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ABSTRACT

Parameter-efficient fine-tuning (PEFT) techniques such as low-rank adaptation
(LoRA) can effectively adapt large pre-trained foundation models to downstream
tasks using only a small fraction (0.1%-10%) of the original trainable weights. An
under-explored question of PEFT is in extending the pre-training phase without
supervised labels; that is, can we adapt a pre-trained foundation model to a new
domain via efficient self-supervised pre-training on this new domain? In this work,
we introduce ExPLoRA, a highly effective technique to improve transfer learning
of pre-trained vision transformers (ViTs) under domain shifts. Initializing a ViT
with pre-trained weights on large, natural-image datasets such as from DinoV2
or MAE, ExPLoRA continues the unsupervised pre-training objective on a new
domain, unfreezing 1-2 pre-trained ViT blocks and tuning all other layers with
LoRA. We then fine-tune the resulting model only with LoRA on this new domain
for supervised learning. Our experiments demonstrate state-of-the-art results on
satellite imagery, even outperforming fully pre-training and fine-tuning ViTs. Using
the DinoV2 training objective, we demonstrate up to 7.5% improvement in linear
probing top-1 accuracy on downstream tasks while using <10% of the number
of parameters that are used in prior fully-tuned state-of-the art approaches. Our
ablation studies confirm the efficacy of our approach over other baselines, including
PEFT and unfreezing more ViT blocks.

1 INTRODUCTION

Pre-training foundation models (Bommasani et al., 2021) for natural language (Brown et al., 2020;
Chowdhery et al., 2023; Touvron et al., 2023; Jiang et al., 2024) and natural images (Oquab et al.,
2023; He et al., 2022; Zhou et al., 2021; Rombach et al., 2022) has historically been computationally
intensive, often limited to organizations with substantial resources. However, recent advancements
in parameter-efficient fine-tuning (PEFT) techniques including low-rank adaptation (LoRA) and
others (Hu et al., 2021; Zhang et al., 2023b; Chavan et al., 2023; Qiu et al., 2023; Liu et al., 2023;
Jia et al., 2022) have sparked significant interest. These methods aim to adapt foundation models to
downstream supervised-learning tasks using a small fraction (0.1%-10%) of the model’s trainable
weights, with many based on the hypothesis that the required weight updates to the pre-trained model
have a “low intrinsic rank" (Hu et al., 2021; Li et al., 2018; Aghajanyan et al., 2020).

In this paper, we focus on visual foundation models (VFMs) such as DinoV2 or MAE (Oquab
et al., 2023; He et al., 2022), which were trained on large-scale natural-image datasets. Despite the
large investments in developing such models for natural images, they underperform when applied to
other domains with visual data (e.g. medical or satellite images). For example, fine-tuning a model
pre-trained on natural images on satellite image classification tasks is not as effective as fine-tuning
one that was pre-trained on satellite images (Cong et al., 2022; Ayush et al., 2021). To bridge this gap,
prevailing approaches invest similarly large levels of compute to pre-train VFMs on new domains,
inspired by techniques developed for natural images (Cong et al., 2022; Reed et al., 2023; Tang et al.,
2024; Khanna et al., 2024; Zhou et al., 2023; Moutakanni et al., 2024; Man et al., 2023).

In this work, we challenge this paradigm (fig. 1), asking whether pre-training from scratch on
each new domain is strictly necessary, since doing so is expensive (in compute and time) and

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

𝑊𝐷𝑆

Δ𝑠1

Δ𝑠2
𝑊𝐷𝑇

Δ𝑡2

Δ𝑡1

𝑊𝐷𝑆

Δ𝑠1

Δ𝑠2
Δ𝐷𝑇

Δ𝑡2

Δ𝑡1

ExPLoRA

Full pre-training from scratch Parameter-efficient supervised training Parameter-efficient unsupervised pre-training Parameter initialization

Figure 1: Consider two different image domains, DS and DT . Left: the traditional paradigm of pre-training
from scratch on each domain to yield WDS and WDT , and then fine-tuning on target datasets i to yield ∆si ,∆ti ,
for domains DS and DT , respectively. Right: our approach, which is to initialize with pre-trained weights from
domain DS and then learn unsupervised weights ∆DT for domain DT in a parameter-efficient manner.

precludes knowledge transfer from natural images. Instead, we wish to more efficiently leverage
the rich semantic information encoded in natural-image vision foundation models to adapt them to
new domains. Our proposed solution addresses these concerns using PEFT techniques for domain
adaptation via self-supervised learning.

We introduce ExPLoRA, which generalizes vision foundation models to new domains by extend-
ing the pre-training phase with parameter-efficient techniques. We initialize a vision transformer
(ViT) (Dosovitskiy et al., 2021) with pre-trained weights from natural-image datasets such as MAE or
DinoV2. Selectively unfreezing 1-2 transformer blocks, we tune remaining weights with LoRA and
continue unsupervised pre-training on the new domain. Subsequently fine-tuning with linear probing
or LoRA on this new domain for supervised learning outperforms prior state-of-the-art (SoTA)
approaches while training under 6-10% of the original weights. On satellite imagery, for example, we
demonstrate an 8% improvement in linear probing top-1 accuracy, and even an improvement over
prior SoTA fully pre-trained and fine-tuned techniques. We conduct an extensive study on RGB,
temporal, and multi-spectral satellite images, either matching or outperforming prior methods that
fully pre-train from scratch. ExPLoRA also generalizes to different domains such as wildlife, medical,
and agricultural imagery on the WILDS (Koh et al., 2021) benchmark. Our contributions include:

1. Introducing ExPLoRA, a novel parameter-efficient method that extends unsupervised pre-
training on target domains, achieving state-of-the-art supervised-learning performance using
a fraction of the original ViT weights (section 5).

2. Conducting a comprehensive case study on satellite imagery, showcasing improvements in
linear probing top-1 accuracy and outperforming existing techniques on datasets like fMoW.
We also demonstrate generalization to multiple other domains within WILDS (section 6).

3. Demonstrating ExPLoRA’s efficacy via ablation studies and by analyzing the differences in
local (eg: positional) and global (eg: class) information encoded in the patch representations
output by each ViT block (section 6.3).

2 RELATED WORK

VFMs VFMs such as DinoV2 or masked autoencoders (MAE) that pre-train with self-supervised
learning (SSL) have demonstrated remarkable performance across downstream tasks such as classifi-
cation or semantic segmentation Oquab et al. (2023); He et al. (2022); Grill et al. (2020); Chen et al.
(2020). However, there has also been a rise in domain-specific VFMs (Cong et al., 2022; Reed et al.,
2023; Moutakanni et al., 2024; Ma et al., 2024; Zhang et al., 2023a). For instance, SatMAE handles
temporal or multi-spectral satellite image inputs. Since these models contain hundreds of millions of
parameters, efficient adaptation to downstream tasks has become a key research focus.

PEFT PEFT methods have gained widespread adoption for efficiently adapting large models by
updating only a fraction of parameters, mitigating the prohibitive costs of full model tuning. LoRA
learns low-rank weight updates to frozen weights, while other methods modify the frequency or
number of trainable parameters per layer (Hu et al., 2021; Zhang et al., 2023b; Chavan et al., 2023;
Pu et al., 2023). Others use multiplicative orthogonal updates (Qiu et al., 2023; Liu et al., 2023) or
inject adapter modules (Steitz & Roth, 2024; Yin et al., 2023; Chen et al., 2022; Yin et al., 2024; Lian
et al., 2022), effectively retaining pre-training knowledge in frozen weights. Visual prompt tuning
(VPT) methods concatenate learnable prompt tokens to image patch sequences, trading improved
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fine-tuning performance with increased inference costs (Jia et al., 2022; Yoo et al., 2023; Pei et al.,
2024; Han et al., 2023; Nie et al., 2023). ExPLoRA aims to supplement rather than replace these
methods, and thus can be configured with any existing or future PEFT method for ViT fine-tuning.

Domain Adaptation Domain adaptation enables models trained on a source domain to perform
well on a different but related target domain. Traditional transformer-based methods address this
via domain alignment, discriminative feature learning, cross-attention with pseudo-labels (Sun et al.,
2022; Chuan-Xian et al., 2022; Zhu et al., 2023), or adversarial learning with self-refinement (Yang
et al., 2023; Xu et al., 2021), typically requiring either labeled target data or source domain labels.
Recent work explores adapting ViTs through different means: e.g., continual pre-training via masked
image modeling (Mendieta et al., 2023) and scaled LoRA adapters (Scheibenreif et al., 2024) for
satellite imagery. ExPLoRA builds on this direction, enabling SSL directly on the target domain
while using significantly fewer parameters. Further comparisons with related work are in appendix A.

3 BACKGROUND

MAE The masked-autoencoder (MAE) (He et al., 2022) is an effective SSL technique for ViTs
that uses an asymmetric encoder-decoder architecture on images x ∈ RC×H×W , where patches are
masked before being processed by the ViT encoder L. The masked patches are then reconstructed by
a smaller decoder LD, with both trained jointly using mean-squared error on the reconstructed visible
pixels. While effective across domains (Cong et al., 2022; Bachmann et al., 2022), MAEs typically
require full fine-tuning for downstream tasks, which makes them computationally expensive.

DinoV2 DinoV2 (Oquab et al., 2023) is a robust SSL method for ViTs. Unlike MAE, DinoV2
features have demonstrated strong zero-shot performance, enabling adaptation to downstream tasks
even with a frozen ViT backbone. During pre-training, DinoV2 maintains two copies of a ViT
encoder: the student (trainable) and the teacher, which is updated using an exponential-moving
average of the student’s parameters. The training objective incorporates a global, image-level loss
from Dino (Caron et al., 2021), a patch-based loss from iBOT (Zhou et al., 2021), and regularizers
including KoLeo (Delattre & Fournier, 2017) and Sinkhorn-Knopp centering (Caron et al., 2020).

LoRA Low-rank adaptation (LoRA) (Hu et al., 2021) assumes that the weight update to change a
set of unsupervised pre-trained weights to supervised fine-tuned weights lives in a low-rank subspace,

W ≈ W0 +∆W = W0 +BA (1)

where W ∈ Rk2×k1 are the final, task-specific fine-tuned weights, W0 ∈ Rk2×k1 are the pre-trained
weights, ∆W ∈ Rk2×k1 is the weight update required to translate the pre-trained weights W0 to the
fine-tuned weights W . The key is that ∆W = BA where B ∈ Rk2×r and A ∈ Rr×k1 . That is, A
and B form a low-rank factorization of ∆W , where the rank r ≪ min(k1, k2).

4 PROBLEM SETUP

Consider a set of image domains D = {1, 2, . . . }, where each domain d ∈ D is associated with a
data distribution pd(x), and images x ∈ RCd×Hd×Wd have domain-specific channel, height, and
width. Let DS ⊂ D represent a set of source domains (e.g., internet-scale natural image data) and
DT ⊂ D represent target domains (e.g., satellite imagery). The data from the source domains follow
a distribution pDS

(x), and the target domain data come from pDT
(x). For some target domains

dT ∈ DT , the joint distributions pdT
(x,y) describe images x with associated supervised labels y

used for downstream tasks. We then assume access to the following:

(i) WDS
, pre-trained weights obtained via unsupervised pre-training on images from pDS

(x)

(ii) XDT
= {xi}Ni=1 ∼ pDT

(x), an unlabeled dataset of N images from new domains DT

(iii) YdT
= {xj ,yj}

MdT
j=1 ∼ pdT

(x,y) a labeled dataset of MdT
images from domain dT ∈ DT

Our objective is to learn optimal weights WdT
for each supervised-learning dataset YdT

in a parameter-
efficient manner while leveraging the knowledge stored in WDS

.
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Figure 2: An overview of ExPLoRA. The set L of L ViT blocks is partitioned into two sets: U , which denotes
blocks whose parameters are completely unfrozen, and L \ U which denotes blocks that undergo LoRA tuning
(only on the Q,V attention matrices). Note that the normalization layers are always unfrozen across all blocks.

Algorithm 1 ExPLoRA

1: Input: WDS
:= pre-trained ViT with L layers L = {1, . . . ,L}; XDT

:= unlabeled dataset
2: Initialize a frozen ViT with WDS

from source domains DS (e.g., DinoV2 or MAE weights).
3: Unfreeze all parameters of a subset of blocks U ⊂ L. (e.g., U = {L} or U = {1,L}).
4: Apply LoRA (with rank r) on Q and V weights in attention layers of frozen blocks in L \ U and

unfreeze normalization layers in these blocks.
5: Train all unfrozen parameters ∆DT

on the unlabeled dataset XDT
using the same unsupervised

objective as what was used for WDS
(e.g., DinoV2 or MAE).

6: Output: A new pre-trained model W ∗
DT

= WDS
+∆DT

for target domains DT .

Traditionally, the approach (fig. 1) has been to begin pre-training from scratch on the new domains of
interest in XDT

, and then fine-tune for each dataset YdT
, representing the following:

WdT
≈ WDT

+∆dT
(2)

where WDT
represents the weights learned from unsupervised pre-training on XDT

, and ∆dT
are

the weights learned from supervised fine-tuning on YdT
. However, this method is computationally

expensive: fully pre-training WDT
from scratch for every new domain requires prohibitively large

amounts of additional compute.

On the other hand, LoRA addresses this inefficiency in the following way:

WdT
≈ WDS

+∆dT
= WDS

+BdT
AdT

(3)

The LoRA hypothesis is that the update ∆dT
resides in a low-rank subspace when adapting pre-

trained weights WDS
to fine-tuned weights WdT

. This hypothesis holds well when pre-training and
fine-tuning distributions are similar, or where dT ∈ DS . However, when there is significant domain
shift, such as between natural images and multi-spectral satellite data, the low-rank assumption often
breaks down (see section 6.1.3).

Our goal is to learn WDT
in a parameter-efficient manner to bridge the large domain shift to DT

while leveraging the knowledge encoded in WDS
. We propose the following factorization of WdT

:

WdT
≈ WDS

+∆DT
+∆dT

(4)

where ∆DT
∈ Rk2×k1 is an additional update matrix learned from unsupervised pre-training on XDT

.
Crucially, ∆DT

requires only a fraction of the k1k2 parameters of WDS
, making it significantly more

efficient than full-rank pre-training. The resulting model, W ∗
DT

= WDS
+ ∆DT

≈ WDT
, retains

the benefits of unsupervised pre-trained VFMs, including strong feature extraction, effective linear
probing, KNN classification, and generalization to downstream tasks.

4
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5 METHOD

To learn ∆DT
, we propose ExPLoRA (i.e. Extended Pre-training with LoRA), a method that

efficiently adapts pre-trained ViTs for new target domains DT , described in algorithm 1.

In terms of notation, D-[L]-r64 refers to a ViT initialized with DinoV2 weights (denoted by D),
where U = {L}, and LoRA rank 64 is applied to the Q,V matrices of attention layers in L\U . Thus,
∆DT

comprises of all weights in U , LoRA matrices in L\U , and normalization layers. For U = {L},
∆DT

consists of only 5% of the original ViT parameters. As we show in section 6, our extended
pre-training approach can match or even outperform full pre-training on new domains from scratch.

ExPLoRA for DinoV2 We initialize a ViT-L with WDS
from the DinoV2 ViT-L encoder, without

registers (Darcet et al., 2023). Since the DinoV2 pre-trained checkpoints don’t contain the Dino or
iBOT linear heads, we initialize a shared Dino-iBOT linear head from scratch. This shared head is
fully trained during extended pre-training, adding only a minimal number of trainable parameters.

ExPLoRA for MAE We initialize a ViT-L with WDS
from the MAE ViT-L encoder. Since MAE

provides the pre-trained decoder, we use these weights to initialize our MAE decoder He et al. (2022).
During extended pre-training, in addition to the ExPLoRA recipe in algorithm 1, we apply LoRA
with rank r′ on the Q,V matrices of each attention layer in the frozen decoder. Note that the LoRA
rank r′ may differ from the LoRA rank r used in the ViT encoder (appendix B.4). All other decoder
weights, apart from the layer-normalization layers, are kept frozen. No block is fully unfrozen in the
MAE decoder, as it will be discarded after extended pre-training. This helps to minimize the number
of additional parameters trained in the decoder.

ExPLoRA for Multi-Spectral Inputs For the multi-spectral ViT introduced by SatMAE we need
to additionally unfreeze the positional encoding and the patch embedding weights for each group of
channels. These cannot be initialized from WDS

, as WDS
is trained on RGB inputs, whereas multi-

spectral inputs can have more or different channels. As part of ∆DT
in algorithm 1, the positional

encodings and patch embeddings for multi-spectral data are adapted during extended pre-training.
Aside from this, the approach remains unchanged from that of DinoV2 or MAE described earlier.

Storage Considerations After running ExPLoRA, we receive a new unsupervised model W ∗
DT

=
WDS

+∆DT
for the target domains DT . Any components that are not part of the ViT encoder (eg:

the Dino linear head or the MAE decoder) are discarded. Post-ExPLoRA, only ∆T , consisting of 1-2
unfrozen ViT blocks, LoRA matrices, and layer-normalization weights, are stored for each DT – all
of which can be merged into the original ViT, thus preserving architecture. Like LoRA, ExPLoRA
significantly reduces additional storage requirements compared to fully training WDT

from scratch.

Fine-Tuning post-ExPLoRA After extended pre-training with ExPLoRA, the output weights W ∗
DT

behave as any fully pre-trained ViT model WDT
. We can now use W ∗

DT
for feature extraction, PEFT,

or fine-tuning as desired. For instance, we could initialize a linear head for classification or a decoder
for segmentation, either of which is fully trainable. We can then freeze all ViT weights and apply
LoRA on the Q,V matrices of the attention layers (or use any another PEFT method). Lastly, we use
supervised fine-tuning on each labeled dataset YdT

to train the unfrozen parameters ∆dT
. This yields

our final model WdT
(eq. (4)), which can be used for classification, segmentation, detection etc.

6 EXPERIMENTS

Our experimental results consist of a case study on satellite imagery (section 6.1), with an ablation
study in section 6.1.2 and analysis in section 6.3. We evaluate on multiple downstream tasks in
sections 6.1.3, 6.1.4 and 6.2. Additional experiments and ablations are provided in appendix B
and training hyperparameter and compute configurations are mentioned in appendix C. Our results
achieve a new SoTA top 1 accuracy of 79.3% (↑1.5%) on the competitive fMoW-RGB benchmark,
outperforming fully pre-trained and fine-tuned models while using 6% of the ViT encoder parameters.
We also achieve a ↑8.2% improvement in linear probing accuracy on the same dataset. Across
other satellite datasets, we match fully-pretrained prior state-of-the-art methods, and demonstrate
competitive performance on WiLDS benchmark datasets as well.
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6.1 CASE STUDY: SATELLITE IMAGERY

We examine satellite images given their importance towards societal applications (section 7) and
since they represent a significant domain shift from natural images. There is a large and growing
body of research on developing foundation models for satellite imagery from scratch Cong et al.
(2022); Reed et al. (2023); Tang et al. (2024), thus presenting a good benchmark for ExPLoRA.

6.1.1 RGB SATELLITE IMAGES

Dataset We first consider the functional map of the world (fMoW) dataset of high-resolution
satellite images, each paired with one of 62 classification labels (Christie et al., 2018). fMoW is used
as a benchmark for many satellite-image foundation models (Cong et al., 2022; Reed et al., 2023).

Model Arch. PEFT Pre-train
#Params

Fine-tune
#Params Top 1 Acc.

ScaleMAE [53] ViT-L Full 303.3M 303.3M 77.80
SatMAE [17] ViT-L Full 303.3M 303.3M 77.78
SatMAE [17] ViT-L LoRA-r8 [29] 303.3M 0.8M 76.10

ScaleMAE [53] ViT-L LoRA-r8 [29] 303.3M 0.8M 78.01
GFM [43] ViT-L LoRA-r8 [29] 303.3M 0.8M 73.03
GDA [55] ViT-L GDA-r16 [55] 8.5M 8.5M 71.88
MAE [27] ViT-L LoRA-r8 [29] - 0.8M 76.21

M-[L]-r64 ViT-L LoRA-r8 [29] 18.7M 0.8M 76.55
DinoV2 [46] ViT-L LoRA-r8 [29] - 0.8M 78.08
DinoV2 [46] ViT-L BOFT-b2m8 [39] - 0.9M 72.40
DinoV2 [46] ViT-L Mona [68] - 7.1M 72.80
DinoV2 [46] ViT-L VPT-100 [30] - 0.4M 77.29
DinoV2 [46] ViT-L GVPT-100 [69] - 0.4M 76.22
DinoV2 [46] ViT-L AdaLoRA-r8 [71] - 1.2M 78.87
DinoV2 [46] ViT-L Adapter+ [58] - 1.4M 78.16
DinoV2 [46] ViT-L SA2VP [48] - 1.1M 77.53
D-[L]-r64 ViT-L SA2VP [48] 18.7M 1.1M 78.51
D-[L]-r64 ViT-L LoRA-r8 [29] 18.7M 0.8M 79.28

Table 1: Results on the fMoW-RGB validation dataset. The “Pre-train #Params" and “Fine-tune #Params" refer
to the trainable parameters of the ViT encoder required on the new domain, i.e. satellite images. M-[L]-r64
and D-[L]-r64 refer to ExPLoRA models initialized with MAE and DinoV2 weights, respectively (section 5).

We compare our results in table 1 against both prior fully pre-trained SoTA foundation models as
well as PEFT techniques applied on ViTs pre-trained with MAE and/or DinoV2 weights. Our results
demonstrate that D-ExPLoRA-[L]-r64 is SoTA in terms of fMoW-RGB average accuracy at 79.28%.
ExPLoRA outperforms techniques that require fully and/or continually pre-training ViTs on fMoW
while using 6% of the original ViT encoder parameters. Further experiments with MAE are in B.6.

ExPLoRA-initializations with LoRA fine-tuning outperform other unsupervised initializations paired
with PEFT techniques by 1-3%, including SoTA matrix-adaptation methods like AdaLoRA (Zhang
et al., 2023b), BOFT (Liu et al., 2023), VPT approaches such as GVPT (Yoo et al., 2023) and
SA2VP (Pei et al., 2024), and adapter methods like Adapter+ (Steitz & Roth, 2024). We also
outperform satellite image domain adaptation methods such as GFM (Mendieta et al., 2023) and
GDA (Scheibenreif et al., 2024) by 6%. Additionally, applying SA2VP to ExPLoRA-initialized ViTs
improves performance over a DinoV2 initialization by 1%, showcasing ExPLoRA’s compatibility
with other PEFT methods and its versatility as an initialization for new domains.

Using our strongest performing variant (i.e. ExPLoRA with DinoV2), we investigate linear-probing
performance on fMoW-RGB compared with prior SoTA methods in table 2. Linear-probing rep-
resents freezing the backbone and then training a linear head on the features extracted from the
frozen backbone, serving as a desirable metric of the quality of extracted embeddings. Our results
demonstrate an improvement of over ↑8.2% in top 1 average accuracy over prior SoTA methods,
demonstrating that ExPLoRA learns robust unsupervised representations for its target domain without
requiring expensive from-scratch pre-training. Importantly, ExPLoRA outperforms domain-specific
prior SoTA solutions (rows 1-4), as well as DinoV2, which suggests successful transfer learning on
the target domain by leveraging knowledge from pre-training on natural images.
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Method Arch. Top 1
Acc.

GASSL [2] ResNet 68.32
SatMAE [17] ViT-L 65.94

ScaleMAE [53] ViT-B 67.30
CScaleMAE [60] ViT-B 69.20

DinoV2 [46] ViT-L 67.60
DinoV2† [46] ViT-L 69.00
D-[L]-r64 ViT-L 76.86
D-[L]-r64† ViT-L 77.48

Table 2: Linear-probing on fMoW-RGB.
The first four rows fully pre-train on the
dataset. † denotes concatenating features
from the last 4 ViT blocks. All other rows
use the features of the last ViT block.

Blocks
Unfrozen

LoRA
Rank

Norm
Unfrozen

LoRA
Layers

Num.
Params

Top 1
Acc.

[L] 0 ✓ [] 12.7M 74.83
[L-1,L] 0 ✓ [] 25.3M 75.97

[] 256 ✓ [Q,V] 25.9M 75.51
[] 128 ✓ All 33.1M 55.03
[L] 64 ✓ Mlp 16.5M 48.55
[1] 64 ✓ [Q,V] 18.7M 75.97
[9] 64 ✓ [Q,V] 18.7M 75.45
[L-1] 64 ✓ [Q,V] 18.7M 77.40
[L] 0 ✓ VPT-100 12.8M 70.14
[L] 64 ✗ [Q,V] 18.6M 76.78
[L] 8 ✓ [Q,V] 13.4M 76.31
[L] 32 ✓ [Q,V] 15.7M 76.40
[L] 64 ✓ [Q,V] 18.7M 77.48

Table 3: Ablation study using DinoV2-ExPLoRA, measuring linear-
probing accuracy on fMoW-RGB. All results are obtained by using
concatenated features from the last 4 ViT blocks.

6.1.2 ABLATION STUDY

We perform an ablation study (table 3) on linear-probing performance for fMoW-RGB to determine
whether our proposed configuration performs optimally. A natural question is whether the improve-
ment in performance stems primarily from unfreezing blocks, or from LoRA-tuning the rest of the
ViT. We investigate this by unfreezing blocks {L,L-1} in row 2 (with no LoRA), and comparing
that with ExPLoRA-L-r8 in row 10. As seen, unfreezing an extra block consumes almost double
the number of parameters, but fails to yield the same improvement in performance ↓ 0.34%. Thus,
simply increasing the number of unfrozen blocks will likely improve performance, but will not do so
as effectively as ExPLoRA, and will also significantly and sharply decrease the parameter-efficiency.

Next, we investigate whether high LoRA ranks used on all ViT layers (i.e. all attention and MLP
matrices, not just Q,V ) is beneficial. Surprisingly, this significantly harms learning (row 4, 5). In
fact, it is much less effective than using just LoRA-r256 on the Q,V matrices of all L blocks (row 3).
However, both rows 3 and 4 are much less parameter-efficient than ExPLoRA (rows 6-8, 11-13).

The choice of U matters as well. As seen in rows 6-8, and 13, for the DinoV2 objective, U = {1} or
U = {9} are not as effective as U = {L-1} or U = {L}, ceteris paribus. To understand this result
further, see section 6.3. We also notice a slight drop in accuracy from leaving the normalization
layers across the ViT frozen, seen in row 10.

Lastly, we investigate the impact of LoRA rank on ExPLoRA. Changing the rank from 8 to 32 has a
small improvement (↑ 0.09%), but changing from 32 to 64 brings about a much larger improvement
(↑ 1.08%), with only a relatively small increase in trainable parameters. This demonstrates that higher
ranks are necessary during pre-training for effective learning on the new domain. Further ablations
on compute efficiency (B.2), data efficiency (B.3), MAE decoder rank (B.4), and ViT backbone size
(B.5) are in appendix B.

6.1.3 MULTI-SPECTRAL SATELLITE IMAGES

Dataset Next, we consider the fMoW-Sentinel dataset, a large dataset of Sentinel-2 images used
in Cong et al. (2022). Each image consists of 13 spectral bands and is paired with one of 62 classes.

With fMoW-Sentinel, we evaluate transfer from natural images to multi-spectral, low-resolution
satellite images - a harder task than fMoW-RGB due to the absence of non-RGB bands in DS . We
use the group-channel ViT-L from Cong et al. (2022), initialized with MAE. During algorithm 1, we
additionally unfreeze only the patch embedding layers due to architectural differences.

Table 4 shows the challenge: fully fine-tuning from MAE drops accuracy by nearly 10% (row 2),
LoRA tuning from MAE performs worse (row 4), and unfreezing four transformer blocks (row 6)
fails to help. However, ExPLoRA with U = {1, L} outperforms even full pre-training from scratch
for LoRA fine-tuning (row 5 vs. last row), demonstrating effective adaptation to a very different
domain while using <10% of the parameters.
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Model Backbone PEFT Pre-train
#Params

Fine-tune
#Params Top 1 Acc.

ImgNet-Supervised ResNet152 Full 60.3M 60.3M 54.46
MAE [27] ViT-L Full - 303.3M 51.61

SatMAE [17] ViT-L Full 303.3M 303.3M 61.48
MAE [27] ViT-L LoRA-r8 - 0.8M 46.97

SatMAE [17] ViT-L LoRA-r8 303.3M 0.8M 59.48
MAE-[1,2,L-1,L] ViT-L LoRA-r8 51.5M 0.8M 54.12
M-ExPLoRA-[L]-r32 ViT-L LoRA-r8 16.2M 0.8M 51.84

M-ExPLoRA-[1,L]-r32 ViT-L LoRA-r8 29.7M 0.8M 60.15

Table 4: Results on the fMoW-Sentinel validation set. The “Pre-train #Params" and “Fine-tune #Params"
refer to the trainable parameters required on the new domain, i.e. multi-spectral satellite images. “MAE-
[1,2,L-1,L]" refers to initializing the group-channel SatMAE model with MAE weights, unfreezing blocks
1,2,23,24 for ViT-L, and then continuing pre-training on fMoW-Sentinel.

Method PEFT Top 1 Acc.
GASSL [2] Full 74.11

SatMAE [17] Full 79.69
MAE [27] LoRA-r8 69.30

SatMAE [17] LoRA-r8 75.27
M-[L]-r32 LoRA-r8 75.98

Table 5: fMoW-Temporal validation set
results

Method PEFT SpaceNet
mIoU

Resisc45
Top 1 Acc.

SatMAE [17] Full 78.07 94.80
ScaleMAE [53] Full 78.90 95.70

DinoV2 [46] LoRA-r8 76.69 97.60
D-[L]-r64 LoRA-r8 76.69 97.65
SatMAE [17] Lin. Probe 50.89 88.30

ScaleMAE [53] Lin. Probe 47.17 89.60
DinoV2 [46] Lin. Probe 76.21 96.34
D-[L]-r64 Lin. Probe 76.34 97.32

Table 6: SpaceNet and Resisc-45 validation set results

6.1.4 ADDITIONAL SATELLITE DATASETS

We perform extensive experiments on downstream satellite datasets, with further results in B.1.

fMoW-Temporal Each input is a sequence of up to 3 fMoW-RGB (Christie et al., 2018) images
of the same location, distributed temporally, and paired with one of 62 classes. Since the inputs are
now temporal sequences, we initialize the temporal MAE architecture from Cong et al. (2022) with
MAE weights, and pre-train on XDT

with U = [L] and LoRA rank 32. ExPLoRA then outperforms
temporal SatMAE for PEFT (table 5), demonstrating successful transfer learning at a fraction of the
pre-training parameters.

SpaceNet-v1 This dataset contains high resolution satellite images, each paired with a segmentation
mask for buildings (Van Etten et al., 2018). The training and test sets consist of 5000 and 1940
images, respectively. For ExPLoRA, we pre-train on the training set. However, many images in the
dataset contain extensive blacked-out regions, indicating limits of the visible region. Considering this
limitation and the small dataset size, it is not clear whether additional pre-training is effective. We
find that, despite this, ExPLoRA remains on par with the LoRA-tuned DinoV2 model and remains
competitive with the fully pre-trained and fully fine-tuned domain-specific models (table 6).

RESISC-45 The RESISC-45 (Cheng et al., 2017) benchmark dataset consists of 31,500 satellite
images of varying resolution (0.2m-30m GSD), with 45 classes. The data is split into 25,200 training
and 6,300 validation images, as per Reed et al. (2023). In table 6, our D-ExPLoRA pre-trained
on only high-resolution fMoW-RGB images achieves SoTA results of 97.32% on multi-resolution
RESISC-45 images, with just linear-probing. Since we use the same pre-trained model as in the last
row of table 1, we demonstrate successful transfer learning from ExPLoRA pre-training, without
requiring any additional modifications for scale-aware representation learning (Reed et al., 2023).

6.2 WILDS DATASETS

We test ExPLoRA on the WILDS (Koh et al., 2021) benchmark, specifically on Camelyon17 (Bandi
et al., 2018), iWildcam (Beery et al., 2020) and GlobalWheat David et al. (2020; 2021) datasets,
representing domain transfers to medical, wildlife, and agricultural imagery, respectively.
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Method PEFT Top 1
Acc.

CLater [52] Full 93.90
ICON Full 90.10

DinoV2 [46] Lin. Probe 93.27
DinoV2 [46] LoRA-r8 92.97
D-[L]-r32 Lin. Probe 94.41
D-[L]-r32 LoRA-r8 94.21

Table 7: Classification results on
the validation set of Camelyon17.

Method PEFT Top 1
Acc.

DinoV2 [46] Lin. Probe 66.04
DinoV2 [46] LoRA-r8 67.10
D-[L]-r32 Lin. Probe 62.95
D-[L]-r32 LoRA-r8 68.07

Table 8: Classification results on
the validation set of iWildcam.

Method Top 1
Acc.

AP@
0.5:0.95

AR@
0.5:0.95

ICON [34] 68.9 - -
MAE [27] 82.5 53.8 58.7

DinoV2 [46] 82.3 52.1 57.1
D-[L]-r64 82.7 54.5 59.2

Table 9: Object detection results on the
validation set of GlobalWheat. AP and
AR stand for average precision and aver-
age recall, respectively.

Camelyon17 The WILDS Camelyon17 dataset consists of images of cancerous and non-cancerous
cell tissue organized in labeled and unlabeled splits. We use the “train-unlabeled" split for pre-training
ExPLoRA, and either use LoRA fine-tuning or linear probing on the training set of the labeled split.
We report accuracy on the binary classification problem and compare with entries on the WILDS
leaderboard which use unlabeled data. Our results in table 7 demonstrate improved performance over
domain-specific methods as well as DinoV2, once again successfully bridging the domain gap.

iWildcam iWildcam classification requires identifying one of 182 animal species given an image.
We pre-train on the training set, finding that this outperforms pre-training on the extra-unlabeled
set. In table 8, we find an improvement over DinoV2 using LoRA-r8 PEFT. Surprisingly, the linear
probing performance of the ExPLoRA suffers in comparison with DinoV2, suggesting possible loss
in knowledge-transfer due to a small domain gap. Likely because natural image datasets WDS

such
as ImageNet (Deng et al., 2009) used for DinoV2 already contain many images of animals.

GlobalWheat The GlobalWheat dataset consists of a wheat head object detection task, where each
image of a wheat field is associated with bounding boxes on the visible wheat heads David et al.
(2020; 2021). ExPLoRA extends pre-training on the training set, and then we run fine-tuning using
Detectron2 code for object-detection with ViTs (Wu et al., 2019). ExPLoRA outperforms both fully
pre-trained baselines from the WILDS leaderboard and strong VFMs DinoV2 and MAE on top 1
accuracy, average precision, and average recall.

6.3 ANALYZING EXPLORA
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Figure 3: The mean of the principal
components of the feature map out-
putted by each ViT block.
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Figure 4: Linear probing each
patch for position (local informa-
tion), across all ViT blocks.
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Figure 5: Linear probing each patch
for classification (global informa-
tion), across all ViT blocks.

The key design choice of ExPLoRA is to fully train a small subset U ⊂ L of the ViT, while applying
low-rank updates to the remaining frozen layers L \ U . For parameter-efficiency, we aim to keep
|U| ≪ |L| and make and informed choice of which layers to unfreeze based on their potential to
improve learning during extended pre-training.

We conduct an investigation on 5 models using a sample of XDT
. These models are DinoV2, D-

ExPLoRA-[L]-r64, SatMAE, MAE, and M-ExPLoRA-[L]-r64. We do the following analyses:
(i) PCA to measure the mean and variance of eigenvalues of patch feature vectors for each ViT block,
in fig. 3 (ii) linear probing for local or global information (Darcet et al., 2023) by training logistic
regression classifiers on each block’s patch feature vectors, to predict either patch position (fig. 4) or
image class (fig. 5).
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Findings and Unfreezing Strategy for DinoV2 Our analysis reveals that the spectral properties
of a block’s feature map (fig. 3) and the ability to retrieve local information from its output patch
tokens (fig. 4) are correlated. The classification accuracy for position and the mean of the principal
eigenvalues peak in the middle-layers of the model, suggesting that the middle blocks capture local
properties of patches (e.g., texture, relative position). Meanwhile, deeper blocks focus on global
semantic understanding, as shown by increased classification accuracy for image class prediction in
fig. 5. Combined, these results suggest that unfreezing deeper layers, such as U = {L}, allows the
model to better capture global features without overfitting to local details of images of DT . This is
empirically confirmed in table 3, where linear probing accuracy correlates inversely with the mean
eigenvalue of each block (i.e., block 23 > block 22 > block 0 > block 9). The attention maps in fig. 8
further support this, showing that the deeper layers focus more clearly on central objects, while earlier
layers (e.g., blocks 9, 10) exhibit more diffuse attention patterns spread around the border.

Findings and Unfreezing Strategy for MAE For MAE, we see a similar, but less pronounced
trend. However, MAE is only trained for reconstruction, and so retains more local information across
the ViT’s layers. This is reflected by its lower patch-wise eigenvalues, higher localization accuracy,
and lower global accuracies than Dino.

ExPLoRA’s Impact D-ExPLoRA preserves local information in the middle layers but also im-
proves localization accuracy in the last few layers. Importantly, it also enhances the global information
contained in the patches for deeper model layers. This indicates a better understanding of the target
domain, as seen in B.7, where ExPLoRA’s attention highlights the central object more clearly.

7 CONCLUSION AND DISCUSSION

In this paper, we introduce ExPLoRA, a novel pre-training strategy to adapt pre-trained ViT foundation
models for natural images to additional visual domains such as satellite imagery or medical data. We
challenge the common paradigm of expensive pre-training from scratch for each new visual domain
by offering a solution to transfer knowledge from foundation models that is both parameter-efficient
and effective (even outperforming domain-specific foundation models). Our hope is that ExPLoRA
enables further use of foundation models on domains other than natural images without requiring
vast computational resources for pre-training.

While effective, there are many aspects of ExPLoRA that deserve further study. The strategy of fully
training a small amount (or budget) of weights combines extremely well with PEFT techniques such
as LoRA– we hope that future work investigates the reason behind this in further detail. Unresolved
questions also include whether other parameter-efficient techniques might work better with ExPLoRA
during pre-training. Further work to evaluate ExPLoRA for natural language would be valuable, as
would an investigation into whether we can do away entirely with unfreezing a transformer block.

BROADER IMPACT

As the scale of models and datasets grows exponentially, access to the computing power necessary
to develop and make use of foundation models is increasingly restricted to the hands of a few
organizations. This leaves many researchers in academia or smaller companies reliant on the
resources of such organizations for ML research and applications. Techniques such as PEFT can
alleviate this dependence and enable those with fewer computational resources to adapt, investigate,
and customize models for their own needs. We hope that ExPLoRA furthers this goal, allowing ML
practitioners to tailor foundation models with minimal compute, thus broadening access to powerful
ML tools for critical fields like sustainability and medicine.

For example, automated analysis of satellite imagery can inform social, economic, and environmental
policies, but manual curation is expensive, and pre-training models on such data has significant costs,
both environmental and otherwise (see appendix D). ExPLoRA offers a more efficient way to distill
knowledge from existing foundation models trained on natural images, sharply reducing costs while
aiding researchers and policymakers and enabling flexible applications in downstream tasks.
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APPENDIX

We include supplementary material in the following sections.

A FURTHER CONTEXTUALIZATION WITH RELATED WORK

A.1 COMPARISON WITH GEOSPATIAL DOMAIN ADAPTATION

Recent work has explored both continual pre-training (GFM) (Mendieta et al., 2023) and parameter-
efficient domain adaptation (GDA) (Scheibenreif et al., 2024) for satellite imagery. We compare these
approaches with ExPLoRA in table 10.

GFM GDA ExPLoRA
[43] [55] (Ours)

Parameter-efficient ✗ ✓ ✓
Training objective MAE MAE Any
Architectural preservation ✓ ✗ ✓
Fine-tuning compatibility Any PEFT Only LoRA Any PEFT

Table 10: Comparison of ExPLoRA with previous approaches to geospatial domain adaptation

ExPLoRA differs from these approaches in several key aspects. Unlike GFM which trains the full
backbone, ExPLoRA achieves superior performance with only a fraction of trainable parameters.
While GDA is also parameter-efficient, it requires non-mergeable scaling vectors that induce inference
latency and modify the ViT, whereas ExPLoRA’s LoRA adapters can be merged into the ViT’s weights.
Additionally, ExPLoRA extends beyond MAE architectures (supporting DinoV2 and others) and
allows flexible configurations between pre-training and fine-tuning, including varying LoRA ranks or
using different PEFT methods, which GDA doesn’t support.

We also demonstrate ExPLoRA’s broader applicability through experiments on larger datasets (fMoW-
RGB, fMoW-Sentinel, which have 400k-800k images vs 90k images in FireRisk (Shen et al., 2023),
the largest dataset used in GDA) and domains beyond remote sensing (i.e. WiLDS). Our analysis in
section 6.3 provides insights into block-wise information encoding, offering practitioners a systematic
approach for block selection during PEFT– a unique feature not present in prior work.

A.2 COMPARISON WITH UNSUPERVISED DOMAIN ADAPTATION

UDA ExPLoRA

Source data Labeled None
Source knowledge Data Weights
Target data Unlabeled Unlabeled
Label constraints YDT ⊆ YDS None

Table 11: Differences between UDA and ExPLoRA

Unsupervised domain adaptation (UDA) enables
models to generalize to unseen domains (Gretton
et al., 2012; Kang et al., 2019; Oren et al., 2019;
Singhal et al., 2023). Traditional UDA assumes:

(i) YDS
= {xi,yi}N

′

i=1 ∼ pDS
(x,y), a la-

beled source domain dataset
(ii) XDT

= {xi}Ni=1 ∼ pDT
(x), an unla-

beled target domain dataset
(iii) YDT

⊆ YDS
, constraining the label-set

of DS with respect to DT

Common UDA benchmarks like Office-Home (Venkateswara et al., 2017) and VisDA-2017 (Peng
et al., 2017) follow this setup (Xu et al., 2021; Sun et al., 2022; Yang et al., 2023; Zhu et al., 2023).

ExPLoRA’s setting in section 4 is different: we only require weights WDS
from unsupervised

pre-training on pDS
(x), without source data access or label set restrictions. This enables adaptation

across wider domain shifts (e.g., ImageNet to multi-spectral satellite imagery, section 6.1.3). Thus,
rather than competing with UDA methods, ExPLoRA can complement them by providing better
initialization than standard natural-image pre-training.
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B ADDITIONAL EXPERIMENTAL RESULTS

We include further experimental results as a continuation of section 6.

B.1 RESULTS ON ADDITIONAL DOWNSTREAM DATASETS

Method PEFT Top 1 Acc.
GASSL [2] Full 57.63

SatMAE [17] Full 71.77
SatMAE [17] LoRA-r8 69.45

MAE [27] LoRA-r8 70.36
DinoV2 [46] LoRA-r8 70.40
D-[L]-r32 LoRA-r8 70.40

Table 12: NAIP validation set results

NAIP We consider a land-cover classification dataset
used in Ayush et al. (2021), where each of 244,471 train-
ing and 55,529 validation images are paired with one of
66 land cover classes obtained by the USDA’s National
Agricultural Imagery Program. In table 12, we first demon-
strate similar performance between both natural-image
backbones (rows 4 and 5), which surprisingly outperform
SatMAE, which is pre-trained on fMoW-RGB. We use Ex-
PLoRA to pre-train from DinoV2 to the training set of this
dataset (without labels). Our results (row 6) demonstrate
comparable performance, suggesting that for this dataset,
domain-specific knowledge may not be highly relevant to successfully solve the task.

Method PEFT Top 1 Acc.
SeCo [42] Full 93.14

SatMAE [17] Full 98.98
SatMAE [17] LoRA-r8 98.73
DinoV2 [46] BOFT-b8m2 96.60

M-[1,L]-r64 LoRA-r8 98.54

Table 13: EuroSAT validation set results

EuroSAT The dataset contains 27,000 13-band satel-
lite images of 10 classes Helber et al. (2019), sourced
from Sentinel-2. For ExPLoRA, we don’t pre-train on
the training set of this dataset, and instead use LoRA fine-
tuning starting with the pre-trained weights learned in
row 8 of table 4. We demonstrate improved performance
over DinoV2, and match the performance achieved by
the domain-specific SatMAE which was fully pre-trained
on fMoW-Sentinel, and fully fine-tuned on EuroSAT (ta-
ble 13). This demonstrates the successful use of our ex-
tended pre-trained model on further downstream datasets.

B.2 THE IMPORTANCE OF EXTENDED PRE-TRAINING
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Figure 6: Fine-tuning accuracy versus total
compute (measured in GPU-hours). Total com-
pute includes both pre-training (if applicable)
and fine-tuning phases. Along with the la-
bel for each method in the legend, we include
(#pre-training params, #fine-tuning params).

To evaluate ExPLoRA’s effectiveness, we analyze how
its performance scales with computational resources.
Specifically, we investigate two key questions: First,
given a fixed compute budget, what is the optimal allo-
cation between extended pre-training and fine-tuning?
Second, for a fixed parameter budget, does investing com-
pute in extended pre-training provide advantages over
standard fine-tuning approaches?

We address these questions in fig. 6, focusing on DinoV2
models running on NVIDIA-A4000 GPUs. We evaluate
D-ExPLoRA-[L]-r64 for different lengths of pre-training
(50k, 100k, 150k, and 200k iterations), corresponding to
24, 48, 72, and 96 GPU-hours of extended pre-training
respectively. Each checkpoint undergoes LoRA-r8 fine-
tuning. We compare against three baselines: (i) Direct
LoRA-r8 fine-tuning on DinoV2 weights (ii) Fine-tuning
DinoV2 with block 24 unfrozen and LoRA-r64 (match-
ing ExPLoRA’s parameter budget) (iii) Fine-tuning DinoV2 with blocks 0, 1, 23, 24 unfrozen and
LoRA-r64 (55.8M parameters vs ExPLoRA’s 18.7M).

Results in fig. 6 demonstrate that ExPLoRA’s extended pre-training achieves a ↑ 1.0% improvement
in maximum top-1 fine-tuning accuracy within the same total compute budget (320 GPU hours).
Notably, even increasing the parameter budget during fine-tuning fails to match this performance.
While additional pre-training iterations beyond 50k improve initial fine-tuning accuracy, they have
minimal impact on the final accuracy ceiling, highlighting ExPLoRA’s computational efficiency.
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B.3 CONVERGENCE AND DATA EFFICIENCY
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Figure 7: Lin. probe accuracy vs.
number of training iterations.

Another important question is on ExPLoRA’s data efficiency- i.e.
can ExPLoRA achieve good representations on the target domain
without requiring many training iterations?

In fig. 7, we plot the linear-probing accuracy against the number
of extended pre-training iterations for ExPLoRA (in blue). Ex-
PLoRA improves quickly, requiring between 100-150k extended
pre-training iterations to reach optimal performance. As discussed
in section 6.1.2, unfreezing additional transformer blocks (in red)
fails to achieve the same level of performance while requiring
more parameters.

One hypothesis for the effectiveness of pairing unfreezing blocks
with LoRA is that low-rank updates to the ViT backbone “nudge"
the sequence of embedded visual tokens from DS to those rep-
resenting DT , which then enables the unfrozen ViT block to
efficiently compress global information from the new domain.

B.4 IMPACT OF MAE DECODER RANK

Decoder
Rank r′

Top 1 Acc.

8 59.75
16 59.77
32 60.15
64 59.21

Table 14: Ablation on M-[1, L]-
r64 on the validation set of
fMoW-Sentinel. Here, the LoRA
rank used for the ViT-L encoder
is fixed at r = 64, while the rank
r′ for MAE decoder is varied.

As outlined in section 5, we initialize the MAE decoder LD with
pre-trained weights WDS

from He et al. (2022), keeping all decoder
weights (except layer norm) frozen during extended pre-training
on XDT

. We apply LoRA with rank r′ to the Q,V weights of the
attention layers in the decoder LD, while unfreezing 1-2 blocks U in
the ViT encoder L and applying LoRA with rank r to the remaining
layers L \ U (algorithm 1).

We evaluate ExPLoRA with M-[1, L]-r64 on fMoW-Sentinel, using
a fixed encoder LoRA rank r = 64, unfreezing blocks U = {1, L},
and varying the decoder rank r′. We then fine-tune the resulting
model with LoRA r = 8 and measure the highest top 1 accuracy on
the validation set of fMoW-Sentinel. Table 14 shows that increasing
r′ up to 32 improves fine-tuning performance, which then declines
by ↓ 0.94% for r′ = 64. This suggests that balancing the unfrozen
parameters between the ViT encoder L (used for fine-tuning) and
the MAE decoder LD (discarded post pre-training) is crucial. Larger r′ may improve the decoder’s
ability without benefiting the learned representations of L. This issue doesn’t arise in DinoV2, as the
Dino-iBOT shared head is fully trained since it isn’t provided by Oquab et al. (2023).

B.5 IMPACT OF VIT BACKBONE SIZE

Method Arch. Top 1 Acc.
Last 1/Last 4

DinoV2 [46] ViT-B 63.62/65.90
DinoV2 [46] ViT-L 67.60/69.00
DinoV2 [46] ViT-G 70.07/70.36
D-[12]-r64 ViT-B 74.72/75.11
D-[24]-r64 ViT-L 76.86/77.48
D-[32]-r32 ViT-G 77.29/77.79

Table 15: Linear probing results on the valida-
tion set fMoW-RGB, where we vary the size
of the ViT encoder L from ViT-B, ViT-L, and
ViT-G. “Last 1/Last 4” refers to using the out-
put representation from just the last 1 or the last
4 ViT layers, respectively.

We also test the impact of the ViT backbone for Ex-
PLoRA, varying the architecture for DinoV2 from ViT-
B (86M, L = 12 layers, embedding dimension 768),
ViT-L (303M parameters, L = 24 layers, embedding di-
mension 1024), and ViT-G (1100M parameters, L = 40
layers, embedding dimension 1280) for extended pre-
training on fMoW-RGB. The ExPLoRA models we com-
pare against are D-[12]-r64 for ViT-B, D-[24]-r64
for ViT-L, and D-[32]-r32 for ViT-G. We unfreeze the
12th, 24th, and 32nd layers for each of ViT-B, ViT-L,
and ViT-G, picking these layers by extending the anal-
ysis from section 6.3 to ViT-B and ViT-G. We find that
the 12th (last layer) for ViT-B and the 32nd (out of 40)
layer for ViT-G output representations with low mean
eigenvalues compared to other layers, thus presenting
good candidates for unfreezing.
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In table 15, we see that as expected, ViT-G performs the best, but is only ↑ 0.31% better in top
1 accuracy compared to ViT-L, while using many more parameters. On the other hand, we see
the highest impact for ExPLoRA on ViT-B, where the top 1 accuracy improves by ↑ 9.21% over
the original DinoV2 ViT-B. These results further demonstrate the effectiveness and efficiency of
ExPLoRA as a powerful technique to create unsupervised foundation models for new visual domains.

B.6 ADDITIONAL PEFT BASELINES FOR MAE

As a continuation of table 1, we include PEFT methods used on MAE weights, which generally
underperform compared with DinoV2. For completeness, these results are in table 16.

Model Arch. PEFT Pre-train
#Params

Fine-tune
#Params Top 1 Acc.

SatMAE [17] ViT-L LoRA-r8 [29] 303.3M 0.8M 76.10
MAE [27] ViT-L LoRA-r8 [29] - 0.8M 76.21
MAE [27] ViT-L DVPT-10 [30] - 0.4M 72.35
MAE [27] ViT-L GVPT-100 [69] - 0.4M 70.86
MAE [27] ViT-L SA2VP [48] - 1.1M 73.55
MAE [27] ViT-L AdaLoRA-r8 [71] - 1.2M 75.25
MAE [27] ViT-L Adapter+ [58] - 1.4M 74.10
MAE [27] ViT-L Mona [68] - 7.1M 74.76

M-[L]-r64 ViT-L LoRA-r8 [29] 18.7M 0.8M 76.55

Table 16: MAE+PEFT results on fMoW-RGB validation split (table 1, contd.). “Pre-train #Params" and “Fine-
tune #Params" refer to trainable parameters of the ViT encoder required on the new domain (satellite images).

B.7 ATTENTION MAP VISUALIZATIONS

To aid our analysis in section 6.3, we visualize attention scores for different ViT blocks across multiple
models, including DinoV2, D-[L]-r64 (i.e. the last row of table 3), the second and third rows of
table 3, MAE, SatMAE, and M-[L]-r64. These visualizations are shown in fig. 8 for 3 different
images from the validation set of fMoW-RGB. Since our models are trained without registers, we
truncate attention scores more than 5 standard deviations away from the mean, thus removing artifact
attention scores with unusually high values on background patches (Darcet et al., 2023).
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Figure 8: Attention maps visualized from the validation set of fMoW-RGB. The models considered, from left to
right, are: DinoV2, D-ExPLoRA-[L]-r64, Dino with blocks 22,23 unfrozen during extended pretraining, Dino
with LoRA-r256 during extended pre-training, MAE, SatMAE, and M-ExPLoRA-[L]-r64. We visualize the
attention maps at the beginning, middle, and end blocks of the ViT-L.

The visualizations in fig. 8 further support the analysis in section 6.3. For the Dino models, the
attention scores of block 9-10 are diffuse and spread around the central object of the image, with quite
a few border pixels highlighted. Conversely, the attention scores of the final layers are concentrated
more towards the central object. These visualizations further suggest that the middle layers focus on
capturing local properties of the images such as texture, while the final layers capture global semantic
information such as object-ness. Interestingly, the initial blocks for the Dino models display sparse
attention patterns with spikes on seemingly random patches. This might suggest a form of caching to
aid the computation of deeper layers that will extract local or global information.
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For the MAE models, we see that the original MAE (pre-trained on natural images) seem to highlight
more border pixels in the final layers of the ViT. Post extended pre-training with ExPLoRA, the final
layers concentrate attention scores on the central object, more closely resembling the patterns of
SatMAE (which was fully pre-trained on satellite images). ExPLoRA is thus able to successfully
transfer knowledge from its initialized source-domain weights WDS

to serve as a foundation model
W ∗

DT
on the new target domain DT .

C TRAINING DETAILS

In this section, we describe hyperparameters and hardware configurations used for our models.

C.1 PRE-TRAINING

We use the ViT-Large architecture for all experiments. Since raw image sizes vary, the shorter image
size is resized to 224 while preserving aspect ratio, and then a center crop is taken to yield images of
size 3× 224× 224, representing the channels, height, and width. All pre-training is done on a single
NVIDA-RTX 6000 Ada GPU, or 4 NVIDIA-RTX A4000 GPUs on an academic GPU cluster.

ExPLoRA with DinoV2 Most of the hyperparameters for D-ExPLoRA follow the defaults set by
Oquab et al. (2023). That is, local (small) crops are between 5%-32% of the original image and are
resized to 98x98 pixels, and global (large) crops are greater than 32% of the image and resized to
224x224 pixels. We share the parameters of the Dino-iBOT linear head (3 layers), with a bottleneck
dimension of 256, a hidden dimension of 2048, and an output dimension of 65536, initialized from
scratch. For Dino, we use Sinkhorn-Knopp (Caron et al., 2020) centering and Koleo (Delattre &
Fournier, 2017) regularization with a weight of 0.1. For iBOT, we use masking ratios between 0.1
and 0.5 to mask half of the samples in the batch. The teacher model uses an initial EMA rate of 0.994,
with a cosine warmup to 1.000 by the end of training. The teacher warmup and final temperatures are
0.04 and 0.07. The linear Dino-iBOT head is frozen for the first 3k training iterations. We train with
the AdamW optimizer (no weight decay), with a base learning rate of 2× 10−3 that is varied with a
linear warmup and cosine decay schedule. Training is completed within 200,000 iterations, with a
batch size of 32 and with 32 gradient accumulation steps (equalling an effective batch size of 1024),
and with an epoch length set to 1000.

ExPLoRA with MAE Most of the hyperparameters we use for M-ExPLoRA pre-training follow
those in He et al. (2022); Cong et al. (2022). We use an effective batch size of 1024 (through gradient
accumulation), a base learning rate of 4.5 × 10−4, no weight decay, and a warmup and decaying
cosine scheduler, with a warmup of 1 epoch, and a total training time of 200 epochs. We use a
masking ratio of 0.75 and we use the norm_pix_loss flag for the MSE loss.

C.2 PEFT FINE-TUNING

We fine-tune using 4 NVIDIA-RTX A4000 GPUs. We use a base learning rate of 10−3, a cosine
scheduler with warmup for 1 epoch, and train for 120 epochs. We use an effective batch size of 256,
making use of gradient accumulation if the GPU cannot fit the full batch size in memory.

For data augmentations, we only use the drop-path augmentation (Larsson et al., 2016) at a rate of
0.2, with no dropout, mixup, or cutmix. We note that the original LoRA configuration outperforms
other PEFT techniques when paired with the drop-path regularization technique. For example, we
find that BOFT does not pair well with drop-path, instead performing most effectively with a custom
multiplicative dropout technique (Liu et al., 2023). We include the result with the best hyperparameter
configuration for each row in table 1.

C.3 LINEAR PROBING

We use a single NVIDIA-RTX A4000 GPU for linear probing. We adapt the code provided by
Oquab et al. (2023) for linear probing, with a batch size of 256 and a collection of different learning
rates:

[
1× 10−4, 1× 10−3, 5× 10−3, 1× 10−2, 2× 10−2, 5× 10−2, 1× 10−1

]
. We evaluate both

probing on average pooled features as well as on the [CLS] token, and also use output features from
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just the last block, or the last 4 blocks. All numbers reported represent the best validation set accuracy
from the best performing configuration.

C.4 MULTI-SPECTRAL IMAGES

We use the group-channel ViT-L architecture introduced in Cong et al. (2022). We don’t use DinoV2
since there is no such architecture for DinoV2 pre-training. Input images are 13×98×98, representing
13 multi-spectral bands. We follow the configuration in Cong et al. (2022) of dropping bands B1,
B9, B10, and use the same grouping strategy. When loading MAE weights to the ViT-L encoder, the
patch embeddings do not match and so the patch embedding and group channel encodings are trained
from scratch. All other configuration details are the same as for M-ExPLoRA in appendix C.1, except
that we use a base learning rate of 4.5 × 10−4 for pre-training and train for 50 epochs (given the
larger dataset size) on 4 NVIDIA RTX A4000 GPUs for 80 hours.

Fine-tuning details are the same as in C.2.

C.5 DOWNSTREAM DATASETS

Hyperparameter and training configuration details are the same as in appendix C.1 if the images are
RGB, and the same as in appendix C.4 if the images have more channels or are temporal.

C.6 DATASET LICENSES

The licenses for all datasets are included in the footnotes: fMoW1, Sentinel-22, EuroSAT3, SpaceNet4,
Camelyon175, iWildCam6, GlobalWheat7.

D ENVIRONMENTAL IMPACT

Following Cong et al. (2022), we compare the carbon footprint of pre-training using ExPLoRA
with domain-specific solutions such as SatMAE. We use the carbon footprint calculator proposed by
Lacoste et al. (2019). Our results are in table 17.

Method fMoW-RGB fMoW-Sentinel fMoW-Temporal
GPU hours kg CO2 eq. GPU hours kg CO2 eq GPU hours kg CO2 eq.

SatMAE 768 109.44 576 82.08 768 109.44
ExPLoRA 96 12.44 320 19.35 100 12.96

Table 17: The estimated carbon footprint of pre-training on these datasets

Since we initialize with pre-trained weights on natural image domains, ExPLoRA is much less
environmentally impactful while achieving similar or higher levels of performance. We achieve a
4x-8x reduction in total carbon emitted for each of the large pre-training satellite image datasets
considered in table 17.

1fMoW license: https://github.com/fMoW/dataset/raw/master/LICENSE
2Sentinel-2 license: https://scihub.copernicus.eu/twiki/pub/SciHubWebPortal/

TermsConditions/Sentinel_Data_Terms_and_Conditions.pdf
3EuroSAT license: https://creativecommons.org/licenses/by/4.0/
4SpaceNet v1 license: http://creativecommons.org/licenses/by-sa/4.0/
5Camelyon17 license:https://creativecommons.org/publicdomain/zero/1.0/
6iWildCam license:https://cdla.dev/permissive-1-0/
7GlobalWheat license:https://opensource.org/licenses/MIT

20

https://github.com/fMoW/dataset/raw/master/LICENSE
https://scihub.copernicus.eu/twiki/pub/SciHubWebPortal/TermsConditions/Sentinel_Data_Terms_and_Conditions.pdf
https://scihub.copernicus.eu/twiki/pub/SciHubWebPortal/TermsConditions/Sentinel_Data_Terms_and_Conditions.pdf
https://creativecommons.org/licenses/by/4.0/
 http://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/publicdomain/zero/1.0/
https://cdla.dev/permissive-1-0/
https://opensource.org/licenses/MIT

	Introduction
	Related Work
	Background
	Problem Setup
	Method
	Experiments
	Case Study: Satellite Imagery
	RGB Satellite Images
	Ablation study
	Multi-Spectral Satellite Images
	Additional Satellite Datasets

	WiLDS Datasets
	Analyzing ExPLoRA

	Conclusion and Discussion
	Further Contextualization with Related Work
	Comparison with Geospatial Domain Adaptation
	Comparison with Unsupervised Domain Adaptation

	Additional Experimental Results
	Results on Additional Downstream Datasets
	The Importance of Extended Pre-training
	Convergence and Data Efficiency
	Impact of MAE Decoder Rank
	Impact of ViT backbone size
	Additional PEFT baselines for MAE
	Attention Map Visualizations

	Training Details
	Pre-Training
	PEFT Fine-Tuning
	Linear Probing
	Multi-Spectral Images
	Downstream datasets
	Dataset Licenses

	Environmental Impact

