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Abstract

Multimodal knowledge editing represents a001
critical advancement in enhancing the capa-002
bilities of Multimodal Large Language Mod-003
els (MLLMs). Despite its potential, current004
benchmarks predominantly focus on coarse-005
grained knowledge, leaving the intricacies of006
fine-grained (FG) multimodal entity knowledge007
largely unexplored. This gap presents a notable008
challenge, as FG entity recognition is pivotal009
for the practical deployment and effectiveness010
of MLLMs in diverse real-world scenarios. To011
bridge this gap, we introduce MIKE, a compre-012
hensive benchmark and dataset specifically de-013
signed for the FG multimodal entity knowledge014
editing. MIKE encompasses a suite of tasks tai-015
lored to assess different perspectives, including016
Vanilla Name Answering, Entity-Level Cap-017
tion, and Complex-Scenario Recognition. In018
addition, a new form of knowledge editing,019
Multi-Step Editing, is introduced to evaluate020
the editing efficiency. Through our extensive021
evaluations, we demonstrate that the current022
state-of-the-art methods face significant chal-023
lenges in tackling our proposed benchmark, un-024
derscoring the complexity of FG knowledge025
editing in MLLMs. Our findings spotlight the026
urgent need for novel approaches in this do-027
main, setting a clear agenda for future research028
and development efforts within the community.029

1 Introduction030

Multimodal knowledge editing (MKE) (Yao et al.,031

2023; Zhang et al., 2024; Meng et al., 2022; Dong032

et al., 2022; Hase et al., 2023; Meng et al., 2023)033

plays a critical role in maintaining and improving034

the accuracy of Multimodal Large Language Mod-035

els (MLLMs) (Liu et al., 2023; Li et al., 2023a;036

Alayrac et al., 2022; Li et al., 2023b). Central to037

MKE is the capability to update outdated, unknown,038

or incorrect knowledge within MLLMs. Recent de-039

velopments in this field, such as the benchmark040

MMEdit proposed by Cheng et al. (2023), sig-041

nify considerable progress. Drawing from datasets042

Describe the image

A yellow haired woman 
arrives at a building.

A white hair old man 
arrives at a building.

President Joe Biden arrives 
at the White House.
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Fine-grained Editing Updates:Coarse-grained Editing Updates:
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Figure 1: The comparison between MMEdit (Cheng
et al., 2023) and ours (MIKE). MIKE focuses on editing
fine-grained multimodal entity knowledge.

of Visual Question Answering (VQA) (Hu et al., 043

2023b; Khan et al., 2023) and Image Caption (Li 044

et al., 2023b; Ramos et al., 2023) tasks, MMEdit 045

offers a platform to test the editability of MLLMs. 046

However, a critical issue remains in its primary 047

focus on coarse-grained knowledge, which often 048

falls short of accurately representing real-world 049

fine-grained (FG) entities and scenarios. 050

To underscore the limitations of a coarse-grained 051

focus, consider a real-life example in political im- 052

age captioning as shown in Figure 1. An ideal 053

MLLM output would be a fine-grained and spe- 054

cific caption like "President Joe Biden arrives at 055

the White House". However, a coarse-grained ap- 056

proach might yield a nondescript caption such as 057

"A white hair old man arrives at a building". This 058

lack of specificity fails to capture the critical de- 059

tails and convey key information to the users of 060

MLLMs, illustrating how FG entity recognition is 061

essential for delivering accurate information. 062

While the necessity for more detailed, entity- 063

specific information is clear, editing FG knowl- 064

edge into MLLMs is a complex and challenging 065

endeavor. Traditional FG image classification tasks 066

(Wei et al., 2023; Tang et al., 2023; Guo et al., 067
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2023) demand vision encoders to discern and cat-068

egorize visually similar items. The task becomes069

even more difficult when extending to MLLMs.070

MLLMs are required to not only recognize FG vi-071

sual entities but also to understand and map them072

to corresponding textual descriptions. Although073

recent studies (Chen et al., 2023; Hu et al., 2023a)074

have demonstrated a nascent ability in MLLMs to075

identify multimodal knowledge at the entity level,076

their performance notably lags in handling FG enti-077

ties as compared to coarse-grained ones. This per-078

formance gap highlights the substantial challenges079

in accurately recognizing FG entities by MLLMs.080

Given these challenges, the question remains:081

Can we effectively edit FG multimodal entity082

knowledge into MLLMs? Addressing this query is083

not only crucial for advancing the field of MLLMs084

but also for unlocking a myriad of applications085

requiring detailed understanding. To explore this086

problem, we propose a comprehensive and chal-087

lenging benchmark for fine-grained multimodal088

entity knowledge editing (MIKE). It is composed089

of more than 1000 FG entities, each of which in-090

cludes at least 5 images. To challenge MKE meth-091

ods and meet the needs of real scenes, we purpose-092

fully create a diverse set of tasks from different an-093

gles: (i) Vanilla Name Answering, where MLLMs094

are required to answer the short name of the en-095

tity in the image; (ii) Entity-Level Caption, where096

MLLMs need to caption the image not only the097

general content but the entity name as well; (iii)098

Complex-Scenario Recognition, where MLLMs099

need to recognize a targeted entity under a com-100

plex visual field of multiple entities. In addition,101

extending the normal knowledge editing form, we102

propose Multi-Step Editing. In this form, MLLMs103

are edited with 2-4 FG entity images instead of one.104

We utilize EasyEdit toolkit (Wang et al., 2023a)105

to assess several knowledge editing approaches106

on MIKE. For the evaluation, we propose entity-107

oriented metrics under the setting of Reliability,108

Generality and Locality. Through extensive exper-109

iments, we find (i) each editing method exhibits110

specific limitations; (ii) the most challenging task111

for current editing methods is Entity-level Caption;112

(iii) different generality tasks affect the ability of113

MKE in some aspects; (iv) model size does not114

matter. For a detailed discussion of these findings115

and additional results, please refer to Section 4.116

We summarize main contributions as follows:117

• A novel multimodal knowledge editing bench-118

mark, called MIKE, is introduced. Compared 119

with existing benchmark, MIKE focuses on edit- 120

ing fine-grained multimodal entities into MLLMs. 121

To the best of our knowledge, we are the first to 122

explore fine-grained multimodal entities in multi- 123

modal knowledge editing. 124

• To test multimodal knowledge editing methods, 125

we design three challenging tasks: Vanilla Name 126

Answering, Entity-level Caption and Complex- 127

Scenario Recognition. These tasks could signif- 128

icantly meet real-world applications. 129

• We propose a Multi-Step Editing form for edit- 130

ing fine-grained multimodal entities. Extensive re- 131

sults show the improvement and effects of different 132

number of editing images. 133

2 Related Work 134

2.1 Knowledge Editing 135

The world is changing all the time, but the training 136

data of a particular model is fixed during training. 137

If the model can not learn online, the knowledge 138

inside the model will be outdated. As retraining 139

is expensive most of the time, knowledge editing 140

methods (Yao et al., 2023; Zhang et al., 2024) are 141

needed to edit the model after training and mod- 142

ify the knowledge in it. One way to update the 143

model’s knowledge is through fine-tuning. How- 144

ever, to minimize the loss of previously learned 145

knowledge, certain restrictions need to be imposed 146

during fine-tuning. Zhu et al. (2020) minimizes the 147

loss of editing target knowledge when the loss of 148

non-editing target knowledge is less than a minimal 149

value δ. Tanno et al. (2022) draw on the Bayesian 150

view of knowledge editing. Another way is to store 151

the new or corrected knowledge in the form of a 152

patch model, alongside the original model, and uti- 153

lize them together. Mend (Mitchell et al., 2022a) 154

and KE (Cao et al., 2021) train a hypernetwork to 155

learn the gradient of edited parameters when en- 156

coding new knowledge. SERAC (Mitchell et al., 157

2022b) trains a BERT (Devlin et al., 2019) classifier 158

as a scope classifier and a T5 (Raffel et al., 2020) 159

as a Counterfactual model based on the new knowl- 160

edge data. In addition, a more explanatory idea 161

is locate-then-edit(Meng et al., 2022; Dong et al., 162

2022; Hase et al., 2023; Meng et al., 2023). Ac- 163

cording to different prompts that express the same 164

meaning, they locate the neurons that store the cor- 165

responding knowledge and modify their value. Re- 166

cently, Zheng et al. (2023) investigated the potential 167

of using in-context learning in knowledge editing 168
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(a) T-SNE visualization for FG entity images (b) Super-category distribution

Figure 2: Statistical analysis of MIKE. We utilize T-
SNE to visualize the embeddings of FG entity images as
can be seen in (a). The distribution of super-categories
is shown in (b).

of LLMs. The proposed IKE method achieves a169

competitive knowledge editing effect without any170

parameter modification.171

2.2 Multimodal Large Language Models172

Typically, Multimodal Large Language Models are173

structured by combining a visual encoder with a174

language model, with the two components linked175

via a connector. Alayrac et al. (2022) introduce a176

novel approach which utilizes a query-based cross-177

attention mechanism. This groundbreaking tech-178

nique creates a resilient vision-language interac-179

tive module. BLIP-2 (Li et al., 2023b) substitute180

the cross-attention with a Q-Former, which is a181

lightweight Transformer architecture. MiniGPT-182

4 (Zhu et al., 2023) and InstructBLIP both im-183

prove the BLIP-2 performance by incorporating184

instruction tuning datasets gathered from varied185

public datasets. LLaVA and Otter (Liu et al.,186

2023; Li et al., 2023a) design a suit of instruc-187

tion data system to enhance the understanding abil-188

ity. Compared with previous training stages, Bai189

et al. (2023) propose a three-stage training pro-190

cess to further align the multimodal representations.191

CogVLM (Wang et al., 2023c) introduces a visual192

expert to boost the performance.193

3 MIKE Benchmark194

3.1 Collecting FG Entity Images195

Collecting step. To construct the FG multimodal196

entity dataset, we select 1500 FG entities from197

OVEN dataset (Hu et al., 2023a), where each image198

is connected to a Wikipedia entity based on a text199

query. For each entity, we collect at least 5 different200

images from search engines like Google Search.201

Then we let 3 experienced annotators exclude the202

"dirty" images or entities. The collection rules are203

as follows: 204

-Observable: This rule refers to the entities that 205

could be described by images. We exclude words 206

such as "1970s" and "Love" because they do not 207

have descriptive visual features. 208

-Specific: FG entities are classified at an ex- 209

tremely detailed level. We exclude certain coarse- 210

grained entities like "Africa" and "Parent" for their 211

broad coverage and lack of distinctive visual fea- 212

tures. 213

-Unambiguous: An entity reference may corre- 214

spond to multiple real-world entities, for instance, 215

"Apple" (fruit or company) and "Crane" (machine 216

or animal). We exclude these images from our 217

dataset as they do not accurately depict the intended 218

specific entities. 219

-Unitary: An image may contain several entities, 220

which may confuse MLLMs during the edit step. 221

MLLMs do not know which is the target editing 222

entity. We ensure that during the edit step, MLLMs 223

could only see one editing entity in the image. 224

Filtering step. After collecting the images, we re- 225

fine our dataset by filtering out FG entities already 226

recognized by pre-trained MLLMs to construct a 227

precise target set for editing. To facilitate this, we 228

utilize prompts such as "Who is the character rep- 229

resented in this picture?" to elicit specific FG entity 230

names from MLLMs. To verify the pre-existence 231

of entity knowledge within the models, we input all 232

associated images for each entity into the MLLMs. 233

An entity is considered pre-encoded in MLLMs 234

if it is correctly identified from any of its images. 235

Through this process, we determine that the final 236

count of FG entities targeted for editing is 1,103. 237

Data statistics. The data statistics for collected 238

entity images are summarized in Figure 2. We 239

conduct a comprehensive count of all FG entities, 240

categorizing them into 9 super-categories. In order 241

to assess the quality of the collected images, we 242

apply T-SNE (Van der Maaten and Hinton, 2008) 243

to visualize the image embeddings, as depicted in 244

Figure 2 (a). The image embeddings are extracted 245

using the Clip model (Radford et al., 2021). The 246

visualization reveals that embeddings belonging to 247

the same super-category are distinctly separated 248

into compact clusters. It suggests that FG enti- 249

ties within each super-category share similar repre- 250

sentations, which poses significant challenges for 251

MKE. The distribution of super-categories can be 252

observed in Figure 2 (b). The super-category with 253

the highest representation is person, constituting 254
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Vanilla Name Answering

Q: Does Trump appear in 
the picture? Please 
answer yes or no.
A: Yes.

Entity-Level Caption
Model

Model

Edited Fine-grained Entity

Multi-Step Editing

Elon Musk is delivering 
a speech in front of a 
white Model Y.

Q: Does Zuckerberg 
appear in the picture? 
Please answer yes or no.
A: Yes.

Edit Scope Out-of-Scope Edit Target

Complex-Scenario Recognition

A: The character shown
here is Trump. 

Model

Generality Locality

Q: Do you recognize this 
character depicted here?
A: Tim Cook.

Trump is boarding One 
helicopter, making 
preparations before 
takes off.

Q: Do you know the 
character depicted here?

Figure 3: An example of editing Trump in MIKE. We
design three tasks to evaluate the Generality of multi-
modal knowledge editing. Moreover, MLLMs should
maintain the prediction on Locality examples.

27.92% of the entities. Intuitively, because each255

person represents a FG entity, person presents more256

detailed and complex features compared to other257

super-categories.258

3.2 Problem Formulation259

For a pre-trained MLLM Fθ with parameter θ, we260

have a target editing FG entity E which belongs to261

the constructed multimodal FG entity dataset Dm.262

To ask MLLM for predicting entity related answer,263

we input a prompt T i and an entity image Ii of264

E . The original wrong output of Fθ(T i, Ii) is ŷi,265

where E /∈ ŷi. To revise the incorrect answers and266

improve the recognition of FG entity knowledge, a267

multimodal knowledge editing method is utilized268

to edit Fθ. After the edit step, MLLM is optimized269

to F
θ̃

with parameter θ̃. The ground truth is yi,270

where E ∈ yi. Inspired by MMEdit (Cheng et al.,271

2023), we have three principles to guide the edit272

direction:273

-Reliability : The goal of Reliability is to modify274

the answer generated by MLLM from ŷi to yi. The275

formula for the Reliability is structured as follows:276

F
θ̃
(T i, Ii) = yi. (1)277

-Locality : Locality is to keep the prediction278

unchanged of out-of-scope entities. Following279

MMEdit, we split Locality into two parts, Text Lo-280

cality and Image Locality. For Text Locality, the281

prediction of text-only input should be unchanged282

before and after the edit step. We use NQ Dataset283

Dt (Kwiatkowski et al., 2019) which could be re-284

garded as out-of-scope examples to evaluate Text285

Locality:286

F
θ̃
(X ) = Fθ(X ),X ∈ Dt, (2)287

where X is one of the examples in Dt. 288

In our dataset, as each entity represents a piece 289

of independent FG knowledge, it could ensure that 290

any other entity in our target editing set is the out- 291

of-scope example of the target editing entity. There- 292

fore, we randomly select the image I∗ and question 293

prompt T ∗ of another entity E∗ as the example of 294

Image Locality. Image Locality could be formu- 295

lated as follows: 296

F
θ̃
(T ∗, I∗) = Fθ(T ∗, I∗). (3) 297

-Generality : To avoid overfitting, Generality 298

needs to be evaluated using the in-scope examples 299

of E after the edit step. Similar to Locality, General- 300

ity is also split into Text Generality and Image Gen- 301

erality. For Text Generality, we utilize a rephrased 302

prompt T + of T i as the in-scope prompt and the 303

same image Ii with editing image. The objective 304

of Text Generality is formulated as follows: 305

F
θ̃
(T +, Ii) = Fθ(T i, Ii). (4) 306

For Image Generality, MMEdit generates a new 307

image using text-to-image tools with the same cap- 308

tion to reconstruct similar semantics. Different 309

from MMEdit, we focus on the FG entity knowl- 310

edge rather than global image content. We choose 311

another image Ij of E as the example of Image 312

Generality. Moreover, we create diverse tasks with 313

corresponding prompts T j to evaluate MKE meth- 314

ods as stated in Section 3.3. Image Generality is 315

defined as follows: 316

F
θ̃
(T j , Ij) = yj , i ̸= j, (5) 317

where yj is the ground truth of Image Generality. 318

3.3 FG Multimodal Entity Tasks 319

We pose three FG entities oriented tasks over the 320

collected images to form a benchmark as shown in 321

Figure 3. Recent research (Wei et al., 2022; Zhou 322

et al., 2023) has revealed the emergent abilities in 323

MLLMs, where MLLMs could exhibit surprising 324

new capabilities via VQA interface. Inspired by the 325

emergent abilities and many existing mainstream 326

tasks, our designed tasks are tailored to test various 327

aspects of an MLLM’s ability to recognize and 328

interpret FG entities within multimodal contexts. 329

3.3.1 Vanilla Name Answering 330

Motivation : The core ability of FG multimodal 331

entity knowledge editing lies in accurately iden- 332

tifying and naming entities for another image of 333
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the same entity after the edit step. Vanilla Name334

Answering (VNA) task simulates basic yet essen-335

tial real-world applications like Multimodal Entity336

Linking (Wang et al., 2023b, 2022), where precise337

entity identification is crucial.338

Details : After the edit step, MLLMs are pre-339

sented with images Ij containing target editing340

entities and are required to provide the short, pre-341

cise name of the entity. To meet the condition of342

Image Generality, Ij is another image which is not343

used in the edit step. The prompt T j is to instruct344

MLLMs to answer the short name of the FG entity345

such as "Question: Do you know the identity of the346

character depicted here? Short answer:".347

3.3.2 Entity-Level Caption348

Motivation : Entity-Level Caption (ELC) task349

pushes MLLMs beyond mere recognition. In this350

task, MLLMs are tasked with creating captions for351

images that detail the scene and precisely identify352

and name the entities shown. This task draws inspi-353

ration from the emerging field of Entity-aware Cap-354

tioning (Nguyen et al., 2023; Zhang et al., 2023).355

The Entity-aware Caption task typically requires356

additional background knowledge from the asso-357

ciated article to extract the FG entity name. In358

contrast, due to the knowledge already encoded in359

MLLMs through knowledge editing, our task elim-360

inates the need for supplemental information. For361

example, MLLMs might directly generate a cap-362

tion for a news image saying, "Trump is boarding363

One helicopter, making preparations before takes364

off ", providing a detailed narrative.365

Details : In this task, MLLMs must create cap-366

tions for images that describe the general scene367

while specifically naming the entities present. For368

the Image Generality image Ij , we first generate369

the ground truth of ELC using LLaVA (Liu et al.,370

2023), a strong MLLM. To generate the caption371

containing the FG entity name, we carefully design372

an adaptive prompt to guide the MLLM to output373

the expected caption. Specifically, the prompt is374

"This is a _. Please write a caption of the picture375

in a sentence. The caption must contain the word376

_.", where the blank space is filled by the FG entity377

name. In such way, each image Ij could be pro-378

vided with its specific caption containing FG entity379

name to evaluate Image Generality. During Image380

Generality process, the prompt T j is "Please write381

a caption of the picture in a sentence. The caption382

must contain the fine-grained entity names. Please383

include all fine-grained entity names as much as384

possible." 385

3.3.3 Complex-Scenario Recognition 386

Motivation : The third task, Complex-Scenario 387

Recognition (CSR), tests the MLLM’s performance 388

in more complex scenarios where multiple entities 389

are in an image. This task is inspired by Object De- 390

tection (Zou et al., 2023), where the model needs to 391

detect the pre-defined object surrounded by many 392

other objects in the image. For our task setting, 393

MLLMs need to correctly identify the edited FG 394

entity, even when it is surrounded by multiple enti- 395

ties. This task is crucial for assessing the MLLM’s 396

ability to distinguish and focus on specific enti- 397

ties within crowded or complex scenes, a common 398

challenge in real-world applications. For instance, 399

MLLMs might be required to identify a known 400

individual, such as "Does Trump appear in the pic- 401

ture?" amidst a multitude of other entities. 402

Details : MLLMs are confronted with images 403

featuring multiple entities, with the requirement to 404

identify a specific edited entity among them. To 405

set up challenging scenarios, we reserve images 406

with complex contexts containing multiple entities 407

during the initial collection of FG entity images, as 408

mentioned in Section 3.1. These complex images 409

do not go through the edit step but serve as the im- 410

ages Ij for CSR task. To give a more challenging 411

setup, we employ a random seed when choosing 412

Ij and constructing T j . The prompt T j is "Does 413

_ appear in the picture? Please answer yes or no.", 414

where the blank space is randomly filled by edited 415

entity name or another entity name. Likewise, the 416

Ij is randomly chosen from the complex-scenario 417

image of editing entity or another entity. If T j 418

and Ij are coreferential, the ground truth is yes, 419

otherwise it is no. 420

3.4 Multi-Step Editing 421

Multi-Step Editing examines the MLLMs’ adapt- 422

ability and learning efficiency which extends the 423

normal knowledge editing form. In our form, 424

MLLMs are evaluated on their performance in the 425

above three tasks (VNA, ELC, and CSR) after edit- 426

ing 2-4 entity images. Multi-Step Editing is in- 427

spired by the Personalizing Text-to-Image Gener- 428

ation (Gallego, 2022; Zeng et al., 2023), where 429

Textual Inversion method (Gal et al., 2023) utilizes 430

3-5 images to find the embedding space of a spe- 431

cific entity. After Multi-step images training, the 432

model could freely generate the personalizing im- 433

ages and maintain existing abilities. Intuitively, 434
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this task and FG entity knowledge editing seem435

to be two parallel tasks with opposite data flows436

(One is text-to-image and another is image&text-437

to-text). To this end, we wonder how many images438

do MLLMs need to edit an FG entity. Our task is439

designed to measure how quickly and effectively440

MLLMs can adapt to new FG entity knowledge441

and apply it across different tasks by Multi-Step442

Editing.443

As stated in Section 3.1, we collect at least 5444

images for each FG entity. Reserving an image for445

the Image Generality task, we test the performance446

on the above tasks by editing 2-4 images of the447

target editing FG entity during the edit step. After448

the edit step, we evaluate the above three tasks for449

each number of editing images.450

4 Experiments451

4.1 Evaluation Setup452

MLLMs. To evaluate MIKE benchmark, we con-453

duct experiments on two MLLMs.454

• BLIP-2 (Li et al., 2023b): It consists of pre-455

trained visual encoders and text encoders with456

frozen parameters. BLIP-2 proposes a train-457

able Q-Former to act as a bottleneck between vi-458

sual encoders and text encoders. Q-Former is a459

lightweight Transformer composed of a set of learn-460

able Query vectors.461

• MiniGPT-4 (Zhu et al., 2023): MiniGPT-4 aims462

to align the visual information from the pre-trained463

visual encoder with the Large Language Model.464

Specifically, Vicuna is used as a language decoder,465

which is based on LLaMA. For visual perception,466

MiniGPT-4 utilizes ViT backbone and pre-trained467

Q-Former, which are the same with BLIP-2.468

Baselines. Following MMEdit, we test all multi-469

modal knowledge editing methods incorporated in470

EasyEdit (Wang et al., 2023a) toolkit to conduct471

experiments.472

• MEND (Mitchell et al., 2022a): MEND trains473

lightweight model editor networks with the ability474

to generate edits to the weights of a pre-trained475

model. These edits are produced based on the stan-476

dard fine-tuning gradient of a provided correction.477

MEND leverages the gradient as an information-478

rich starting point for the editing process.479

• SERAC (Mitchell et al., 2022b): SERAC is480

composed of a scope classifier, a base model and481

a counterfactual model. The original model is no482

longer updated with parameters. The counterfac-483

tual model is a patch model to store new knowledge.484

Finally, a scope classifier is used to judge whether 485

updated knowledge is needed. Then the classifier 486

chooses to route to patch model or original model. 487

• IKE (Zheng et al., 2023): This method realizes 488

knowledge editing by adding extra prompts in in- 489

put. By studying several demonstrations, the edited 490

models could update new facts without training. 491

Metrics. Different from MMEdit which directly 492

uses token-level editing accuracy, we employ an 493

entity-oriented metric. As many entity names are 494

composed of two or more tokens, only one token 495

recognized is regarded as a failure editing. To this 496

end, for tokens of entity names, we employ en- 497

tity exact match accuracy. The overall accuracy 498

denoted A is formulated as follows: 499

A =
1
[
F
θ̃
(T , I) = y

]
+ 1

[
E ∈ F

θ̃
(T , I)

]
2

,

(6) 500

where 1 [·] is the indicator function returning 1. 501

The first half focuses on the token-level match, 502

while another concerns the entity-level match. 503

4.2 Results & Analysis 504

We report the results of VNA, ELC and CSR in 505

Table 1. Our main observations are summarized as 506

follows: 507

(i) Our first observation is that each editing 508

method exhibits specific weaknesses. IKE stands 509

out in VNA, delivering the highest performance 510

across all aspects but showing lower accuracy in Im- 511

age Generality and Text Generality for ELC. This 512

discrepancy might stem from the nature of VNA, 513

where predictions are brief and closely aligned with 514

the editing labels, allowing IKE to excel in this 515

simpler question-answer format without additional 516

MLLM training. Conversely, SERAC demonstrates 517

high Image Generality accuracy across all tasks, 518

showcasing the robustness of its editing approach. 519

Nonetheless, it underperforms in Image Locality, 520

potentially due to its classifier misidentifying out- 521

of-scope examples. This issue likely arises because 522

SERAC’s counterfact model is tailored to only re- 523

store the knowledge of in-scope data, rendering 524

it less adaptable to out-of-scope queries. Over- 525

all, these findings demonstrate that current editing 526

methods were unable to thoroughly address all as- 527

pects due to the complexities of our task. 528

(ii) In evaluating Image Generality across the 529

three tasks, it’s evident that all editing meth- 530

ods show their weakest performance on the ELC 531

task. Specifically, for BLIP-2 OPT’s ELC, MEND 532
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Method Vanilla Name Answering Entity-Level Caption Complex-Scenario Recognition

R I-G I-L T-G T-L R I-G I-L T-G T-L R I-G I-L T-G T-L

BLIP-2 OPT

MENDopt 2.7B 87.2 67.3 35.1 88.6 94.1 48.7 16.7 37.5 71.0 97.9 80.6 50.3 26.9 81.7 85.2
MENDopt 6.7B 85.8 70.7 36.0 85.1 97.3 50.3 13.1 42.8 71.3 95.8 83.2 51.7 22.0 80.0 81.3

SERACopt 2.7B 87.8 72.5 18.3 90.8 100.0 82.4 69.8 19.2 83.9 99.9 85.4 100.0 23.2 87.1 100.0
SERACopt 6.7B 89.3 69.2 13.1 94.6 100.0 79.2 72.2 17.1 85.9 99.7 84.5 100.0 21.5 81.7 100.0

IKEopt 2.7B 94.6 94.2 88.7 96.8 99.1 83.6 8.8 85.4 33.1 82.6 86.2 28.2 87.3 99.1 100.0
IKEopt 6.7B 96.1 92.8 90.5 94.3 99.6 86.8 5.4 82.8 31.0 77.4 84.1 23.1 89.4 99.4 100.0

MiniGPT-47.3B

MEND 88.4 69.4 32.5 89.4 96.4 54.2 17.4 34.1 68.4 98.8 78.4 49.6 20.8 85.6 87.9
SERAC 91.6 72.3 11.6 93.0 100.0 80.3 74.6 13.7 86.2 99.3 87.5 100.0 18.5 89.5 100.0

IKE 97.5 93.1 86.3 95.7 98.4 84.6 9.0 79.9 36.4 81.5 88.4 26.6 84.6 99.6 100.0

Table 1: Overall results on three tasks. ‘R’, ‘I-G’,‘I-L’,‘T-G’ and ‘T-L’ represent the Reliability, Image Generality,
Image locality, Text Generality and Text Locality respectively.

records a notably low accuracy of 16.7%, a stark533

contrast to its 67.3% on VNA and 50.3% on CSR.534

Similarly, SERAC achieves 100% in Image Gen-535

erality for CSR but drops to 69.8% for ELC. This536

trend suggests that the ELC task, which requires537

simultaneous recognition of FG entities and un-538

derstanding of the overall image content, poses a539

significant challenge to MLLMs. The disparity in540

the level of comprehension highlights the ELC task541

as the biggest challenge for all editing methods.542

(iii) Table 1 shows that different Image Gener-543

ality tasks affect other aspects. MEND exhibits544

poorer performance in Reliability and Text Gener-545

ality on the ELC task compared to the other two546

tasks. Moreover, MEND, SERAC, and IKE all547

achieve their highest Reliability scores on the VNA548

task. A contributing factor to this pattern might549

be that each editing method must calculate gradi-550

ents for Reliability, Generality, and Locality during551

the editing process. This joint calculation leads552

MLLMs to extract diverse semantic features for553

different Image Generality tasks, impacting other554

aspects through the backpropagation process.555

(iv) We also observe that model sizes are not that556

critical. Although MiniGPT-4 is much larger than557

BLIP-2 OPT, the gap in performance is not obvious.558

In some aspects, BLIP-2 even performs better than559

MiniGPT-4. For instance, each method achieves560

more Image Locality accuracy on VNA using BLIP-561

2 than MiniGPT-4. In addition, we leverage BLIP-2562

OPT 2.7B and 6.7B as our baselines. The results563

show that they perform competitively. The reason564

is perhaps that knowledge editing does not need to565

encode much knowledge into MLLMs. Thus the566

demands on model size are not so great.567

AUG method R I-G I-L T-G T-L

w/o AUG 87.2 67.3 35.1 88.6 94.1
Vertical Flip 87.4 72.3 28.4 93.2 92.0

Horizontal Flip 85.4 69.4 30.5 88.1 90.5
Random Noise 92.5 75.5 33.4 92.2 92.7

Color Jitter 87.3 73.6 31.5 90.9 91.8

Table 2: Results of applying augmentations to images.
w/o AUG means the images are not equipped with aug-
mentations.

4.3 Effects of Multi-Step Editing 568

Figure 4 shows the impacts of Multi-Step Editing. 569

From each experiment, we could observe that the 570

Reliability, Image Generality and Text Generality 571

could be improved by adding the editing images of 572

FG entities. Among them, the most improvement 573

is Reliability, as evidenced in MEND-ELC from 574

48.7% to 81.2%. This demonstrates that the map- 575

ping between the visual appearance and the FG text 576

name could be refined by Multi-Step Editing. It 577

is noted that Image Generality accuracy is signifi- 578

cantly boosted from 80.6% to 92.5% as can be seen 579

in MEND-CSR. A high Image Generality accuracy 580

could prove that the multimodal features of FG en- 581

tities are greatly encoded into MLLMs. We could 582

find that the Text Generality is slightly improved 583

compared with Reliability and Image Generality. 584

The reason may be that more editing images do not 585

have the information to improve textual features. 586

In addition, we observe that two-step editing 587

brings the most improvement. The changes of 588

three-step editing and four-step editing are rela- 589

tively smaller than two-step editing. It means that 590

after four-step editing the accuracy tends to con- 591

verge gradually. Jointly considering the statement 592
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Figure 4: The effects of Multi-Step Editing on MEND (a) - (c) and SERAC (e) - (g). (d) and (h) show the results of
editing LLM and Vit using MEND. We report the Reliability, Image Generality, Image locality, Text Generality
and Text Locality.

in Section 3.4, the phenomenon proves that a mul-593

timodal FG entity could be edited into MLLMs594

admirably with 3-4 images. The reason may be595

that only one entity image could not cover all the596

features of the FG entities, while 3-4 images could597

encode most features of the entities. Further in-598

creasing the number of edited images does not lead599

to a significant improvement in accuracy. We also600

notice that the Text Locality and Image Locality ac-601

curacy decreases or is unchanged after Multi-Step602

Editing, especially the Image Locality. With the603

increase in editing images, the degree of decline604

becomes bigger.605

4.4 Comparison with Editing ViT606

As recognizing FG multimodal entity requires a607

strong discriminative ability of visual features ex-608

tracted by MLLMs, we compare the form of editing609

LLM with editing ViT which is the visual encoder610

of BLIP-2. The experiment results of VNA and611

ELC are shown in Figure 4. Intuitively, editing612

ViT could directly help MLLMs understand the613

visual appearance of FG entities. However, it could614

be observed that compared to editing the layers of615

LLM, every aspect accuracy of editing ViT is far616

behind. It is perhaps that even though the visual617

encoder is refined, the mapping module Q-Former618

keeps frozen. The presence of the frozen Q-Former619

restricts the joint understanding of both LLM and620

ViT, leading to incorrect predictions by LLM.621

4.5 Impacts of Image Augmentations 622

We explored the impacts of image augmentations 623

during the editing process on performance improve- 624

ment. We applied the MEND method to the VNA 625

task. Our experiments examined four augmentation 626

strategies: Vertical Flip, Horizontal Flip, Ran- 627

dom Noise, and Color Jitter, which are usually 628

utilized in Computer Vision tasks such as Image 629

Classification (Chen et al., 2021), Object Detection 630

(Zou et al., 2023), etc. As shown in Table 2, we 631

observe that: (i) all augmentation methods enhance 632

the Image Generality score; (ii) Random Noise 633

notably increases both Image Generality and Relia- 634

bility; (iii) images without augmentations achieve 635

the highest Locality scores. 636

5 Conclusion 637

We present MIKE: a benchmark which aims to 638

edit FG multimodal entity knowledge into MLLMs. 639

Our dataset contains a large and diverse set of 640

FG entities. We introduce three challenging tasks, 641

VNA, ELC and CSR to evaluate the generality of 642

editing methods. Finally, we present a new form of 643

Multi-Step Editing compared with normal Knowl- 644

edge Editing. For future work, we would try to 645

extend this work mainly in following aspects: (i) 646

continually collecting diverse FG multimodal enti- 647

ties; (ii) evaluating more editing methods on MIKE; 648

(iii) proposing a new editing method to more effec- 649

tively edit FG multimodal entities into MLLMs. 650
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Limitations651

The main limitations of our work are related to the652

editing methods. The EasyEdit toolkit we utilized653

does not encompass all existing editing methods,654

so we only evaluated the MEND, SERAC, and IKE655

editing methods. Another limitation pertains to the656

models. Due to limited computing resources, we657

only tested BLIP-2 OPT and MiniGPT-4.658
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