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Abstract

KV Cache is commonly used to accelerate001
LLM inference with long contexts, yet its high002
memory demand drives the need for cache003
compression. Existing compression methods,004
however, are largely heuristic and lack dy-005
namic budget allocation. To address this lim-006
itation, we introduce a unified framework for007
cache compression by minimizing information008
loss in Transformer residual streams. Build-009
ing on it, we analyze the layer attention out-010
put loss and derive a new metric to compare011
cache entries across heads, enabling layer-012
wise compression with dynamic head budgets.013
Additionally, by contrasting cross-layer infor-014
mation, we also achieve dynamic layer bud-015
gets. LAVa is the first unified strategy for016
cache eviction and dynamic budget allocation017
that, unlike prior methods, does not rely on018
training or the combination of multiple strate-019
gies. Experiments with benchmarks (Long-020
Bench, Needle-In-A-Haystack, Ruler, and In-021
finiteBench) demonstrate its superiority over022
strong baselines. Moreover, our experiments023
reveal a new insight: dynamic layer budgets are024
crucial for generation tasks (e.g., code comple-025
tion), while dynamic head budgets play a key026
role in extraction tasks (e.g., extractive QA).027
As a fully dynamic compression method, LAVa028
consistently maintains top performance across029
task types.030

1 Introduction031

Large language models (LLMs) have shown re-032

markable capability in handling long-text scenarios,033

enabling advancements in tasks such as question034

answering (Kamalloo et al., 2023), code genera-035

tion (Guo et al., 2023), and multi-turn dialogues036

(Chiang et al., 2023). To further enhance external037

knowledge integration, state-of-the-art models like038

Claude 3.5 (Anthropic and et al.), GPT-4 (OpenAI039

and et al., 2024), and Qwen2.5 Max (Qwen and040

et al., 2025) have extended their context lengths041

beyond 128K tokens. However, supporting such 042

long contexts comes with increased computational 043

challenges. One common approach to accelerating 044

LLM inference is caching Key and Value vectors 045

(KV Cache), but its high memory demand necessi- 046

tates efficient cache compression techniques. 047

While existing compression methods have 048

shown promise, they are largely heuristic, rely- 049

ing on statistical measures such as accumulated 050

attention scores (Zhang et al., 2023; Oren et al., 051

2024; Li et al., 2024). These metrics are derived 052

from empirical observations rather than a theoret- 053

ical foundation. Additionally, although dynamic 054

head allocation (Feng et al., 2024) and dynamic 055

layer allocation (Qin et al., 2025) have been ex- 056

plored, no method, to our knowledge, fully adapts 057

head and layer budgets. 058

To address this gap, we propose a unified frame- 059

work for cache compression and budget allocation, 060

which is formulated through the lens of minimizing 061

information loss in Transformer residual streams 062

(see Figure 1, and Sec. 3). Many existing methods 063

can be formulated within our framework. Specif- 064

ically, context compression methods (Qin et al., 065

2024a,b) aim to minimize global information loss 066

at the logits layer. In contrast, KV Cache com- 067

pression methods (Zhang et al., 2023; Cai et al., 068

2024; Qin et al., 2025) primarily focus on local 069

information loss at the head or layer levels. 070

Our framework provides a principled approach 071

to designing new algorithms. This paper introduces 072

a novel method based on Layer Attention Output 073

Loss, which measures the impact of compression 074

on the information retained in each layer after 075

multi-head attention. The layer-wise loss function 076

provides a balanced perspective on both local infor- 077

mation within layers and global information flow 078

across layers. Within each layer, the loss function 079

guides the design of a scoring mechanism to assess 080

token importance across heads, allowing for simul- 081

taneous head budget allocation and cache eviction. 082
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Figure 1: Information flow in decoder-only LLMs. The decoding process can be seen as operating on the current
residual stream. Each residual stream (red lines) corresponds to one token, and is considered as a communication
channel. Attention heads copy information from past residual streams to the current one (green lines) .

Across layers, it enables dynamic layer budget al-083

location by comparing information between layers.084

Our method is theoretically grounded, and signifi-085

cantly simpler than CAKE, the only training-free086

method with dynamic layer budgets.087

Extensive experiments were conducted using var-088

ious LLM series on the LongBench and Needle in089

a Haystack benchmarks. The results consistently090

demonstrate LAVa’s strong ability to preserve the091

model’s long-text comprehension under various092

memory constraints. Additionally, compared to093

a full cache implementation of FlashAttention-2,094

LAVa significantly reduces memory consumption095

while simultaneously reducing latency (9× faster096

decoding for 128K-token sequences). Our empiri-097

cal findings highlight that dynamic layer budgets098

are essential for generation tasks, while dynamic099

head budgets are crucial for text extraction tasks.100

Achieving dynamic budget allocation at both the101

head and layer levels is key to optimizing perfor-102

mance across different tasks.103

Our Contributions: 1) We introduce a principled104

framework for KV Cache eviction by analyzing105

the information flow through Transformer residual106

streams, accounting for information loss at var-107

ious points during decoding. 2) Building on this108

framework and the notion of information loss at the109

layer-wise attention output, we propose LAVa—a110

unified method that simultaneously performs KV111

cache eviction and dynamic budget allocation. To112

the best of our knowledge, LAVa is the first training- 113

free method to achieve dynamic budget allocation 114

without relying on multiple combined metrics, mak- 115

ing it simple for practical purposes. 3) Evaluations 116

on LongBench, Needle in a Haystack, Ruler and 117

InfiniteBench demonstrate that our simple method 118

outperforms strong baselines. 4) Experiments 119

reveal new insights into the role of dynamic budget 120

allocation across different tasks, offering guidance 121

for the adaptive selection of strategies. 122

2 The Information Flow of LLM 123

Decoding Process with KV Cache 124

KV Cache is initialized at prefilling stage, which 125

basically computes the Key and Value for tokens 126

in the initial prompts in the standard way (Vaswani, 127

2017). In the following, we assume that there ex- 128

ists a KV Cache of (N − 1) previous tokens and 129

demonstrate how decoding is performed at step-N . 130

Notations The LLM has L layers, each has H 131

heads. The model and head dimensions are d and 132

dh = d/H; Kl, Vl are the KV Cache for the l-th 133

layer up to the current time step (the N -th token), 134

which are of [H, (N − 1), dh] sizes. The full nota- 135

tion Table 3 is in Appendix A. 136

Decoding Process According to (Ferrando and 137

Voita, 2024), LLM decoding can be viewed as op- 138

erating on the current (N -th) residual stream, as 139

illustrated in Figure 1. Specifically, suppose that 140
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xNl is the current input for layer l, we first calculate141

the corresponding QN
l ,KN

l , V N
l as follows:142

QN
l = xNl WQ

l ;KN
l = xNl WK

l ;V N
l = xNl W V

l143

where QN
l ,KN

l , V N
l are of size (H × 1× dh), con-144

taining H head-wise caches. The layer-wise KV145

Cache is then updated as follows:146

Kl = Cat[Kl,K
N
l ], Vl = Cat[Vl, V

N
l ]147

where Kl, Vl are tensors of size (H×N ×dh), and148

Cat indicates the concatenation operation.We then149

calculate the attention scores of step-N for layer-l:150

AN
l = Cath∈[H]

(
AN

l,h

)
151

where AN
l,h = Softmax(

QN
l,h(Kl,h)

T

√
dh

). Here,152

AN
l,h[i] indicates how much the token at step-N153

attends to the token-i (i ≤ N ). Layer-l attention154

output is calculated as follows:155

yNl = Cath∈[H](A
N
l,hVl,h)W

O
l ∈ R1×d156

The layer output xNl+1 is calculated as xNl+1 =157

yNl +FFN(yNl ), which is then passed as the input158

the next layer l + 1. In the last layer, we exploit159

an un-embedding layer (WM ∈ Rd×|V|) to get the160

probability vector pN for next token sampling.161

3 A Principled Framework for KV Cache162

Eviction based on Information Loss163

Given the KV Cache, compression can be seen164

as masking entries in the KV tensors so that the165

attention heads cannot copy masked information to166

the later residual streams. Formally, one can define167

the attention mask Il,h for layer-l and head-h:168

Il,h[i] =

{
1 if Kl,h[i] and Vl,h[i] are retained
0 evict Kl,h[i] and Vl,h[i]

169

The goal is to find a KV Cache eviction policy so170

that to minimize the information loss for the logits171

at the last layer (pN ) for all subsequent residual172

streams (from N to Ne; see Figure 1). LetP denote173

this logit loss, and B be the memory constraint. The174

unified problem for budget allocation and cache175

eviction can be defined as follows:176

min
I,B
P(x1...N1 , I,B) (1)177

st.
∑
i∈[N ]

Il,h[i] = Bl,h;178

∑
h∈[H]

Bl,h = Bl;
∑
l∈[L]

Bl = B179

Il,h[k] = 1 , ∀l, h; and ∀k ∈ [N − w,N ]180

Here, Bl,h represents the budget for layer-l and 181

head-h, Bl denotes the total budget for layer-l. The 182

final constraint ensures that the most recent tokens 183

within a window of size w are retained for all heads, 184

aligning with the common practice in the literature. 185

As computing the loss over future, unseen tokens 186

is impractical. To address this, we approximate the 187

loss by considering only residual streams up to the 188

current step N . Considering the current step-N , 189

one can define P as the cross-entropy loss between 190

pN and p̂N , which is the logit obtained with the at- 191

tention mask (Qin et al., 2024a). Additionaly, since 192

the search space for the mask matrix is combina- 193

torial, we instead search for a scoring function s, 194

where sl,h[i] assigns an importance score to token i 195

at layer l and head h. This scoring function allows 196

us to greedily choose the least important entries to 197

be masked I = Select(s,B). All in all, we have 198

the following (surrogate) optimization problem: 199

min
B,s∈F

P(x1...N1 , s,B) (2) 200

where F denotes the space of all scoring functions. 201

The scoring function can be parameterized by a 202

network ϕ, which is then found through offline 203

training. This is the common approach employed in 204

context compression methods (Qin et al., 2024a,b). 205

The aforementioned approach to minimizing 206

Global Logit Loss can be impractical for online 207

inference when the scoring function is computa- 208

tionally expensive. A more feasible alternative is 209

to focus on local information and apply localized 210

KV Cache eviction. For instance, Head Attention 211

Loss can be used for head-wise eviction, a strategy 212

adopted by most existing methods (Zhang et al., 213

2023; Li et al., 2024; Qin et al., 2025). In this case, 214

the scoring functions are lightweight, relying on 215

simple statistical features, like head-wise attention 216

weights. Table 1 summarizes how existing meth- 217

ods can be formalized within our framework, with 218

further details provided in Appendix B. 219

4 LAVa: Layer-wise Cache Eviction with 220

Dynamic Budget Allocation 221

4.1 Layer Attention Output Loss and the 222

Scoring Function 223

The aforementioned framework provides a prin- 224

cipled approach to designing new algorithms for 225

KV Cache eviction. This section demonstrates the 226

design of our novel algorithm based on Layer At- 227

tention Output Loss (see Figure 1). Specifically, we 228
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Methods Budgets Scoring Function Loss
Bl,h Bl

SnapKV (Li et al., 2024) Bl/H B/L Recent attention scores

Head Attention
sl,h[i] =

1
w

∑N
j=N−w Aj

l,h[i], ∀i < N−w
CAKE (Qin et al., 2025) Bl/H Dynamic Recent attention scores + attention shifts

sl,h[i] = γVARN
j=N−w([A

j
l,h[i]))

+ 1
w

∑N
j=N−w Aj

l,h[i], ∀i < N − w

AdaKV (Feng et al., 2024) Dynamic Fixed Recent attention scores (like SnapKV) Layer Attention
OutputLAVa (Ours) Dynamic Dynamic Recent attention scores × value norm

sl,h[i] =
maxk∥Vl,h[k]∥1

w

∑N
j=N−w Aj

l,h[i]

Table 1: Summary of representative methods for KV Cache compression. LAVa is the only method to support
dynamic head (Bl,h) and layer (Bl) budgets. For the full table and more comparison, please refer to Appendix B.

.

show how our scoring function is designed based229

on analyzing the upper bound of the loss and how230

we can exploit the scoring function for layer-wise231

cache eviction with dynamic budget allocation.232

Lemma 1. Based on the Lp norm, the layer at-233

tention output loss due to the attention mask I is234

measured for layer-l at the current (N -th) residual235

stream as follows:236

P(x1...N1 , I,B) = ∥yNl − ŷNl ∥p (3)237

=

∥∥∥∥∥Cath

[(
AN

l,h −
AN

l,h ⊙ Il,h
∥AN

l,h ⊙ Il,h∥1

)
Vl,h

]
WO

l

∥∥∥∥∥
p

238

where ⊙ indicates element-wise multiplication and239

ŷNl indicates the layer attention output obtained by240

masking the KV Cache with I (equivalently, after241

KV Cache eviction).242

We then develop a new upper bound for the L1243

norm and provide the result in Theorem 1. The244

proof of these are both provided in Appendix C.245

Theorem 1. The L1 norm of the layer attention
output loss can be bounded by:

(4)
∥yNl − ŷNl ∥1
≤ 2Ĉ

∑
h∈[H]

∑
i∈[N ]

AN
l,h[i]V̄l,h (1−Il,h[i])

where Ĉ = ∥WO
l

T ∥1 is a constant indepen-246

dent of any head or token within layer-l; V̄l,h =247

maxk∈[N ]∥Vl,h[k]∥1 is a head-dependent value.248

Given a fixed budget Bl, we consider a greedy249

algorithm that iteratively evicts one cache entry at a250

time until the cache budget is met. We evict the en-251

tries with the smallest scores, given by the scoring252

function sl,h[i] = AN
l,h[i]V̄l,h to minimize the upper253

bound. Notably, this function incorporates a head- 254

dependent value V̄l,h, which should not be ignored 255

when comparing KV Cache entries across different 256

heads. This is different from AdaKV (Feng et al., 257

2024), which considers the layer attention output 258

loss yet does not take into account the values. This 259

also provides a theoretical justification for the intro- 260

duction of values into the scoring, which has been 261

exploited heuristically in VATP (Guo et al., 2024). 262

4It is noted that we derive our metric through a de- 263

tailed reasoning process, independently from VATP. 264

The process is key to understanding the approxima- 265

tions we introduce, which enable future improve- 266

ments. Moreover, recognizing that the metric is 267

inherently grounded in a layer-wise perspective 268

enables the design of dynamic budget allocation 269

strategies, as demonstrated below. Empirical com- 270

parison to VATP is given in Table 5. 271

The scoring function sl,h[i] = AN
l,h[i]V̄l,h de- 272

scribed earlier is based solely on analyzing the cur- 273

rent residual stream (the N -th decoding step). To 274

improve the performance for KV Cache eviction, 275

we can incorporate information from all past resid- 276

ual streams similarly to H2O (Zhang et al., 2023). 277

However, doing so introduces more computational 278

overhead. Inspired by SnapKV (Li et al., 2024), 279

we instead incorporate information from recent w 280

residual streams, yielding a new scoring function. 281

Definition 1. Layer-wise Attention and Value 282

(LAVa) score for the token-i at layer-l, head-h is 283

defined as follows: 284

sl,h[i] =
maxk∈[N ]∥Vl,h[k]∥1

w

N∑
j=N−w

Aj
l,h[i] (5) 285

Based on this scoring function, we develop the 286

layer-wise KV Cache eviction as outlined in Al- 287

gorithm 1. Notably, we only evict entries outside 288
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Algorithm 1 LayerEvict: Layer-wise KV Cache
Eviction based on LAVa Score

1: Input: Budget Bl, KV Cache Kl, Vl

2: Output: Compressed KV Cache K̂l, V̂l

3: sl = [ ]
4: for h = 1 to H do
5: Calculate sl,h[i], ∀i /∈ [N − w,N ] based

on Eq. 5
6: sl.extend(sl,h)
7: end for
8: function EVICT(Bl, sl,Kl, Vl)
9: Sl ← Bl largest entries based on sl

10: Il,h[k] = 0, ∀(h, k) /∈ Sl
11: for h = 1 to H do
12: K̂l,h = Kl,h ⊙ Il,h
13: V̂l,h = Vl,h ⊙ Il,h
14: end for
15: Return K̂l, V̂l

16: end function
17: Return EVICT(Bl, sl,Kl, Vl)

the recent window [N − w,N ], effectively retain-289

ing the most recent tokens as specified by the final290

constraint in the optimization problem (Eq. 1).291

Dynamic Head Budget. Our eviction method op-292

erates across attention heads within layer-l. Specif-293

ically, we flatten the LAVa scores from all heads294

in the layer into a one-dimensional array sl (Algo-295

rithm 1, lines 3–6). We then compare and rank Bl296

cache entries across all heads for layer-wise evic-297

tion, effectively obtaining dynamic head budget298

while performing eviction.299

4.2 Layer Budget Allocation300

Recently, CAKE (Qin et al., 2025) and PyramidKV301

(Cai et al., 2024) have demonstrated the potential302

of allocating different budgets across layers. Pyra-303

midKV, however, is suboptimal as it assigns a fixed304

allocation pattern regardless of the input. In con-305

trast, CAKE is prompt-dependent allocation (dy-306

namic) but combines different scores for cache evic-307

tion and budget allocation, which requires tuning308

three hyperparameters, hindering its practical ap-309

plication. Below, we describe our hyperparameter-310

free algorithm based on the LaVa score.311

Our key idea is that layers with greater uncer-312

tainty in determining which cache entry to evict313

should be allocated a larger budget. Specifically,314

based on the LAVa score, the probability of evict-315

ing token-k at layer-l and head-h is obtained by316

Algorithm 2 LAVa: Dynamic Budget Allocation
and Cache Eviction based on LAVa Score

1: Input: Total Budget B, KV Cache K,V Num-
ber of Layers L

2: Output: Compressed KV Cache K̂, V̂
3: s = [ ], e = [ ], K̂ = K, V̂ = V
4: for l = 1 to L do
5: Calculate sl based on Eq. 5
6: Calculate el based on Eq. 6, 7
7: s.append(sl)
8: e.append(el)
9: for l̃ = 1 to l do

10: Bl̃ =
el̃∑
l el

B
11: K̂l̃, V̂l̃ = EVICT(Bl̃, sl̃, K̂l̃, V̂l̃)
12: end for
13: end for
14: Return K̂, V̂

normalizing the LAVa scoring values: 317

ŝl,h[i] =
sl,h[i]∑
k,h sl,h[k]

(6) 318

The uncertainty for layer-l is then measured by the 319

normalized entropy as follows: 320

el =
−
∑

h,i(ŝl,h[i] log ŝl,h[i])

H ×N
(7) 321

With such a measure, we can first initialize all 322

KV Cache through prefilling, followed by cache 323

compression. Unfortunately, this approach results 324

in a high memory peak after prefilling (and before 325

compression). To address this, the common prac- 326

tice is that we perform prefilling and cache eviction 327

layer by layer. For dynamic layer budget allocation, 328

we draw inspiration from CAKE: after prefilling 329

layer-l, the lower layers (< l) are recompressed. 330

As a result, a lower layer is compressed multiple 331

times using the same LAVa scores, but the budget is 332

adjusted, becoming smaller over time as the mem- 333

ory is shared with more layers being prefilled. The 334

complete algorithm is outlined in Algorithm 2. 335

4.3 LLMs with GQA 336

Group Query Attention (GQA) (Ainslie et al., 337

2023) is the technique most modern LLMs adopt 338

due to its balance between performance loss and 339

memory efficiency. In GQA, the KV Cache is 340

compressed by sharing a single KV Cache among 341

all heads within a group. When applying LAVa 342

scores to GQA, we take a conservative approach: 343
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the group-wise score for a token is determined as344

the maximum of its head-wise scores within the345

corresponding group. In other words, we tend to346

retain the entry as long as it is important for at least347

one head within the group.348

5 Experiments349

5.1 Experimental Settings350

Backbone LLMs. We evaluate two series of351

LLMs: Mistral-7B-Instruct-v0.2 (Jiang et al.,352

2023), Qwen2.5-7/14/32B-Instruct (Qwen and353

et al., 2025), all with a context length of 32k. These354

models are widely adopted for their moderate pa-355

rameter sizes and strong performance all utilizing356

GQA (Ainslie et al., 2023).357

Evaluation Benchmarks. To validate the effec-358

tiveness of our algorithm, we perform evaluation359

LongBench (Bai et al., 2024), a bilingual, multi-360

task benchmark for long-context understanding. It361

comprises 21 datasets across six task categories362

in both English and Chinese, with an average363

length of 6,711 words (English) and 13,386 char-364

acters (Chinese). LongBench covers key long-365

text application areas, including single-document366

QA, multi-document QA, summarization, few-shot367

learning, synthetic tasks, and code completion.368

We also conduct experiments on Needle In A369

Haystack (Cai et al., 2024; Liu et al., 2024; Fu370

et al., 2024), Ruler (Hsieh et al., 2024) and In-371

finiteBench (Zhang et al., 2024), of which the re-372

sults are given in Appendix D.373

Baseline Methods. We compare our meth-374

ods against several baselines: PyramidKV,375

SnapKV, Ada-SnapKV, Ada-PyramidKV, and376

CAKE. Among these, PyramidKV and CAKE al-377

low different layer budgets. AdaKV is derived378

from the layer attention output loss but relies solely379

on attention for its scoring function and does not380

incorporate dynamic layer budget allocation. Ada-381

SnapKV employs the same scoring function and382

uniform layer allocation as SnapKV but allows dy-383

namic head budgets. Ada-PyramidKV follows the384

same approach but assigns fixed, varying budgets385

across layers like PyramidKV.386

Pooling operators, such as max pooling or aver-387

age pooling, can be applied to token score vectors388

to smooth score variations across adjacent tokens389

(Li et al., 2024; Cai et al., 2024; Qin et al., 2025).390

This strategy is also employed in the implemen-391

tation of LAVa and all the baselines. For pooling392

operation, for all methods, we adopt maxpool func- 393

tion and set kernel size as 7. More information 394

is given in Appendix B, and for implementation 395

details, please refer to Appendix D. 396

5.2 Main Results 397

Table 2 presents the results of Mistral-7B with dif- 398

ferent eviction policies on LongBench, revealing 399

several key observations. First, LAVa outperforms 400

all baselines across different budgets, with a more 401

pronounced advantage at smaller budgets. Sec- 402

ond, among methods requiring no hyperparameter 403

tuning (SnapKV, Ada-SnapKV, and LAVa), LAVa 404

achieves the best performance, significantly sur- 405

passing others. For instance, at B = 128HL, LAVa 406

achieves an average score of 36.74, compared 407

to Ada-SnapKV’s 35.82. And finally, LAVa and 408

CAKE excel in code-related tasks. On RepoBench- 409

P with a 128HL budget, LAVa (48.92) and CAKE 410

(48.53) outperform Ada-SnapKV (46.85) by a sig- 411

nificant margin. This is interesting given that 412

Ada-SnapKV surpasses CAKE on average over 413

20 datasets. Similar trends are observed with the 414

Qwen series and presented in Appendix D. 415

To further investigate the last observation, we cat- 416

egorize the 20 LongBench datasets into two types: 417

extraction tasks, which require extracting answers 418

from the context (e.g., QA tasks evaluated with F1 419

or Accuracy), and generation tasks (e.g., summa- 420

rization and code completion). For each category, 421

we then compute the average scores obtained with 422

Qwen and Mistral under varying cache budgets and 423

eviction policies. Figure 2 highlights several key 424

findings: 1) Extraction tasks are generally less af- 425

fected by compression, as LLM performance with 426

a compressed cache remains closer to that with 427

a full cache; 2) The performance gap among dif- 428

ferent eviction policies is greater on generation 429

tasks.; 3) CAKE and LAVa outperform Ada-SnapKV 430

and methods with fixed-layer budgets on genera- 431

tion tasks, though CAKE performs significantly 432

worse than Ada-SnapKV on extraction tasks with 433

Mistral-7B. This suggests the importance of (dy- 434

namic) layer budget allocation for generation tasks. 435

LAVa, however, consistently achieves top perfor- 436

mance across both task types and language models. 437

5.3 Evaluation of Latency and Memory Peak 438

We evaluate LAVa’s efficiency during LLM infer- 439

ence by analyzing peak memory usage and de- 440

coding latency on Mistral-7B-Instruct-v0.2, imple- 441

mented with FlashAttention-2 (Dao, 2023). Our 442
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PyramidKV 20.01 19.23 43.81 32.37 35.62 22.34 14.38 17.53 18.95 21.91 11.07 20.87 47.00 85.34 40.21 19.25 2.86 65.60 59.49 49.52 45.67 34.51
SnapKV 20.99 19.65 45.04 32.02 36.48 22.19 14.04 17.68 18.83 21.36 10.91 20.29 45.00 84.10 40.01 19.75 3.06 64.48 60.50 49.84 45.27 34.42
Ada-PyramidKV 20.21 20.80 43.82 33.65 37.21 22.99 14.93 18.06 19.41 22.02 11.16 20.97 52.00 83.93 39.97 20.00 2.81 72.73 72.89 51.00 46.62 36.22
Ada-SnapKV 20.61 20.56 44.03 34.03 36.39 23.66 16.15 17.82 19.21 21.73 11.25 20.35 50.00 84.32 39.82 19.75 3.87 69.11 70.52 50.21 46.85 35.82
CAKE 21.01 20.16 44.08 32.52 36.16 23.89 15.32 17.67 18.82 22.62 10.93 21.03 47.00 85.14 39.90 21.25 3.02 63.65 65.96 51.81 48.53 35.06
LAVa (Ours) 19.57 21.11 44.29 33.91 38.29 23.59 15.32 18.56 19.33 22.32 11.42 21.07 53.50 85.20 40.16 21.75 2.88 69.87 74.75 51.94 48.92 36.74

B = 256HL
PyramidKV 20.79 22.74 45.90 35.72 38.63 24.02 15.97 18.99 21.61 22.34 11.02 22.24 58.00 84.06 40.52 22.75 2.96 74.70 83.83 51.85 48.86 38.23
SnapKV 21.39 22.15 46.50 34.77 39.68 25.01 14.86 19.11 21.61 23.04 11.46 22.67 57.00 85.04 40.81 23.25 3.18 76.49 83.60 51.99 49.42 38.49
Ada-PyramidKV 22.61 23.84 47.65 36.56 39.33 24.86 17.22 19.65 21.22 22.54 11.82 22.29 64.00 84.93 40.36 24.50 3.40 77.39 85.83 52.48 49.43 39.43
Ada-SnapKV 21.63 23.55 47.51 37.42 38.89 23.65 16.06 19.34 21.98 23.21 11.49 22.39 64.00 86.33 40.54 25.25 2.23 77.44 85.42 52.31 49.62 39.40
CAKE 21.37 23.40 46.84 35.02 38.10 24.50 14.81 19.40 21.59 22.77 11.32 22.68 55.00 85.46 41.92 24.75 2.96 75.66 86.46 54.29 51.38 38.84
LAVa (Ours) 22.70 24.67 48.62 37.81 39.68 25.96 16.77 20.26 21.92 22.48 11.88 22.91 65.00 85.24 41.28 26.75 2.88 76.76 85.75 54.17 51.77 40.12

B = 512HL
PyramidKV 23.57 24.84 48.74 39.54 38.90 25.22 17.40 20.42 23.04 23.24 11.91 24.19 66.50 86.07 41.06 28.00 3.29 87.29 88.83 53.77 50.42 41.15
SnapKV 23.67 28.08 49.40 40.25 40.14 25.58 16.97 20.49 23.75 23.69 12.03 24.31 65.00 86.29 41.98 28.50 3.22 85.79 88.67 53.99 51.02 41.48
Ada-PyramidKV 24.37 27.30 48.01 40.88 39.75 25.96 18.58 20.90 23.59 23.33 12.07 24.04 67.50 86.44 42.58 31.50 3.38 85.88 89.67 54.15 51.30 41.89
Ada-SnapKV 24.63 27.48 48.90 41.28 39.84 26.33 18.26 20.91 23.59 23.51 12.27 24.32 67.50 86.38 42.34 32.50 2.98 87.65 89.17 54.39 51.03 42.11
CAKE 22.76 27.54 49.47 41.27 38.17 25.85 17.26 20.60 23.72 23.65 11.95 24.50 66.00 86.01 42.56 29.50 3.45 86.79 88.75 56.40 52.37 41.76
LAVa (Ours) 25.01 27.84 48.97 42.14 40.95 26.88 18.33 21.12 23.59 23.59 12.28 24.51 68.50 86.34 42.48 33.50 2.90 87.23 89.83 55.83 52.85 42.59

B = 1024HL
PyramidKV 25.62 28.96 48.35 42.18 40.89 26.65 19.69 21.96 25.10 23.57 12.58 25.42 68.50 86.30 41.92 35.50 2.98 86.77 89.50 55.26 51.03 42.79
SnapKV 24.80 30.17 49.13 43.23 41.16 26.92 17.89 22.58 25.75 23.64 12.88 25.85 67.50 86.25 42.56 36.00 2.88 88.10 88.92 55.23 51.38 43.00
Ada-PyramidKV 24.98 29.92 47.97 41.43 40.83 26.98 19.42 22.45 25.46 23.58 12.94 25.61 68.50 86.30 42.84 35.50 2.89 88.18 89.25 54.51 51.32 42.90
Ada-SnapKV 24.84 29.99 49.21 42.55 41.00 27.39 19.23 23.23 25.89 24.18 13.13 25.85 69.00 86.23 42.84 36.25 2.90 89.02 89.75 55.38 51.93 43.34
CAKE 25.15 30.34 49.00 43.08 40.86 26.70 19.93 23.07 25.82 23.72 13.16 26.05 68.00 86.25 42.70 36.00 2.91 88.60 88.75 56.75 53.26 43.36
LAVa (Ours) 25.59 31.21 48.27 43.43 41.92 27.38 19.48 23.48 26.06 23.86 13.38 26.00 70.00 86.22 42.43 38.00 2.73 87.01 88.75 57.31 53.28 43.65

Table 2: Final comparison based on Mistral-7B-Instruct-v0.2 among 21 datasets of LongBench. (Note: The best
result is highlighted in bold, and the second is in underline. Due to the negligible numerical values obtained from
the passage count dataset, its results were excluded from the computation of the average scores.)

Figure 2: Results of generation and extraction tasks.

comparison includes Full Cache, SnapKV, Ada-443

SnapKV and CAKE, all using allocation budget444

1024HL. We set input at varying lengths while445

keeping the output length fixed at 128.446

Decoding Latency. By analyzing the decoding447

latency in Figure 3, we observe that our scor-448

ing function and dynamic budget allocation intro-449

duce negligible decoding cost, achieving over a 9×450

speedup compared to Full Cache at a 128K context451

length. Notably, our method is easier to deploy452

than PyramidKV, Ada-PyramidKV, and CAKE, as453

these baselines require parameter tuning.454

Figure 3: Peak memory usage and decoding latency in
A800 80GB based on Mistral-7B-Instruct-v0.2.

Peak Memory Usage. The peak memory usage 455

of all methods generally increases with context 456

length due to prefilling. Our method effectively 457

maintains peak memory at a reasonable level, par- 458

ticularly compared to Full Cache, which encoun- 459

ters OOM issues at higher context lengths. CAKE 460

and LAVa, both employing dynamic layer budgets, 461

generally have slightly higher peak memory usage. 462

Compared to CAKE, LAVa requires additional stor- 463

age for the norms of head-wise value vectors, but 464

this extra memory overhead remains minimal. 465

Theoretical Analysis. We provide the theoretical 466

analysis of time complexity and memory usage in 467

Appendix D. The time complexity and peak mem- 468

ory usage of SnapKV is O(HN(Ndh + wdh + 469

logBl,h)) and O(HNdh + LHBl,hdh), while that 470

of LAVa is O(HN(Ndh + wdh + dh + logBl) 471

and O(HNdh+LHBl,hdh+LHBl,hdh). Setting 472
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Figure 4: Ablation study on LongBench.

context length N as 10,000, head budget Bl,h as473

1024, the extra computation of LAVa compared to474

SnapKV is 0.01% and the extra memory usage is475

0.6%, which is consistent with Figure 3.476

5.4 Further Analysis477

Dynamic Budget Allocation To examine the im-478

pact of dynamic budget allocation, we introduce479

two modifications: LAVa (-layer dynamic), which480

enforces a uniform layer budget of B/L, and LAVa481

(-head dynamic), which fixes the head budget at482

Bl/H after dynamically determining the layer bud-483

get Bl, performing head-wise cache eviction with-484

out cross-head comparisons. Results in Figure 4485

demonstrate that dynamic budget allocation at both486

the head and layer levels is essential for perfor-487

mance. Furthermore, it reinforces the finding that488

dynamic layer budgets are essential for generation489

tasks, whereas dynamic head budgets play a crucial490

role in text extraction tasks. Detailed results are491

provided in Appendix D, where we also analyze the492

influence of different layer allocation approaches.493

Analysis of LAVa Score. To validate the effec-494

tiveness of LAVa score, we replace our dynamic495

layer budgets with fixed ones with PyramidKV496

or Uniform allocation. For different total bud-497

gets, we then compare LAVa-Pyramid with Ada-498

PyramidKV and LAVa-Uniform with AdaKV on499

LongBench. For each comparison, we count the500

number of tasks in LongBench where one method501

outperforms the other. Figure 5 presents the final502

winning rates. The results show that our scoring503

function yields a significantly higher number of504

wins in most cases, validating its effectiveness.505

6 Related Work506

Recently, various KV Cache compression methods507

have been proposed, leveraging different policies508

such as recency (Xiao et al., 2024), accumulated509

attention scores (Zhang et al., 2023), last-token510

attention scores (Oren et al., 2024), and recent at-511

tention scores (Li et al., 2024; Dai et al., 2024).512

Figure 5: LaVa score vs AdaKV score on LongBench.

While most approaches assume a uniform budget, 513

recent efforts have been made for dynamic bud- 514

get allocation across layers (Qin et al., 2025) and 515

heads (Feng et al., 2024). Some methods aim at 516

layer-dependent budgets but fix the patterns across 517

all samples (Cai et al., 2024; Yang et al., 2024). In 518

general, KV Cache eviction and budget allocation 519

are typically treated as separate problems, requir- 520

ing a combination of independent strategies. In 521

contrast, we develop a principled framework based 522

on information loss in the residual stream and pro- 523

pose a unified method for both cache compression 524

and dynamic budget allocation. 525

Closely related to LAVa is (Feng et al., 2025, 526

2024), which aims at minimizing the layer output 527

perturbation. However, this study only applies the 528

derived metric locally for head budget allocation. 529

In contrast, we propose a metric for layer-wise 530

cache eviction with dynamic layer budgets. 531

7 Conclusion 532

This paper provided a comprehensive of current 533

KV Cache compression into a unified framework, 534

grounded in the principle of minimizing informa- 535

tion loss in Transformer residual streams. By 536

analyzing the Layer Attention Output Loss, we 537

proposed LAVa, a novel layer-wise compression 538

method that enables fully dynamic head and layer 539

budget allocation. Our experiments demonstrate 540

that dynamic layer budgets are crucial for gener- 541

ation tasks, whereas dynamic head budgets are 542

important for extraction tasks. As a fully dynamic 543

compression method, LAVa consistently maintains 544

top performance across task types and LLM archi- 545

tectures, while achieving the same speedup of 9× 546

with 128K context length compared to full cache. 547

Future directions include exploring new com- 548

pression algorithms based on our framework, as 549

well as extending our framework for model com- 550

pression. By advancing efficient methods for 551

LLMs, our work contributes to making LLM more 552

accessible and scalable for diverse applications. 553
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Limitations554

There are several limitations to our work. While555

we propose a unified framework with multiple opti-556

mization opportunities, our theoretical analysis and557

experiments focus on only one direction. Although558

LAVa’s simplicity is a key advantage, other ap-559

proaches should be explored to further close the per-560

formance gap with a full-cache setup, particularly561

for generation tasks. Additionally, further research562

is needed to better understand why dynamic layer563

budget is crucial for generation tasks. Lastly, apart564

from FlashAttention-2 (Dao, 2023), our method565

has not yet been integrated into other widely used566

inference frameworks, such as vLLM (Kwon et al.,567

2023). We believe that such integration is essential568

for broader adoption and real-world deployment of569

our algorithm.570
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Notation Explanation Notation Explanation

N Current token length AN
l,h[i] Attention weight of position i at layer l, head h and step N

Ne Expected token length yNl Attention output of layer l and step N

L Total number of layers ŷNl Modified attention output of layer l and step N after eviction
H Total number of heads per layer p Logits after last layer for next token
l Layer index, l ∈ [L] p̂ Modified logits after last layer for next token after eviction
h Head index, h ∈ [H] P Information loss function of Transformer residual streams
d The model embedding dimension w Sliding window size
dh The head embedding dimension dh = d/H Bl,h Budget for head h of layer l
xNl The input hidden states of step N and layer l Bl Budget for layer l
QN

l The query vector of step N and layer l B Fixed total budget for KV Cache, B =
∑

l∈[L] Bl
KN

l The key vector of step N and layer l sl,h[i] Score of position i at layer l and head h

V N
l The value vector of step N and layer l el The uncertainty of layer l for dynamic layer budget allocation

Kl,h Key cache of layer l and head h Il,h Attention mask for the head h of layer l, Il,h ∈ [1, 0]N

Vl,h Value cache of layer l and head h I Attention mask I ∈ [1, 0]L×H×N

Table 3: Notation table.

Decoding Process According to (Ferrando and767

Voita, 2024), the decoding process of large lan-768

guage models (LLMs) can be viewed as a series769

of operations on the current residual stream, as il-770

lustrated in Figure 1. In each layer, information is771

read from the residual stream, updated, and then772

written back. Specifically, supposing that xNl is773

the current input for layer l, we first calculate the774

corresponding QN
l ,KN

l , V N
l as follows:775

QN
l = xNl WQ

l ;KN
l = xNl WK

l ;V N
l = xNl W V

l776

where QN
l ,KN

l , V N
l are of size (H × 1× dh), con-777

taining H head-wise caches. The layer-wise KV778

Cache is then updated as follows:779

Kl = Cat[Kl,K
N
l ], Vl = Cat[Vl, V

N
l ]780

where Kl, Vl are tensors of size (H×N ×dh), and781

Cat indicates the concatenation operation.We then782

calculate the attention scores of step-N for layer-l:783

AN
l = Cath∈[H]

(
AN

l,h

)
784

where AN
l,h = Softmax(

QN
l,hKl,h√

dh
). Here,785

textbfAN
l,h[i] indicates how much the token at step-786

N (the N -th token) attends to the i-th token (i <=787

N ). Layer-l attention output is calculated as fol-788

lows:789

yNl = Cath∈[H](A
N
l,hVl,h)W

O
l ∈ R1×d790

where WO
l ∈ Rd×d. The layer output xNl+1, which791

is also the input for the layer-(l + 1), is calculated792

as xNl+1 = yNl + FFN(yNl ).793

In the last layer, we exploits an un-embedding794

layer (WM ∈ Rd×|V|) to get the probability vector795

p for next token sampling:796

pN =
(
yNL + FFN(yNL

)
WM (8) 797

Head-wise vs Layer-wise Cache Current query 798

matrix and KV Cache on head h of layer l are : 799

QN
l,h = QN

l [:, dh ∗ h : dh ∗ (h+ 1)] ∈ R1×dh (9) 800

801

Kl,h = Kl[:, dh ∗ h : dh ∗ (h+ 1)], (10) 802

Vl,h = Vl[:, dh ∗ h : dh ∗ (h+ 1)] ∈ RN×dh

(11)
803

Henc, the layer-wise KV Cache can be treated as 804

concatenation of head-wise elements where we just 805

change the order of dimensions: 806

Kl = Cath∈[H][Kl,h] ∈ RH×N×dh , (12) 807

Vl = Cath∈[H][Vl,h] ∈ RH×N×dh (13) 808

And the same to the query matrix: 809

QN
l = Cath∈[H][Q

N
l,h] ∈ RH×1×dh (14) 810

B Extension of A Principled Framework 811

for KV Cache Eviction based on 812

Information Loss 813

The unified problem for budget allocation and 814

cache eviction can be defined as follows: 815

min
I,B
P(x1...N1 , I,B) (15) 816

st.
∑
i∈[N ]

Il,h[i] = Bl,h; 817

∑
h∈[H]

Bl,h = Bl;
∑
l∈[L]

Bl = B 818

Il,h[k] = 1 , ∀l, h; and ∀k ∈ [N − w,N ] 819
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The optimization problem in Eq. 15 is infeasible to820

solve for several reasons. We can instead search for821

a scoring function s, where sl,h[i] assigns an impor-822

tance score to token i at layer l and head h. This823

scoring function allows us to greedily choose the824

least important entries to be masked until the bud-825

get is met I = Select(s,B). Bringing everything826

together, we arrive at the following (surrogate) op-827

timization problem:828

min
B,s∈F

P(x1...N1 , s,B) (16)829

Current various kv cache eviction methods can830

be adapted into our framework, just defining sev-831

eral significant functions and parameters (includ-832

ing P, I,B and s) and introducing additional con-833

straints, which will result in suboptimal perfor-834

mance. In addition, they adopt many heuristic835

techniques based on observations to simplify the836

problem. The full summarization of how existeing837

methods can be formalized within our framework838

is presented in Table 4.839

H2O. (Zhang et al., 2023) Allocation budgets B840

are all fixed before generation. The budgets of all841

layers are the same and the budgets of all heads are842

also the same.843

Bl,h =
B
HL

(17)844

H2O uses head attention loss and adopt accumu-845

lated attention scores as score function.846

sl,h[i] =
N∑

j=i+1

Aj
l,h[i], Il,h = Select(sl,h,Bl,h)

(18)847

H2O claimed that the accumulated attention score848

can preserve the future attention pattern better. This849

technique is heuristic and based on observations850

of experiments in several methods like H2O and851

SnapKV (Li et al., 2024), but it is valid and actually852

can improve the performance, mitigating the im-853

pact of absolutism of only current attention scores854

(Oren et al., 2024).855

TOVA. (Oren et al., 2024) The difference be-856

tween TOVA and H2O is that TOVA uses current857

attention scores as score function.858

sl,h[i] = AN
l,h[i], Il,h = Select(sl,h,Bl,h) (19)859

SnapKV. (Li et al., 2024) The difference between860

SnapKV and H2O is that SnapKV uses recent atten-861

tion scores as score function, which means SnapKV862

only utilizes tokens within sliding window to cal- 863

culate accumulated attention scores. We set sliding 864

window size as w: 865

sl,h[i] =

N∑
j=N−w

Aj
l,h[i] 866

Il,h = Select(sl,h,Bl,h) (20) 867

SnapKV claims that the accumulated attention 868

scores of the recent sliding window is enough to 869

represent the significance of tokens. Furthermore, 870

SnapKV adopts pooling operation to preserve the 871

completeness of the information. In our view, bet- 872

ter protecting the coherence of the text is the reason 873

for the effectiveness of pooling operation. 874

PyramidKV. (Cai et al., 2024) The difference 875

between PyramidKV and SnapKV is that consider- 876

ing the different significance of layers in the long- 877

context setting, PyramidKV set the budgets of lay- 878

ers in a descending order like a pyramid. It uses a 879

hyper-parameter β to control the shape of pyramid. 880

BL−1 =
B

β ∗ L
,B0 =

2 ∗ B
L
− BL−1 881

Bl = B0 −
BL−1 − B0

L− 1
∗ l (21) 882

And the budgets of heads in one layer are the same: 883

Bl,h = Bl
H . 884

Hence, compared with SnapKV, PyramidKV 885

consider about different budgets of layers in a 886

heuristic way. 887

CAKE. (Qin et al., 2025) Allocation budgets B 888

are generated through the online prefilling stage. 889

All heads of one layer have the same budget. So 890

CAKE do not consider the level of head (such as 891

using mean information across heads). 892

Considering spatial and temporal information, 893

CAKE allocates different budgets to different lay- 894

ers. And not adopting the fixed pattern like Pyra- 895

midKV, CAKE claims that for different samples, 896

the allocation pattern also needs to be adapted. It 897

defines functions of spatial and temporal informa- 898

tion for one layer l, the spatial information function 899

H is formed as entropy of attention scores (larger 900

values means more even distribution) and the tem- 901

poral information function V (larger values means 902

more distribution shift) is formed as variance of 903

attention scores (A(n) means the attention scores 904
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Methods Budgets Scoring Function Loss
Bl,h Bl

H2O (Zhang et al., 2023) Bl/H B/L Accumulated attention scores

Head Attention

sl,h[i] =
∑N

j=i+1 A
j
l,h[i]

SnapKV (Li et al., 2024) Bl/H B/L Recent attention scores
sl,h[i] =

1
w

∑N
j=N−w Aj

l,h[i], ∀i < N−w
TOVA (Oren et al., 2024) Bl/H B/L Last-token attention scores

sl,h[i] = AN
l,h[i]

CAKE (Qin et al., 2025) Bl/H Dynamic Recent attention scores + attention shifts
sl,h[i] = γVARN

j=N−w([A
j
l,h[i]))

+ 1
w

∑N
j=N−w Aj

l,h[i], ∀i < N − w

VATP (Guo et al., 2024) Bl/H B/L Recent attention scores + value vectors Head Attention
Output

sl,h[i] =
∥Vl,h[i]∥1

w

∑N
j=N−w Aj

l,h[i]

Dodo (Qin et al., 2024a) Dynamic B/L Neural Network (LoRA) Logits

DuoAttention (Xiao et al., 2025) w or full - Head classifier (retrieval vs non-retrieval)
Layer Attention
Output

AdaKV (Feng et al., 2024) Dynamic Fixed Recent attention scores
LAVa (Ours) Dynamic Dynamic Recent attention scores + value vectors

sl,h[i] =
maxk∥Vl,h[k]∥1

w

∑N
j=N−w Aj

l,h[i]

Table 4: Comparison between different methods; Dodo and DuoAttention require training; The layer cache budget
Bl of AdaKV is based on the method it is integrated with.

distribution in the n-th step of prefilling stage):905

Hl = −
N∑
j=1

Aj
l log(A

j
l ),906

Vl =
N∑
j=1

VAR([At
l [j]]

t∈[j,N ]) (22)907

Then CAKE uses these two functions to determine908

the budget of layers, where γ1 and γ2 are two hyper-909

parameters to control the influence of two func-910

tions:911

Pl = H
1
γ1
l V

1
γ2
l ,Bl =

Pl∑l∈[L] Pl
B,Bl,h =

Bl
H
(23)912

CAKE also uses head attention loss function as913

optimization objective but it also introduces tempo-914

ral information into score function of SnapKV. It915

adopts variance to represent the distribution shift916

of attention scores for the same token. Let γ be a917

hyper-parameter to control the influence of tempo-918

ral information, and w as the sliding window size,919

CaKE score is:920

sl,h[i] =

N∑
j=N−w

Aj
l,h[i] + γVAR([At

l,h[i]]
t∈[i,N ])921

Il,h = Select(sl,h,Bl,h) (24)922

AdaKV. (Feng et al., 2024) The algorithm of 923

AdaKV is based on other methods. It adopts 924

layer attention output loss function but not con- 925

duct real training. Deriving the upper bound of 926

output loss (as shown in Eq. 25 where C = 927

maxh∈[H]∥WO
l,h

T
V T
l,h∥1), AdaKV obtains the in- 928

sight that allocating different budgets to heads of 929

one layer based on the score function just consider- 930

ing about information within attention scores can 931

preserve the performance of model further. 932

∥yl − ŷl∥1≤ 2C
∑
h∈[H]

(
∑
i∈[N ]

AN
l,h[i](1− Il,h[i]))

(25) 933

We set ŝl as the topk results of all sl,h, h ∈ [H], the 934

budget of one head h can be calculated by: 935

Bl,h = Num(ŝl,h), ŝl, Il = Select(sl,h,Bl,h)
(26) 936

AdaKV combines this insight with SnapKV and 937

PyramidKV for better results. So the score func- 938

tion of AdaKV is the same as Eq. 20. However, the 939

bound of AdaKV ignores the influence of value in- 940

formation and just use the max information, which 941

will make the bound too loose. Our framework 942

about output loss is motivated by this research and 943

we conduct some modification and further studies. 944

For the details and how to derive upper bound of 945
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output loss, refer to Section 4.946

DuoAttention. (Xiao et al., 2025) DuoAttention947

uses layer attention output loss function as op-948

timization objective. Unlike H2O and TOVA, at-949

tention mask I of DuoAttention is constraint to950

a pattern combined with sink and recent tokens951

based on allocation budgets B, which means score952

function s id for tokens are not needed. Here sink953

tokens means several initial tokens in prompt de-954

fined by StreamingLLM (Xiao et al., 2024).955

Il,h[i] =

{
1 if position k is sink or recent, k ∈ [N ]

0 otherwise, evict Kl,h[k] and Vl,h[k]
(27)956

DuoAttention adopts real optimization method and957

needs training based on 2-norm of output loss func-958

tion. The optimization result is to determine the959

allocation budgets B. In detail, it determines which960

head was allocated with full budget and which head961

was allocated with a compressed budget. So be-962

sides I and B, DuoAttention introduces a param-963

eter α to be optimized and finally determines the964

different functions of heads, including Retrieval965

Heads (Wu et al., 2025) and Streaming Heads. We966

define ŵ as the numbers of sink and recent tokens.967

Bl,h =

{
n if head h of layer l is Retrieval Head
ŵ otherwise, Streaming Head

(28)968

Dodo. (Qin et al., 2024a) Dodo uses logit loss969

function as optimization objective. But not adopt-970

ing a predefined rule for attention mask I, Dodo971

uses a score function ϕ implemented by LoRA (Hu972

et al., 2021) adapters to determine the attention973

mask for tokens, which is trained along with log-974

its loss. Logits loss is defined by loss of future975

expected tokens which are not pratical. So Dodo976

converts the expected tokens into past tokens and977

the loss function can be formalized as:978

P (I,B) =
∑
i∈[N ]

CE(p, p̂)i (29)979

The score function ϕ is trained via this loss func-980

tion and finally determines which tokens will be981

preserved. The cache budget B for all heads and982

layers are the same. Besides, Dodo merges the in-983

formation within tokens evicted into the preserved984

tokens similar to KV Cache merging methods.985

VATP. (Guo et al., 2024) The difference between986

LAVa and VATP is shown in Table 4 and explained987

Budgets 128 256 512 1024

SnapKV 34.42 38.49 41.48 43.00
+VATP 35.34 39.41 41.93 43.32

LAVa 36.74 40.12 42.59 43.65
-layer dynamic 36.20 39.77 42.11 43.35

Table 5: Comparison between VATP and LAVa.

as follows: (1) VATP directly multiplies each to- 988

ken’s value norm with attention scores. In contrast, 989

LAVa calculates the maximum value norm, which 990

serves as scaling factors for heads; (2) VATP has 991

fixed head and layer budgets, while LAVa is totally 992

dynamic. The deeper difference, however, lies in 993

how the two scores are developed. VATP comes 994

with an intuition of "Value also matters" but lacks 995

theoretical analysis. We independently derive from 996

layer attention output with a complete reasoning 997

process: starting from layer attention output, de- 998

riving the upper bound, getting an approximate 999

score in greedy solution, smoothing it out based on 1000

multiple residual stream. 1001

This reasoning is very important. As we start 1002

from the layer point of view, we can see that such 1003

scores can be used to compare entries across heads 1004

for layer-wise KV Cache eviction. And we ar- 1005

gue that doing so could reduce the information 1006

loss at layer attention output. The reasoning pro- 1007

cess shows what approximation we make and gives 1008

room for future improvement. 1009

To validate our elaboration, we compares three 1010

configurations: (1) VATP integrated with SnapKV, 1011

(2) standard LAVa, and (3) LAVa without dynamic 1012

layer budgeting based on Mistral-7B-Instruct-v0.2 1013

in LongBench. The results in Table 5 demonstrate 1014

that while VATP shows improvement over baseline 1015

SnapKV, it consistently underperforms compared 1016

to both LAVa and LAVa (-layer dynamic). From 1017

the computational perspective, VATP incurs similar 1018

overhead to LAVa(refer to Appendix D, yet delivers 1019

suboptimal performance. This verifies our claim 1020

that intuition and a theoretical analysis help you 1021

get to a more optimal solution. 1022

C Extension of LAVa: Layer-wise Cache 1023

Eviction with Dynamic Budget 1024

Allocation 1025

Details of Lemma 1. We define and derive the 1026

Layer Attention Output Loss in this lemma. 1027
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Lemma 1. Based on the Lp norm, the layer at-1028

tention output loss due to the attention mask I is1029

measured for layer-l at the current (N -th) decoding1030

step as follows:1031

P(x1...N1 , I,B) = ∥yNl − ŷNl ∥p (30)1032

=

∥∥∥∥∥Cath

[
(AN

l,h −
AN

l,h ⊙ Il,h
∥AN

l,h ⊙ Il,h∥1
)Vl,h

]
WO

l

∥∥∥∥∥
p

1033

where ⊙ indicates element-wise multiplication and1034

ŷNl = Cath(Â
N
l,hVl,h)W

O
l1035

As we mentioned above:1036

yNl = Cath∈[H](A
N
l,hVl,h)W

O
l1037

ŷNl = Cath∈[H(ÂN
l,hVl,h)W

O
l1038

(31)1039

And based on the definition of attention mask I , the1040

attention weights after eviction can be calculated1041

as:1042

ÂN
l,h = Softmax(

− inf ⊙(1− Il,h) +QN
l,hK

T
l,h√

dh
)

(32)1043

Hence, Lemma 31 is equal to (Temporarily ignor-1044

ing the superscript N ):1045

Âl,h =
Al,h ⊙ Il,h
∥Al,h ⊙ Il,h∥1

(33)1046

This theorem has been proved by AdaKV (Feng1047

et al., 2024), so we will not elaborate further here.1048

Proof of Theorem 1. Then we drive the upper1049

bound of Layer Attention Output Loss and give1050

this theorem.1051

Theorem 1. The L1 norm of layer attention out-
put loss can be bounded by:

(34)∥yl − ŷl∥1

≤ 2Ĉ

h∈[H]∑
V̄l,h(

k∈[N ]∑
AN

l,h[k](1− Il,h[k]))

where V̄l,h = maxk∈[N ]∥Vl,h[k]∥1 and Ĉ =1052

∥WO
l

T ∥1 is a constant, which is independent of1053

any head or token within layer-l.1054

Proof. First we need to introduce a lemma:1055

Lemma 2. Given a vector x ∈ R1×m and a matrix1056

W ∈ Rm×n, we can get the relationship between1057

matrix norm and vector norm:1058

∥xW∥p≤ ∥x∥p∥W T ∥p (35)1059

∥xW∥p and ∥x∥p are vector p-norm, ∥W T ∥p is 1060

matrix p-norm which is calculated by the largest 1061

sum of column absolute value. 1062

This lemma is derived from Horn and Johnson
(2012). Then we can obtain (Temporarily ignoring
the superscript N ):

∥yl − ŷl∥1

≤ ∥Cath[(Al,h−
Al,h ⊙ Il,h
∥Al,h ⊙ Il,h∥1

)Vl,h]∥1∥WO
l

T ∥1

(36)

We set ∥WO
l

T ∥1 as Ĉ because it is the constant 1063

model parameter. Then we know that and set: 1064

Gl,h = (Al,h −
Al,h ⊙ Il,h
∥Al,h ⊙ Il,h∥1

)Vl,h ∈ R1×dh

(37) 1065

Thus ∥Cath∈[H][Gl,h]∥1 is the vector 1-norm of a
vector ∈ R1×(dh∗H). According to the definition of
vector 1-norm, we can transform cat operation to
sum and continue derivation based on Theorem 2:

∥yl − ŷl∥1

≤ Ĉ∥Cath∈[H][(Al,h −
Al,h ⊙ Il,h
∥Al,h ⊙ Il,h∥1

)Vl,h]∥1

= Ĉ
∑
h∈[H]

∥(Al,h −
Al,h ⊙ Il,h
∥Al,h ⊙ Il,h∥1

)Vl,h∥1

≤ Ĉ
∑
h∈[H]

(∥Al,h −
Al,h ⊙ Il,h
∥Al,h ⊙ Il,h∥1

∥1∥V T
l,h∥1)

(38)

Next we will prove that ∥Al,h −
Al,h⊙Il,h

∥Al,h⊙Il,h∥1 ∥1= 1066

2
∑i∈[N ]

ifIl,h[i]=0Al,h[i]. 1067

Let ∥Al,h ⊙ Il,h∥1=
∑

i∈[N ] Il,h[i]Al,h[i] = 1068∑i∈[N ]
ifIl,h[i]=1Al,h[i] as F ∈ (0, 1]: 1069
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∥Al,h −
Al,h ⊙ Il,h
∥Al,h ⊙ Il,h∥1

∥1 = ∥
F − Il,h

F
⊙Al,h∥1

=
∑
i∈[N ]

|
(F − Il,h[i])Al,h[i]

F
|

=

i∈[N ]∑
ifIl,h[i]=0

Al,h[i] +

i∈[N ]∑
ifIl,h[i]=1

(1− F )Al,h[i]

F

=

i∈[N ]∑
ifIl,h[i]=0

Al,h[i] +

∑i∈[N ]
ifIl,h[i]=1Al,h[i]

F

−
i∈[N ]∑

ifIl,h[i]=1

Al,h[i]

=

i∈[N ]∑
ifIl,h[i]=0

Al,h[i] + 1−
i∈[N ]∑

ifIl,h[i]=1

Al,h[i]

= 2

i∈[N ]∑
ifIl,h[i]=0

Al,h[i]

(39)

Then based on the definition of matrix 1-norm1070

and ∥V T
l,h∥1∈ Rdh×N , we can calculate this as the1071

largest sum of row absolute value of Vl,h ∈ RN×dh ,1072

which is equals to the largest vector 1-norm of V1073

value of previous tokens, formalized as:1074

V̄l,h = ∥V T
l,h∥1= maxk∈[N ]∥Vl,h[k]∥1 (40)1075

Now we can obtain:

(41)∥yl − ŷl∥1

≤ 2Ĉ
∑
h∈[H]

(

i∈[N ]∑
ifIl,h[i]=0

AN
l,h[i]∥V T

l,h∥1)

= 2Ĉ
∑
h∈[H]

(
∑
i∈[N ]

AN
l,h[i]V̄l,h(1− Il,h[i]))

Here the proof is done.1076

Potential Future Work. Building on our frame-1077

work, multiple research directions can be further1078

explored. One possible question is whether the1079

Layer Output Loss, which takes into account the1080

FFN layer, should be considered. The interaction1081

between the FFN layer and the layer attention out-1082

put determines what information a layer writes to1083

the residual stream (Ferrando and Voita, 2024). In1084

other words, certain tokens in past residual streams1085

may play a crucial role in activating the layer’s1086

knowledge within the FFN. Accounting for these1087

interactions could reduce performance loss, yet the1088

challenge lies in how to do so efficiently.1089

Another potential avenue is formulating the prob- 1090

lem as an online reinforcement learning (RL) task, 1091

where the objective is to optimize the policy (i.e., 1092

the scoring function) to maximize the expected re- 1093

ward. Here, the expected reward can be cast as min- 1094

imizing the expected loss in future residual streams, 1095

not just the past ones. This direction is potential for 1096

the cache-offload and retrieval problem, where we 1097

need to decide which parts of the cache to offload 1098

to CPU or retrieve from CPU while maintaining 1099

the communication cost. 1100

Additionally, this framework could be extended 1101

to model pruning, not just masking tokens but also 1102

selectively masking model parameters to minimize 1103

information flow while preserving efficiency. 1104

D Extension of Experiments 1105

Implementation Details. For SnapKV and Ada- 1106

SnapKV, no additional hyperparameters are re- 1107

quired. However, for PyramidKV, we must adjust 1108

the parameter β to control the shape of the cache 1109

budget pyramid. We set β to (5, 10, 20) and select 1110

the best-performing result, the same approach to 1111

Ada-PyramidKV. For CAKE, three parameters re- 1112

quire tuning: γ1 and γ2 for layer budget allocation, 1113

and γ3 for the scoring function, as explained in Ap- 1114

pendix B. Based on recommendations from (Qin 1115

et al., 2025), we set 1/γ1 to (0.2, 0.3, 0.5, 1, 2), 1116

1/γ2 to (0.2, 0.3, 0.5, 1, 2), and γ3 to (0, 5, 10, 200). 1117

We then evaluate different combinations and select 1118

the one that yields the best overall performance. 1119

Pooling operators, such as max pooling or aver- 1120

age pooling, can be applied to token score vectors 1121

to smooth score variations across adjacent tokens 1122

(Li et al., 2024; Cai et al., 2024; Qin et al., 2025). 1123

This strategy is also employed in the implemen- 1124

tation of LAVa and all the baselines. For pooling 1125

operation, for all methods, we adopt maxpool func- 1126

tion and set kernel size as 7. 1127

Results of LAVa in LongBench. The results of 1128

Qwen2.5-7B-Instruct are listed in Table 6. The re- 1129

sults of Qwen2.5-14B-Instruct and Qwen2.5-32B- 1130

Instruct are in Table 7. From all these results, we 1131

can obtain the similar conclusion like Mistral in 1132

main text. LAVa outperforms all baselines across 1133

different budgets, even in models with larger pa- 1134

rameter size. 1135

Results of LAVa in Needle In A Haystack. The 1136

results of Needle In A Haystack are shown in Ta- 1137

ble 8. The conclusion is consistent with that of 1138
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Full Cache 29.05 43.34 52.52 62.27 57.59 47.05 30.24 29.25 31.78 23.64 15.96 23.96 72.50 88.82 45.61 42.75 8.50 100.00 96.50 59.61 67.12 48.96

B = 128HL
PyramidKV 21.96 26.41 42.53 52.77 49.33 42.17 23.48 17.88 16.80 19.29 11.24 14.30 42.50 83.78 41.15 22.39 8.50 95.50 63.50 48.53 51.39 37.88
SnapKV 25.24 27.66 43.90 53.53 51.00 42.12 24.59 18.56 18.04 19.85 11.32 15.55 41.00 83.18 40.68 24.88 9.00 98.00 81.50 49.44 52.58 39.60
Ada-PyramidKV 23.08 27.53 42.07 53.17 50.73 42.03 23.31 18.03 17.48 19.65 11.21 14.71 42.50 83.90 41.25 22.81 9.00 94.00 76.00 49.17 52.69 38.78
Ada-SnapKV 25.20 28.45 45.00 54.37 51.08 44.02 24.66 18.81 18.26 20.09 11.50 16.25 42.50 84.06 41.00 22.49 9.00 96.50 87.50 49.92 54.32 40.24
CAKE 24.43 30.15 45.03 54.86 50.65 42.41 25.91 18.89 18.21 20.66 11.60 15.84 42.00 84.54 41.95 26.24 8.50 95.50 81.50 51.60 55.09 40.26
LAVa (Ours) 23.29 28.87 46.80 56.10 52.65 42.96 25.09 19.25 18.24 20.52 11.80 16.28 43.00 84.56 42.18 23.95 8.50 96.00 85.00 53.45 56.07 40.69

B = 256HL
PyramidKV 24.82 31.13 46.92 56.06 53.07 42.31 25.06 19.54 19.27 20.47 12.01 16.55 50.00 84.88 42.04 25.39 8.50 96.00 85.50 52.03 55.82 41.30
SnapKV 26.61 23.77 49.15 58.37 56.03 44.18 25.68 20.96 20.84 20.99 12.19 18.52 48.50 86.31 43.06 29.89 8.50 97.50 95.00 54.26 59.42 43.32
Ada-PyramidKV 25.97 31.01 47.31 56.43 54.17 43.03 25.23 19.41 19.60 21.09 11.87 17.07 54.50 86.04 42.69 27.28 8.50 97.00 90.00 52.78 56.55 42.26
Ada-SnapKV 26.52 34.50 50.01 58.28 55.61 43.60 26.14 20.89 21.30 20.94 12.51 18.59 52.50 85.50 42.97 28.43 8.50 98.00 93.50 53.94 59.30 43.41
CAKE 26.59 33.95 49.80 58.25 54.89 44.42 26.47 20.35 21.23 21.94 12.35 18.53 47.50 85.41 43.51 32.33 8.50 97.50 94.00 55.56 61.13 43.53
LAVa (Ours) 27.04 35.19 49.36 59.74 55.35 44.13 27.25 20.88 21.15 21.51 12.77 18.96 49.00 86.73 43.42 30.35 8.50 98.00 93.00 56.19 62.19 43.84

B = 512HL
PyramidKV 28.02 35.74 50.84 58.11 55.26 44.72 25.85 20.94 21.83 21.34 12.33 18.95 59.50 86.13 43.04 32.83 8.50 99.00 96.00 55.65 59.42 44.48
SnapKV 28.27 28.22 50.69 60.27 56.18 44.69 27.28 21.98 23.79 21.89 13.20 20.64 59.50 84.10 43.68 35.52 8.50 100.00 94.00 56.66 62.69 45.32
Ada-PyramidKV 27.31 37.36 49.62 58.57 55.40 44.66 26.74 21.35 22.39 21.12 12.42 19.32 62.00 86.29 43.78 33.33 8.50 99.00 95.50 55.78 60.99 44.83
Ada-SnapKV 28.03 38.51 50.06 60.54 55.50 45.06 28.81 22.04 23.98 22.49 13.05 20.80 62.00 85.83 44.37 37.10 8.50 100.00 94.00 56.44 62.71 45.71
CAKE 28.17 39.09 50.22 60.00 54.89 45.21 26.31 22.20 23.65 21.98 13.04 20.57 57.50 85.60 44.61 37.23 8.50 99.50 94.00 58.27 63.95 45.45
LAVa (Ours) 27.21 39.08 50.47 60.09 55.63 45.25 27.75 22.91 23.83 22.81 13.05 20.84 58.50 86.15 45.02 37.43 8.50 100.00 93.50 58.02 64.57 45.74

B = 1024HL
PyramidKV 28.06 40.11 51.83 60.22 57.55 45.38 29.31 22.42 24.35 22.04 13.12 21.12 68.00 85.27 44.18 36.99 8.50 100.00 96.50 58.29 62.56 46.47
SnapKV 29.01 42.02 51.86 61.22 56.82 45.04 28.95 23.97 26.26 22.76 13.66 22.50 68.50 86.85 45.52 42.50 8.50 100.00 96.50 57.94 65.59 47.43
Ada-PyramidKV 28.52 40.50 51.87 60.27 56.42 45.80 29.18 23.01 24.45 22.10 13.31 21.25 69.00 86.41 45.10 37.79 8.50 100.00 96.50 57.16 63.31 46.69
Ada-SnapKV 29.61 42.30 51.79 60.29 56.38 45.75 29.30 23.64 26.21 22.80 13.85 22.39 69.00 88.09 45.36 41.75 8.50 100.00 96.00 58.15 65.77 47.47
CAKE 29.70 41.08 51.85 60.64 57.34 45.02 30.48 23.82 25.92 22.95 13.69 22.45 67.50 86.63 45.22 42.00 8.50 100.00 96.50 59.49 65.99 47.47
LAVa (Ours) 29.79 41.68 51.84 60.79 57.04 45.27 30.01 23.99 26.36 22.90 13.81 22.42 69.50 87.42 45.46 41.00 8.50 100.00 96.50 59.97 66.24 47.64

Table 6: Final comparison based on Qwen2.5-7B-Instruct among 21 datasets of LongBench. (Note: The best result
is highlighted in bold, and the second is in underline. )
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Qwen2.5-14B-Instruct

Full Cache 29.33 45.19 53.59 62.79 62.59 57.69 38.47 29.87 29.74 23.53 14.75 21.90 77.50 90.23 47.27 50.00 9.23 98.67 98.25 62.60 51.13 50.21

Qwen2.5-14B-Instruct, B=128h
PyramidKV 19.67 22.26 39.57 50.04 50.75 49.47 30.31 16.67 16.10 19.43 10.53 13.51 42.00 82.29 40.90 27.00 12.12 82.50 56.67 54.52 41.38 37.03
SnapKV 21.04 25.50 42.11 49.89 54.31 51.87 33.60 17.78 17.12 19.95 10.75 14.53 43.50 85.95 41.81 26.75 10.50 89.58 65.00 55.42 43.42 39.07
Ada-PyramidKV 20.85 24.83 40.88 51.78 54.65 52.34 29.78 16.83 16.67 19.59 10.32 13.90 46.50 80.76 40.58 25.75 11.18 87.75 63.75 53.72 43.49 37.90
Ada-SnapKV 22.16 25.58 42.80 52.22 55.10 53.21 33.50 17.98 17.69 20.25 10.86 14.81 45.50 85.62 42.49 27.00 9.05 91.33 68.17 56.26 43.39 39.76
CAKE 22.20 26.13 42.10 50.83 54.75 53.25 31.77 17.73 17.56 19.98 10.84 15.44 44.00 87.51 42.65 28.50 13.96 86.50 78.83 54.92 43.90 40.16
LAVa (Ours) 22.24 26.52 43.09 52.39 55.97 53.43 33.68 18.23 17.94 20.57 10.98 15.10 46.00 86.79 42.20 27.17 10.53 92.00 73.00 55.74 44.63 40.39

Qwen2.5-14B-Instruct, B=512h
PyramidKV 26.18 38.19 48.71 59.81 60.74 55.26 36.82 20.55 21.21 21.27 11.86 18.43 68.50 89.21 45.38 44.25 8.59 98.33 96.75 59.71 48.71 46.59
SnapKV 26.99 39.34 48.84 59.34 60.20 54.86 37.47 21.43 22.25 21.95 11.93 19.34 66.50 88.78 45.95 45.25 8.22 98.25 98.58 61.12 49.42 46.95
Ada-PyramidKV 26.78 40.25 49.71 60.40 60.64 55.69 37.72 20.75 21.49 21.54 11.67 18.60 70.00 88.59 45.70 44.50 8.77 98.33 96.75 60.23 48.85 47.00
Ada-SnapKV 26.03 41.56 49.42 60.88 59.99 55.63 38.34 21.33 22.49 22.09 11.96 19.32 69.50 89.01 46.35 46.75 7.72 98.17 98.50 62.21 49.92 47.48
CAKE 25.39 39.92 48.62 60.30 60.42 55.19 38.37 21.40 22.56 21.72 12.31 19.57 70.00 89.03 46.19 46.25 6.68 98.17 98.25 60.90 49.31 47.17
LAVa (Ours) 26.23 40.65 48.93 59.45 60.34 55.36 37.50 21.53 22.57 22.13 11.91 19.48 67.00 88.68 46.50 46.75 7.98 97.75 97.75 61.85 50.38 47.18

Qwen2.5-32B-Instruct

Full Cache OOM

Qwen2.5-32B-Instruct, B=128h
PyramidKV 21.32 27.86 43.55 56.05 55.74 53.85 32.25 16.74 17.08 18.88 10.71 15.76 48.00 54.41 40.69 29.50 11.17 94.00 73.09 48.04 35.36 38.29
SnapKV 21.72 28.31 42.83 56.03 54.43 55.52 30.78 16.94 16.92 19.04 10.53 15.69 48.50 58.30 39.64 27.50 12.00 93.75 74.37 47.15 35.82 38.37
Ada-PyramidKV 21.19 29.67 45.61 58.04 57.30 55.65 32.96 17.45 17.37 19.30 10.89 16.02 51.50 56.24 40.24 30.25 12.00 97.00 82.67 48.14 35.94 39.78
Ada-SnapKV 21.79 28.64 45.49 56.56 57.12 56.14 32.54 17.66 17.63 19.31 10.66 16.12 49.50 60.07 40.03 27.50 12.00 96.04 85.13 47.96 36.29 39.72
CAKE 21.28 28.40 43.30 55.71 55.93 54.89 32.86 17.04 17.00 19.44 10.50 16.18 46.50 56.35 40.38 31.88 12.50 94.79 82.92 46.63 36.05 39.07
LAVa (Ours) 22.29 30.12 45.50 57.06 56.59 58.51 33.72 17.50 17.42 19.97 11.09 16.29 48.50 57.21 40.23 28.17 10.00 97.42 84.09 48.12 36.68 39.83

Qwen2.5-32B-Instruct, B=512h
PyramidKV 26.00 37.40 48.67 61.17 60.60 60.44 34.75 19.37 20.84 20.61 11.64 18.48 66.00 55.11 42.71 39.00 11.56 99.75 98.54 50.28 38.12 43.86
SnapKV 25.71 40.23 48.81 62.94 61.16 60.60 34.85 20.64 22.69 21.27 11.61 20.04 66.50 77.77 44.01 41.86 11.19 100.00 99.03 52.20 39.15 45.82
Ada-PyramidKV 26.41 38.97 50.14 61.50 61.50 61.86 37.55 19.67 21.49 20.71 11.23 18.68 67.50 60.81 43.40 39.75 11.08 99.75 99.62 50.60 38.27 44.79
Ada-SnapKV 27.51 39.44 49.21 63.09 61.70 61.60 37.23 20.35 22.69 21.72 11.74 20.45 69.00 77.87 44.19 42.04 11.56 100.00 98.24 52.22 39.14 46.24
CAKE 25.32 40.24 49.66 63.28 59.75 61.42 37.11 20.44 22.73 21.22 11.67 20.28 66.50 77.31 43.92 44.58 11.19 100.00 98.78 52.36 38.99 46.04
LAVa (Ours) 26.56 41.18 50.80 62.49 61.90 60.83 37.25 21.44 23.16 22.02 11.86 20.30 68.50 77.69 43.97 42.23 11.50 100.00 98.53 52.24 38.86 46.35

Table 7: Final comparison based on Qwen2.5-14B-Instruct and Qwen2.5-32B-Instruct among 21 datasets of
LongBench. (Note: The best result is highlighted in bold, and the second is in underline.)
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Methods Mistral-7B Qwen2.5-7B

Full Cache 99.88 99.66

B = 128HL
PyramidKV 91.44 91.10
SnapKV 91.25 93.28
Ada-PyramidKV 92.08 92.70
Ada-SnapKV 92.12 94.30
CAKE 92.79 94.61
LAVa (Ours) 93.35 95.57

B = 1024HL
PyramidKV 97.88 99.56
SnapKV 97.95 99.48
Ada-PyramidKV 98.58 99.58
Ada-SnapKV 98.54 99.53
CAKE 98.32 99.55
LAVa (Ours) 98.95 99.59

Table 8: Average scores of Mistral-7B-Instruct-v0.2 and
Qwen2.5-7B-Instruct in Needle In A HayStack.

LongBench. Our method shows superior overall1139

performance, demonstrating its robust in preserv-1140

ing the model’s retrieval capacity.1141

Results of LAVa in Ruler and InfiniteBench.1142

The results of Ruler and InfiniteBench are shown1143

in Table 10 and Table 11. we set the cache budget1144

as 5%-10% of the task context length, i.e. 10241145

and 10000. We use Mistral-7B-Instruct-v0.2 as1146

the backbone of Ruler. For InfiniteBench, we1147

change the backbone into Mistral-7B-LongPO-1148

128K (Chen et al., 2025), which is fine-tuned based1149

on Mistral-7B-Instruct-v0.2, because the task con-1150

text length of InfiniteBench is much longer than the1151

original maximum model length 32K. The results1152

reconfirm the effectiveness of LAVa.1153

Results of Dynamic Budget Allocation. The de-1154

tailed results of ablation study based on Mistral-7B-1155

Instruct-v0.2 in LongBench are listed in Table 9.1156

It demonstrates that dynamic budget allocation at1157

both the head and layer levels is essential for strong1158

performance, with a more pronounced performance1159

drop when head-wise allocation is removed under1160

constrained budgets. This is expected, as LAVa’s1161

strength lies in its ability to compare cache entries1162

across heads.1163

Analysis of Different Layer Allocation. To vali-1164

date the effectiveness of our layer budget allocation,1165

we modify LAVa to incorporate two alternative1166

strategies: LAVa-Uniform, which is equivalent 1167

to LAVa (-layer), and LAVa-Pyramid, which re- 1168

tains LAVa’s head budget allocation and layer-wise 1169

cache eviction but adopts Pyramid for layer allo- 1170

cation. The results in Table 12 indicate that our 1171

method outperforms these alternatives. Notably, 1172

LAVa-Pyramid requires finetuning, whereas the 1173

other methods do not. Moreover, LAVa-Pyramid 1174

fails to outperform LAVa-Uniform at higher bud- 1175

gets, aligning with the observed comparison be- 1176

tween Ada-SnapKV and Ada-Pyramid. This un- 1177

derscores the limitation of heuristic-based designs, 1178

which may not always yield optimal results. 1179

Analysis of Time Complexity. Our study builds 1180

upon the SnapKV framework with a batch size of 1, 1181

consistent with prior works like CAKE and AdaKV. 1182

We start with the analysis for SnapKV (the most 1183

computationally efficient method among baselines) 1184

in computation for one layer as a reference. 1185

• For layer l, SnapKV needs to calculate the 1186

layer’s original KV Cache with the time com- 1187

plexity of O(HN2dh), ignoring the IO opera- 1188

tions. Generally, this is done with FlashAtten- 1189

tion, which avoids saving the large attention 1190

matrix of size O(N2). The computation cost 1191

in practice is high due to IO operations and 1192

recomputation (to avoid saving the attention 1193

matrix), but we ignore it for simplicity. 1194

• As Flash attention does not save the attention 1195

matrix, for calculating the scores to evict KV 1196

Cache, SnapKV needs to recompute the atten- 1197

tion scores for the recent window of size w 1198

in the second pass. The time complexity is 1199

O(HNwdh). 1200

• The top-Bl,h selection for head-wise cache 1201

eviction with a min-heap takes O(NlogBl,h), 1202

and for H heads, it takes O(HNlogBl,h), 1203

where Bl,hH = Bl, BlL = B. 1204

To summarize, SnapKV requires: 1205

• O(HN2dh) for original cache for one layer; 1206

• O(HNwdh) for recomputing the recent atten- 1207

tion scores; 1208

• O(HNlogBl,h) for cache eviction. 1209

In contrast, LAVa requires the computation for one 1210

layer as follows: 1211
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Full Cache 26.77 32.34 49.63 48.42 43.43 27.89 18.61 30.85 32.92 24.54 15.04 27.20 71.00 86.23 43.41 39.00 2.81 86.56 89.75 55.29 52.55 45.07

B = 128HL
LAVa (Ours) 19.57 21.11 44.29 33.91 38.29 23.59 15.32 18.56 19.33 22.32 11.42 21.07 53.50 85.20 40.16 21.75 2.88 69.87 74.75 51.94 48.92 36.74
− layer 20.32 21.18 45.17 35.00 37.37 23.62 15.09 18.20 19.21 22.04 11.35 20.99 48.50 85.32 39.33 20.75 3.42 67.93 73.75 51.28 47.52 36.20
− head 20.33 20.27 44.06 32.23 36.64 22.84 14.19 18.15 18.88 21.51 11.09 20.89 45.00 84.29 39.57 20.25 3.21 65.23 64.25 51.88 47.51 34.95

B = 256HL
LAVa (Ours) 22.70 24.67 48.62 37.81 39.68 25.96 16.77 20.26 21.92 22.48 11.88 22.91 65.00 85.24 41.28 26.75 2.88 76.76 85.75 54.17 51.77 40.12
− layer 21.78 24.74 47.82 37.47 39.06 25.53 16.21 19.94 21.86 23.22 11.81 22.91 62.00 85.37 41.53 25.25 2.77 78.53 87.67 52.78 49.85 39.77
− head 21.34 22.77 47.43 35.87 37.71 25.50 15.47 19.43 21.55 23.06 12.08 22.86 58.00 84.88 41.69 22.25 3.11 74.77 84.18 53.89 51.19 38.80

B = 512HL
LAVa (Ours) 25.01 27.84 48.97 42.14 40.95 26.88 18.33 21.12 23.59 23.59 12.28 24.51 68.50 86.34 42.48 33.50 2.90 87.23 89.83 55.83 52.85 42.59
− layer 24.43 27.98 48.72 41.00 40.23 26.17 18.50 20.74 24.00 23.40 12.68 24.20 66.50 86.04 42.26 32.75 2.84 87.89 89.33 54.11 51.22 42.11
− head 23.59 27.70 48.61 40.61 40.22 25.79 17.87 20.68 23.91 23.39 12.38 24.28 66.50 86.09 41.95 28.50 2.97 86.88 89.17 55.73 52.53 41.82

B = 1024HL
LAVa (Ours) 25.59 31.21 48.27 43.43 41.92 27.38 19.48 23.48 26.06 23.86 13.38 26.00 70.00 86.22 42.43 38.00 2.73 87.01 88.75 57.31 53.28 43.65
− layer 25.76 30.38 49.54 43.54 41.08 27.03 18.83 22.73 25.79 23.69 13.13 25.88 69.50 86.30 43.10 37.25 2.71 87.56 89.25 55.04 51.67 43.35
− head 25.76 29.61 49.31 42.77 40.82 27.63 18.59 22.64 26.29 23.77 12.70 25.82 68.00 85.82 41.77 35.00 2.63 89.06 89.25 57.31 53.22 43.26

Table 9: Ablation study based on Mistral-7B-Instruct-v0.2 among 21 datasets of LongBench. (Note: The best result
is highlighted in bold. )

Context Length 4K 8K 16K

PyramidKV 72.55 62.02 55.42
SnapKV 70.71 61.52 55.61
Ada-PyramidKV 70.80 60.83 54.95
Ada-SnapKV 71.14 60.31 55.05
CAKE 72.41 61.55 55.84
LAVa (Ours) 75.39 62.61 56.70

Table 10: Results of Mistral-7B-Instruct-v0.2 in Ruler.

Tasks En Sum En MC En Dia

PyramidKV 25.3 67.2 6.5
SnapKV 25.1 67.2 7.0
Ada-PyramidKV 24.9 67.2 7.0
Ada-SnapKV 24.6 66.8 7.0
CAKE 24.8 67.8 6.6
LAVa (Ours) 25.4 66.8 9.5

Table 11: Results of Mistral-7B-LongPO-128K in In-
finiteBench.

• O(HN2dh) for the original cache of one1212

layer, same as SnapKV;1213

• O(HNwdh) for recomputing the recent atten-1214

tion scores, same as SnapKV;1215

• O(HNdh) for computing the value norms for1216

each token;1217

• O(HNlogBl) for layer-wise cache eviction1218

because the eviction of LAVa is operated in1219

all cache of one layer.1220

For one layer l, the difference of time complexity1221

between LAVa and SnapKV is O(HN(dh+logH).1222

In a long context, N is very large, and thus 1223

O(HN(dh+ logH) is much smaller than the dom- 1224

inant factor O(HN2dh). Based on the setting of 1225

Mistral-7B-Instruct-v0.2, we have dh = 128 and 1226

H = 32, the extra computation of LAVa com- 1227

pared to SnapKV is HN(dh + logH) divided by 1228

HN2dh, which is approximately 0.01% when 1229

N = 10, 000. The computation time increases 1230

with the increase of the number of layers and batch 1231

size for both SnapKV and LAVa, but the ratio of 1232

the extra computation time for LAVa is still 0.01%. 1233

A similar analysis can be achieved to see that all 1234

the other methods have similar latency, aligning 1235

with the latency results in Figure 3. 1236

Analysis of Memory Usage. We analyze the dif- 1237

ference between SnapKV and LAVa/CAKE, which 1238

are dynamic layer budget methods. 1239

• For SnapKV, the cache size increases from 1240

O(HKdh) in the first layer to the last layer, 1241

where it reaches the peak of O(LHBl,hdh). 1242

The memory peaks when the latest (full) 1243

layer cache O(HNdh) is not pruned, and 1244

the current retained cache reaches the size of 1245

O(LHBl,hdh). In sum, the peak memory is 1246

O(HNdh + LHBl,hdh). 1247

• For LAVa and CAKE, the cache size is always 1248

O(LHBl,hdh) from the first layer to the last 1249

layer, yet it is distributed among prefilled lay- 1250

ers. The memory peak, however, is similar to 1251

SnapKV, which is O(HNdh + LHBl,hdh), 1252

except that for LAVa/CAKE, we need to store 1253

the layer scores. As we save only the top 1254

scores for each layer, the size for scores is 1255

O(LHBl,h). Given that the total cache size 1256
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Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Synthetic Code
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Avg

Full Cache 26.77 32.34 49.63 48.42 43.43 27.89 18.61 30.85 32.92 24.54 15.04 27.20 71.00 86.23 43.41 39.00 2.81 86.56 89.75 55.29 52.55 45.07

B = 128HL
LAVa-Pyramid 19.91 20.36 44.32 35.06 37.68 23.58 15.40 17.99 19.61 22.09 10.87 21.05 52.00 84.45 40.09 20.25 2.89 72.32 76.92 51.81 46.81 36.63
LAVa-Uniform 20.32 21.18 45.17 35.00 37.37 23.62 15.09 18.20 19.21 22.04 11.35 20.99 48.50 85.32 39.33 20.75 3.42 67.93 73.75 51.28 47.52 36.20
LAVa (Ours) 19.57 21.11 44.29 33.91 38.29 23.59 15.32 18.56 19.33 22.32 11.42 21.07 53.50 85.20 40.16 21.75 2.88 69.87 74.75 51.94 48.92 36.74

B = 256HL
LAVa-Pyramid 21.22 23.96 47.86 37.12 38.92 24.94 16.70 19.11 21.43 22.44 11.20 22.77 62.50 85.17 41.34 23.75 3.34 79.07 86.58 52.25 49.70 39.40
LAVa-Uniform 21.78 24.74 47.82 37.47 39.06 25.53 16.21 19.94 21.86 23.22 11.81 22.91 62.00 85.37 41.53 25.25 2.77 78.53 87.67 52.78 49.85 39.77
LAVa (Ours) 22.70 24.67 48.62 37.81 39.68 25.96 16.77 20.26 21.92 22.48 11.88 22.91 65.00 85.24 41.28 26.75 2.88 76.76 85.75 54.17 51.77 40.12

B = 512HL
LAVa-Pyramid 24.59 27.33 48.36 40.24 39.75 26.18 18.26 20.82 23.39 23.38 12.35 24.08 67.00 86.66 42.55 32.00 2.93 86.13 89.62 53.46 51.53 41.88
LAVa-Uniform 24.43 27.98 48.72 41.00 40.23 26.17 18.50 20.74 24.00 23.40 12.68 24.20 66.50 86.04 42.26 32.75 2.84 87.89 89.33 54.11 51.22 42.11
LAVa (Ours) 25.01 27.84 48.97 42.14 40.95 26.88 18.33 21.12 23.59 23.59 12.28 24.51 68.50 86.34 42.48 33.50 2.90 87.23 89.83 55.83 52.85 42.59

B = 1024HL
LAVa-Pyramid 24.88 29.51 49.01 42.57 41.16 27.20 19.40 22.61 25.58 24.00 13.08 25.71 68.50 86.19 43.19 37.00 2.67 87.73 90.25 54.72 51.53 43.19
LAVa-Uniform 25.76 30.38 49.54 43.54 41.08 27.03 18.83 22.73 25.79 23.69 13.13 25.88 69.50 86.30 43.10 37.25 2.71 87.56 89.25 55.04 51.67 43.35
LAVa (Ours) 25.59 31.21 48.27 43.43 41.92 27.38 19.48 23.48 26.06 23.86 13.38 26.00 70.00 86.22 42.43 38.00 2.73 87.01 88.75 57.31 53.28 43.65

Table 12: Layer allocation comparison based on Mistral-7B-Instruct-v0.2 among 21 datasets of LongBench. (Note:
The best result is highlighted in bold. )

Tasks Qasper HotpotQA Gov Report TriviaQA Passage Retrieval ZH LCC

Layer 0
AdaKV 1.77 1.63 1.82 2.64 1.59 1.91
LAVa 1.61 1.59 1.73 2.61 1.40 1.86

Layer 31
AdaKV 134.69 133.33 107.94 121.53 93.50 149.25
LAVa 132.97 130.02 106.06 121.31 90.50 147.16

Table 13: Results of Layer Attention Output Loss.

is O(LHBl,hdh), it is sufficient to just keep a1257

total of LHK scores for comparison. Again,1258

the extra factor is dominated by O(HNdh +1259

LHBl,hdh). The extra memory usage of1260

LAVa is 0.6% of SnapKV peak memory1261

when L = H = 32, Bl,h = 1024, dh = 128,1262

and N = 10, 000. This is small, but not as1263

negligible as in time complexity, consistent1264

with Figure 3. However, dynamic layer bud-1265

get is important for tasks like summarization1266

or code generation, as shown in Figure 2.1267

Analysis of Layer Attention Output Loss. To1268

validate the effectiveness of LAVa in minimizing1269

layer attention output loss, we compare LAVa with1270

AdaKV, which also aims to minimize layer atten-1271

tion output loss and its scoring function is the same1272

with SnapKV. We set the cache budget as 128 to1273

make the difference clear and calculate the loss1274

in the first and the last layer. The backbone is1275

Mistral-7B-Instruct-v0.2. The results in Table 131276

are consistent with the evaluation of other bench-1277

marks, proving that the upper bound of LAVa is1278

tighter compared to that of AdaKV.1279
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