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Abstract

Training Graph Neural Networks (GNNs) on large-scale graphs is challenging.
The main difficulty is to obtain accurate node embeddings while avoiding the
neighbor explosion problem. One existing solution is using historical embeddings.
Specifically, by using historical embeddings for the out-of-batch nodes, these meth-
ods can approximate full-batch training without dropping any input data while
keeping constant GPU memory consumption. However, it still remains nascent to
specifically design a subgraph sampling method that can benefit these historical
embedding-based methods. In this paper, we first analyze the approximation er-
ror of node embeddings caused by using historical embeddings for out-of-batch
neighbors and prove that this approximation error can be minimized by minimizing
the staleness of historical embeddings of out-of-batch nodes. Based on the theo-
retical analysis, we design a simple yet effective Staleness score-based Subgraph
Sampling method, called S3, to benefit these historical embedding-based methods.
Experimental results show that our S3 sampling method can consistently improve
historical embedding-based methods and set the new state-of-the-art without bring-
ing additional computation overhead due to our efficient staleness score calculation,
improved re-sampling strategy, and faster training converge.

1 Introduction

Graph neural networks (GNNs) [Kipf and Welling, 2017, Velickovic et al., 2018, Xu et al., 2018,
Gasteiger et al., 2018, Corso et al., 2020, Chen et al., 2020] are powerful methods to learn node, edge,
and graph representations for various downstream tasks [Hu et al., 2020, 2021, Zhang and Chen,
2018, Gilmer et al., 2017, Wu et al., 2018, Yang et al., 2019]. However, the scalability of GNNs is
often limited due to neighbor explosion. Specifically, the size of the node receptive field increases
exponentially with respect to the number of layers/hops.

To improve the scalability of GNNs and the efficiency of GNN training, existing studies mainly focus
on designing advanced sampling strategies, including node-wise sampling methods [Hamilton et al.,
2017, Ying et al., 2018, Huang et al., 2023], layer-wise sampling methods [Chen et al., 2018, Huang
et al., 2018, Zou et al., 2019, Balin and Çatalyürek, 2023], and subgraph sampling methods [Zeng
et al., 2019, 2021, Chiang et al., 2019]. Given a sampled mini-batch B, the embedding hℓ+1

u for a
target node u is obtained by aggregating information from sampled neighbors, as

hℓ+1
u = f ℓ+1

θ (hℓu, {hℓv}v∈N (u)∩B) (1)

where hℓu is the embedding of node u at layer l, and N (u) denotes 1-hop neighbors of node u.
However, the information from unsampled neighbors is missed.
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Figure 1: Left: An example graph with in-batch nodes, 1-hop out-of-batch nodes, and other out-
of-batch nodes. Middle: Illustrations of historical embedding-based methods. Two main steps are
updating historical embeddings for in-batch nodes, and getting historical embeddings for 1-hop
out-of-batch nodes. In addition, GraphFM proposes another step to update historical embeddings
for 1-hop out-of-batch nodes. Right: Our proposed S3 subgraph sampling. Different from previous
methods [Chiang et al., 2019] that sample dense subgraphs by minimizing inter-partition edges, we
further define edge weights based on staleness scores. In this way, we can minimize the approximation
error of using historical embeddings compare to full-neighborhood propagation embeddings.

To mitigate this problem, several historical embedding-based methods [Chen et al., 2017, Cong
et al., 2020, Fey et al., 2021, Yu et al., 2022, Shi et al., 2023] have been proposed to use historical
embeddings of the unsampled neighbors as an affordable approximation. Especially, GAS [Fey et al.,
2021] provides a reliable framework to use historical embeddings and sets the state-of-the-art in
various benchmarks. As shown in GAS, the message passing with historical embeddings can be
formulated as

hℓ+1
u = f ℓ+1

θ (hℓu, {hℓv}v∈N (u))

= f ℓ+1
θ (hℓu, {hℓv} v ∈ N (u) ∩ B︸ ︷︷ ︸

in-batch neighbors

∪ {hℓv} v ∈ N (u)\B︸ ︷︷ ︸
out-of-batch neighbors

)

≈ f ℓ+1
θ (hℓu, {hℓv}v∈N (u)∩B ∪ {h̄ℓv}v∈N (u)\B︸ ︷︷ ︸

historical embeddings

)

(2)

where h̄ℓv is the corresponding historical embedding of node v at layer ℓ. GAS shows that using
historical embeddings can lead to constant GPU memory consumption with respect to input node
size without dropping any data. GraphFM [Yu et al., 2022] and LMC [Shi et al., 2023] further
enhance GAS by reducing the staleness of historical embeddings from the algorithmic perspective
and improving the accuracy of gradient estimation, respectively. Detailed illustrations of GAS and
GraphFM are in Fig. 1. However, However, the main challenge is that there is no sampling method
specifically designed that can further benefit these historical embedding-based methods.

In this paper, we provide our solution to systematically overcome the challenges and further improve
historical embedding-based methods. We first theoretically analyze the impact of the quality of
historical embeddings on the output node embeddings and prove that the approximation error of
the learned node embeddings can be upper bounded with the staleness of the historical embeddings.
Based on the theoretically analysis, we then design a novel subgraph sampling method, called S3,
based on staleness scores to explicitly minimize the approximation error of learned node embeddings.
To deal with the dynamic changes of staleness scores during training and improve the efficiency of
graph partitioning, we design a fast algorithm to avoid re-partitioning the graph from scratch. Our
refinement algorithm is 3x faster than graph partitioning from scratch on the large-scale ogbn-products
dataset with 2M nodes.

Our work is orthogonal to the existing design of historical embedding-based methods that we focus
on subgraph sampling for mini-batch training. Therefore, our method can be applied to all historical
embedding-based methods, and preserve their advantages that approximate full-batch training without
dropping any data while keeping constant GPU memory consumption. Our S3 shows consistent
performance improvement over three historical embedding-based methods (GAS, GraphFM, and
LMC). In addition, we show that staleness-based sampling does not bring additional computation
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overhead due to efficient staleness score calculation, improved re-sampling strategy, and faster
training converge.

2 Method

Historical embeddings has the unique advantage of enabling approximation of full-batch training
without dropping any data while keeping constant GPU memory consumption [Fey et al., 2021].
However, the main challenge is that there is no sampling method specifically designed for these
historical embedding-based methods. For example, GAS, GraphFM, and LMC [Fey et al., 2021, Yu
et al., 2022, Shi et al., 2023] simply apply Cluster-GCN [Chiang et al., 2019] to generate mini-batches
practically. In Cluster-GCN, the unweighted graph partitioning algorithm (e.g. METIS) [Karypis and
Kumar, 1998a, Dhillon et al., 2007] is directly used to convert the input graph into several subgraphs
such that the number of inter-partition edges is minimized. However, there is lack of justification
on whether Cluster-GCN can generate informative mini-batches to harness historical embeddings.
Indeed, in this section, we show that it is not optimal. Specifically, we first analyze the approximation
error of the learned node embeddings caused by using historical embeddings for out-of-batch nodes.
We prove that the approximation error can be minimized by minimizing the staleness of historical
embeddings. We then present our staleness score-based sampling (S3).

2.1 Approximation error analysis

As shown in Equation 2, the main idea of GNNs with historical embeddings is to approximate
full-batch embedding hℓ+1

u for each node u by aggregating embeddings {hℓv}v∈N (u)∩B for in-batch
neighbors and historical embeddings {h̄ℓv}v∈N (u)\B for out-of-batch neighbors. However, there
exists an approximation error if h̄ℓv ̸= hℓv for v ∈ N (u)\B. In this section, we analyze how historical
embeddings affect the approximation error of the final node embedding h̃Lu , which motivates the
design of our new sampling method.
Theorem 1. Given a GNN with a linear, graph-dependent aggregation and ReLU activations, the
embedding approximation error, i.e., the error between the full-neighborhood propagation embedding
hLu and the actual aggregated embedding h̃Lu by using historical embeddings,

∥hLu − h̃Lu∥
can be minimized by minimizing ∑

v∈N (u)\B

L−1∑
ℓ=1

Cℓv∥hℓv − h̄ℓv∥.

Here
∑L−1
ℓ=1 C

ℓ
v∥hℓv − h̄ℓv∥ represents the overall quality of the historical embeddings at all L − 1

layers where Cℓv is a weight that depends on both graph structure and model parameters, and we
want to minimize the sum of these terms of all out-of-batch neighbors. The proof for Theorem 1 is
provided in Appendix A. Intuitively, based on Equation 2, we can see that the approximation error
depends on both the number of out-of-batch neighbors and the quality of the historical embeddings
of these out-of-batch neighbors. However, previous methods such as GAS, GraphFM, and LMC
only consider the number of out-of-batch nodes and use unweighted graph partitioning algorithms to
minimize it. Unfortunately, they do not directly consider the quality of historical embedding which
limits their performance.

2.2 Staleness score-based subgraph sampling

Staleness scores of historical embeddings. As discussed in Section 2.1 and Theorem 1, the
embedding approximation error can be minimized by minimizing the weighted sum of ∥hℓv − h̄ℓv∥
for all out-of-batch neighbors at all ℓ = 1, · · · , L − 1 layers. Here ∥hℓv − h̄ℓv∥ is defined as the
staleness score of the historical embedding of node v at layer ℓ [Fey et al., 2021, Yu et al., 2022],
which measures the Euclidean distance between full-neighborhood propagation embedding hℓv and
historical embedding h̄ℓv . Formally, for each node v, the staleness score sℓv at layer ℓ is

sℓv = ∥hℓv − h̄ℓv∥. (3)
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Optimization objective. Based on Theorem 1, to sample a mini-batch B, our optimization objective
is

argmin
B

∑
u∈B

∑
v∈N (u)\B

∑
ℓ

Cℓvs
ℓ
v. (4)

And we want to minimize the weighted sum of the staleness scores for all out-of-batch neighbors.

In subgraph sampling, we want to convert the input graph G = (V, E) to M subgraphs
G1, G2, ..., GM , and each subgraph Gi can be viewed as a mini-batch Bi during training. Note
that the number of nodes in each mini-batch should be (roughly) the same. Considering all M
mini-batches, the overall minimization objective becomes

argmin
{B1,...,BM}

∑
Bi∈{B1,...,BM}

∑
u∈Bi

∑
v∈N (u)\Bi

∑
ℓ

Cℓvs
ℓ
v

subject to V = B1 ∪ B2 ∪ ... ∪ BM
Bi ∩ Bj = ∅ for all i ̸= j, 1 ≤ i, j ≤M

(5)

Equivalence to graph partitioning objective. Note that for u ∈ Bi, v ∈ N (u)\Bi is equivalent to
v ∈ Bj such that i ̸= j and (u, v) ∈ E . Therefore, the objective in Equation 5 is equivalent to

argmin
{B1,...,BM}

∑
u∈Bi,v∈Bj ,i̸=j,(u,v)∈E

∑
ℓ

Cℓus
ℓ
u + Cℓvs

ℓ
v

subject to V = B1 ∪ B2 ∪ ... ∪ BM
Bi ∩ Bj = ∅ for all i ̸= j, 1 ≤ i, j,≤M

(6)

Then our optimization objective becomes a graph partitioning problem where we want to minimize
the edge weight euv =

∑
ℓ C

ℓ
us
ℓ
u + Cℓvs

ℓ
v for all inter-partition edges. Therefore, we can use graph

partitioning algorithms to minimize our objective and generate subgraphs (mini-batches) while
explicitly minimizing the approximation error of learned node embeddings.

Staleness score-based Subgraph Sampling (S3). Our objective aligns with the Kernighan-Lin
objective [Kernighan and Lin, 1970] for graph partitioning problem, where we aim to minimize
the total edge weight euv =

∑
ℓ C

ℓ
us
ℓ
u + Cℓvs

ℓ
v for all inter-partition edges. Nevertheless, it is often

impractical to use the exact
∑
ℓ C

ℓ
us
ℓ
u + Cℓvs

ℓ
v as the edge weight since the computations of Cℓu, C

ℓ
v

involve a lot of path-dependent factors as shown in Appendix A. Alternatively, we drop them to
simplify the computations, i.e., euv =

∑
ℓ s
ℓ
u + sℓv. Meanwhile, multi-level approaches proposed

by Karypis and Kumar [1997], Dhillon et al. [2007] have been widely employed to efficiently solve
the graph partitioning tasks based on similar objectives. In this way, our S3 sampling works as
follows. We first define the weight of each edge (u, v) as the sum of the staleness scores of the source
and target nodes. Then we apply multi-level graph partitioning to generate mini-batches. In this way,
we can explicitly reduce the approximation error of learned node embeddings.

2.3 Efficient staleness score calculation

Calculating staleness score requires both historical embeddings and full-neighborhood propagation
embedding. To reduce the cost and avoid out-of-memory issue for full-neighborhood propagation, we
employ a layer-wise mini-batch inference following GAS. Specifically, we iterate over the mini-batch
loader in a layer-wise fashion. For each individual layer and mini-batch, we do a forward pass to
compute the aggregated node embeddings. In order to re-use some intermediate representations,
we maintain a dictionary for each individual mini-batch. In this way, we can safely obtain full-
neighborhood propagation during inference, even for very large-scale graphs. Note that this technique
can only be use during inference to reduce the cost and avoid out-of-memory issue, because during
training, we have to calculate gradient.

2.4 Re-sampling via fast refinement

To reduce cost, we further propose an improved re-sampling strategy to reduce the frequency of
staleness score calculation and graph partitioning time. Specifically, in our S3 sampling method, the
edge weight euv =

∑
ℓ s
ℓ
u + sℓv evolves dynamically throughout the training process because of the

continual updates applied to both historical embeddings and learnable parameters during training. To
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Table 1: Comparison between our sampling method and other baseline methods. We apply our S3
sampling method to the three popular and powerful historical embedding-based methods, GAS [Fey
et al., 2021], GraphFM [Yu et al., 2022], and LMC [Shi et al., 2023]. We report the mean and standard
deviation over five random runs. The three different background colors, gray , pink , and yellow ,
correspond to the three baseline methods. – indicates there is no reported value. Note that for Yelp,
GCN is much worse than other models, therefore, we do not report this. Red indicates that our
sampling method can improve the corresponding baselines with their default sampling.

# Nodes 89K 230K 717K 169K 2.4M
# Edges 450K 11.6M 7.9M 1.2M 61.9M
Method Flickr Reddit Yelp ogbn-arxiv ogbn-products
VR-GCN 0.482 ± 0.003 0.964 ± 0.001 0.640 ± 0.002 – –
FastGCN 0.504 ± 0.001 0.924 ± 0.001 0.265 ± 0.053 – –
GraphSAINT 0.511 ± 0.001 0.966 ± 0.001 0.653 ± 0.003 – 0.791 ± 0.002
Cluster-GCN 0.481 ± 0.005 0.954 ± 0.001 0.609 ± 0.005 – 0.790 ± 0.003
SIGN 0.514 ± 0.001 0.968 ± 0.000 0.631 ± 0.003 0.720 ± 0.001 0.776 ± 0.001
GraphSAGE 0.501 ± 0.013 0.953 ± 0.001 0.634 ± 0.006 0.715 ± 0.003 0.783 ± 0.002

GAS 0.534 ± 0.001 0.954 ± 0.000 – 0.715 ± 0.002 0.767 ± 0.002GCN S3 + GAS 0.545 ± 0.001 0.955 ± 0.000 – 0.724 ± 0.002 0.771 ± 0.002
GAS 0.554 ± 0.003 0.967 ± 0.000 0.639 ± 0.003 0.725 ± 0.003 0.770 ± 0.002GCNII S3 + GAS 0.567 ± 0.002 0.969 ± 0.001 0.652 ± 0.003 0.735 ± 0.002 0.778 ± 0.002
FM 0.535 ± 0.002 0.953 ± 0.000 – 0.715 ± 0.003 0.767 ± 0.001GCN S3 + FM 0.549 ± 0.001 0.952 ± 0.000 – 0.722 ± 0.002 0.770 ± 0.002
FM 0.547 ± 0.003 0.965 ± 0.001 0.641 ± 0.003 0.725 ± 0.003 0.771 ± 0.002GCNII S3 + FM 0.566 ± 0.003 0.969 ± 0.000 0.652 ± 0.002 0.733 ± 0.003 0.776 ± 0.001
LMC 0.538 ± 0.001 0.954 ± 0.000 – 0.714 ± 0.002 0.765 ± 0.002GCN S3 + LMC 0.541 ± 0.001 0.955 ± 0.000 – 0.721 ± 0.002 0.770 ± 0.002
LMC 0.554 ± 0.005 0.969 ± 0.000 0.647 ± 0.003 0.728 ± 0.002 0.769 ± 0.002GCNII S3 + LMC 0.562 ± 0.002 0.969 ± 0.000 0.650 ± 0.003 0.731 ± 0.001 0.773 ± 0.002

deal with the dynamic changes of staleness scores and improve the efficiency of graph partitioning,
we further design a fast algorithm to avoid re-partitioning the graph from scratch. In addition, we
carefully design the re-sampling scheduler (frequency) based on empirical observations.

Re-sampling scheduler. To deal with the graph partitioning for dynamic graphs, one of the key factors
is the partitioning frequency (scheduler). This hyperparameter plays a pivotal role in dictating when
re-partitioning should be initiated, holding significant implications for the overall time complexity
of the partitioning process. Practically, we find that conducting re-partitioning after a fixed number
of epochs (e.g. 20 epochs) consistently yields favorable results without imposing significant time
overhead. Detailed empirical analysis on the frequency is included in Section 3.2.

Efficient refinement. In addition, instead of re-partitioning the graph from scratch, we use k-way
Kernighan–Lin refinement algorithm [Karypis and Kumar, 1998b] to do refinement, which is much
more efficient. Specifically, at the t-th training epoch, instead of directly partitioning the graph Gt

into Gt1, G
t
2, ..., G

t
M , we perform refinement on the partitioning result Gt−1

1 , Gt−1
2 , ..., Gt−1

M at the
previous epoch. The refinement is based on the gain, i.e., the reduction in the edge cuts, by moving
nodes to other mini-batches. Formally, for a node u ∈ Bi, the potential gain of moving it from
subgraph Gi to Gj is

g(u)j = EW (u)j − IW (u)

=
∑

v∈N (u)∩Bj

euv −
∑

v∈N (u)∩Bi

euv. (7)

Node u is moved to Gk such that k = argmaxj g(u)j .

3 Experiments

3.1 Main empirical results

Since our sampling method is specially designed for historical embedding-based methods, we select
three most recent and powerful historical embedding-based backbone methods (GAS [Fey et al.,
2021], GraphFM [Yu et al., 2022], and LMC [Shi et al., 2023]) to show the improvement of our S3
sampling. We rerun some baseline method multiple times to get means and standard deviation if not
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Figure 2: Comparison between GAS (blue) and S3 + GAS (green and purple) on ogbn-products and
Reddit datasets in terms of staleness scores of historical embeddings (solid line) and testing accuracy
(dashed line). Results show that our S3 sampling leads to improved quality of historical embeddings
(lower staleness score) and better accuracy.

provided in original paper. The comparison with baseline methods is shown in Table 1. Results show
that our new sampling method can improve the performance of all three historical embedding-based
methods (GAS, GraphFM, and LMC) on almost all datasets. The consistent improvements indicate
the great effectiveness and generalizability of our S3 sampling method. In detail, we achieve more
than 1% improvement on most datasets.

Specifically, as shown in Fig. 2, our S3 + GAS leads to improved quality of historical embeddings
(lower staleness score) and better accuracy, especially for the largest dataset we used, ogbn-products
with more than 2M nodes.

3.2 Efficiency analysis

Compared to baseline methods, our S3 requires additional steps to compute staleness score and
do re-sampling. Here we show that we do not bring additional computational overhead due to our
efficient staleness score calculation and improved re-sampling strategy, as in Table 2. Specifically, we
show that the time for staleness score calculation is much smaller than the training time per epoch.
And our fast refinement can significantly reduce the time for graph partitioning, especially for the
large-scale graphs, e.g. ogbn-products with more than 2M nodes. Note that in the next subsection, we
also show that doing re-sampling every fixed number of epochs (e.g. 20 epochs) already consistently
yields favorable results, which further support that our method does not bring additional overhead. In
addition, with out designed subgraph sampling, the training converge faster, as in Table 3.

Table 2: Training, staleness score calculation, and re-sampling time.

Running time (s) ogbn-arxiv ogbn-products
Training per epoch 1 37
Staleness score calculation 0 3
Re-sampling from scratch 3 120
Re-sampling with fast refinement 2 48

Table 3: Number of epochs and total running time. Here we only list the number with LMC, because
among the three historical embedding-based methods, LMC has the shortest running time. This is
because LMC retrieves the discarded messages in backward passes, leading to accurate mini-batch
gradients and accelerating convergence.

Flickr & GCNII ogbn-arxiv & GCNII

Epochs LMC 356 197.4
S3 + LMC 211.4 180

Runtime (s) LMC 475 178
S3 + LMC 304 175

4 Conclusion

We focus on the task of training GNNs on large-scale graphs, where the main challenge is the neighbor
explosion problem. Many of the existing methods use historical embeddings to solve this problem. In
this paper, we provide a simple yet effective sampling method called S3 to further benefit historical
embedding-based methods. Our S3 is build based on the theoretical analysis of approximation error
caused by using historical embeddings. Experimental results show that our sampling method can
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further improve existing historical embedding-based methods and set new state-of-the-art on various
datasets without bring additional computation overhead.

References
Muhammed Fatih Balin and Ümit Çatalyürek. Layer-neighbor sampling — defusing neighborhood

explosion in gnns. In Advances in Neural Information Processing Systems, volume 36, 2023.

Jianfei Chen, Jun Zhu, and Le Song. Stochastic training of graph convolutional networks with
variance reduction. arXiv preprint arXiv:1710.10568, 2017.

Jie Chen, Tengfei Ma, and Cao Xiao. FastGCN: Fast learning with graph convolutional networks via
importance sampling. In International Conference on Learning Representations, 2018.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In Proceedings of the 37th International Conference on Machine Learning,
pages 1725–1735. PMLR, 2020.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-GCN: An
efficient algorithm for training deep and large graph convolutional networks. In Proceedings of
the 25th ACM SIGKDD international conference on knowledge discovery & data mining, pages
257–266, 2019.

Anna Choromanska, Yann LeCun, and Gérard Ben Arous. Open problem: The landscape of the loss
surfaces of multilayer networks. In Conference on Learning Theory, pages 1756–1760. PMLR,
2015.

Weilin Cong, Rana Forsati, Mahmut Kandemir, and Mehrdad Mahdavi. Minimal variance sampling
with provable guarantees for fast training of graph neural networks. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 1393–1403,
2020.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal
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A Proof of Theorem 1

Path-based view of GNNs. We can view a graph neural network with ReLUs as a directed acyclic
computational graph and express the i-th output logit of node u via paths through this graph [Gasteiger
et al., 2022] as

hLu,i = C
∑

v∈NL
all(u)

ψ∑
p=1

ϕ∑
q=1

zv,p,i,qxv,p,i,q

L∏
ℓ=1

aℓv,pw
ℓ
i,q,

where C is a constant related to the size of the network [Choromanska et al., 2015], NL
all(u) includes

all nodes within L-hop of node u, ψ is the total number of graph-based paths, ϕ is the total number of
paths in learnable weights, zv,p,i,q ∈ {0, 1} denotes whether the path is active or inactive when any
ReLU is deactivated, xv,p,i,q is the input feature used in the path, aℓv,p denotes the graph-dependent
but feature-independent aggregation weight, and wℓi,q represents the used entry of the weight matrix
Wℓ at layer ℓ.

Aggregated embedding h̃Lu by using historical embeddings. In the historical embedding-based
methods [Fey et al., 2021], the aggregated feature h̃Lu of node u is based on the input features xv
of in-batch nodes NL

in(u) within L-hop of node u, input features xv of 1-hop out-of-batch nodes
N 1
out(u), and the historical embeddings h̄v of 1-hop out-of-batch nodes N 1

out(u), denoted as

h̃Lu,i = C
∑

v∈NL
in(u)

ψin
0∑

p=1

ϕin
0∑

q=1

zv,p,i,qxv,p,i,q

L∏
ℓ=1

aℓv,pw
ℓ
i,q

+ C
∑

v∈N 1
out(u)

ψout
L−1∑
p=1

ϕout
L−1∑
q=1

zv,p,i,qh̄
L−1
v,p,i,qa

L
v,pw

L
i,q

+ C
∑

v∈N 1
out(u)

ψout
L−2∑
p=1

ϕout
L−2∑
q=1

zv,p,i,qh̄
L−2
v,p,i,q

L∏
ℓ=L−1

aℓv,pw
ℓ
i,q

+ . . .

+ C
∑

v∈N 1
out(u)

ψout
1∑
p=1

ϕout
1∑
q=1

zv,p,i,qh̄
1
v,p,i,q

L∏
ℓ=2

aℓv,pw
ℓ
i,q

+ C
∑

v∈N 1
out(u)

ψout
0∑
p=1

ϕout
0∑
q=1

zv,p,i,qxv,p,i,q

L∏
ℓ=1

aℓv,pw
ℓ
i,q.
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Note that N 1
out(u) is equivalent to N (u)\B in the main text. In the appendix, we use N 1

out(u) to
simplify the notation.

Full-neighborhood propagation embedding hLu . Based on the path-based view of GNNs, the
full-neighborhood propagation embedding hLu can be formulated as

hLu,i = C
∑

v∈NL
all(u)

ψ∑
p=1

ϕ∑
q=1

zv,p,i,qxv,p,i,q

L∏
ℓ=1

aℓv,pw
ℓ
i,q

= C
∑

v∈N 1
in(u)

ψin
L−1∑
p=1

ϕin
L−1∑
q=1

zv,p,i,qh
L−1
v,p,i,qa

L
v,pw

L
i,q

+ C
∑

v∈N 1
out(u)

ψout
L−1∑
p=1

ϕout
L−1∑
q=1

zv,p,i,qh
L−1
v,p,i,qa

L
v,pw

L
i,q

= C
∑

v∈N 2
in(u)

ψin
L−2∑
p=1

ϕin
L−2∑
q=1

zv,p,i,qh
L−2
v,p,i,q

L∏
ℓ=L−1

aℓv,pw
ℓ
i,q

+ C
∑

v∈N 1
out(u)

ψout
L−2∑
p=1

ϕout
L−2∑
q=1

zv,p,i,qh
L−2
v,p,i,q

L∏
ℓ=L−1

aℓv,pw
ℓ
i,q

+ C
∑

v∈N 1
out(u)

ψout
L−1∑
p=1

ϕout
L−1∑
q=1

zv,p,i,qh
L−1
v,p,i,qa

L
v,pw

L
i,q

= C
∑

v∈NL
in(u)

ψin
0∑

p=1

ϕin
0∑

q=1

zv,p,i,qxv,p,i,q

L∏
ℓ=1

aℓv,pw
ℓ
i,q

+ C
∑

v∈N 1
out(u)

ψout
0∑
p=1

ϕout
0∑
q=1

zv,p,i,qxv,p,i,q

L∏
ℓ=1

aℓv,pw
ℓ
i,q

+ C
∑

v∈N 1
out(u)

ψout
1∑
p=1

ϕout
1∑
q=1

zv,p,i,qh
1
v,p,i,q

L∏
ℓ=2

aℓv,pw
ℓ
i,q

+ . . .

+ C
∑

v∈N 1
out(u)

ψout
L−2∑
p=1

ϕout
L−2∑
q=1

zv,p,i,qh
L−2
v,p,i,q

L∏
ℓ=L−1

aℓv,pw
ℓ
i,q

+ C
∑

v∈N 1
out(u)

ψout
L−1∑
p=1

ϕout
L−1∑
q=1

zv,p,i,qh
L−1
v,p,i,qa

L
v,pw

L
i,q.

Approximation error. The difference hLu,i − h̃Lu,i between the full-neighborhood propagation
embeddinghLu,i and the actual aggregated embedding h̃Lu,i is

C
∑

v∈N 1
out(u)

ψout
L−1∑
p=1

ϕout
L−1∑
q=1

zv,p,i,q(h
L−1
v,p,i,q − h̄L−1

v,p,i,q)a
L
v,pw

L
i,q

+ C
∑

v∈N 1
out(u)

ψout
L−2∑
p=1

ϕout
L−2∑
q=1

zv,p,i,q(h
L−2
v,p,i,q − h̄L−2

v,p,i,q)

L∏
ℓ=L−1

aℓv,pw
ℓ
i,q

+ . . .
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+ C
∑

v∈N 1
out(u)

ψout
1∑
p=1

ϕout
1∑
q=1

zv,p,i,q(h
1
v,p,i,q − h̄1v,p,i,q)

L∏
ℓ=2

aℓv,pw
ℓ
i,q.

Then squaring both sides of the equation, we have the following inequality since the sum of the
squares is always less than or equal to the square of the sums.

(hLu,i − h̃Lu,i)
2 ≤

C2
∑

v∈N 1
out(u)

ψout
L−1∑
p=1

ϕout
L−1∑
q=1

zv,p,i,q(h
L−1
v,p,i,q − h̄L−1

v,p,i,q)
2(aLv,pw

L
i,q)

2

+ C2
∑

v∈N 1
out(u)

ψout
L−1∑
p=1

ϕout
L−2∑
q=1

zv,p,i,q(h
L−2
v,p,i,q − h̄L−2

v,p,i,q)
2

L∏
ℓ=L−1

(aℓv,pw
ℓ
i,q)

2

+ . . .

+ C2
∑

v∈N 1
out(u)

ψout
1∑
p=1

ϕout
1∑
q=1

zv,p,i,q(h
1
v,p,i,q − h̄1v,p,i,q)

2
L∏
ℓ=2

(aℓv,pw
ℓ
i,q)

2.

Therefore, the approximation error can be formulated as

∥hLu − h̃Lu∥22
=

∑
i

(hLu,i − h̃Lu,i)
2

≤ C2
∑

v∈N 1
out(u)

ψout
L−1∑
p=1

ϕout
L−1∑
q=1

∑
i

zv,p,i,q(h
L−1
v,p,i,q − h̄L−1

v,p,i,q)
2(aLv,pw

L
i,q)

2

+ C2
∑

v∈N 1
out(u)

ψout
L−1∑
p=1

ϕout
L−2∑
q=1

∑
i

zv,p,i,q(h
L−2
v,p,i,q − h̄L−2

v,p,i,q)
2

L∏
ℓ=L−1

(aℓv,pw
ℓ
i,q)

2

+ . . .

+ C2
∑

v∈N 1
out(u)

ψout
1∑
p=1

ϕout
1∑
q=1

∑
i

zv,p,i,q(h
1
v,p,i,q − h̄1v,p,i,q)

2

L∏
ℓ=2

(aℓv,pw
ℓ
i,q)

2

≤
∑

v∈N 1
out(u)

CL−1
v ∥hL−1

v − h̄L−1
v ∥22

+
∑

v∈N 1
out(u)

CL−2
v ∥hL−2

v − h̄L−2
v ∥22

+ . . .

+
∑

v∈N 1
out(u)

C1
v∥h1v − h̄1v∥22

=
∑

v∈N 1
out(u)

L−1∑
ℓ=1

Cℓv∥hℓv − h̄ℓv∥22.
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Here Cℓv is a weight that depends on both the graph structure and model parameters. Finally, we have

∥hLu − h̃Lu∥ ≤
L−1∑
ℓ=1

Cℓv∥hℓv − h̄ℓv∥.

The approximation error, the error (Euclidean distance) between the full-neighborhood propagation
embedding hLu and the actual aggregated embedding h̃Lu , can be upper bounded by

∑L−1
ℓ=1 C

ℓ
v∥hℓv −

h̄ℓv∥. Therefore, we can minimize the approximation error by minimizing
∑L−1
ℓ=1 C

ℓ
v∥hℓv − h̄ℓv∥.

B Training details and ablation study

Table 4: Statistics of the datasets. Here “m” indicates the multi-label classification task, and “s”
indicates the single-label classification task.

Dataset # of nodes # of edges Avg. degree # of features # of classes Train/Val/Test
Flickr 89,250 899,756 10.0813 500 7(s) 0.500/0.250/0.250
Reddit 232,965 11,606,919 49.8226 602 41(s) 0.660/0.100/0.240
Yelp 716,847 6,997,410 9.7614 300 50(m) 0.750/0.150/0.100
ogbn-arxiv 169,343 1,166,243 6.8869 128 40(s) 0.537/0.176/0.287
ogbn-products 2,449,029 61,859,140 25.2586 100 47(s) 0.100/0.020/0.880

Datasets and baselines. Following previous studies, we evaluate our S3 subgraph sampling on 5
large-scale datasets, including Flickr [Zeng et al., 2019], Reddit [Hamilton et al., 2017], Yelp [Zeng
et al., 2019], ogbn-arxiv [Hu et al., 2021] and ogbn-products Hu et al. [2021]. Detailed descriptions
of the datasets are provided in Table 4. We consider node-wise, layer-wise, and subgraph sampling
methods, historical embedding-based methods, and pre-computing methods, as baselines, including
VR-GCN [Chen et al., 2017], FastGCN [Chen et al., 2018], GraphSAINT [Zeng et al., 2019], Cluster-
GCN [Chiang et al., 2019], SIGN [Frasca et al., 2020], GraphSAGE [Hamilton et al., 2017], GAS [Fey
et al., 2021], GraphFM [Yu et al., 2022], and LMC [Shi et al., 2023]. Results for baseline methods
are directly taken from their original papers.

Software, hardware, and license. The implementation of our sampling method is based on Py-
Torch [Paszke et al., 2019] (license: https://github.com/pytorch/pytorch/blob/main/LICENSE), Py-
GAS [Fey et al., 2021] (MIT License), PyTorch Sparse [Fey and Lenssen, 2019] (MIT License), PyG
(PyTorch Geometric) [Fey and Lenssen, 2019] (MIT License), and METIS [Karypis and Kumar,
1997] (Apache License). For a fair comparison with GAS (MIT License), GraphFM (GPL-3.0
license), and LMC, we follow their official code and only replace their sampling method with ours.
All experiments are conducted on one Nvidia GeForce RTX 2080 GPU.

B.1 Ablation Study

In our sampling method, we first define the edge weight as the sum of the staleness scores of the two
nodes. Then we partition this weighted graph into M subgraphs, corresponding to M mini-batches,
by minimizing the total edge weights of inter-partition edges. This definition of edge weight and
the associated minimization objective draw inspiration from our theoretical analysis, which aims to
minimize the approximation error arising from the use of historical embeddings. In this section, we
underscore the significance of our defined edge weights and minimization objective by comparing it
with different baseline approaches. The comparison results are detailed in Table 5.

Specifically, the "random node sampler" randomly partitions the input graph, whereas the other three
methods partition the input graph by minimizing inter-partition edges. "No edge weight" implies
that we disregard the staleness scores during sampling, employing a graph partitioning algorithm
solely to generate mini-batches. This is exactly the sampling method used in Cluster-GCN, GAS,
GraphFM, and LMC. "Random edge weight" assigns random values to the edge weights. Meanwhile,
"staleness score-based edge weight" is the approach introduced in this paper. Table 5 demonstrates
that our solution surpasses all the variants, highlighting the effectiveness of our method with its
optimal optimization objective.

In addition, as discussed in Section 2.2, the edge weight euv =
∑L−1
ℓ=1 s

ℓ
u + sℓv is defined as the sum

of the staleness scores of both source and target nodes over all layers. But practically, we find that it
is sufficient to only use the staleness scores at layer L − 1 and set euv = sL−1

u + sL−1
v to achieve
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Table 5: Ablation study on the optimization objective in our S3. Specifically, in S3, we consider
staleness scores as edge weight and aim to minimize the total edge weights of inter-partition edges.
All results are based on the GAS baseline.

Method Flickr & PNA ogbn-arxiv & PNA
Random node sampling 0.5521 0.7104
No edge weight 0.5667 0.7250
Random edge weight 0.5671 0.7228
Staleness score-based edge weight (ours) 0.5729 0.7303
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Figure 3: Staleness scores at different layers.

similar results. Therefore, in our final experiments, we only use the staleness score of layer L− 1
in our S3 sampling method. We believe this is because the staleness score increases monotonically
across the layers due to error accumulation, as shown in Fig. 3 (ogbn-arxiv& GCNII). Therefore,
only using the staleness scores at layer L− 1 can also minimize our optimization objective.

During training, we observe some extreme staleness scores which can lead to poor performance.
Therefore, we normalize the staleness scores before performing our S3 sampling. Specifically, for
staleness scores larger than a fixed value x, we set them to x. We choose x as the value that is greater
than 90% of the staleness scores for all nodes.

C Limitations and discussions

As discussed in the paper, our sampling method is designed for and built on top of historical
embedding-based methods, which has it own limitation. Specifically, the advantage of historical
embedding-based methods is approximating full-batch training without dropping any data while
keeping constant GPU memory consumption. However, they require additional (CPU) memory to
store the historical embeddings for each node in each layer. Hash-based solutions can be applied to
reduce the memory cost.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The introduction and introduction summarize the main contribution of this
paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Included in the Appendix C.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.
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For example, a facial recognition algorithm may perform poorly when image resolution
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will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if
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• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Included in Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Justification: We only used public dataset and include training details in Appendix B.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: In Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report mean and standard deviation over five random run.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We follow the rule and ensure to preserve anonymity.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work is designing a subgraph sampling method for GNNs training, there
is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Included in Appendix B.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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