optimizer: Adapting stepsizes by the belief in observed
 719 gradients. *Advances in neural information processing systems*, 33:18795–18806, 2020.

721 A BOUNDING NRQCD

724 By explicitly breaking certain symmetries—Lorentz invariance in NRQCD and time-translation in
 725 time crystals—higher-order kinetic terms paradoxically enhance stability through topological pro-
 726 tection mechanisms and the generation of emergent length/time scales (Niemi, 2021; Guha & Ghose-
 727 Choudhury, 2019).

728 As a demonstration of this phenomenon, we can consider Nonrelativistic QCD (NRQCD), which is
 729 an effective field theory that expands full quantum chromodynamics in inverse powers of a heavy-
 730 quark mass m (Assi et al., 2023). The bilinear heavy-quark Lagrangian \mathcal{L} up to $O(1/m^3)$ reads,

$$731 \mathcal{L}_{\text{NRQCD}} = \psi^\dagger \left(iD_0 - m + \frac{\mathbf{D}^2}{2m} + \frac{\mathbf{D}^4}{8m^3} + \dots \right) \psi \quad (19)$$

734 The corresponding Hamiltonian density is derived via Legendre transformation:

$$735 \mathcal{H}_{\text{NRQCD}} = \psi^\dagger \left(m - \frac{\mathbf{D}^2}{2m} - \frac{\mathbf{D}^4}{8m^3} - \dots \right) \psi \quad (20)$$

738 For a rigorous analysis of the dispersion relation, we work in momentum space:

$$739 \psi(\vec{x}, t) = \int \frac{d^3 p}{(2\pi)^3} e^{i\vec{p} \cdot \vec{x}} \tilde{\psi}(\vec{p}, t) \quad (21)$$

742 In momentum space, the operators transform as:

$$743 D_0 \rightarrow -iE \quad (\text{time evolution operator}) \quad (22)$$

$$744 \mathbf{D} \rightarrow i\vec{p} \quad (\text{spatial covariant derivative}) \quad (23)$$

$$746 \mathbf{D}^2 \rightarrow -p^2 \quad (\text{squared spatial derivative}) \quad (24)$$

$$747 \mathbf{D}^4 \rightarrow p^4 \quad (\text{quartic spatial derivative}) \quad (25)$$

749 The energy eigenvalue equation derived from the Hamiltonian is:

$$751 E\tilde{\psi}(\vec{p}) = \left(m + \frac{p^2}{2m} - \frac{p^4}{8m^3} + \mathcal{O}\left(\frac{1}{m^5}\right) \right) \tilde{\psi}(\vec{p}) \quad (26)$$

753 This gives the NRQCD dispersion relation to order $1/m^3$:

$$755 E_{\text{NRQCD}}(p) = m + \frac{p^2}{2m} - \frac{p^4}{8m^3} + \mathcal{O}\left(\frac{1}{m^5}\right) \quad (27)$$

756 A.1 ANALYSIS OF BOUNDEDNESS
757

758 The exact relativistic energy-momentum relation:

759
$$E_{\text{rel}}(p) = \sqrt{m^2 + p^2} \quad (28)$$

760

761 Using Taylor series expansion for $\sqrt{1+x}$ where $x = p^2/m^2$:

763
$$\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 - \frac{5}{128}x^4 + \mathcal{O}(x^5) \quad (29)$$

764

765 Applying this to the relativistic energy:

767
$$E_{\text{rel}}(p) = m \left(1 + \frac{1}{2} \frac{p^2}{m^2} - \frac{1}{8} \frac{p^4}{m^4} + \mathcal{O} \left(\frac{p^6}{m^6} \right) \right) \quad (30)$$

768
769

770 Simplifying:

771
$$E_{\text{rel}}(p) = m + \frac{p^2}{2m} - \frac{p^4}{8m^3} + \mathcal{O} \left(\frac{p^6}{m^5} \right) \quad (31)$$

772
773

774 For the non-relativistic approximation without the quartic term:

775
$$\lim_{p \rightarrow \infty} \frac{E_{\text{NR}}(p)}{E_{\text{rel}}(p)} = \lim_{p \rightarrow \infty} \frac{m + \frac{p^2}{2m}}{\sqrt{m^2 + p^2}} \quad (32)$$

776
777

778
$$= \lim_{p \rightarrow \infty} \frac{m + \frac{p^2}{2m}}{p \sqrt{1 + \frac{m^2}{p^2}}} \quad (33)$$

779
780

781
$$= \infty \quad (34)$$

782

783 This shows that the non-relativistic approximation without the quartic term diverges from the true
784 relativistic behavior.785 The quartic term introduces a negative contribution to the energy that precisely cancels the fourth-
786 order term in the relativistic expansion:

788
$$E_{\text{NRQCD}}(p) = m + \frac{p^2}{2m} - \frac{p^4}{8m^3} + \mathcal{O} \left(\frac{p^6}{m^5} \right) \quad (35)$$

789
790

791 Let's define a parameter $\lambda = p^2/m^2$ (proportional to v^2). For the NRQCD expansion to be valid,
792 we require $\lambda \ll 1$.793 The second derivative of the NRQCD energy with respect to λ is:

795
$$\frac{d^2 E_{\text{NRQCD}}}{d\lambda^2} = -\frac{m}{4} + \mathcal{O}(\lambda) \quad (36)$$

796

797 the truncated dispersion is concave and has a finite maximum, so it does not increase unboundedly.

799 B PHYSICS ANALYSIS
800801 In this section, we provide a stability analysis from starting with a physical perspective, starting
802 from our quartic Lagrangian from Eq. 3, we derive the 1D dynamics which we discretize implicitly
803 through the state-dependent step

804
$$\eta_t = \frac{\alpha_0}{1 + \min(\beta_3|v_t|^2, \alpha_1)}, \quad v_t = \beta_1 v_{t-1} + (1 - \beta_1) \nabla V(x_{t-1}), \quad x_t = x_{t-1} - \eta_t v_t. \quad (37)$$

805
806

807 For a quadratic potential $V(x) = \frac{1}{2}x^\top H x$ with $0 \prec H \preceq L I$, we work in the eigenbasis $H =$
808 $Q^\top \text{diag}(h_i) Q$. Writing coordinates as (x_i, v_i) and $h \in (0, L]$, the one-dimensional update reads
809

810
$$v = \beta_1 u + (1 - \beta_1) h, x, \quad x^+ = x - \eta v, \quad y := \eta h, \quad \alpha := 1 - \beta_1, \quad (38)$$

810 where $u := v_{t-1}$ and $\eta \in [\eta_{\min}, \alpha_0]$ with $\eta_{\min} = \alpha_0/(1 + \alpha_1)$. We introduce an energy that mirrors
 811 the quartic kinetic term and couples consistently to the curvature,
 812

$$813 \quad \mathcal{E}h(x, v) = \frac{1}{2}h, x^2 + \sigma, xv + \frac{\gamma}{2h}, v^2 + \frac{\delta}{4}, v^4, \quad (39)$$

815 and set

$$816 \quad \sigma = \zeta, \frac{\beta_1}{2}, \eta_{\min}, \quad \gamma = \zeta, \frac{\eta_{\min}}{1 - \beta_1}, \quad \delta \geq \frac{\alpha_0^2}{\beta_3}, \quad \zeta \in (0, 1). \quad (40)$$

818 A direct expansion of $\mathcal{E}h(x^+, v) - \mathcal{E}h(x, u)$ gives a quadratic form in (x, u) plus the quartic difference
 819 $(v^4 - u^4)/4$. Because the coefficients of the quadratic form are convex polynomials of
 820 $y = \eta h$, the worst case over $y \in [\eta_{\min}h, \alpha_0h]$ occurs at the endpoints. Evaluating there, and using
 821 the adaptive edge-of-stability bound for momentum

$$823 \quad \alpha_0 L < \frac{2(1 + \beta_1)}{1 - \beta_1}, \quad (41)$$

825 one obtains constants $c_x, c_u > 0$ (depending only on $\beta_1, \alpha_0, \eta_{\min}$) such that, uniformly for all
 826 $h \in [\mu, L]$ and all $\eta \in [\eta_{\min}, \alpha_0]$,

$$828 \quad \mathcal{E}h(x^+, v) - \mathcal{E}h(x, u) \leq -c_x, h, x^2 - c_u, \frac{u^2}{h} + \frac{\delta}{4}, (v^4 - u^4). \quad (42)$$

830 The gate implies $\eta \leq \alpha_0/(1 + \beta_3 v^2)$ and hence $\frac{1}{2}\eta^2 v^2 \leq \alpha_0^2/(8\beta_3)$. The choice $\delta \geq \alpha_0^2/\beta_3$ therefore
 831 ensures that whenever $|v| \geq 1/\sqrt{\beta_3}$ the quartic contribution dominates any potential increase from
 832 the discretization term and contributes strict dissipation; when $|v| \leq 1/\sqrt{\beta_3}$ the negative quadratic
 833 terms already control the step. Summing over coordinates yields a global energy

$$834 \quad \mathcal{E}(x, v) = \sum i = 1^d \mathcal{E}h_i(x_i, v_i), \quad (43)$$

836 and constants $\kappa_1, \kappa_2, \kappa_4 > 0$ such that

$$839 \quad \mathcal{E}(x_t, v_t) - \mathcal{E}(x_{t-1}, v_{t-1}) \leq -\kappa_1 x_{t-1}^\top H x_{t-1} - \kappa_2 v_{t-1}^\top H^{-1} v_{t-1} - \kappa_4 \sum_{i=1}^d \max \left\{ 0, v_{t,i}^4 - \frac{1}{\beta_3^2} \right\}. \quad (44)$$

841 This inequality formalizes the physical picture in Figure 1. The first two terms express
 842 curvature-weighted exchange between potential and quadratic kinetic energy with net dissipation;
 843 the quartic term is a brake that activates precisely in high-velocity regimes created near the adaptive
 844 edge of stability. The same mechanism explains the reduction in ringing and the lower sharpness
 845 observed in Figure 2: when $|v_t|$ grows, the gate reduces η_t and the quartic channel increases dissipation,
 846 pushing the dynamics back to a low-velocity regime. Two immediate consequences follow
 847 from the construction. First, the instantaneous adaptive stability threshold increases with the mea-
 848 sured velocity:

$$849 \quad L_{\text{EoS}}(t) = \frac{2(1 + \beta_1)}{(1 - \beta_1)\eta_t} = \frac{2(1 + \beta_1)}{(1 - \beta_1)\alpha_0} (1 + \min(\beta_3|v_t|^2, \alpha_1)), \quad (45)$$

852 so the method moves away from instability as oscillations grow. Second, each parameter update is
 853 uniformly bounded in norm by the gate,

$$855 \quad |x_t - x_{t-1}| = \eta_t |v_t| = \frac{\alpha_0 |v_t|}{1 + \beta_3 |v_t|^2} \leq \frac{\alpha_0}{2\sqrt{\beta_3}}, \quad (46)$$

857 which prevents runaway steps and is not available to classical momentum. These properties are
 858 consistent with the design of Algorithm 1 and the empirical behavior reported in the analysis section.

860 C CONVERGENCE PROOF FOR VRADAM

862 The proof is based on the work of the proof in Défossez et al. (2022).

863 There, the authors derive in equation A.37 the bound

$$\begin{aligned}
& \underbrace{\frac{1}{2R} \sum_{n=1}^N \frac{\alpha_n}{\Omega_n} \sum_{k=0}^{n-1} \beta_1^k \mathbb{E}[\|G_{n-k}\|_2^2]}_{\mathbf{A}} \leq F(x_0) - F_* \\
& + \underbrace{\alpha_N^2 L^2 \sum_{n=1}^N \mathbb{E}[\|u_n\|_2^2]}_{\mathbf{B}} \\
& + \underbrace{\frac{\alpha_N^3 L^2}{4R\sqrt{1-\beta_1}} \sum_{n=1}^N \sum_{l=1}^{n-1} \mathbb{E}[\|u_{n-l}\|_2^2] \sum_{k=l}^{n-1} \frac{\beta_1^k}{\sqrt{k}}}_{\mathbf{C}} \\
& + \underbrace{3\alpha_N R \sqrt{1-\beta_1} \sum_{n=1}^N \sum_{k=0}^{n-1} \left(\frac{\beta_1}{\beta_2}\right)^k \sqrt{k+1} \mathbb{E}[\|U_{n-k}\|_2^2]}_{\mathbf{D}}.
\end{aligned}$$

By bounding α_n with α_{\min} in expression A , and α_N with α_{\max} in expressions B, C, D we obtain the final result. Although not included in the proof, the numerical impact of the velocity bias correction becomes negligible after the first few update steps and asymptotic behavior remains unchanged (Défossez et al., 2022). It is well established that weight decay contributes to improved robustness and generalization in practice and is therefore included here, despite a challenging theoretical analysis.

D ABLATION ON KINETIC ENERGY POTENTIAL

Table 4 displays the test loss for higher powers k in the learning rate $\alpha_0/(1 + \min(\beta_3\|v_t\|^k, \alpha_1))$, which correspond to fifth- to eighth-order terms in the kinetic energy. Training was performed on CIFAR-10 for 10 Epochs with $\alpha_0 = 0.005$.

Table 4: Test Loss on CIFAR-10 for different kinetic energies

Power	Test Loss
2	0.932
3	1.155
4	0.974
5	1.004
6	1.036

E HYPERPARAMETERS, DATASETS AND MODEL ARCHITECTURES

We recommend $\beta_3 = 1.0$ and $\alpha_1 = 10$ as the default setting for VRAdam.

E.1 IMAGE CLASSIFICATION

This section details the comprehensive sweep for the CNN, on the CIFAR-10 dataset.

- Model: Convolutional Neural Network
- Dataset: CIFAR-10
- Hyperparameter sweep method: Bayesian optimization
- Optimization metric: validation loss

918
919
920
921
922
923
924
925

Table 5: Dataset Splits during CNN Sweep

Dataset Split	Configuration Description
Training	80% of the original CIFAR-10 training set (50,000 images).
Validation	20% of the original CIFAR-10 training set.
Test	Full CIFAR-10 test set (10,000 images).

926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949

Table 6: Fixed Hyperparameters during CNN Comprehensive Sweep

Parameter	Value
Model Architecture	Convolutional Neural Network
Dataset	CIFAR-10
Epochs	100
Batch Size	1024
Scheduler Type (AdamW)	WarmupCosineAnnealing
Warmup Epochs	5
Warmup Factor	0.1
Scheduler η min	1×10^{-5}
VRAdam β_1	0.9
VRAdam β_2	0.999
VRAdam power	2
VRAdam weight decay	1×10^{-5}
VRAdam ϵ	1×10^{-8}
AdamW β_1	0.9
AdamW β_2	0.999
AdamW weight decay	1×10^{-5}
SGD momentum	0.9
SGD nesterov	True
SGD weight decay	1×10^{-5}
RMSProp α	0.99
RMSProp	1×10^{-8}
RMSProp weight decay	1×10^{-5}

950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Table 7: Swept Hyperparameters during CNN Comprehensive Sweep

Optimizer	Parameter	Sweep Configuration	Optimal Parameter
VRAdam	α_0	Log-uniform, Min: 1×10^{-4} , Max: 0.1	0.0846
VRAdam	β_3	Uniform, Min: 0.1, Max: 1.5	1.015
VRAdam	α_1	Integer Uniform, Min: 3, Max: 30	29
AdamW	η	Log-uniform, Min: 1×10^{-5} , Max: 1×10^{-1}	0.0625
SGD	η	Log-uniform, Min: 1×10^{-5} , Max: 1×10^{-1}	0.00784
RMSProp	η	Log-uniform, Min: 1×10^{-5} , Max: 0.1	1.78e-4

E.2 LANGUAGE MODELING

This section details the comprehensive sweep for the Transformer, on the WikiText-2 dataset.

- Model: Transformer
- Dataset: Wikitext-2
- Hyperparameter sweep method: Bayesian optimization
- Optimization metric: validation loss

972
973
974
975
976
977
978
979
980
981
Table 8: Dataset Splits during Transformer Comprehensive Sweep

Dataset Split	Configuration Description
Training	Full WikiText-2 predefined training set.
Validation	Full WikiText-2 predefined validation set.
Test	Full WikiText-2 predefined test set.

982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
Table 9: Fixed Hyperparameters during Transformer Comprehensive Sweep

Parameter	Value
Model Architecture	TransformerModel
Epochs	100
Batch Size	32
Seed	0
Scheduler Type	WarmupCosineAnnealing
Warmup Epochs	5
Warmup Factor	0.1
Scheduler η	1×10^{-5}
Model sequence length	64
Model embed dimension	128
Model hidden dimension	256
VRAdam β_1	0.9
VRAdam β_2	0.999
VRAdam power	2
VRAdam weight decay	1×10^{-5}
VRAdam ϵ	1×10^{-8}
AdamW β_1	0.9
AdamW β_2	0.999
AdamW weight decay	1×10^{-5}
SGD sgd momentum	0.9
SGD sgd nesterov	True
RMSProp α	0.1
RMSProp ϵ	1×10^{-8}

1005
1006
1007
1008
1009
Table 10: Swept Hyperparameters during Transformer Comprehensive Sweep

Optimizer	Parameter	Sweep Configuration	Optimal Parameter
VRAdam	α_0	Log-uniform, Min: 1×10^{-5} , Max: 0.1	1.55e-05
VRAdam	β_3	Uniform, Min: 0.1, Max: 5.0	3.35
VRAdam	normgrad	Values: [True, False]	False
VRAdam	α_1	Integer Uniform, Min: 5, Max: 30	7
Adam	η	Log-uniform, Min: 1×10^{-5} , Max: 0.1	1.661e-05
SGD	η	Log-uniform, Min: 1×10^{-5} , Max: 1×10^{-1}	-
RMSProp	η	Log-uniform, Min: 1×10^{-5} , Max: 0.1	-

1020
1021
1022
1023
E.3 GENERATIVE MODELING WITH GFLOWNETS1024
1025
Here we include the hyperparameters used for reporting the performance of the optimizers for the GFlowNet.

1026
1027

Table 11: Hyperparameters GFlowNets

Optimizer	Parameter	Value
VRAdam	α_0	0.01
VRAdam	β_3	1
VRAdam	normgrad	False
VRAdam	α_1	19
VRAdam	weight decay	1×10^{-5}
AdamW	weight decay	1×10^{-5}
AdamW	η	0.01
SGD	η	0.01
RMSProp	η	0.01

1037

1038

E.4 EDGE OF STABILITY ANALYSIS

1040

1041

Table 12: Hyperparameters edge of stability analysis

1042

Parameter	Value
Model Architecture	ResNet 32
Max iterations	20000
Batch Size	1000
Seed	0
Loss criterion	Mean squared error
VRAdam α_0	0.002
VRAdam β_1	0.9
VRAdam β_2	0.999
VRAdam β_3	1
VRAdam power	2
VRAdam normgrad	False
VRAdam α_1	19
VRAdam ϵ	1×10^{-7}
Adam β_1	0.9
Adam β_2	0.999
Adam ϵ	1×10^{-7}

1059

1060

F COMPUTE RESOURCES

1061

1062

All experiments were run on Lambda cloud instances or the Google cloud platform (GCP). Experiments were conducted either using a NVIDIA L4 GPU with 24 GB of GPU memory and 31 GB of system memory or larger experiments were performed on a NVIDIA A10 with 24 GB of GPU memory and 200 GB of system memory. The GPT benchmark was run on an NVIDIA H100 GPU.

1066

1067

G LOSS CURVES WITH ERROR ENVELOPES

1068

1069

Train and validation loss curves calculated using different run values for language modeling using SGD Nesterov with momentum all generate NaN values. Visualization is not included.

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

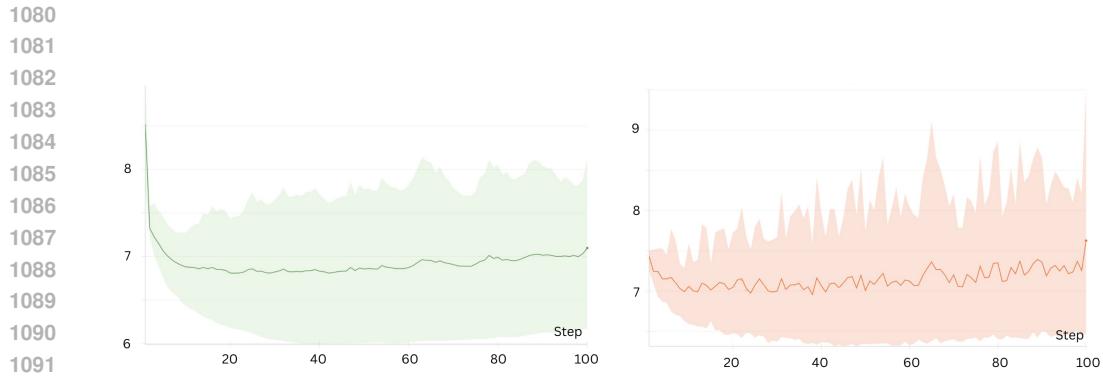


Figure 3: Train (left) and validation (right) loss curves with error envelopes calculated using different run values for language modeling using AdamW.

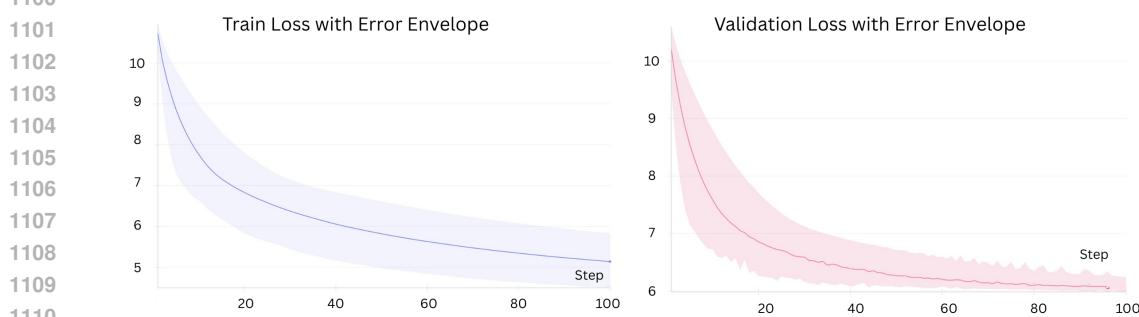


Figure 4: Train (left) and validation (right) loss curves with error envelopes calculated using different run values for language modeling using VRAdam.

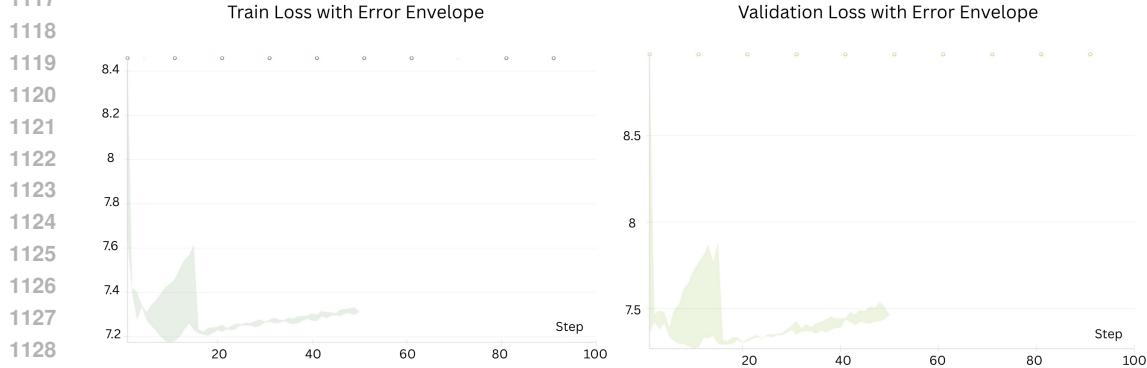
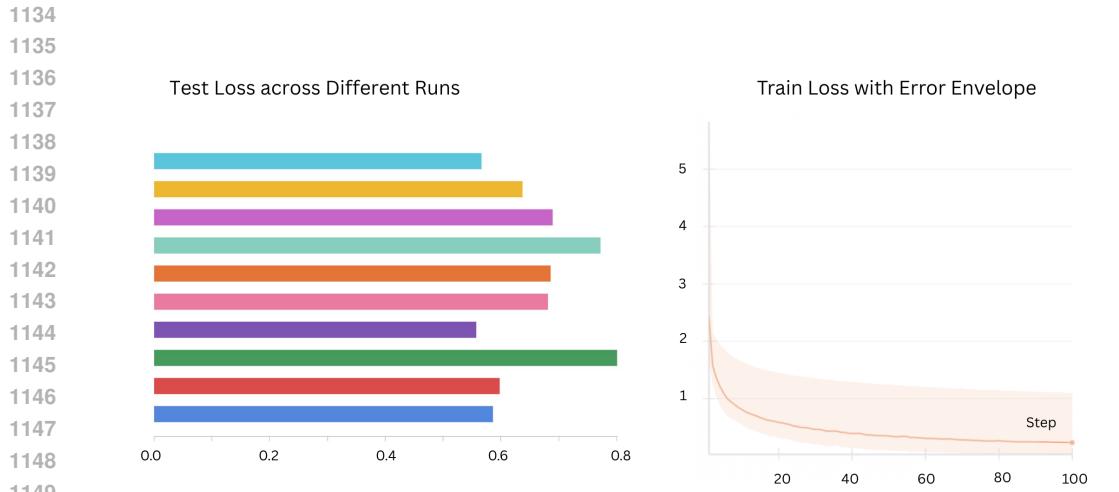
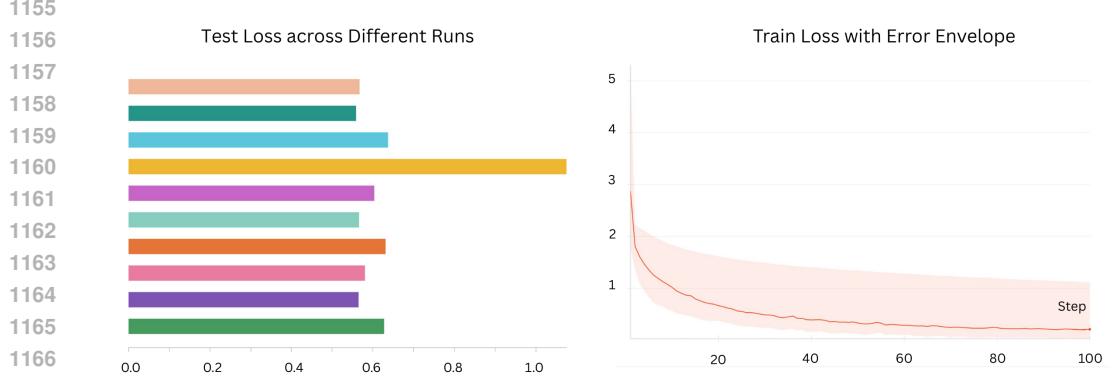


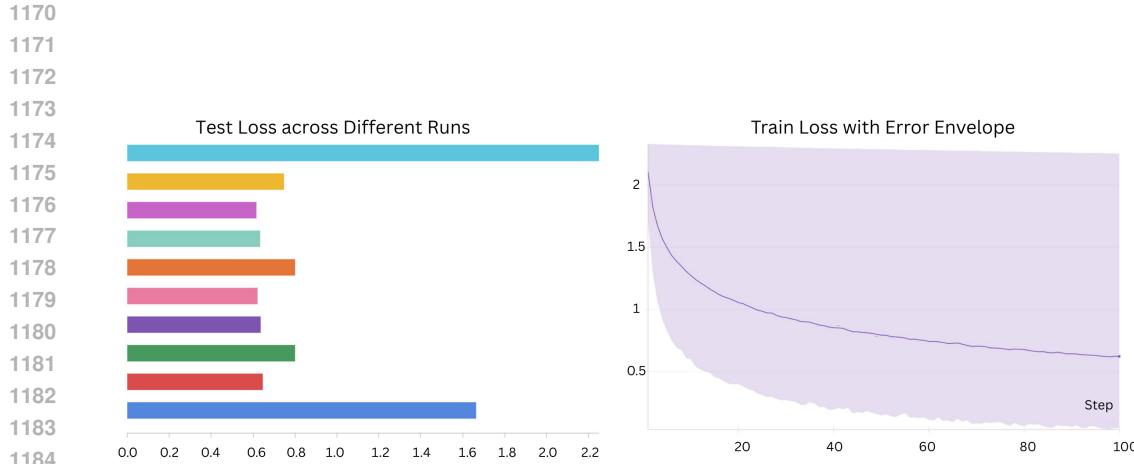
Figure 5: Train (left) and validation (right) loss curves with error envelopes calculated using different run values for language modeling using RMSProp. The dots on the top indicate NaN values.



1151 Figure 6: Train (right) curves with error envelopes calculated using different run values for image
 1152 classification using VRAdam. Test loss values (left) over different runs.



1168 Figure 7: Train (right) curves with error envelopes calculated using different run values for image
 1169 classification using AdamW. Test loss values (left) over different runs.



1186 Figure 8: Train (right) curves with error envelopes calculated using different run values for image
 1187 classification using SGD Nesterov with Momentum. Test loss values (left) over different runs.

1242
1243
1244
1245
1246
1247

H BACKGROUND ON PHASE SPACE, LAGRANGIANS, AND HAMILTONIANS

1248 H.1 PHASE SPACE

1249
1250 In classical mechanics, the state of a dynamical system is completely described by a point in a high-
1251 dimensional abstract space called **phase space** Kawai et al. (2007). For a system with N degrees of
1252 freedom (e.g., the positions of multiple particles), the phase space is a $2N$ -dimensional space. Its
1253 axes correspond to the generalized coordinates x_i (representing positions) and their corresponding
1254 generalized momenta p_i . Each point (x, p) in phase space represents a unique, instantaneous state
1255 of the system. The evolution of the system over time is then visualized as a trajectory traced out by
1256 this point moving through phase space.

1257 H.2 LAGRANGIAN FORMALISM

1258
1259 The Lagrangian formulation of classical mechanics describes the dynamics of a system using
1260 generalized coordinates and their time derivatives (velocities) Iro & Anderson (2003). The central
1261 quantity in this formalism is the **Lagrangian**, \mathcal{L} , which is a function of the system’s coordinates and
1262 velocities. It is typically defined as the difference between the system’s kinetic energy, T , and its
1263 potential energy, V :

1264
$$\mathcal{L}(x, v) = T(v) - V(x) \quad (47)$$

1265 where $v = \dot{x}$ represents the velocity. The system’s path through its configuration space is determined
1266 by the **Principle of Least Action**. This principle states that the actual trajectory taken by the system
1267 between a starting time t_1 and an ending time t_2 is the one that minimizes the action integral, S :

1268
1269
$$S = \int_{t_1}^{t_2} \mathcal{L}(x, \dot{x}, t) dt \quad (48)$$

1270
1271 Applying the calculus of variations to find the path that minimizes this action integral yields the
1272 fundamental **Euler-Lagrange equations of motion**:

1273
1274
$$\frac{d}{dt} \frac{\partial \mathcal{L}}{\partial v} - \frac{\partial \mathcal{L}}{\partial x} = 0 \quad (49)$$

1275
1276 Evaluating derivatives requires treating x and $\dot{x} = v$ as independent variables. This set of second-
1277 order differential equations fully defines the system’s trajectory. In the context of deep learning
1278 optimization, the potential energy $V(x)$ is analogous to the loss function $L_{\text{loss}}(\theta)$, with the model
1279 parameters θ serving as the coordinates x . Optimizing the loss function then corresponds to solving
1280 the system of differential equations with a numerical integrator.

1281 H.3 HAMILTONIAN FORMALISM

1282
1283 The Hamiltonian formalism offers an alternative, often more powerful, description of system dynamics
1284 that is set within phase space, using coordinates x and momenta p as its fundamental variables.
1285 The transition from the Lagrangian to the Hamiltonian framework is achieved via a mathematical
1286 procedure known as a **Legendre transformation** Helliwell & Sahakian (2020). First, the **generalized (or canonical) momentum** p is defined as the partial derivative of the Lagrangian with respect
1287 to the velocity:

1288
1289
$$p = \frac{\partial \mathcal{L}}{\partial v} \quad (50)$$

1290
1291 The **Hamiltonian**, \mathcal{H} , is then defined as:

1292
1293
$$\mathcal{H}(x, p) = \sum_i p_i v_i - \mathcal{L}(x, v) \quad (51)$$

1294
1295 For many standard physical systems where kinetic energy is a quadratic function of velocity and
potential energy is a function of position only, the Hamiltonian is equivalent to the total energy

1296 of the system, $\mathcal{H} = T + V$. The dynamics are then described by a pair of first-order differential
 1297 equations known as **Hamilton's equations**:

$$1299 \quad \dot{x} = \frac{\partial \mathcal{H}}{\partial p} \quad (52)$$

$$1300 \quad \dot{p} = -\frac{\partial \mathcal{H}}{\partial x} \quad (53)$$

1301 These equations provide an elegant description of the flow of system states through phase space.
 1302 A key feature of this formalism is that it naturally describes systems that conserve energy (if \mathcal{H} is
 1303 time-independent) and preserve the volume of phase space. This makes the Hamiltonian framework
 1304 exceptionally well-suited for analyzing the long-term stability of dynamical systems and serves as
 1305 the foundation for **symplectic optimization** methods.

I FURTHER DISCUSSION

1313 Recent work by Defazio et al. (2024) introduces *Schedule-Free* optimizers (e.g., Schedule-Free SGD
 1314 and AdamW), which remove the need for explicit learning rate schedules by utilizing a specific
 1315 weighting of the iterate sequence. While both VRAdam and Schedule-Free methods aim to simplify
 1316 hyperparameter tuning by modifying how the step size and updates are handled, they operate through
 1317 fundamentally different mechanisms and target distinct dynamical regimes.

1318 **Mechanism: Averaging vs. Feedback Control.** The core innovation of Schedule-Free methods
 1319 is an interpolation between primal and Polyak averaging, where the effective learning rate is de-
 1320 termined by a deterministic, time-dependent weighting scheme derived from online-to-batch con-
 1321 version guarantees. The effective step size in these methods is a function of the iteration index t ,
 1322 simulating a decay schedule without a fixed horizon.

1323 In contrast, VRAdam employs a *state-dependent* feedback mechanism. Our gating term, $\eta_t =$
 1324 $\alpha_0 / (1 + \beta_3 \|v_t\|^2)$, is not a explicit function of time, but strictly a function of the global momentum
 1325 buffer norm. Consequently, VRAdam reacts dynamically to the optimization trajectory: it actively
 1326 damps updates during periods of high oscillatory kinetic energy (common in the early training phase
 1327 or high-curvature regions) and relaxes the gate when the trajectory stabilizes. This creates a closed-
 1328 loop feedback control system rather than a pre-computed averaging schedule.

1329 **Theoretical Focus.** The theoretical underpinning of Defazio et al. (2024) focuses on achieving
 1330 worst-case optimal convergence rates for convex Lipschitz problems. Our analysis focuses on the
 1331 *Adaptive Edge of Stability* (AEoS) (Cohen et al., 2024). We derive our update rule from a quartic
 1332 Lagrangian to ensure global exponential stability by enforcing a uniform bound on the parameter
 1333 update norm, $\|\theta_t - \theta_{t-1}\|$, effectively raising the stability threshold in response to gradient bursts.

1334 Finally, we note that these approaches are mechanistically orthogonal. The velocity-regularized gate
 1335 of VRAdam operates on the preconditioned gradient and could, in principle, be combined with the
 1336 iterate averaging schemes of Schedule-Free methods, though we leave such hybrid explorations to
 1337 future work.