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Abstract

Rectilinear Steiner Minimum Tree (RSMT) is widely used in Very Large Scale In-
tegration (VLSI) and aims at connecting a set of pins using rectilinear edges while
minimizing wirelength. Recently, learning-based methods have been explored
to tackle this problem effectively. However, existing methods either suffer from
excessive exploration of the search space or rely on heuristic combinations that
compromise effectiveness and efficiency, and this limitation becomes notably exac-
erbated when extended to the obstacle-avoiding RSMT (OARSMT). To address this,
we propose OAREST, a reinforcement learning-based framework for constructing
an Obstacle-Avoiding Rectilinear Edge Sequence (RES) Tree. We theoretically
establish the optimality of RES in obstacle-avoiding scenarios, which forms the
foundation of our approach. Leveraging this theoretical insight, we introduce a
dynamic masking strategy that supports parallel training across varying numbers
of pins and extends to obstacles during inference. Empirical evaluations on both
synthetic and real-world benchmarks show superior effectiveness and efficiency for
RSMT and OARSMT problems, particularly in handling obstacles without training
on them. Code available: https://github.com/Thinklab-SJTU/EDA-AI/.

1 Introduction

Rectilinear Steiner Minimum Tree (RSMT) and its obstacle-avoiding version named OARSMT
are critical combinatorial problems in electronic design automation (EDA) in Very Large Scale
Integration (VLSI) design [1, 2, 3]. As an NP-complete problem [4], the goal of RSMT is to
connect a given set of pins using rectilinear edges, i.e., edges that are parallel to the axes, while
minimizing the total wirelength. Recently, the RSMT problem [5, 6, 7, 8, 9], as well as the entire
EDA community [10, 11, 12, 13], has received extensive attention from the machine learning (ML)
community. However, with the increasing number of nets in modern technologies and particularly
the incorporation of obstacles, existing ML-based methods suffer from various challenges.

We summarize the critical challenges for ML-based approaches in both vanilla RSMT and OARSMT
problems in Table 1, including: 1) Lack of efficient and accurate representations: Efficient repre-
sentations are essential for reducing the searching space (e.g., the action space in the reinforcement
learning (RL) agent), which can otherwise become excessively complex and computationally exhaus-
tive. Accurate representations, on the other hand, enable ML approaches to learn the global optimum
in an end-to-end manner without relying on post-processing [7, 9] or integrating heuristics [8]. 2)
Multi-degree GPU parallelization: Existing ML-based techniques [5, 6] typically require inputs of
the same size, limiting their ability to handle multi-degree instances (i.e., instances with varying
numbers of pins) in parallel. 3) Obstacle avoidance: The introduction of obstacles significantly
increases problem complexity and further exacerbates the above two challenges.
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b) Rectilinear edges in an OARSMT.

To address these challenges, we first extend the rectilinear edge sequence (RES) representation,
originally proposed in REST [5], to the OARSMT problem. Such an extension is nontrivial as the
problem’s structure is fundamentally altered. We theoretically demonstrate that RES can achieve
optimality for both RSMT and OARSMT problems.

Building upon these theoretical insights, we propose a novel RL-based framework OAREST (Obstacle-
Avoiding Rectilinear Edge Sequence Tree), designed to tackle multi-degree GPU parallelization
and dynamic obstacle avoidance simultaneously. Within this framework, we introduce a dynamic
masking strategy that selectively activates candidate corner vertices of obstacles, ensuring efficient
and obstacle-aware decision-making. Empirical results on both synthetic and industrial benchmarks
validate the effectiveness and efficiency of OAREST in solving RSMT and OARSMT problems.
Particularly, the obstacles can be avoided effectively in OARSMT problems without training on any
obstacles. The main contributions are listed as follows:

1) Theoretical findings and derived RL framework: We prove the optimality of the rectilinear edge
sequence (RES) representation for the obstacle-avoiding rectilinear Steiner minimum tree (OARSMT)
problem. Inspired by this, we introduce OAREST, an end-to-end RL framework based on the RES,
which combines theoretical optimality with computational efficiency. To the best of our knowledge,
OAREST is the first ML-based approach handling obstacles without training on obstacles.

2) Novel dynamic masking strategy: Within the RL framework, we devise a novel dynamic
masking strategy that can not only handle multi-degree parallel training/inference on GPUs but also
dynamically activate candidate obstacle vertices for effective obstacle avoidance. Thus, the OARSMT
problems can be handled without training on any obstacles.

3) Empirical advancements and efficient obstacle handling: We perform experiments on extensive
instances with/without obstacles and demonstrate comparable performance to advanced baselines.
The results particularly highlight OAREST’s robust capabilities in managing parallel inference and
avoiding obstacles efficiently.

2 Preliminaries and Main Theorem

Before introducing the RL framework, we first propose key definitions in Sec. 2.1 and state the
OARSMT problems in Sec. 2.2, based on which we introduce the main theorem in Sec. 2.3 that
demonstrates the optimality of rectilinear edge sequence (RES) in OARSMT problems.

2.1 Definition

We introduce various definitions in OARSMT problems and visualize components in Fig. 1(a).

Definition 2.1. [Rectilinear Steiner Tree, RST] Given a finite set of pins2 P ={po,p1, " sPn—1}
with each pin p; having fixed coordinates (x;,y;), a rectilinear Steiner tree (RST) is a tree that
connects all pins and some non-pin auxiliary points, where each edge is parallel to the coordinate axis.
The non-pin auxiliary points are named Steiner points, which are used to minimize the total length.

Here, each edge is either horizontal or vertical. In OARSMT problems, RSTs are required to avoid
overlapping with rectangular obstacles, which are defined as:

We use ‘pin’ to distinguish from ‘obstacle vertex’ and ‘Steiner points’, and collectively name them ‘points’.



Definition 2.2. [Rectangular Obstacles] Define O = {09, 01, - ,0,,—1} as a group of rectangular

regions. Each obstacle o; = (v\'? 0! 4™ "} is composed of four vertices in its left-down

K2 K3 b

(1d), left-up (lu), right-up (ru), and right-down (rd) corners. Denote these vertices as V(O).

Note that any complex rectilinear obstacle (e.g., rectilinear polygons) can be easily achieved by
combining different rectangular obstacles. To formulate RSTs in an OARSMT problem, we apply the
rectilinear edge sequence (RES) [5] representation to our framework, defined as:

Definition 2.3. [Rectilinear Edge Sequence, RES] For a given set of pins P = {po,p1, - s Pn—1}>
its RES is a sequence with n — 1 rectilinear edge pairs ((vo, ho), (v1,h1), -, (Vn—2, hn—2)), where
v, hi € {0,1,--- ,n — 2} denotes the indices of pins.

Note that rectilinear edges are non-commutative in rectilinear geometry, i.e., (v, h) # (h,v). Specifi-
cally, (v, h) denotes a path where the vertical edge starts at v followed by a horizontal edge ending
at h. A visualized example of rectilinear edges is shown in Fig. 1(b), where (p2,v1) and (v1, p2)
are two distinct rectilinear edges. To keep RES always valid in RSMT construction problem, RES
is required to satisfy: 1) vg # ho; 2) For each rectilinear edge pair (v;, h;), exactly one of v;, h; is
visited before by previous rectilinear edge pair, and the other is not. Details given by [5] is moved to
Lemma A.4 in Appendix A. Other definitions that are only related to the proof of our main theory,
including Hanan Grid and extended Hanan Grid, can be found in Appendix A.1.

2.2 Problem Statement

Based on the definitions, we formulate OARSMT as:
Definition 2.4. [Obstacle-Avoiding Rectilinear Steiner Tree, OARSMT] Given a finite set of pins

P = {po,p1, - ,Pn—1} and a set of rectangular obstacles O = {og, 01, - ,0m—1}, an obstacle-
avoiding rectilinear Steiner tree (OARSMT) is defined as:
T* = argmin Z le], (1)
TET cee(T)

under constraints: 1) 7' is a tree connecting all pins in P, 2) Ve € £(T): e is parallel to coordinate
axes, 3) Ve € £(T),Vo; € O : enint(o;) = 0, 4) V(T) \ P are Steiner points. Here, 7T is the set
of all rectilinear Steiner trees in terms of P and O. Additionally, |e| denotes the Manhattan length
of edge e, £(T) represents the set of edges in tree T, V(T') is the set of vertices in 7', and int(o;)
denotes the interior region of obstacle o;.

Intuitively, OARSMT aims to obtain a rectilinear tree with minimum length that avoids obstacles.

2.3 Main Theorem

Theorem 2.5. [Optimality of RES in OARSMT] For any set of pins P = {po,p1,- - ,Pn—1} and
a set of rectangular obstacles O = {09, 01, ,0m—1}, an optimal RES of P UV'(O) can always
be found such that its corresponding tree is an optimal OARSMT for P under obstacles O. Here,
V'(O) C V(O) is a subset of the corner vertices of all obstacles.

This theorem demonstrates that an optimal RES can always be found to construct an optimal OARSMT.
The proof can be found in Appendix A.3. Note that Theorem 2.5 gives us an insightful intuition: /n
order to construct an OARSMT, we are only required to construct a RES that connects all pins and a
subset of corner vertices of obstacles.

3 Obstacle-Avoiding Rectilinear Edge Sequence Tree

Overview. We propose an RL-based framework to handle OARSMT. The overall pipeline is given in
Fig. 2, while the connecting process of the rectilinear edge sequence (RES) is shown by a simple
toy example in Fig. 2(d). Following [5], we use actor-critic networks to generate rectilinear edge
sequence (RES) in Sec. 3.1. To accommodate multi-degree parallelization and obstacle handling, we
introduce a novel dynamic masking strategy in Sec. 3.2. In Sec. 3.3, we provide a detailed discussion
on our focus on multiple small instances in OARSMT problems and analyze the time complexity of
the proposed framework.
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Figure 2: Pipeline of OAREST. a) Actor network that generates the rectilinear edge sequence (RES)
step-by-step with dynamic masking strategies. b) Critic network that fits the actual length of RES.
¢) Dynamic masking strategies, including input masking, obstacle masking, visited masking, and
activation masking, that enable the RES generation with multi-degree forward passing and obstacle
avoidance. d) Visualization of the connecting process of OAREST on a toy sample with 3 pins
(po, p1, p2) and 3 obstacles (bg, b1, b2).

3.1 Generate RES using Actor-Critic Network

Similar to the objectives of REST [5], we utilize an actor-critic network to learn the construction of
the rectilinear edge sequence (RES). Given the positions of all pins P = {pg, p1, -+ ,Pn—1}, the
actor network Actor(r|P; &) with parameters £, as shown in Fig. 2(a), takes a series of sequential
actions to generate the elements of the RES r € R(P) and yields the probability of generating r,
where R (P) is the set of all possible RES for P. The actor network here is trained to generate the
optimal RES. The critic network Critic(P; () with parameters ¢, as depicted in Fig. 2(b), predicts
the length of the RSMT of P, which is trained to approximate its actual length L(P,r). Note that
L(P,r) is actually the evaluation of the RES, which can be achieved linearly [5] and is assumed to
approximate the actual RSMT length accurately.

More specifically, for each given pin set P, the objective of the actor network is to minimize
the expected advantage of the RSMT generated by Actor(r|P; &), and we use the policy gradient
algorithm REINFORCE [14] to compute the gradient:

ming E,.pp) (Critic(P; () — L(P,r)) Actor(r|P; §). 2)

Conversely, the critic network’s objective is to minimize the mean square error (MSE) between its
predicted length and the actual length of RSMT:

min B, pep)|Critic(P; ¢) — L(P, 7)][5. 3)

In practice, given a batch of pin sets {Py, P1,- -, Pp—1}, one RES r; is generated for each P;(i €
{0,---,b— 1}). Consequently, Eq. 2 and Eq. 3 can be reformulated as:

b
1
mgn 3 > (Critic(Py; () — L(Pi, 1:)) Actor(ry|Pi; ),
=1

- “)
1
mcin : Z ||Critic(Py; ¢) — L(Py, 73) |13
=1

These objectives are optimized simultaneously. In inference, only Actor(r;|P;; ) is required to
generate the RES r; with the highest probability. Note that both training and inference are end-to-end.



3.2 Dynamic Masking

The key issues in Sec. 3.1 are twofold: 1) the actor-critic network requires inputs and outputs of fixed
sizes to enable GPU parallelization, and 2) obstacle constraints are not incorporated. To address these
issues, as illustrated in Fig. 2(c), we propose a dynamic masking mechanism, which dynamically
adjusts valid action spaces during each decision step, enabling efficient handling of variable input
sizes and the integration of obstacle constraints.

First, we use a tensor I € R0*(7+47)%X2 (4 represent the input of the actor net, where b is the batch

size, 7 is the max number of pins of the pin set in a batch {P; ?:_01, and 7 is the max number of

obstacles in {O;}7",'. The value ‘4’ here means the four corner vertices of an obstacle, and ‘2’
means the x- and y-axis of coordinates. For the instances with n(< 7) pins or m(< ) obstacles, we
pad the corresponding elements to -1 in the input tensor. The dynamic mechanism is then devised
with the following components:

Input/Obstacle Masking. The input mask is devised to ignore the computations for invalid elements.
It is constructed using a matrix M™Put € {0, 1}*(7+47)  The obstacle mask ensures that the actor
network does not select an obstacle vertex as the first element of the RES, which is constructed using
a matrix M°P € {0, 1}**(?+47) Each element of M'"P"* and M°P is defined as:

; 0, if Ljo=I,;,=-1 0, if j>n
M{nput _ ) 1,,),. 1,7, ) MOb _ B ) 3 5
I 1, otherwise, tJ 1, otherwise. )

Visited/Activation Masking. Based on the properties of the RES (as described in Sec. 2.1), each
rectilinear edge must have exactly one visited and one unvisited element. The visited mask enforces
this condition. It is represented by a matrix Misited ¢ {0 1}6x(2+4m) = On the other hand, the
activation masking activates parts of the obstacle vertices and is used to avoid obstacles when
generating the RES, which is initialized as M2t = M°". Each time a newly generated rectilinear
edge overlaps with one or more obstacles, the elements in M corresponding to the corner vertices
of these obstacles are activated. Each element of MVisit¢d and M2t is defined as:

isi 0, ifji 1 tin RES 7; 0, if j isinactivated
M;,,I;Ited_{ , if j is an element in Ti, Mt _{ . if j is inactivated, o

1, otherwise. 1, otherwise.

When a newly generated rectilinear edge does not overlap with obstacles, the mask is re-initialized as
M2t = M°P_ In practice, the actor net sequentially determines which pin or vertex to generate. Each
action is based on a probability distribution matrix S € R®*(*+4™) The combination of dynamic
masks is then used to select the elements in RES:

* To begin with, we sample a batch of start points from St = S o (Minp“t A MOb), where o
is the Hadamard product (element-wise multiplication) and A represents logical ‘AND’, which
evaluates to true only when both operands are true. This ensures that only valid pins are selected as
the first element of a RES.

* For a batch of rectilinear edges, we select a batch of visited points from SVisited — § o
(1 — M"iSitEd). For the same batch of rectilinear edges, we select a batch of unvisited points
from Sunvisited — § o (MmPut A MYisited A M2¢%) | This implies that the selected points must
be valid unvisited ones while M?“ ensures that the rectilinear edge does not overlap with any
obstacles, as governed by Eq. 6.

Equipped with the dynamic masking strategy, OAREST is capable of addressing the multi-degree
training and inference for RSMT problems, and can infer directly on OARSMT problems without
training with any obstacle. Functions and executions of different masks are summarized in Table 2.

3.3 Remarks

Intuition on generalization to obstacles and strategy. Theorem 2.5 suggests that it suffices to
construct a RES that connects all pins and a subset of obstacle corner vertices. The RL agent’s goal
is then to connect these pins and selected corners. Since OAREST is trained only on pins but must
also connect corner vertices, a natural idea is to treat corner vertices as pins. However, this raises



Table 2: Functions and executions of different masks.

Masking ‘ Function ‘ Execution
Input AChleV(? mgltl—degree GPU Mask invalid elements at the beginning.
parallelization.
1) Avoid choosing a corner vertex | 1) Mask all obstacle vertices at the beginning. 2) When
as the first element of the RES; 2) | a newly generated rectilinear edge does not overlap
Obstacle . . o L
Avoid unnecessary corner vertex with obstacles, re-initialize the activation mask as the
connection. obstacle mask.
. . Construct valid RES following the | Use masking to generate a visited point and an
Visited . i - o
criterion of Lemma A 4. unvisited point for each rectilinear edge.
Each time a newly generated rectilinear edge overlaps
e e Avoid generating rectilinear edges | with one or more obstacles, the elements in the
Activation . . . . .
that overlap with obstacles. activation masking corresponding to the corner vertices
of these obstacles are activated.

two issues: (1) not all corner vertices need to be connected, and (2) the resulting edges may overlap
obstacles. Accordingly, obstacle masking is used to avoid unnecessary corner-vertex connections
(issue 1), and an activation mask is used to prevent overlap with obstacles (issue 2). Notably, both
masking strategies can be applied purely at inference.

Time Complexity for Inference. The overall time complexity for inference is O ((7 + 71) - Thaen /D),
where Th,ch represents the inference time for a single batch, and b denotes the batch size. This
complexity arises because all computations within the actor network are linear with respect to 1 + .
The high efficiency of the framework can thus be attributed to the ability to handle large batch sizes,
particularly for multiple small-sized instances.

Single Large Instance vs. Multiple Small Instances. Lots of previous works [7, 8, 9] primarily
focus on constructing OARSMTs of large-scale instances with hundreds or even thousands of pins;
however, these approaches often rely on heuristic tools, which limit their performance in GPU
parallelization. In contrast, this paper takes an orthogonal approach by focusing on OARSMT
construction for multiple small instances, achieving significant improvements in parallel efficiency.
Furthermore, its focus on small-scale instance construction makes it more aligned with practical
scenarios in certain industrial applications. As shown in Table 3, we analyze benchmarks from the
ICCADI19 [15] global routing contest, a highly regarded industry competition. The results reveal that
most nets contain fewer than 10 pins. Specifically, the proportion of nets with more than 100 pins is
only 0.002%, highlighting the importance of efficient inference for multiple small instances.

4 Experiments

Experiments were conducted on a machine equipped with an AMD EPYC 7402 24-Core Processor,
an NV GeForce RTX 4090, and 512 GB of RAM. To ensure robust evaluations, experiments were
repeated using three distinct seeds. The experimental protocols are detailed in Section 4.1, while the
main results for RSMT/OARSMT are presented in Sections 4.2/4.3. In Sec. 4.4, we perform ablation
studies, show generality on untrained degrees, and evaluate the performance on real-world circuits.

4.1 Experimental Protocols

Datasets. We evaluated the proposed method using two datasets. The first consists of randomly
generated test data as described by REST [5]. This dataset includes varying degrees ranging from 5 to
50 in increments of 5, referred to as RS, R10, etc. Each subset contains 10 k test instances. To assess
the method’s capability in handling obstacles, we further introduced 5 and 10 random obstacles to the
test cases in RS, R10, etc. The second dataset consists of real-world global routing benchmarks from
ICCADI19 [15], which is directly evaluated using the model trained on R5-R50.

Metrics. We employ the total wirelength as the primary metric for RSMT and OARSMT, which is
calculated using the total Manhattan distance of a tree:

L:Zlength(e) = Z (lzs = 25 + |yi — y5)s (N

ec& (vi,vj)€E
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Table 3: Statistics of nets (x103) with different | =~ GeoSteiner

-+ R-MST

numbers of pins in ICCAD19 [15] benchmark. % = e
# Pins ispd18_test{1-10} ispd19_test{1-10} % %01 —— REST (1=8)
! #Nets (x10%)  proportion (%) | # Nets (x10%)  proportion (%) E 40 OAREST (ours)
<3 579 57.07 1,791 57.17 20 .
310 | 387 38.12 1,197 3821 ol o ,,,,i{r/uul ,,,,,,, po==cgm====
é:’gg ‘ 143 (1)42;; A]‘g (l)i? 5 10 15 20 25 30 35 40 45 50
-. . 3 . # Pins
31-40 16 1.58 47 1.49
M50 | 4 04 I 042 Figure 3: Runtime (seconds) of RSMT methods
>100 | 002 0.002 0.06 0.002 for testing 10 k instances on varied pins.

where £ is the edge set of the tree. The average percentage error (L — Loy )/ Lop is then utilized to
measure the gap from the optimal solution L, obtained by the exact algorithm GeoSteiner [16]. For
OARSMT problems, we further employ the overlap metric:

L, if e Nint(og) # 0, , 0= Z Zoverlap(e, o), 8)

overlap(e, o) = .
p(e; ox) {0, Otherwise, ==
e =

where int(oy,) is the interior region of obstacle o € O.

Baselines. RSMT baselines include GeoSteiner [16], R-MST [17], BGA [18], FLUTE [19], and
REST [5]. For OARSMT, we evaluate wirelength, overlaps, and runtime against GeoSteiner [16],
OARST [20], and OARSMT [21], respectively. Details are shown in Appendix B.2.

Other Settings and Results. We show other experimental settings, including the model structures of
the actor-critic networks, hyperparameters, training/inference strategies, and more visualizations in
Appendix B.3 - B.6.

4.2 Main Results of RSMT

Table 4 shows the average percentage error of algorithms compared to the exact algorithm
GeoSteiner [16] across various scales of random instances. R-MST [17] has a substantial gap
from the optimal GeoSteiner. Other approaches, including BGA [18], FLUTE [19], and REST [5]
demonstrate much better performance, achieving an average error of less than 1%. In particular,
FLUTE (A = 18) and REST (T = 8) perform strongly in all these instances. Building on this strong
foundation, OAREST surpasses other baselines on R5-R40 instances and achieves competitive
performance on R45 and R50. A visualized example of a 50-pin instance is shown in Fig. 4(a).

The advantages of OAREST are even more pronounced in terms of runtime. In line with the setup
in [5], we adopt a batch size of 100 k/degree for inference. As illustrated in Fig. 3, while GeoSteiner
produces optimal results, its runtime grows exponentially with the number of pins. FLUTE (A = 18)
offers significantly better efficiency than GeoSteiner, but its runtime still increases considerably as
the number of pins grows. In contrast, the inference time of OAREST scales almost linearly with
the number of pins, slightly exceeding that of REST. The additional time mainly stems from the
inspection of obstacles. Note that while REST performs pretty well in both wirelength and runtime,
it struggles with the multi-degree inference problem. This limitation results in a sharp increase in
runtime when dealing with variable pin counts in real-world circuits. We will further investigate this
issue in Sec. 4.4.

4.3 Main Results of OARSMT

We evaluate the wirelength, overlap, and runtime of GeoSteiner, OARST, ObSteiner, and OAREST in
Fig. 5, where GeoSteiner [16] and ObSteiner [21] are used as the exact solvers for the RSMT and
OARSMT problems, respectively. OARST implemented by [20] serves as an approximation solution
for OARSMT. In this setting, we randomly add 5 and 10 obstacles to R5-R50 test cases proposed
by [5], using a full batch size of 10 k. Fig. 4(b) visualizes an instance with 20 pins and 10 obstacles.

In Fig. 5(a), all algorithms, including the exact OARSMT solver, have a gap compared to GeoSteiner
due to the additional complexity of accounting for overlaps. While the wirelength achieved by
OAREST is slightly longer than that of the exact OARSMT solution, it demonstrates a clear advantage
over the approximation-based OARST.



Table 4: Average percentage error (%) of RSMTs compared to the exact algorithm GeoSteiner [16].
Best results except GeoSteiner are in bold.

I | GeoSteiner | R-MST BGA | FLUTE[19] | REST[5] | OQAREST
nstances '
ey 07 (18] | A=3* A=18 |T=1* T=g8*| (ours)

RS 0.00 1091 023 | 0.00 0.00 0.02  0.00 | 0.00 = 0.000
R10 0.00 1196 048 | 0.12 0.04 023  0.01 | 0.01+0.000
RIS 0.00 1219 053 | 055 0.06 045  0.03 | 0.03 + 0.001
R20 0.00 1241 057 | 1.03 0.11 056  0.07 | 0.06 <+ 0.001
R25 0.00 1247 058 | 144 0.18 069  0.12 | 0.10 = 0.001
R30 0.00 1256  0.60 | 1.83 0.23 0.77  0.16 | 0.15+ 0.004
R35 0.00 1263 062 | 2.13 0.26 0.84 021 | 0.19 + 0.002
R40 0.00 1265 0.63 | 1.05 0.29 0.86 025 | 0.24 = 0.001
R45 0.00 1267 063 | 1.07 0.30 098 032 | 0.31+0.002
RS0 0.00 1272 064 | 112 0.29 1.0l 036 | 0.36+0.001

" A=3/18 and T=1/8 are different versions of FLUTE and REST, which we illustrate in Appendix B.2.
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(a) RSMT with 50 pins. (b) OARSMT with 20 pins and 10 obstacles.

Figure 4: a) A pair of RSMTs with 50 pins, and b) a pair of OARSMTs with 20 pins and 10 obstacles,
respectively run by the optimal GeoSteiner (left of each pair) and OAREST (right of each pair).
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Figure 5: a) Average percentage error on task OARSMT compared to GeoSteiner; b) Average overlap
on task OARSMT of GeoSteiner and OAREST; ¢) Time overhead on task OARSMT of GeoSteiner,
OARST, ObSteiner, and OAREST.

Fig. 5(b) shows the average overlaps produced by GeoSteiner and OAREST. As GeoSteiner does not
consider obstacles, it inherently suffers from significant overlaps. OAREST, on the contrary, reduces
the overlap to a negligible level. Specifically, OAREST achieves >98%/96% success rates (zero-
overlap solutions) for instances with 5/10 obstacles, respectively. Detailed statistics can be achieved
in Appendix B.1. Such success rates are significant, as no obstacle is visible during the training stage.
The small proportion of failed cases (1-4%) typically have minor overlaps in few rectilinear edges
after performing OAREST. These can be resolved using maze routing postprocessing [22, 23] with
<1% additional runtime compared to OAREST’s inference time, maintaining practical feasibility
while preserving computational advantages. We leave further reduction of overlaps as future work.

In Fig. 5(c), we compare the time overhead of the four algorithms. Unsurprisingly, the exact OARSMT
solver (ObSteiner) has the highest computational cost, reflecting the inherent complexity of solving
OARSMT problems exactly. The approximation solution, OARST, achieves a faster runtime than
GeoSteiner. Importantly, we are delighted to see that OAREST outperforms all baselines in most
instances, with its runtime being minimally affected by the presence of obstacles. This efficiency is
attributed to the GPU parallelization capabilities and the linear scalability of OAREST with respect
to obstacle handling.
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Figure 6: a) Average percentage error of OAREST trained on a varied range of degrees. b) Average
percentage error of OAREST (40 — 50) and OAREST (3 — 50) on random instances with degrees
50 — 100. c) Experiments on ICCAD19 global routing benchmark.

4.4 Other Experiments

Ablation Studies. Equipped with the dynamic masking strategies, OAREST is capable of training or
inferring across a varied range of degrees. Our training strategy first follows REST [5] that trains
on a single degree one by one, and is then followed by a quick finetuning process jointly across a
range of degrees, including (3, 10), (10, 20), (20, 30), (30, 40), (40, 50), and the full range of (3, 50).
As shown in Fig. 6(a), OAREST (3 - 50) has a robust performance on all degrees; however, the
highest accuracy is consistently achieved by models trained specifically on smaller, targeted ranges
of degrees. For instance, though OAREST (3 - 10) performs poorly on large degrees (15 - 50), it
ranks first for degrees 5 and 10. This empirical observation could offer users the flexibility to balance
parallel inference and accuracy.

Generality on Untrained Degrees. OAREST has a strong capability to extend to untrained degrees.
To evaluate this, we tested OAREST (40-50) and OAREST (3-50) on RSMT instances with degrees
between 50 and 100. As shown in Fig. 6(b), the average percentage error for both models increases
as the number of pins grows. However, even for degrees 51 — 100, which were not included in the
training process, the error remains below 3%, highlighting the robustness of OAREST in handling
unseen degrees.

Evaluation on Real-world Circuits. We evaluated OAREST on the ICCAD19 global routing [15]
benchmark. In line with REST [5], we focused on instances with degrees between 3 and 100, as
instances with degrees > 100 constitute only 0.002% of the dataset (see Table 3). In Fig. 6(c),
OAREST outperforms baselines in efficiency with the second-best wirelength (inferior to the exact
algorithm GeoSteiner). The time of OAREST is nearly half that of REST (T=8) and 1/7 of GeoSteiner,
showing the scalability on real-world benchmarks.

5 Related Work

5.1 Rectilinear Steiner Minimum Tree (RSMT)

Rectilinear Steiner Minimum Tree (RSMT) algorithms can be mainly divided into approxima-
tion, heuristics, and machine learning (ML). Early approximation approaches target near-optimal
solutions with efficiency, including R-MST [17] providing 1.5-approximation, [24] approaching
1.25-approximation, and Arora [25] providing (1 + €)-approximation. Apart from these methods,
heuristic-based approaches achieve greater efficiency and accuracy, where BGA [18] utilizes heuris-
tics to optimize edges based on the pre-computed R-MSTs. FLUTE [26, 19], a widely used industrial
tool, leverages a lookup table for small instances with < 9 pins and partitions larger instances into
smaller sets for processing. GeoSteiner [16] is also heuristic-based but achieves exact solutions by
generating all candidate Steiner Trees.

ML-based methods, especially reinforcement learning (RL), are used for constructing Steiner trees
in RSMT. REST [5] proposes the rectilinear edge sequence (RES) and an RL framework based on
actor-critic networks to generate the edge sequence, and EPST [6] extends the problem to Octilinear
Steiner Minimum Tree (OSMT). Moreover, HubRouter [2] applies the RL-based RSMT to global



routing problems. NN-Steiner [27] utilizes four neural network components to replace the consuming
dynamic programming in [25].

Apart from the ability to handle obstacles, our OAREST addresses the multi-degree GPU paralleliza-
tion in current RL-based methods, which is crucial in VLSI designs.

5.2 Obstacle-Avoiding Rectilinear Steiner Minimum Tree (OARSMT)

Based on the vanilla RSMT problems, various works study the strategies to avoid obstacles. Tradi-
tional solutions [22, 23] propose heuristic approaches based on maze routing, while EBOARST [28]
utilizes a four-step algorithm to efficiently handle obstacles. FOARS [29] addresses obstacles based
on FLUTE [26]. [20] proposes an OARSMT algorithm by sequentially using OASG, and OARST,
achieving improved wirelength. Moreover, GSLS [30] proposes a guiding solution-based local search
method to solve the OARSMT problem, while [31] focuses on selecting Steiner points to handle
obstacles. Apart from the approximation and heuristic algorithms, exact algorithms of OARSMT
include [32, 33, 34, 21], which study edge-disjoint full Steiner trees (FSTs) building upon the
GeoSteiner [16] in vanilla RSMT.

Similar to RSMT problems, RL is also widely used in OARSMT. For instance, [9] utilizes an RL
agent to select Steiner points and follows a Maze-router-based Prim’s algorithm to form an OARSMT.
[7] trains an RL agent based on the small grids of layouts and predicts the Steiner points. It also
depends on a Maze routing as postprocessing. [8] performs a fast RL agent to connect pins, but it
requires the pre-construction of Obstacle-Avoiding Spanning Graph (OASG) and separates it into
shortest path forest (SPF), and finally, a local optimization strategy is employed for postprocessing.

Though these RL-based OARSMT algorithms can effectively handle obstacles, they either suffer from
a large action space [7] or combine with heuristics [8, 9], lacking the efficiency of GPU parallelization.

5.3 Beyond RSMT in VLSI design

Beyond RSMT, various works in VLSI design employ reinforcement learning (RL) to address specific
problems. For example, MaskPlace [35] uses RL to place macros sequentially during placement.
Beyond macro placement, MaskRegulate [36] uses an RL policy to adjust existing layouts with
dense rewards. Additionally, HAVE [37] introduces hierarchical adaptive multi-task RL and achieves
higher hypervolume. In floorplanning, CBL [38] designs a floorplanner using the Corner Block List
representation under an RL framework. Also within an RL framework, FlexPlanner [39] extends
the problem to 3D floorplanning. For routing, Liao et al. [40] employ a deep Q-network (DQN)
for global routing. Note that RSMT is an essential subproblem in routing, where we envision that
OAREST makes a promising contribution.

Beyond VLSI design, combinatorial optimization problems form the fundamental basis of various
applications, such as molecule generation [41, 42] and protein-protein docking [43]. Within the
domain of EDA, our work provides a train-and-test perspective on generalization, specifically
regarding varying degrees and obstacle constraints.

6 Conclusion and Outlook

We have introduced an RL-based OARSMT solver that supports multi-degree parallel inference
and dynamic obstacle avoidance. The main contributions of this work include the theoretical
demonstration of the optimality of the rectilinear edge sequence (RES) in OARSMT problems, as
well as empirical validation on both synthetic and real-world benchmarks.

Despite its strengths, OAREST has some limitations that present potential areas for future research:
1) In instances with a large number of pins, the error in OAREST increases due to its training
being limited to degrees between 3 and 50. 2) In some extreme scenarios, overlaps may still occur
with OAREST. To address these issues, we propose the following directions for future work: 1)
Training OAREST on instances with obstacles to further improve its ability to avoid obstacles
while maintaining minimal wirelength; 2) Testing OAREST on more complex real-world global
routing datasets and incorporating additional constraints, such as overflow; 3) Developing methods to
completely eliminate overlaps in OARSMT problems.

10



References

(1]

[2

—

13

—

[4

—_

[5

—

(6]

[7

—

[8

—

[9

—

(10]

(11]

(12]

(13]

[14]

(15]

(16]

(17]

Sheng-En David Lin and Dae Hyun Kim. Construction of all rectilinear steiner minimum trees on the
hanan grid and its applications to visi design. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 39(6):1165-1176, 2019.

Xingbo Du, Chonghua Wang, Ruizhe Zhong, and Junchi Yan. Hubrouter: Learning global routing via hub
generation and pin-hub connection. Advances in Neural Information Processing Systems, 36:1-10, 2023.

Ruizhi Liu, ZhishengZeng, Shizhe Ding, Jingyan Sui, Xingquan Li, and Dongbo Bu. Neuralsteiner:
Learning steiner tree for overflow-avoiding global routing in chip design. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024.

Michael R Garey and David S. Johnson. The rectilinear steiner tree problem is np-complete. SIAM Journal
on Applied Mathematics, 32(4):826-834, 1977.

Jinwei Liu, Gengjie Chen, and Evangeline FY Young. Rest: Constructing rectilinear steiner minimum
tree via reinforcement learning. In 2021 58th ACM/IEEE Design Automation Conference (DAC), pages
1135-1140. IEEE, 2021.

Zhenkun Lin, Genggeng Liu, Xing Huang, Yibo Lin, Jixin Zhang, Wen-Hao Liu, and Ting-Chi Wang. A
unified deep reinforcement learning approach for constructing rectilinear and octilinear steiner minimum
tree. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2024.

Po-Yan Chen, Bing-Ting Ke, Tai-Cheng Lee, I-Ching Tsai, Tai-Wei Kung, Li-Yi Lin, En-Cheng Liu,
Yun-Chih Chang, Yih-Lang Li, and Mango C-T Chao. A reinforcement learning agent for obstacle-avoiding
rectilinear steiner tree construction. In Proceedings of the 2022 international symposium on physical
design, pages 107-115, 2022.

Zhenkun Lin, Yuhan Zhu, Xing Huang, Liliang Yang, and Genggeng Liu. Obstacle-avoiding rectilinear
steiner minimal tree algorithm based on deep reinforcement learning. In 2023 International Conference on
Artificial Intelligence of Things and Systems (AloTSys), pages 149-156. IEEE, 2023.

Liang-Ting Chen, Hung-Ru Kuo, Yih-Lang Li, and Mango C-T Chao. Arbitrary-size multi-layer oarsmt rl
router trained with combinatorial monte-carlo tree search. In Proceedings of the 61st ACM/IEEE Design
Automation Conference, pages 1-6, 2024.

Zijie Geng, Jie Wang, Ziyan Liu, Siyuan Xu, Zhentao Tang, Shixiong Kai, Mingxuan Yuan, Jianye HAO,
and Feng Wu. LaMPlace: Learning to optimize cross-stage metrics in macro placement. In The Thirteenth
International Conference on Learning Representations, 2025.

Pengyi Li, YAN ZHENG, Hongyao Tang, Xian Fu, and Jianye HAO. Evorainbow: Combining improve-
ments in evolutionary reinforcement learning for policy search. In Forty-first International Conference on
Machine Learning, 2024.

Zijie Geng, Jie Wang, Ziyan Liu, Siyuan Xu, Zhentao Tang, Mingxuan Yuan, Jianye HAO, Yongdong
Zhang, and Feng Wu. Reinforcement learning within tree search for fast macro placement. In Forty-first
International Conference on Machine Learning, 2024.

Yao Lai, Jinxin Liu, Zhentao Tang, Bin Wang, Jianye Hao, and Ping Luo. ChiPFormer: Transferable chip
placement via offline decision transformer. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, Proceedings of the 40th International Conference
on Machine Learning, volume 202 of Proceedings of Machine Learning Research, pages 18346—18364.
PMLR, 23-29 Jul 2023.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 1992.

Sergei Dolgov, Alexander Volkov, Lutong Wang, and Bangqi Xu. 2019 cad contest: Lef/def based global
routing. In 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages 1-4.
IEEE, 2019.

David Michael Warme. Spanning trees in hypergraphs with applications to Steiner trees. University of
Virginia, 1998.

Frank K Hwang. An o (n log n) algorithm for rectilinear minimal spanning trees. Journal of the ACM
(JACM), 26(2):177-182, 1979.

11



(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

[35]

Andrew B Kahng, Ion I Méndoiu, and Alexander Z Zelikovsky. Highly scalable algorithms for rectilinear
and octilinear steiner trees. In Proceedings of the 2003 Asia and South Pacific Design Automation
Conference, pages 827-833, 2003.

Yiu-Chung Wong and Chris Chu. A scalable and accurate rectilinear steiner minimal tree algorithm. In
2008 IEEE International Symposium on VLSI Design, Automation and Test (VLSI-DAT), pages 29-34.
IEEE, 2008.

Chung-Wei Lin, Szu-Yu Chen, Chi-Feng Li, Yao-Wen Chang, and Chia-Lin Yang. Efficient obstacle-
avoiding rectilinear steiner tree construction. In Proceedings of the 2007 international symposium on
Physical design, pages 127-134, 2007.

Tao Huang and Evangeline FY Young. Obsteiner: An exact algorithm for the construction of rectilinear
steiner minimum trees in the presence of complex rectilinear obstacles. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 32(6):882-893, 2013.

Liang Li and Evangeline FY Young. Obstacle-avoiding rectilinear steiner tree construction. In 2008
IEEE/ACM International Conference on Computer-Aided Design, pages 523-528. IEEE, 2008.

Kuen-Wey Lin, Yeh-Sheng Lin, Yih-Lang Li, and Rung-Bin Lin. A maze routing-based methodology with
bounded exploration and path-assessed retracing for constrained multilayer obstacle-avoiding rectilinear
steiner tree construction. ACM Transactions on Design Automation of Electronic Systems (TODAES),
23(4):1-26, 2018.

Piotr Berman, Ulrich Fomeier, Marek Karpinski, Michael Kaufmann, and Alexander Zelikovsky. Ap-
proaching the 5/4—approximation for rectilinear steiner trees. In Algorithms—ESA’94: Second Annual
European Symposium Utrecht, The Netherlands, September 26-28, 1994 Proceedings 2, pages 60-71.
Springer, 1994.

Sanjeev Arora. Polynomial time approximation schemes for euclidean traveling salesman and other
geometric problems. Journal of the ACM (JACM), 45(5):753-782, 1998.

Chris Chu. Flute: Fast lookup table based wirelength estimation technique. In IEEE/ACM International
Conference on Computer Aided Design, 2004. ICCAD-2004., pages 696-701. IEEE, 2004.

Andrew B Kahng, Robert R Nerem, Yusu Wang, and Chien-Yi Yang. Nn-steiner: A mixed neural-
algorithmic approach for the rectilinear steiner minimum tree problem. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pages 13022—-13030, 2024.

Jieyi Long, Hai Zhou, and Seda Ogrenci Memik. Eboarst: An efficient edge-based obstacle-avoiding
rectilinear steiner tree construction algorithm. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 27(12):2169-2182, 2008.

Gaurav Ajwani, Chris Chu, and Wai-Kei Mak. Foars: Flute based obstacle-avoiding rectilinear steiner tree
construction. In Proceedings of the 19th international symposium on Physical design, pages 27-34, 2010.

Tiancheng Zhang, Zhipeng Lii, and Junwen Ding. Guiding solution based local search for obstacle-
avoiding rectilinear steiner minimal tree problem. /EEE Transactions on Emerging Topics in Computational
Intelligence, 2023.

Chih-Hung Liu, Sy-Yen Kuo, DT Lee, Chun-Syun Lin, Jung-Hung Weng, and Shih-Yi Yuan. Obstacle-
avoiding rectilinear steiner tree construction: A steiner-point-based algorithm. /EEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 31(7):1050-1060, 2012.

Liang Li, Zaichen Qian, and Evangeline FY Young. Generation of optimal obstacle-avoiding rectilinear
steiner minimum tree. In Proceedings of the 2009 International Conference on Computer-Aided Design,
pages 21-25, 2009.

Tao Huang and Evangeline FY Young. Obstacle-avoiding rectilinear steiner minimum tree construction:
An optimal approach. In 2010 IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
pages 610-613. IEEE, 2010.

Tao Huang, Liang Li, and Evangeline FY Young. On the construction of optimal obstacle-avoiding
rectilinear steiner minimum trees. /EEE transactions on computer-aided design of integrated circuits and
systems, 30(5):718-731, 2011.

Yao Lai, Yao Mu, and Ping Luo. Maskplace: Fast chip placement via reinforced visual representation
learning. Advances in Neural Information Processing Systems, 35:24019-24030, 2022.

12



(36]

(37]

(38]

(39]

[40]

(41]

(42]

[43]

[44]

[45]

[46]

[47]
(48]

[49]

Ke Xue, Ruo-Tong Chen, Xi Lin, Yunqi Shi, Shixiong Kai, Siyuan Xu, and Chao Qian. Reinforcement
learning policy as macro regulator rather than macro placer. Advances in Neural Information Processing
Systems, 37:140565-140588, 2024.

Zhihai Wang, Jie Wang, Dongsheng Zuo, Ji Yunjie, Xilin Xia, Yuzhe Ma, Jianye Hao, Mingxuan Yuan,
Yongdong Zhang, and Feng Wu. A hierarchical adaptive multi-task reinforcement learning framework for
multiplier circuit design. In Forty-first International Conference on Machine Learning, 2024.

Mohammad Amini, Zhanguang Zhang, Surya Penmetsa, Yingxue Zhang, Jianye Hao, and Wulong
Liu. Generalizable floorplanner through corner block list representation and hypergraph embedding.
In Proceedings of the 28th ACM SIGKDD conference on knowledge discovery and data mining, pages
2692-2702, 2022.

Ruizhe Zhong, Xingbo Du, Shixiong Kai, Zhentao Tang, Siyuan Xu, Jianye Hao, Mingxuan Yuan, and
Junchi Yan. Flexplanner: Flexible 3d floorplanning via deep reinforcement learning in hybrid action space
with multi-modality representation. Advances in Neural Information Processing Systems, 37:49252-49278,
2024.

Haiguang Liao, Wentai Zhang, Xuliang Dong, Barnabas Poczos, Kenji Shimada, and Levent Burak Kara.
A deep reinforcement learning approach for global routing. Journal of Mechanical Design, 142(6):061701,
2020.

Huanjin Wu, Xinyu Ye, and Junchi Yan. Qvae-mole: The quantum vae with spherical latent variable
learning for 3-d molecule generation. Advances in Neural Information Processing Systems, 37:22745—
22771, 2024.

Nianzu Yang, Huaijin Wu, Kaipeng Zeng, Yang Li, Siyuan Bao, and Junchi Yan. Molecule generation for
drug design: a graph learning perspective. Fundamental Research, 2024.

Huaijin Wu, Wei Liu, Yatao Bian, Jiaxiang Wu, Nianzu Yang, and Junchi Yan. Ebmdock: Neural
probabilistic protein-protein docking via a differentiable energy model. In The Twelfth International
Conference on Learning Representations, 2024.

Maurice Hanan. On steiner’s problem with rectilinear distance. SIAM Journal on Applied mathematics,
14(2):255-265, 1966.

Frank K Hwang. On steiner minimal trees with rectilinear distance. SIAM journal on Applied Mathematics,
30(1):104-114, 1976.

Sergey loffe. Batch normalization: Accelerating deep network training by reducing internal covariate shift.
arXiv preprint arXiv:1502.03167, 2015.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. Advances in neural information
processing systems, 28, 2015.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.

13



NeurlIPS Paper Checklist
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: This paper discusses the limitations in the conclusion section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
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* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.
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* While the authors might fear that complete honesty about limitations might be used by
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: This paper provides complete assumptions and proofs.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: This paper provides experimental details, and particularly, the code is provided.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: All the data used in this paper are open-sourced, and the code is provided in
the GitHub link.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: This paper provides details of the experimental protocols and ablation studies.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: This paper reports the standard deviation of the average percentage error.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: This paper provides a detailed introduction to computing resources.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: This research conforms with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: As shown in the introduction, this paper presents work whose goal is to
advance the field of Machine Learning and the field of Artificial Intelligence for Electronic
Design Automation (AI4EDA). Its negative impact is shown in the conclusion.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper does not refer to data or models that have a high risk.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: This paper follows the license when using existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: The new assets are well documented.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not refer to research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLM is only used for editing in some parts.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Theoretical Results
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Figure 7: Visualization of a) Hanan Grid, and b) Extended Hanan Grid. The grids are shown as grey
dashed lines.

A.1 Additional Definitions

In this section, we propose additional definitions apart from those in Sec. 2.1. The visualizations of
Hanan Grid and Extended Hanan Grid are shown in Fig. 7(a) and Fig. 7(b).

Definition A.1. [Hanan Grid [44]]) For a given set of pins P = {po,p1,- - , Pn—1}, its Hanan grid
H(P) is defined as the grid composed of the intersection points of the horizontal and vertical lines of
all pins. Formally,

H(P) = {(z,y)|z = z; ory = y;, Vpi = (i, yi) } ©))
Definition A.2. [Extended Hanan Grid] For a given set of pins P = {pg, p1,--- ,pn—1} and a set
of rectangular obstacles O = {09, 01, - ,0m—1}, its extended Hanan grid H'(P, O) is defined as

the grid composed of the intersection points of the horizontal and vertical lines of all pins and the
corners of all obstacles. Formally,

H'(P,0) = {(z,y)|r = x; or y = y;,V(xs,y;) € PUV(O)}, (10)

where V(O) represents all corner vertices of obstacles O.

A.2 Assumption and Lemma

In order to prove our main theorem in Sec. 2.3, we first put forward and prove some theoretical
findings in this section. Though some theorems/lemmas originate from other works [44, 5], they lack
corresponding proofs.

Assumption A.3. For a given set of pins P = {po,p1, - ,Pn_1], its rectilinear edge sequence
(RES) is valid iff. such RES connect all pins in P.

Lemma A.4. [Validity of RES] For a given set of pins P = {po,p1, -+ , Pn—1}, ils rectilinear edge
sequence (RES) res = ((vo, ho), (v1,h1), -+ , (Un—2, hn—2)) is guaranteed to be valid if

1. Vo 75 ho.

2. For each rectilinear edge pair (v;, h;) (i > 1), exactly one of v;, h; is visited before by
previous rectilinear edge pairs, and the other is not.

Proof. The lemma obviously holds when n = 3. For n > 3, consider the construction process of
RES. Since vy # hy, the first pair contains two distinct points that are connected. For the i-th (i > 1)
pair, due to the second requirement, the newly-visited pin is connected to the previously-visited pins,
and the number of connecting pins plus 1, and so forth, when © = n — 2, n pins are connected. [

Lemma A.5. [Hanan’s Theorem] For any set of pins P = {po,p1, "+ ,Dn—1}, there always exists
an optimal Rectilinear Steiner Tree (RST), i.e., Rectilinear Steiner Minimum Tree (RSMT), that all
Steiner points lie on the Hanan Grid.
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Proof. Suppose there exists an optimal RST that has a series of Steiner points S = {so, s1,--- ,sj-1}
not lying on the Hanan Grid. For each s; € S, denote its coordinate as (z;, y;), then at least one of
x;,1; is not equal to any of the pin coordinates.

Without loss of generality, we suppose x; is not equal to any pin coordinates, then we move such
Steiner point s; to the nearest x-coordinate of pins. Due to the characteristic of Manhattan distance,
after this movement, the length of the connection path referred to s; is equal to the previous one.

Repeat the above process on all other Steiner points in S, finally we obtain an optimal RST whose
Steiner points are all on the Hanan Grid. O

Theorem A.6. [Optimality of RES] For any set of pins P = {po,p1," - ,Pn—1}, an optimal RES of
‘P can always be found such that its corresponding tree is an optimal RSMT for P.

Proof. Let T* be an optimal RSMT for P with length L*, and let R(P) be the set of all valid RES
for P. Denote by

r* =arg min {length(7'(r 11
5 min, {ength(T(7) (1)
an optimal RES in R(P), where T'(r) is the corresponding tree of RES r € R(P).

Suppose, for contradiction, that length(7'(r*)) > L*.

By Lemma A.5, we may assume all Steiner points in 7™ lie on the Hanan grid H(P). Consider
traversing 7™ in a manner similar to a breadth-first search (BFS), starting from an arbitrary pin. Each
time a new pin p; is encountered, it is connected to an already visited pin p; via a path that follows
the Hanan grid and possibly passes through Steiner points.

Since all Steiner points are on the Hanan grid, the path from p; to p; consists of horizontal and
vertical segments whose total length equals the Manhattan distance between p; and p;. Therefore,
each such path can be represented as a direct sequence of horizontal and vertical edges between pins
in the RES framework, implicitly accounting for any Steiner points.

Construct the RES 7/ by recording each connection (4, j) where p; is connected to p;. By construction:

1. Each edge (i,7) in ' corresponds to a rectilinear path in 7 with length equal to the
Manbhattan distance between p; and p;.

2. The sequence r’ satisfies the conditions of Lemma A.4, ensuring that 7’ is a valid RES.
3. The total length of T'(r’) equals L* since each RES edge represents the minimal rectilinear
distance required to connect p; to the existing tree.
Thus, we have ' € R(P) and length(T(r')) = L*. This contradicts our assumption that
length(T'(r*)) > L*. Therefore, it must be that
length(T'(r*)) = L*, (12)

and r* corresponds to an optimal RSMT. O

Lemma A.7. [Extended Hanan’s Theorem] For any set of pins P = {po,p1,"** ,Pn—1} and a set
of rectangular obstacles O = {0g,01, - ,0m_1}, there always exists an RSMT, that all Steiner
points are lying on the extended Hanan Grid H' (P, O).

Proof. The proof is similar to Lemma A.5. Suppose there exists an optimal RST that has a series of
Steiner points S = {sg, s1,- - , sj—1} not lying on Hanan Grid H (P). For each s; € S, denote its
coordinate as (z;,y;), then at least one of z;, y; is not equal to any of the pin coordinates.

Without loss of generality, we suppose x; is not equal to any of the coordinates of pins, then we try to
move such Steiner point s; to the nearest x-coordinate of pins. Consider two situations:

1. If the movement is successful, then the length of the connection path referred to s; is equal
to the previous one due to the characteristic of Manhattan distance.
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2. If the movement fails (caused by obstacles), we can move s; to the nearest x-coordinate of
pins as far as possible until it is adjacent to an obstacle oj. This operation will also not lead
to longer length and the Steiner point s; is moved to the extended Hanan Grid H (P, O).

Repeat the above process on all other Steiner points in S, finally we obtain an optimal RST whose
Steiner points are all on the extended Hanan Grid H (P, O).

Assumption A.8. For a given set of pins P = {po,p1,- - ,Pn—1} and a set of rectangular obstacles
O ={00,01," "+ ,0m—1}, its rectilinear edge sequence (RES) r is valid iff.

1. Such RES connect all pins in P.

2. Yedge € r,Yo; € O : edge Nint(o;) = 0, where int(o;) denotes the interior region of
obstacle o;.

O

Lemma A.9. [Existence of valid RES in OARSMT] For any set of pins P = {po,p1, - , Pn—1} and
a set of rectangular obstacles O = {09, 01, - ,0m—1}, suppose there exists a rectilinear Steiner tree
(RST), then there always exists a subset of obstacles V'(O) and the corresponding valid rectilinear
edge sequence (RES) of P UV'(O).

Proof. Clearly, it holds for the case without obstacles, so we only consider the case when RES
overlaps with obstacles.

Define an empty set i/ and a RES r of P. Suppose a rectilinear edge (v;, h;) in 7 overlaps with
obstacle 0; € O, then we can choose an unvisited corner vertex u; of obstacle o; and divide (v;, ;)
into (Uz‘, Uj), (Uj, hl)

Add u; to U and replace (v;, h;) with two rectilinear edges (v;,u;), (u;j, h;) in r. Traverse all
rectilinear edges until none of them overlap with any obstacle. Note that 4/ C V(QO), so we denote

U=y (0).
The split of (v;, h;) will simultaneously increase the number of rectilinear edges by 1 and the number
of unvisited points by 1, so it satisfies the validity of RES stated in Lemma A 4.

O

A.3 Proof of the Main Theorem

Theorem A.10. [Optimality of RES in OARSMT] For any set of pins P = {po,p1,- - ,pn—1} and
a set of rectangular obstacles O = {09, 01, ,0m—1}, an optimal RES of P UV'(O) can always
be found such that its corresponding tree is an optimal OARSMT for P under obstacles O. Here,
V'(O) C V(O) is a subset of the corner vertices of all obstacles.

Proof. The proof is similar to that of Theorem A.6. Let T be an optimal OARSMT for P under
obstacles O with length L* and no overlaps, and let R(P’) be the set of all non-overlapping and

valid RES for P’ £ P U V'(0). According to Lemma A.9, R(P’) # (). Denote by

r* = arg min {length(7'(r))} (13)
reR(P’)

an optimal non-overlapping RES in R(P’), where T'(r) is the corresponding tree of RES r € R(P’).
Suppose, for contradiction, that length(7'(r*)) > L*.

By Lemma A.7, we may assume all Steiner points in 7 lie on the extended Hanan grid H'(P, O).
Consider traversing 7™ in a manner similar to a breadth-first search (BFS), starting from an arbitrary
pin. Each time a new pin/vertex p; is encountered, it is connected to an already visited pin/vertex p;
via a path that follows the extended Hanan grid and possibly passes through Steiner points.

Since all Steiner points are on the extended Hanan grid, the path from p; to p; consists of horizontal
and vertical segments whose total length equals the Manhattan distance between p; and p;. Therefore,
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each such path can be represented as a direct sequence of horizontal and vertical edges between pins
in the RES framework, implicitly accounting for any Steiner points.

Construct the RES 7’ by recording each connection (4, j) where p; is connected to p;. By construction:

1. Each edge (4,4) in ' corresponds to a rectilinear path in 7* with length equal to the
Manbhattan distance between p; and p;.

2. The sequence 7’ satisfies the conditions of Lemma A .4, ensuring that 7’ is a valid RES.

3. The total length of T'(r’) equals L* since each RES edge represents the minimal rectilinear
distance required to connect p; to the existing tree.

Thus, we have ' € R(P’) and length(T' (")) = L*. This contradicts our assumption that
length(7T'(r*)) > L*. Therefore, it must be that

length(T'(r*)) = L™, (14)
and r* corresponds to an optimal OARSMT. O
B Experiments
B.1 Success Rate

Table 5: Success rate (%) of GeoSteiner and OAREST on R5-R50 instances with 5/10 obstacles.

I | GeoSteiner OAREST (ours)
nstances
| 5 Obstacles 10 Obstacles | 5 Obstacles 10 Obstacles

R5 34.45 19.68 99.51 99.11
R10 ‘ 27.65 13.60 98.55 97.64
R15 26.57 12.78 98.41 97.02
R20 ‘ 28.03 12.03 98.06 96.38
R25 28.15 12.48 98.01 96.26
R30 ‘ 29.75 11.37 98.14 96.44
R35 30.21 12.70 98.35 96.36
R40 ‘ 30.37 12.10 98.35 96.52
R45 31.50 11.86 98.27 96.69
R50 ‘ 32.29 11.98 98.57 96.71

We conduct success rates of GeoSteiner [16] and OAREST in Table 5. Instances with no overlaps are
regarded as successes. The failure cases are due to: 1) Generalization error: For example, the R50
data with 10 obstacles occupy 90 points (50 pins + 40 obstacle corners) for each instance, exceeding
the maximum number of 50 pins during training. This results in generalization error and could be
improved by covering the 50-90 pins during training. 2) Dense obstacles between pins: For some
extreme cases when obstacles are dense and the generated rectilinear edges frequently overlap with
these obstacles, OAREST will stop updating the activation masking to keep the linearity of batch
inference. It is common for one hard sample in a batch to harm the efficiency of the entire batch in
machine learning. In our setting, we pay more attention to GPU parallelization for multiple instances.

In some cases, the RL framework can also generate redundant edges in the RES; these are removed
in a post-processing step.

B.2 Baselines

GeoSteiner [16]. GeoSteiner is an efficient exact algorithm to solve RSMT problems. Based on the
characteristics that an optimal RSMT can always be found by combining full Steiner trees only, it first
enumerates all possible full Steiner trees and then forms an RSMT. However, the time complexity is
exponential to the number of pins.

R-MST [17]. Rectilinear Minimum Spanning Tree (R-MST) is an approximation approach for RSMT.
It can efficiently construct RSMT within O(n log n) time complexity and is proved [45] to have the
length at most 1.5x that of RSMT.
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BGA [18]. BGA employs heuristics to optimize the result. By computing an R-MST first, BGA then
repeatedly replace bad edges with better ones to minimize the total length of the R-MST.

FLUTE [19]. FLUTE computes a look-up table in advance for the instances <9 pins, and thus it
is an exact algorithm for these instances. For large instances with >9 pins, FLUTE breaks the net
into small nets that can be handled by the look-up table. Within this algorithm, the authors introduce
an accuracy parameter A, which allows users to control the trade-off between accuracy and runtime
when generating RSMTs. A = 3 is the default accuracy level of FLUTE, where the runtime and
error are moderate. Conversely, A = 18 represents a higher accuracy level, which invests more
computational resources to further reduce the error in wirelength estimation.

REST [5]. REST is an RL-based framework that trains an actor-critic network on random data. The
actor network is responsible for predicting the next rectilinear edge pair to connect while the critic
network is utilized to rapidly predict the total wirelength of the tree. The generated rectilinear edge
sequence (RES) finally forms an RSMT. In this method, the authors introduce 8 transformations
(T = 8) that rotate the point set by 0, 90, 180, 270 degrees, with/without the x- and y- axes swapping,
and select the best result. These transformations will not change the RSMT solution but bring
promising improvement in wirelength. The time overhead of REST (1" = 8) is approximately 8x
that of REST (T' = 1).

OARST [20]. OARST is an OARSMT algorithm, but it contains a sequential process, including gen-
erating the obstacle-avoiding spanning graph (OASG), the obstacle-avoiding spanning tree (OAST),
the obstacle-avoiding rectilinear spanning tree (OARST), and finally obtains the obstacle-avoiding
rectilinear Steiner minimal tree (OARSMT). We use its intermediate result of OARST as a strong
baseline.

ObSteiner [21]. ObSteiner implements OARSMT by employing a geometric approach that decom-
poses the problem into constructing and concatenating full Steiner trees (FSTs) among complex
obstacles, while enhancing computational efficiency through virtual terminal additions and pruning
strategies.

B.3 Model Structure

The main structure is revised from [5], which contains an actor network and a critic network. Both
of these networks take a set of points P = {po,p1,- - ,pn—1} as the input and pass through an
embedder and an encoder. The actor network has an additional decoder mechanism. During training,
‘P only contains pins. For inference, P is a combination of pins and obstacle vertices. Detailed
illustration is as follows:

Embedder. Given the set P, denote its position matrix as P € R"*2, Before passing it into
the encoder, they are processed by an embedder module to transform the raw input into a higher-
dimensional space suitable for encoding. The embeddings are masked by mi"™"*, Specifically, the
embedder is defined as:

Embedder(P) = BatchNorm(ConvID(P ")) " o m™™ (15)

where ConvlD is a 1 x 1 convolution that projects the input from 2 to d.n, dimensions, and
BatchNorm [46] applies batch normalization to stabilize the embeddings.

The embedder ensures that the input points are transformed into embeddings Eeppeq € R X demd wyith
a richer feature representation, which are then fed into the encoder.

Encoder. The encoder is a mapping Encoder : R™*dm s Rn*dec  Specifically, the Encoder is
constructed using a multi-head attention mechanism [47]. The encoder operates with a stack of layers,
where each layer is composed of two sublayers: a multi-head attention layer and a position-wise
feedforward layer. These sublayers are connected through residual connections, followed by batch
normalization to stabilize and accelerate the training process. Formally, given the input X to an
encoder layer:

X' = BatchNorm(MultiHeadAttention(X, X, X) + X),

16
Y = BatchNorm(FeedForward(X') + X'). (16)

3Note that the vectors in this section are instance-level for simplicity, different from the batch-level matrices
in Sec. 3.2.
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The multi-head attention mechanism computes attention as:

Attention(Q, K, V) ft (QKT> Vv (17)
ention(Q, K, V) = softmax ,

Vv,
where Q, K,V are the query, key, and value matrices derived from the input X, and dj, is the
dimensionality of the keys. Multiple attention heads are concatenated and linearly projected back to
the original dimension.

The position-wise feedforward layer applies two linear transformations with a ReLU activation in
between:

FeedForward(X) = ReLU(XW; + b;)W3 + bs. (18)

This encoder ensures that the representations are enriched with global contextual information while
maintaining computational efficiency.

Forward Pass of Actor Network. The overall forward pass through the model begins with the
embedder. The embeddings are then processed by the encoder, followed by a series of 1D convolutions
to extract specific features:

Eembea = Embedder(P), Ee,. = Encoder(Eemped),
E; = ConvID,(E},.)", E; = ConvID,(E..)", Ey= ConviD,(E/.)", (19)

enc enc enc

Exy = [EX7 Ey]v

where Conv1D,., ConvlD,, and ConvlD,, are 1 x 1 convolution layers applied to the encoder output
Ecnc, and [, -] represents concatenation along the feature dimension. This structured processing
pipeline ensures that the model captures local and global information from the input points, preparing
the features for subsequent decoding tasks.

Forward Pass of Critic Network. The critic network is designed to evaluate the quality of a solution
by predicting the expected output length, providing a baseline for reinforcement learning. The
forward pass of the critic network is as follows:

Eembea = CritEmbedder(P), E,. = CritEncoder(Ecmbed),

G = Glimpse(Eeye) = softmax (tanh(Eepe)g’) T Eene, (20)
o = MLP(G),

where CritEmbedder and CritEncoder respectively have the same structures of Embedder and
Encoder with different learnable parameters. Glimpse computes a weighted sum of the encoded
representations with g’ € R%_ Finally, a multi-layer perception (MLP) is used that outputs the final
predictions o.

Decoder of Actor Network. The decoder of the actor network operates as a sequential decision-
making process to generate rectilinear edges along with their associated probabilities. We show
the whole process in Alg. 1, where the steps marked in blue means that they are executed only for
inference phase. This decoder leverages pointer networks [48] with various masking strategies to
compute logits. These logits are generated using encoded features and dynamically updated query
vectors as inputs. At each step, the decoder selects indices based on computed logits, ensuring
constraints such as unvisited points and obstacle avoidance are met. Additionally, the decoder
employs activation masks to handle overlaps with obstacles, iteratively refining selections until a valid
edge is identified. This mechanism helps the output rectilinear edge sequence and the cumulative
log-probabilities adhere to the given spatial and logical constraints.

B.4 Training Strategy

Our training strategy consists of two phases. The first phase follows the methodology described in [5],
while the second phase involves a quick multi-degree finetuning.

In the first phase, the model is sequentially trained from degree 3 to 50. After completing training at
degree t, the parameters are used to initialize training at degree ¢ + 1. Each degree-specific training
involves 40,000 iterations with a batch size B that decreases as the degree increases. Specifically, B
starts at 4096 for degree 3 and is progressively reduced to 2048, 1024, and 512 for degrees 10, 20, and
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Algorithm 1 Actor Decoder

Input: Encoded features Ecye, E;, Eyy, obstacles O.
Output: RES r and cumulative log-probabilities p.
1: Initialize input mask mi"™", visited mask m"*"d, obstacle mask m°°, and activation masks m®",

2: Initialize the log-probabilities p = 0 of selecting a RES.
3: Define zero-initialized query vector qg.
4: Compute logits sy = PointerStart(E;, qo) o (m™P**Am°"). Select the start point.
5: Sample starting index vy from sy. Denote v = .
6: Update visited mask m"sid,
7. for j =1ton —1do
8:  Compute the first query q; based on v(2).
9:  Compute logits s(!) = Pointer] (E;, q;) o (m™" A m"sd) Select the unvisited point.
10:  Sample or determine first index v(!) from s(V).
11:  Compute the second query ¢ based on v(1).
12 Compute logits s® = Pointer2(Eyy, q2) o (1 — m"itd). Select the visited point.
13:  Sample or determine second index v(?) from s(2).
14:  Decode indices z, y from v} v(2).
15:  while (z,y) overlaps obstacles O do
16: Update activation masks m*;
17: Compute logits s() = Pointerl (E;, q1) o (m™" A m"8ited A mat). Select the new
unvisited point.
18: Sample or determine first index v(*) from s(1).
19: Compute logits s(2) = Pointer2(Eyy, g2) o (1 — m"*®d). Select the new visited point.
20: Sample or determine second index v(?) from s(2).
21: Decode indices z, y from vV, v(2).

22:  end while

23:  Add the rectilinear edge (x,y) to RES 7.

24:  Compute log p(vM),log p(v?) from sV, s(?) and add to p.
25:  Update visited mask m"isied,

26: end for

40, respectively. The Adam optimizer [49] is employed with an initial learning rate of 2.5 x 104,
which decays by a factor of 0.96 after each degree’s training.

In the second phase, we leverage a dynamic masking strategy to jointly train the model across a range
of degrees, from n; to ny. The Adam optimizer is again utilized, this time with a learning rate of
5 x 10~°. The total number of iterations in this phase is limited to the number of iterations required
for training a single degree in the first phase. Specifically, we conduct training for the degree ranges
(n1,ng) as follows: (3,10), (10, 20), (20, 30), (30,40), (40, 50), and (3, 50).

B.5 Inference Strategy

For the RSMT problems, we use OAREST (3-10) to test RS and R10, OAREST (10-20) to test
R15 and R20, and so forth. For each group of instances, a batch size of 100 k/degree is used for
parallel inference. To further enhance the performance, we use 8 transformations proposed by [5]
that rotate the point set by 0, 90, 180, 270 degrees, with/without the x- and y- axises swapping, and
select the best result. These transformations will not change the RSMT solution but bring promising
improvement in wirelength.

For the OARSMT problems, we use OAREST (40-50) for all groups of instances due to large
occupations of obstacles. To demonstrate the efficiency of GPUs, we use the full batch size, i.e., 10k,
for parallel inference. To keep the linearity of inference, the model only inspects the obstacles once
for the ‘while’ in Alg. 1. Here, 8 transformations are also used.
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B.6 Visualization

In this section, we present the visualized results of OARSMTs with 5-50 pins and 0/5/10 obstacles.
When no obstacles are present, the OARSMT results are the same as the vanilla RSMTs. As shown
in Fig. 8-17, each line represents three pairs of instances with the same number of pins, including the
pair without obstacles (left), with 5 obstacles (middle), and with 10 obstacles (right). Within each
pair, the left means the result obtained by the exact RSMT algorithm GeoSteiner [16] and the right

represents the result obtained by OAREST.
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(a) 5 pins.

(b) 5 pins & 5 obstacles.

(c) 5 pins & 10 obstacles.

Figure 8: OARSMT with 5 pins and 0/5/10 obstacles.
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(a) 10 pins.

(b) 10 pins & 5 obstacles.

(c) 10 pins & 10 obstacles.

Figure 9: OARSMT with 10 pins and 0/5/10 obstacles.
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(a) 15 pins.
Figure 10: OARSMT with 15 pins and 0/5/10 obstacles.

(b) 15 pins & 5 obstacles.
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(c) 15 pins & 10 obstacles.
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(a) 20 pins.

(b) 20 pins & 5 obstacles.

(c) 20 pins & 10 obstacles.

Figure 11: OARSMT with 20 pins and 0/5/10 obstacles.
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(a) 25 pins.

(b) 25 pins & 5 obstacles.

(c) 25 pins & 10 obstacles.

Figure 12: OARSMT with 25 pins and 0/5/10 obstacles.
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(a) 30 pins.
Figure 13: OARSMT with 30 p1ns and 0/5/10 obstacles.

(b) 30 pins & 5 obstacles.

(c) 30 pins & 10 obstacles.
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(a) 35 pins.

(b) 35 pins & 5 obstacles.

(c) 35 pins & 10 obstacles.

Figure 14: OARSMT with 35 pins and 0/5/10 obstacles.
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(a) 40 pins.

(b) 40 pins & 5 obstacles.

(c) 40 pins & 10 obstacles.

Figure 15: OARSMT with 40 pins and 0/5/10 obstacles.
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(a) 45 pins.

(b) 45 pins & 5 obstacles.

(c) 45 pins & 10 obstacles.

Figure 16: OARSMT with 45 pins and 0/5/10 obstacles.
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(a) 50 pins.

(b) 50 pins & 5 obstacles.

(c) 50 pins & 10 obstacles.

Figure 17: OARSMT with 50 pins and 0/5/10 obstacles.
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