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Abstract

We validated the work stated in the paper ”Making
AI Forget You: Data Deletion in Machine Learning”[1]
by reproducing their results. We found that our results
roughly aligned the trends of their results but with some
minor fluctuations. We further explored their proposed
models by fine tuning their hyperparameters. The ef-
fects of number of iterations and tree depth on the per-
formance of corresponding proposed models were in-
vestigated. We further optimized DC-K-means model
and proposed a new competitive weighted DC-K-means
model, which has better statistical performance on some
datasets at a minor cost of runtime efficiency.

1. Introduction

Researchers often encounter the situation that some
participants involved in past experiments requested to
withdraw their data from the database. People have the
legal right to decide at any time whether their data can be
used or not, and researchers also need to adjust their ex-
periments and results after erasing these data. As this sit-
uation becomes more common, developing a tool to give
a flexible control to the participants over their individual
data, which also doesn’t exhaust the researchers, grows
to be important. In some fields of study, removing a few
samples from the database may be a challenge. In ma-
chine learning, if data scientists attempt to thoroughly
erase a few data, they may need to retrain their model
based on the huge dataset left and spend a lot of time
and computation. Thus, after rigorously formulating the
problem and defining the notion of efficient data dele-
tion, Anronio, Melody, Gregory and James in Stanford
University proposed two algorithms using k-means clus-
tering and derived their running time to improve the ef-

ficiency of data deletion.[1] They also verified the meth-
ods on six different datasets and achieved over 100X
speedup on average compared to k-means baseline(i.e. a
k-means++ seeding followed by Lloyd’s algorithm). In
this project, we concisely showed the methods proposed
by the above researchers and reproduced the results by
running their algorithm on the same datasets. Then we
investigated deeply on the essential parameters in the al-
gorithm and tested different values numerous times to
gain a relative optimization. After that, we analysed
our reproduced results and the runtime of tuned mod-
els compared with the original results, and attempted to
provide an improved model based on our findings.

2. Related work

Lloyd’s algorithm and quantized k-means and
DC-k-means: In Lloyd’s paper “Least Squares Quan-
tization in PCM”[2], he defined quantization more
explicitly and used minimum average quantization
noise power as an optimization criterion. Utilizing
this method, the researchers in [1] proposed a quan-
tized variant to solve the deletion efficient problem in
k-means clustering, and is called quantized k-means
(Q-k means) . They proved the deletion efficiency of
the algorithms by showing hat it is most likely to gain
constant quantized centroids with respect to deletions at
each iteration. Also they proposed Divide-and -Conquer
k-means algorithm (DC-k means) which works as a
n-ary tree of height 1. The general idea is to divide
the dataset into n small parts and solve each part as
an independent k-means instance, then merged them
recursively. Besides, the experiments on depth-1 DC-k
means revealed a compelling trade-off between deletion
time and statistical performance.

Metrics for evaluating clustering performance: In
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this project we utilized the same three metrics as in the
paper [1]. First, optimization loss is a commonly used
tool which is the sum of square Euclidean distances
from each datapoint to its nearest centroid in clustering.
The second metric, Silhouette Coefficient, measures
how dense each cluster is and how well-separated
different clusters are. A higher score indicates a denser,
more well-separated cluster and its value is between
-1 and 1. Third metric is called Normalized Mutual
Information. It measures the agreement of the assigned
clusters to the ground-truth labels, up to permutation.
Its score is less than 1 (and equals to 1 when the
assignments are perfect). Higher scores indicate better
agreement between clusters and ground-truth labels.

3. Dataset and setup

3.1. Description of datasets

We have five real, publicly available datasets de-
scribed below, where N is number of examples in each
dataset, D is the dimension of features, and K is number
of classes in each dataset.

Celltype[3] (N = 12,009, D = 10, K = 4): Celltypes con-
sists of 10 feature dimensions, 12,009 single cell RNA
sequences from a mixture of 4 cell types.
Covtype[4] (N = 15,120, D = 52, K = 7): Covtype con-
sists of 15,120 samples of 52 cartographic variables such
as elevation and hillshade at various times of day for 7
forest cover types.
MNIST[5] (N = 60,000, D = 784, K = 10): MNIST
consists of 60,000 images of isolated, normalized, hand-
written digits. The task is to classy if each 28×28 image
in to one of the ten classes.
Postures[6] (N = 74,975, D = 15, K = 5): Postures con-
sists of 74,975 motion capture recordings of users per-
forming 5 different hand postures with unlabeled mark-
ers attached to a left-handed glove.
Botnet[7] (N = 1,018,298, D = 115, K = 11): Botnet
contains statistics summarizing the trafc between dif-
ferent IP addresses for a commercial IoT device (Dan-
mini Doorbell). We aim to distinguish between benign
trafc data (49548 instances) and 11 classes of malicious
trafc data from botnet attacks, for a total of 1018298 in-
stances.
Gaussian (N = 100,000, D = 25, K = 5): Gaussian con-
sists of 5 clusters, each generated from 25-variate Gaus-
sian distribution centered at randomly chosen locations
in the unit hypercube. 20,000 samples are taken from
each of the 5 clusters, for a total of 100,000 samples.
Each Gaussian cluster is spherical with variance of 0.8.

3.2. Preprocessing of datasets

We preprocessed all datasets by a minmax scaling in
order to map them into the unit hypercube. Since we
clustered input datapoints with respect to distance, min-
max scaling is important to transform each dimension of
features into the same scale and reduce noise. In prac-
tice, the scaling of a dataset can change due to deletions.
However, this is a minor concern as only a small number
of extrenal datapoints affect the scale. Retraining from
scratch when these points come up as a deletion request
does not impact asymptotic runtime, and has a negligi-
ble impact on empirical runtime.

4. Proposed approach
We first validated the deletion efficient work given

by [1] by reproducing their results on all their chosen
datasets. We further explored the effect of hyperparame-
ters on their model performance and came up with an op-
timized DC-k-means model based on their work. Due to
limited computation power, when experimenting on hy-
perparameters we usually conducted our experiments on
three chosen datasets: Celltype, Covtype, and MNIST.

To evaluate the statistical and runtime performance
of proposed models, we utilized the same evaluation
metrics mentioned in their paper [1], which included
loss, silhouette coefficient, normalized mutual informa-
tion (NMI), and amortized runtime.

4.1. Reproduce results

The results proposed [1] were reproduced by testing
their proposed models following the instructions in the
paper. We set hyperparameters by heuristic suggested in
their paper. Tables and histograms were made to com-
pare the reproduced and proposed results.

4.2. Effect of number of iterations on perfor-
mance in proposed models

We tested a few different iteration numbers: 10, 50,
100 and kept the other part of the models unchanged
and compared their statistical performance and runtime
respectively on three chosen datasets.

4.3. Effect of tree depth on performance in DC-
k-means model

In our referenced paper [1], they mainly focused on
depth-1 tree structure in DC-k-means model. We further
explored deeper tree structures in DC-k-means model on
three chosen datasets, Celltype, Covtype, and MNIST.
To ensure fairness, we fixed to include 64 leaf-nodes at
bottom layer for each model. We built a depth-1 DC-
k-means model with 1 root node and 64 leaf-nodes; a
depth-2 DC-k-means model with 1, 8, 64 nodes at each
layer; and a depth-3 DC-k-means model with 1, 4, 16,

2



64 nodes at each layer. Then, we evaluated statistical
and runtime performances of our 3 models on chosen
datasets.

4.4. Weighted DC-k-means model

For DC-k-means model, we further optimized their
proposed structure and implemented the weighted DC-
k-means model, where we weighted centroids based on
cluster mass as they propagated up the tree. In our
weighted DC-k-means model, we first randomly as-
signed N input examples with equal chance to one of
leaf-nodes, as what was done before. The assigned cen-
troids in the leaf-nodes were then propagated up to par-
ent node as a new datapoint, which was weighted by the
number of datapoints assigned to it. Thus, at root node
of the tree, each centroid had a mass weight equaled to
total number of datapoints assigned to it in leaf-nodes.
We believed the weighted DC-k-means model would
have better statistical clustering performance with neg-
ligible runtime sacrifice, since it better summerized and
operated on the input data with a cluster mass weight
propagated up to higher level. We also implemented
a weighted k-means varient, where each datapoint was
weighted by a given integer. We randomly chose k cen-
troids for N datapoints each with probability (weight ×
minimum distance) to other centroids. Then, we as-
signed each datapoint to its nearest centroid, and up-
dated centroids with weighted mean value of all data-
points in the same clustering.

We recapitulated our weighted DC-k-means model as
Algorithm 1 below.

.

Algorithm 1: Weighted DC-k-means

Input: data matrix D ∈ Rn×d ;
Parameters: k clusters: k ∈ N ; a list of tree

width at each level: w ∈ Nh, tree height:
h ∈ N ;

Initialize a tree, T, of height h and wi number of
nodes at each level, such that each node has a
pointer to a dataset and centroids;

for i = 0 to n do
Select a leaf node uniformly at random;
node.dataset.add(Di);
node.data weights.add(1);

end
for l = h to 0 do

foreach node in level l do
c← k-means variate(node.dataset, k, T,
node.data weights);

w← number of datapoints assigned to
each centroid ci;

node.centroids← c;
node.centroids weights← w;

end
if l > 0 then

node.parent.dataset.add(c);
node.parent.data weights.add(w);

else
save all nodes as metadata;
return c;

end
end

5. Experiments and Results

5.1. Reproduce results

Tables 1-4 are the results that we reproduced by fol-
lowing the procedures and algorithms suggested by [1].
By comparing with the proposed results in [1], as shown
on fig 1-4, we found that most of reproduced results
were close to the proposed results and they performed
the same trends. There exists an error on Table 2 of the
paper that there are 2 rows of Gaussian results. Base on
the results we reproduced, we speculated that the sec-
ond Gaussian row should be MNIST row. We also found
that the reproduced amortized runtime was a bit different
than the proposed runtime. A possible reason is that our
running environment and hardware were different from
the research group and caused the runtime to be differ-
ent. The difference is reasonable and acceptable. As we
expected, the proposed results are reproducible and the
proposed algorithms are valid.
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Dataset k-means Q-k-means DC-k-means
Celltype 1.0±0.015 1.213±0.157 1.601±0.100
Covtype 1.0±0.031 1.022±0.022 1.006±0.027
MNIST 1.0±0.003 1.05±0.008 1.004±0.005
Postures 1.0±0.010 1.000±0.002 1.027±0.017
Botnet 1.0±0.179 1.121±0.122 1.184±0.121
Table 1: Optimization loss ratios of our proposed

methods over the k-means++ baseline

Dataset k-means Q-k-means DC-k-means
Celltype 0.398±0.009 0.419±0.039 0.504±0.022
Covtype 0.201±0.014 0.234±0.019 0.243±0.038
MNIST 0.064±0.007 0.063±0.009 0.069±0.005
Postures 0.095±0.006 0.104±0.004 0.096±0.012
Botnet 0.601±0.034 0.603±0.022 0.614±0.013
Table 2: Silhouette Coefficients (higher is better)

Dataset k-means Q-k-means DC-k-means
Celltype 0.344±0.013 0.324±0.045 0.226±0.015
Covtype 0.325±0.012 0.334±0.021 0.326±0.006
MNIST 0.498±0.012 0.468±0.021 0.482±0.019
Postures 0.163±0.018 0.160±0.013 0.173±0.006
Botnet 0.697±0.035 0.712±0.037 0.701±0.025
Table 3: Normalized Mutual Information (higher is

better)

Dataset k-means Q-k-means DC-k-means
Celltype 2.655±0.196 0.099±0.071 0.179±0.012
Covtype 3.416±0.131 0.457±0.338 0.301±0.027
MNIST 34.26±2.754 19.47±2.843 1.988±0.076
Postures 17.31±1.311 3.323±1.59 1.021±0.061
Botnet 328.5±39.96 33.13±21.63 26.251±1.55

Table 4: Amortized Runtime in Online Deletion
Benchmark (Train once + 50 Deletions)

Figure 1: Comparison between the reproduced and
the proposed loss ratio of the three models on the five
datasets

Figure 2: Comparison between the reproduced and the
proposed Silhouette Coefficients of the three models on
the five datasets

Figure 3: Comparison between the reproduced and the
proposed Normalized Mutual Information of the three
models on the five datasets

Figure 4: Comparison between the reproduced and the
proposed Amortized Runtime of the three models on the
five datasets

5.2. Effect of number of iterations on perfor-
mance in proposed models

As described in proposed approach, we summerized
our results in the following figures.
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Figure 5: Q-k-means loss ratios (to k-means) at
different iteration times on celltype, covtype and MNIST

datasets.

Figure 6: DC-k-means loss ratios (to k-means) at
different iteration times on celltype, covtype and MNIST

datasets

Figure 7: Silhouette coefficient values of k-means at
different iteration times on celltype, covtype and MNIST

datasets.

Figure 8: Silhouette coefficient values of Q-k-means at
different iteration times on celltype, covtype and MNIST

datasets.

.

Figure 9: Silhouette coefficient values of DC-k-means
at different iteration times on celltype, covtype and

MNIST datasets.

Figure 10: Nomalized mutual information of k-means
at different iteration times on celltype, covtype and

MNIST datasets.

Figure 11: Nomalized mutual information of
Q-k-means at different iteration times on celltype,

covtype and MNIST datasets.

Figure 12: Nomalized mutual information of
DC-k-means at different iteration times on celltype,

covtype and MNIST datasets
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Figure 13: Amortized runtime of k-means at different
iteration times on celltype, covtype and MNIST

datasets.

Figure 14: Amortized runtime of Q-k-means at different
iteration times on celltype, covtype and MNIST

datasets.

Figure 15: Amortized runtime of DC-k-means at
different iteration times on celltype, covtype and MNIST

datasets.

When the number of iterations increases, we see
that in general, the loss ratios of Q-k-means and DC-k-
means model over k-means model have increased. For
covtype and MNIST dataset, it increases slightly but
for celltype dataset the loss ratio increases significantly.
The silouette coefficients of k-means model and DC-
k-means model generally increases as the number of
iterations goes up. This phenomenon is more obvious
in celltype and covtype dataset, and in DC-k-means
model the coefficient value reaches up to 0.607 for the
celltype dataset. Q-k-means model shows a general
decrease in silhouette coefficient value on celltype and
covtype datasets, but has a small increase on MNIST
dataset. The normalized mutual information of the
three models all increases for the celltype dataset when
number of iterations grows from 10 to 100. However, in

DC-k-means model, the information of celltype dataset
surprisingly decreases to 0.031. When analyzing the
amortized runtime of the models, we noticed that the
runtime fluctuates differently among different datasets
and models and the runtime for celltype is much longer
than the other datasets. Overall, DC-k-means has the
shortest amortized runtime compared with the other
two models at different iterations. Besides, K-means
and DC-k-means model both indicate more obvious
increases in runtime compared with Q-k-means over
different iteration times.

5.3. Effect of tree depth on performance in DC-
k-means model

As discussed in proposed approach, we experimented
on DC-k-means model with depth-1, depth-2, and depth-
3 tree structures on three chosen datasets, Celltyp, Cov-
type, and MNIST. We summerized our results in the fol-
lowing 3 figures for 3 datasets.

Figure 16: Comparison between performance metrics
of Weighted DC-k-means model and DC-k-means

model on MNIST dataset.

Figure 17: Comparison between performance metrics
of Weighted DC-k-means model and DC-k-means

model on MNIST dataset.
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Figure 18: Comparison between performance metrics
of Weighted DC-k-means model and DC-k-means

model on MNIST dataset.

We can see that in dataset Covtype, DC-k-means
model with deeper tree structure will generate better
statistical and runtime performance. It’s also important
to notice that deeper tree structure in DC-k-means
model in general reduce amortized runtime of training
model and deleting datapoints from trained model, since
we will recluster fewer datapoints at higher level when
we merge our modified branch with other branches.

5.4. Weighted DC-k-means model

We propose to compare the statistical and runtime
performance of Wieghted DC-k-means model and orig-
inal DC-k-means model, where we evaluate our mod-
els on loss, silhouette coefficient by 10000 random sam-
pled datapoints, normalized mutual information score,
and amortized runtime of 20 deletions. To control vari-
ates, we only explore depth-1 trees with w leaves, where
w is chosen by heuristic as did in our referenced paper
[1]. We build the same depth-1 tree with w leaves struc-
ture for two models. Then, we run 3 experiments of two
models (Weighted DC-k-means model and DC-k-means
model) on each chosen datasets (Celltype, Covtype, Pos-
tures, and MNIST) and compare their performance on
proposed evaluation metircs. The following 4 figures
shows the comparison of performance of 2 models on 4
chosen datasets.

As shown in the results, we can see that Weighted
DC-k-means model is able to generate better statistical
clustering performance on some datasets at a cost of run-
time efficiency. We find that in relative large dimension
datasets (like Postures and MNIST), Weighted DC-k-
means model has better performance than original DC-
k-means model. In other 2 small datasets, Weighted DC-
k-means model doesn’t have obvious advantage. We can
treat Weighted DC-k-means model as a another compet-

itive approach that is bounded by the same asymptotic
runtime and slightly higher practical runtime as DC-k-
means model, where we can perform model selection on
specific dataset to find the relative best model.

Figure 19: Comparison between performance metrics
of Weighted DC-k-means model and DC-k-means model
on Celltype dataset.

Figure 20: Comparison between performance metrics
of Weighted DC-k-means model and DC-k-means model
on Covtype dataset.

Figure 21: Comparison between performance metrics
of Weighted DC-k-means model and DC-k-means model
on Postures dataset.
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Figure 22: Comparison between performance metrics
of Weighted DC-k-means model and DC-k-means model
on MNIST dataset.

6. Discussion and Conclusion
6.1. Discussion:

Due to limited computation power, we did our experi-
ments only on a chosen subsets of acquired datasets. For
some evaluation parameters (like silhouette coefficient),
we calculate them only based on a random sample with
fixed size from all datapoins, which is prone to induce
noise and fluctuations. In the future, we should conduct
more thorough experiments on more datasets to derive
conclusions with better precision and genralization abil-
ity.

6.2. Conclusion:

Through a large mount of attempts, we found that
under different values of parameters, the statistical and
runtime performances of Q-k-means and DC-k-means
vary with different datasets. It’s hard to find general
optimal parameter values which make the models per-
form well on all distinct datasets. However, we did dis-
cover that DC-k-means model outperforms the other two
based on silouette coefficient, normalized mutual infor-
mation and amortized runtime. Among most datasets
and different parameters, DC-k-means clusters the data
well compared with k-means and Q-k-means

7. Statement of Contributions
Yue Lyu: Implement DC-k-means model and test
its performance. Explore effect of tree structures on
performance of DC-k-means model. Compose final
report.
Zhenghua Chen: Explore effect of number of iterations
on performance of proposed models. Compose final
report.
Xiaobin Shang: Explore effect of epsilon on perfor-
mance of Q-k-means model. Compose final report.
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