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ABSTRACT

Data governance is essential for scaling modern Al development. To automate
data governance, numerous tools and models have emerged that translate user
intent into executable governance code. However, the effectiveness of existing
tools and models is largely unverified. The evaluation is severely hampered by
the lack of a realistic, standardized, and quantifiable benchmark. This critical
gap presents a significant obstacle to systematically evaluating utility and im-
pedes further innovation in the field. To bridge this gap, we introduce Gov-
Bench, a benchmark featuring a diverse set of tasks with targeted noise to sim-
ulate real-world scenarios and standardized scoring scripts for reproducible eval-
uation. Our analysis reveals that current data governance tools and models strug-
gle with complex, multi-step workflows and lack robust error-correction mecha-
nisms. We therefore propose DataGovAgent, a novel framework for end-to-end
data governance utilizing a Planner-Executor-Evaluator architecture. This design
incorporates contract-guided planning, retrieval from a reliable operator library,
and sandboxed meta-cognitive debugging. Experimental results validate our ap-
proach: DataGovAgent significantly boosts the Average Task Score (ATS) on
complex Directed Acyclic Graph (DAG) tasks from 39.7 to 54.9 and reduces de-
bugging iterations by over 77.9% compared to general-purpose agent frameworks,
a step toward more reliable automation of data governance. Code is available at
https://anonymous.4open.science/r/GovBench-F6C6.

1 INTRODUCTION

Data fuels analytics and machine intelligence, yet the work required to make data trustworthy re-
mains stubbornly manual. Studies report (Ahmadi et al., 2024) that practitioners spend the majority
of their time cleaning, standardizing, integrating, and validating data rather than modeling it, turning
skilled analysts into “data janitors” and creating a persistent bottleneck in the data value chain (Hos-
seinzadeh et al., 2023)). Code-centric Extract, Transform, Load (ETL) pipelines and handwritten
SQL/Python are powerful but brittle in the face of schema drift and data heterogeneity (Yang et al.,
2025} |Dinesh & Devi, [2024), costly to maintain, and slow to adapt to evolving business rules.

Large language models (LLMs) promise an alternative: specify governance intent in natural lan-
guage and synthesize the required transformations automatically (Pahune & Chandrasekharan, 2025
Park et al., |2025a)). However, progress is critically hampered by a significant evaluation gap. Ex-
isting benchmarks for automated data science often emphasize snippet-level coding or high-level
analytics, failing to capture the unique challenges of data governance. They lack realistic, targeted
noise, do not assess end-to-end workflows with business-grounded correctness, and cannot measure
performance on complex, multi-step DAG pipelines.

To address this evaluation gap, we introduce GovBench, a hierarchically designed benchmark
for natural-language-driven data governance. It contains 150 real-world tasks (100 operator-
level; 50 DAG-level) covering six scenarios: Filtering, Refinement, Imputation, Deduplication &
Consistency, Data Integration, and Classification & Labeling. GovBench’s key innovations in-
clude: 1) a novel “reversed-objective” methodology—that inverts the original task goal to pro-
grammatically generate task-specific noise—to synthesize realistic and measurable noise; 2) a
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longest-common-subsequence—aware (LCS-aware) sequencing algorithm that constructs composi-
tionally deep DAG tasks with minimal pairwise overlap; and 3) auto-generated, task-specific evalu-
ation scripts that provide normalized scores and standardized metrics—Code Runnable Rate (CRR),
Task Success Rate (TSR), and Average Task Score (ATS)—ensuring a principled and reproducible
assessment.

However, a robust benchmark is only half of the solution. When evaluated on GovBench, we find
that even SOTA single-model (OpenAlL 2025} DeepSeek-Al & other authors|, [2024f [Hurst & other
authors} [2024) baselines and general-purpose agent frameworks (Qian et al., [2024; L1 et al., 2023)
exhibit a significant performance gap. They struggle to decompose complex instructions, generate
logically correct multi-step pipelines, and recover from errors, resulting in low task success rates.
This reveals their architectural limitations: a lack of robust planning, insufficient grounding in reli-
able practices, and the absence of effective, structured debugging mechanisms.

To bridge this performance gap, we propose DataGovAgent, an end-to-end natural language to gov-
ernance DAG (NL2GovDAG) framework specifically designed for the complexities of data gover-
nance. It translates natural language into verified governance DAGs through an Agentic Assembly
Line of three specialized roles (Xi et al., 2025} [Park et al.,|[2025b). Its core strengths are: 1) a Plan-
ner that employs contract-guided planning to ground user intent and propose a high-level DAG of
abstract operators with machine-checkable guarantees; 2) an Executor that uses retrieval-augmented
generation over a curated library (DCALI, 2025) of governance tools to reduce hallucination and
improve code quality; and 3) an Evaluator that drives a meta-cognitive debugging loop in a sand-
box, using contract violations to generate structured feedback until the code is both runnable and
functionally correct.

On GovBench-150, DataGovAgent materially improves over strong single-turn baselines and com-
petitive agent frameworks. With GPT-5 (OpenAl| [2025), it raises TSR from 49 to 64 on operator-
level tasks (+15 pp) and from 46 to 60 on DAG-level tasks (+14 pp). Compared to the strongest
agent baselines, ChatDev (Qian et al., 2024]) , it lifts operator-level TSR from 43 to 64 (+21 pp) and,
on DAG-level tasks, attains higher ATS (54.91 vs. 39.67, +15.24 points) and higher average score
(mean of ATS, TSR, and CRR, 62.97 vs. 61.89, +1.08 points) while requiring 11.60 fewer debug
iterations (Average Debug Iterations (ADI) 3.29 vs. 14.89).

In summary, our contributions are twofold:

* We introduce GovBench, the first hierarchical benchmark for data governance automation,
which features 150 realistic tasks based on real-world sources, injected noise and a rig-
orous, multi-metric evaluation protocol to address the critical gap in assessing end-to-end
pipeline correctness.

* We propose DataGovAgent, that significantly improves task success by translating natu-
ral language into verified governance pipelines through a unique combination of contract-
guided planning, retrieval-augmented code generation, and meta-cognitive debugging.

2 RELATED WORK

2.1 DATA SCIENCE BENCHMARKS AND LLM EVALUATION

The rapid evolution of LLMs has catalyzed comprehensive evaluation frameworks for automated
data science capabilities. Early benchmarks like DS-1000 (Lai et al.,2023)) focused on snippet-level
code generation for data science libraries, extended by DA-Code (Huang et al.| [2024) for task-
level evaluation in interactive environments. Recently, DataSciBench (Zhang et al., 2025), which
provides systematic LLM agent evaluation with 25 multidimensional metrics across complete data
science workflows, and ScienceAgentBench (Chen et al.,[2025b), which targets rigorous assessment
for data-driven scientific discovery, have been proposed (see Appendix [A.T]for detailed benchmark
comparison).

Contemporary evaluation has shifted toward sophisticated multidimensional assessment. Hu-
manEval Pro (Yu et al., |2025) introduces self-invoking code generation requiring progressive rea-
soning capabilities, while mHumanEval (Raihan et al., 2025) extends multilingual code evaluation.
LiveBench (White et al.,|2025)) addresses contamination issues in LLM evaluation with challenging,
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Figure 1: Illustration of the semi-automated pipeline designed for building GovBench, including
real-world source data curation, hierarchical task objective design, targeted noise injection, and
task-specific evaluation.

dynamic benchmarks (see Appendix A). These frameworks demonstrate significant performance
variations, with SOTA models achieving 96.2% on HumanEval but declining to 76.2% on complex
tasks.

2.2 DATA SCIENCE AGENTS AND AUTOMATION

Data science agents have evolved from simple code generators to comprehensive autonomous sys-
tems. Data Interpreter (Hong et al.,[2025) employs hierarchical graph modeling for dynamic problem
decomposition, while recent developments include AutoMind (Ou et al., |2025), offering adaptive
knowledgeable agents for automated data science, and AutoML-Agent (Irirat et al., 2025), provid-
ing multi-agent frameworks for full-pipeline AutoML.

Current research emphasizes end-to-end workflow automation with minimal human interven-
tion (Sun et al.} 2024). TheAgentCompany (Xu et al.,2025) benchmarks LLLM agents on consequen-
tial real-world tasks, while comprehensive surveys (Baek et al.l 2025} [Wang et al.| [2024) highlight
the transition from automation to autonomy in scientific discovery. These systems integrate plan-
ning, reasoning, reflection, and multi-agent collaboration capabilities. However, specialized data
governance benchmarks remain limited. This gap highlights the necessity for benchmarks like our
proposed GovBench.

Our work contributes through efficient data annotation pipelines generating customized evaluation
scripts with standardized metrics including Code Runnable Rate (CRR), Task Success Rate (TSR),
and Average Task Score (ATS), addressing gaps in governance-focused evaluation methodologies.

3  GovBench: A NEW BENCHMARK FOR DATA GOVERNANCE AUTOMATION

GovBench is a hierarchically designed data science benchmark dedicated to evaluating models’ ca-
pabilities in performing data governance tasks. It comprises 150 real-world data governance prob-
lems, including 100 operator-level tasks and 50 DAG-level tasks. For each carefully curated NL task
description, we synthesized ground-truth data and noisy data, accompanied by customized evalua-
tion scripts to ensure precise and normalized scoring. GovBench comprehensively covers common
scenarios encountered in real-life data governance workflows, including filtering, refinement, impu-
tation, deduplication & consistency, data integration, and classification & labeling.
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Overview of Benchmark Creation. To construct a hierarchical and realistic evaluation set for
LLM-based data governance agents, we design a semi-automated pipeline comprising four stages:
(1) data collection and column selection, (2) task objective definition and DAG construction via an
LCS-aware algorithm, (3) noise injection, and (4) generation of task-specific evaluation scripts (see
Figure[I} details in Sections[3.TH3.4). Statistics and examples are illustrated in Figure 4]

3.1 REAL-WORLD DATA SOURCE

To ensure comprehensive coverage of real-world scenarios, we curated 30 tables sourced
from (Statistal 2025)), spanning diverse domains such as tourism, eco-commerce, sports, and others.
We retained only task-relevant columns (e.g., the date field for format normalization tasks) and
necessary confounding columns (such as birth_date, which agents are not required to modify),
thus maintaining data integrity and minimizing extraneous noise. Furthermore, to enhance prob-
lem diversity and facilitate flexible processing, the original CSV files were converted into JSONL
format. These carefully selected and preprocessed datasets serve as the basis for synthesizing task
descriptions, as detailed in Section@

3.2 HIERARCHICAL TASK OBJECTIVE DESIGN

GovBench comprises 100 Operator-level tasks and 50 DAG-level tasks. For Operator-level tasks, we
designed six scenarios commonly encountered in real-world data governance, including filtering, re-
finement, imputation, deduplication &consistency, data integration, and classification/labeling. All
tasks were carefully crafted by experienced data scientists to ensure clarity and fluency in their de-
scriptions. The distribution of tasks in these scenarios is illustrated in Figure@ For DAG-level tasks,
we first rank the operator-level tasks by averaging the scores of GPT-5, DeepSeek-V3 (DeepSeek-Al
& other authors, 2024)), and the human baseline, thereby mitigating the bias introduced by relying
solely on a single closed-source model, an open-source model, or human subjectivity. We then
select 50 worst-performing Operator-level tasks as seed cases while treating the remaining tasks
as candidates. We then introduce a simple yet efficient LCS-aware algorithm (see that takes
existing tasks as input and generates task sequences. These sequences will be used to derive new
DAG-level tasks objectives. This algorithm extends the required chain of thought while ensuring the
complexity and diversity of DAG-level tasks by constraining different DAG tasks to share as few
common sub-paths as possible, thereby presenting a substantial challenge to the model’s capacity to
handle intricate data governance problems. Given these sequences, we employ the prompt template
provided in the Prompt [I|to construct new natural language task objectives.

3.3 TARGETED NOISE INJECTION

The process of introducing noise into the dataset is divided into two distinct steps (Zhang et al.,
2023} |Akbiyikl 2023} |Sousa et al., [2024). This method allows us to generate noisy data that will
serve as a robust test set for evaluating the model’s performance under imperfect conditions.

Generate a Reversed Task Objective. The first step involves generating a reversed task objective
based on the provided data examples and the original task objective. This reversed objective shifts
the focus from achieving the task goal (e.g., classification, imputation) to deliberately introducing
noise into the data. For example, if the original task involves classifying data, the reversed task
objective will focus on how to introduce noise such as mislabeling or irrelevant features. See the
prompt template in Prompt

Generate Code to Introduce Noise. In the second step, the model uses the reversed task objective,
along with the provided data examples, to generate the actual code that will introduce the noise into
the data. This code will implement the instructions described in the reversed objective—whether
that involves adding missing values, creating duplicates, or generating irrelevant features. The goal
is to transform the data in a way that makes it imperfect, allowing the model to be tested against
noisy inputs. See the prompt template in Prompt 3]

At last, we manually check every data file, ensuring no extra noise is introduced because of model
hallucination. This two-step approach allows for a targeted and methodical introduction of noise,
ensuring that the noise is task-specific and realistic, which helps in robustly evaluating the model’s
performance.
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Figure 2: An overview of the Agentic Assembly Line, which progresses from intent understanding
to contract-guided planning, followed by operator execution and sandboxed evaluation.
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3.4 TASK-SPECIFIC EVALUATION

To evaluate the model’s performance in handling noisy data, we design a prompt template to generate
task-specific evaluation scripts. See the prompt template in Prompt[d] Each task’s script compares
the original dataset with the processed dataset and outputs a quantitative score between O and 1,
reflecting the model’s effectiveness in completing the task. Evaluation metrics are adjusted based
on the specific nature of the task to ensure a precise assessment; a detailed breakdown for each
Operator-level task category is provided in Table[7in the Appendix[A.4].

For DAG tasks, the final score is calculated based on the weighted average of scores from the
operator-level tasks. We still use the average scores of GPT-5, DeepSeek-V3 (DeepSeek-Al & other
authors| [2024), and the human baseline to calculate the weight, to mitigate the bias of any single
source. The weights are determined by the following formula:

1
" 14 « - score;

wj (D
Where w; is the weight of task 7, « is a parameter that adjusts the influence of lower task scores, and
score; is the average performance score of three solutions for each individual task.

Consistency Check After preparing the evaluation scripts, we run them on both the ground truth
data and the input data. The ground truth should yield a score of 1.0, while the raw data should score
below 0.3. If these conditions are not met, we manually adjust either the raw data or the scripts to
ensure compliance with the standard.

4  DataGovAgent: AN END-TO-END NL2GOVDAG FRAMEWORK FOR DATA
GOVERNANCE

To address the challenges of automating data governance, we introduce DataGovAgent, a novel
multi-agent framework designed to interpret natural language instructions and autonomously or-
chestrate a DAG of data governance operations (Guo et al., [2024; Tran et al.| 2025). The entire
process, which we term NL2GovDAG, is operationalized through what we call an Agentic Assem-
bly Line—a deterministic multi-agent workflow where specialized agents collaborate sequentially
(Planner — Executor — Evaluator). Each step is governed by formal governance contracts, which
are (pre, post) specifications that define input requirements and output guarantees for each opera-
tion. When execution fails, the system employs meta-cognitive debugging, an iterative refinement
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process where agents reflect on their execution failures and generate targeted fixes based on contract
violations and error analysis.

4.1 ARCHITECTURAL OVERVIEW

DataGovAgent employs an Agentic Assembly Line architecture (see Figure [J), enabling systematic
decomposition and execution of data governance tasks through multi-agent collaboration.

4.2 SPECIALIZED AGENT ROLES

Our framework is instantiated by three core agent roles—the Planner, Executor, and Evaluator (Xu
et al., 2024} |Chen et al., 2025a). Their functions are orchestrated within a deterministic task chain,
ensuring a structured progression from high-level intent to a verified, executable output.

Anchored in the data schema and representative samples, the Planner uses few-shot prompting to
align user intent with the actual data and to assess feasibility; it then extracts machine-checkable
governance contracts that formalize each operator as a (pre, post) tuple (Liu et al., 2024; |Godbo-
ley & Krishna) 2025)). Under these contracts, the Planner synthesizes an initial DAG of abstract
operators such that the post-condition of each step satisfies the pre-condition of the next; when a
constraint is not met, it inserts minimal repairs (for example, type casting or missing-value imputa-
tion) to ensure the pipeline is topologically coherent and executable.

For each DAG node, the Executor employs retrieval-augmented generation (Parvez et al.| 2021}
Trirat et al., |2025): it first retrieves the most relevant, validated operators from a curated library
(DCAL 2025) and then injects their descriptions and snippets as dynamic in-context exemplars to
guide code synthesis, yielding Python implementations that are tailored to the task while adhering
to established best practices, thereby reducing hallucinations and improving reuse.

The Evaluator executes the generated code in a restricted sandbox; upon any failure or noncompli-
ance, it captures the offending code region, full error messages, and stack traces, and ties them to the
violated contracts to produce targeted revision advice. This meta-cognitive feedback drives a guided
correction loop until each operator is both runnable and contract-compliant, providing progressive
validation on both construction and execution paths of the GovDAG. Implementation details and
prompt templates are provided in Appendix

5 EXPERIMENTAL SETUP

To comprehensively evaluate the performance of DataGovAgent, we conducted systematic exper-
iments on the newly constructed GovBench benchmark, covering experimental setup, evaluation
metrics, baseline models, and results.

5.1 BENCHMARK

All experiments were conducted on the GovBench-150 benchmark, which consists of 150 real-
world data governance tasks designed to reflect the practical challenges faced by data scientists.
Each single task provides a natural language description, the necessary raw dataset (s), and a custom
evaluation script (eval . py) that objectively assesses output correctness with a normalized score in
the range [0, 1].

Tasks in GovBench-150 are categorized as either Operator-level—fine-grained tasks solvable with
a single operation, such as filtering, format standardization, or simple imputation—or DAG-level
tasks, which require coordinating multiple operations in a directed acyclic graph to accomplish
complex, multi-step data cleaning, transformation, and integration.

5.2 EVALUATION METRICS

We employ the multi-dimensional metrics as shown in Table [I0] to evaluate the performance of
different models and frameworks.
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Table 1: Performance of Open-Source Models on GovBench (Operator-Level)

Generation Execution

Model ATST TSRt CRR?t Avg. Scoref Avg. Tokens| Time (s),  Time (s)]
Qwen3-235b-a22b 3473 46.00  69.00 49.91 950.68  1,335.47 519.87
Qwen2.5-coder 2799 38.00 58.00 41.33 58957  1.039.39 81.26
Qwen3-coder 7RIl 67.00 5125 732.50 185.07 122.60
DeepSeek-V3 3568 47.00 74.00 [NS2ESN 680.51 1,663.45 572.13
Llama-3-70B 26.87 3500 49.00 36.96 536.03 140.12 72.48
Llama-4-scout 1488 2300 37.00 24.96 702.50 618.06 151.65
Mistral-7B 1041 1500  27.00 17.47 71578 525.99 87.74
Gemma-3-27B 2962 43.00 G0N ~ 49.54 142584  4,042.13 60.92
Phid 2324 3200 4200 3241 98237 164261 98.73

Table 2: Performance of Closed-Source Models on GovBench (Operator-Level)

Generation Execution

Model ATST TSRT CRR?T Avg. Scoret Avg. Tokens| Time (s).. Time (s)]
GPT-5 40.98 [EOI60N s1.00 [NSGOON  3.706.21 3,069.44 598.73
GPT-40 3204  41.00 5600 43.01 555.26 431.85 29.72
od-mini [EETES0N ©8.00 52.82 1,510.68 1,127.16 167.28
ol 3250 4100 74.00 49.17 1,908.54 3.916.70 35.55
03 3448 4500  63.00 47.49 1,415.08 1,291.82 35.16
Claude-4-sonnet  36.75 46.00 [JSSI000 5592 1,672.91 3,149.83 229.70
Claude-4-opus 3830 47.00  79.00 54.77 1,390.04 3298.22 158.85
Gemini-2.5-flash 4026  48.00  80.00 56.09 5.234.30 572156 355.65
Grok-3 3541 4400 7100 50.14 688.51 81122 68525
Grok-4 36.90 44.00  67.00 49.30 4,575.07 770030 406.62
Kimi-K2-instruct  39.52 [JHGIG0N 70.00 52.84 721.16 864.21 652.62

5.3 BASELINE

For a comprehensive comparison, we define three categories of baselines:

Single-Model Baselines: In this setting, the model receives the task description and must gener-
ate a complete solution in a single turn, without any multi-agent collaboration or self-debugging
mechanisms. We evaluate mainstream open- and closed-source large language models.

Agent Framework Baselines: We select two representative multi-agent development frame-
works—ChatDev (Qian et al.,|2024) and CAMEL (Li et al.| 2023)—adapt them to data-governance
tasks, and use a strong closed-source model (e.g., GPT-5, GPT-40) as the core engine to assess how
existing agent frameworks perform on GovBench.

Human Baseline: We recruited five data science experts, each with over five years of experience
in data engineering and analysis. To ensure a fair comparison, the experts were given unrestricted
access to GPT-5 through a chat interface. They could ask any questions or request code suggestions
as needed. However, they were required to manually synthesize, test, and refine the final Python
solutions themselves.

6 BENCHMARK RESULTS

6.1 PERFORMANCE OF SINGLE-MODEL BASELINES

We evaluated the performance of single-model baselines on the operator-level tasks. The results are
presented in Table[T]and Table 2]

From the performance of the single-model baselines, we observe the following:

Significant Performance Ceiling: Even the most powerful closed-source models, such as GPT-
5 and Claude4-sonnet, fail to exceed a 50% TSR in a single-round code generation setting. This
indicates that the tasks in GovBench are considerably challenging and difficult to solve perfectly
with a single code generation attempt.

Runnable Does Not Equal Correct: Many models, such as Claude4-sonnet, exhibit a very high
Code Runnability Rate (CRR > 80%), yet their TSR is significantly lower. This reveals a critical
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Table 3: Performance of Open-Source Models on GovBench (DAG-Level)

Generation Execution

Model ATST TSRT CRR? Avg. Score! Avg. Tokens| Time (s)] Time (s)|.
Qwen3-235b-a22b  25.64 38.00  50.00 37.88 3,005.22 733920 8143
Qwen25-coder 1211 2600  30.00 22.70 738.68 852.36 28.23
Qwen3-coder 2087 3600  48.00 34.96 1,075.36 7732 37027
DeepSeck-V3  [IZBIGSINSGIO0NNZZ00NINSoGN  983.70 1,098.90  305.99
Llama-3-70B 8.07 1000 16.00 11.36 723.08 28443 221.09
Llama-4-scout 735 1200 22.00 13.78 864.16 435.08 1039
Mistral-7B 7.10 1800  20.00 15.03 897.88 26190 230.13
Gemma-3-27B 1131 2000 38.00 23.10 1,671.34 241224 19.06
Phi-4 673 2000 28.00 18.24 1,081.94 929.29 18.35

Table 4: Performance of Closed-Source Models on GovBench (DAG-Level)

Generation Execution

Model ATST TSRT CRR?T Avg. Scoref Avg. Tokens| Time (s).. Time (s)].
GPT-5 27.18  46.00 [JSGIO0ON  53.06 6,086.82 7,121.52  310.05
GPT-40 18.68 38.00  50.00 35.56 754.82 27654 | 52.94
o4-mini 31.86 56100 74.00 53.95 2,075.26 971.14 91.31
ol 27.79 5200  80.00 53.26 2,574.00 3,270.06 15.68
03 3122 4600  64.00 47.07 2,027.76 1,410.07 85.07
Claude-4-sonnet [JBEEA 54.00 7600 [SEOZNN 1.890.82 2,007.23 143,01
Claude-4-opus 2041  34.00  50.00 34.80 1,759.84 244304 7424
Gemini-2.5-flash 2540 44.00  68.00 45.80 7.383.40 245791 29521
Grok-3 2745 4600  62.00 45.15 854.72 62697 194.63
Grok-4 3138 5000  66.00 49.13 5.537.42 470645 27736
Kimi-K2-instruct  20.60  30.00  34.00 28.20 1,107.94 758.61 80.78

issue: models can generate syntactically correct code, but the logic of this code does not necessarily
meet the business objectives of the task.

Potential of Open-Source Models: Leading open-source code models, represented by DeepSeek-
V3, can match or even surpass some closed-source models in TSR. This demonstrates their strong
potential in the data science domain.

Building upon this, we have also systematically evaluated these models on the more challenging
DAG-Level tasks. Unlike single-operator tasks, DAG tasks require the model to generate a complete
data processing workflow in a single pass. This involves: 1) correctly decomposing the task into
sub-tasks, 2) organizing them in a logical execution order, 3) ensuring correct dependency passing
between steps, and 4) producing a final output that meets the specified business objectives. Due to
the significant increase in complexity, the Avg. Score on DAG-Level tasks is generally lower than
that on Operator-Level tasks.

Tables [3] and i summarize the baseline results for the open-source and closed-source models.

Top-Tier Open-Source Models Rival Closed-Source Counterparts: On DAG tasks, the leading
open-source model, DeepSeek-V3 (DeepSeek-Al & other authors, 2024), achieved a 56.00 Task
TSR. This performance not only leads the open-source field but also matches the top-performing
closed-source model, 04-mini (56.00 TSR), while outperforming other powerful models like GPT-5
(46.00). This strongly indicates that leading open-source code models are highly competitive for
handling complex, end-to-end data science workflows.

Performance Divergence Among Closed-Source Models: Within the closed-source camp, mod-
els exhibit different strengths. 04-mini demonstrates superior task-solving ability with the highest
TSR. In contrast, Claude4-sonnet excels in ATS and Average Score, suggesting its generated code
has higher overall quality and completeness. This reflects different optimization priorities among
proprietary models.

The “Runnable # Correct” Gap Is More Pronounced: In complex DAG tasks, the disparity be-
tween a high CRR and a low TSR is even more significant (e.g., GPT-5). For instance, GPT-5
shows an 86 CRR but only a 46 TSR. This reaffirms that generating syntactically correct complex
workflows does not guarantee logical adherence to business objectives. Notably, the top-performing
DeepSeek-V3 has a smaller gap between its CRR (72) and TSR (56), potentially indicating a better
alignment between its code’s runnability and its logical correctness.
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A Clear Trade-off Between Efficiency and Performance Persists: The GPT-40 model demon-
strates high generation efficiency, with the lowest token count and generation time among closed-
source models. However, its 38.00 TSR is considerably lower than that of top-tier models. This
highlights a clear trade-off between speed and accuracy when handling complex tasks, where some
models achieve higher accuracy at a greater computational cost, while others are optimized for a
balance between efficiency and performance.

6.2 PERFORMANCE OF AGENT FRAMEWORK BASELINES

We evaluated the ChatDev and CAMEL frameworks on GovBench by pairing them with powerful
GPT-40 and GPT-5 models in Table

Table 5: Performance of Agent Framework Baselines

(a) DAG-Level

Framework Base ATST TSRt CRRfT Avg. Scoret ADI| Avg. Tokens]
ChatDev (Qian et al.|[2024) GPT-4o  19.12 3600  40.00 31.71 14.42 7,261.49
ChatDev (Qian et al.|[2024) GPT-5  39.67 [JGHIO0NNNS2100M 61.89 1489 28,607.22
CAMEL (Li et al.[2023} GPT-40 847 2400 60.00 30.82 500  11,925.00
CAMEL (Li et al.|[2023) GPT-5 1680 32.00 74.00 40.93 5.00 [11,777.50
DataGovAgent GPT-4o  34.52 4400 50.00 42.84 403 27,192.45
DataGovAgent GPT-5 [JS49I 60.00 74.00 NGO 329  34303.72
(b) Op-Level
Framework Base ATST TSRt CRRfT Avg. Scoret ADI| Avg. Tokens)
ChatDev (Qian et al.|[2024) GPT-4o 3447 4300 63.00 46.82 1420 6.996.62
ChatDev (Qian et al.|[2024) GPT-5 3382 4300 69.00 48.61 1447 26,888.26
CAMEL (Li et al.[[2023) GPT-4o 1454 29.00 91.00 44.85 4.40 9,071.92
CAMEL (Li et al.}[2023) GPT-5 2036 3400 [JOZ00N  48.79 4.50 9.447.75
DataGovAgent GPT-40 5293 63.00 89.00 68.31 2027 2371214
DataGovAgent GPT-5 [IS5H7INGA00N ss.o0 [NGONSIN 214 31,503.75

Closing the Runnable-Correct Gap with Contracts and Meta-Cognitive Feedback: On Gov-
Bench, DataGov-Agent consistently turns runnability into business-correct solutions more effi-
ciently than generic agent frameworks. On DAG-level tasks, although ChatDev+GPT-5 attains
the top TSR (64), DataGov-Agent+GPT-5 delivers higher average quality (ATS 54.91 vs. 39.67;
Avg. Score 62.97 vs. 61.89), requires 4.5x fewer debug iterations (ADI 3.29 vs. 14.89). On
operator-level tasks, DataGov-Agent+GPT-5 leads in TSR/ATS/Avg. Score (64/55.47/69.15) and
shows the strongest alignment between runnability and correctness (A=TSR/CRR=0.73 vs. 0.62 for
ChatDev and 0.37 for CAMEL), indicating that contracts and meta-cognitive feedback effectively
convert CRR into TSR. More detailed analysis in Appendix

6.3 COMPARISON WITH HUMAN BASELINE

To contextualize the performance of DATAGOVAGENT, we conducted a comparative study against a
strong human baseline of experienced data scientists, who were also aided by GPT-5. Our findings
show a consistent pattern: on complex, multi-step DAG tasks, DATAGOVAGENT achieves higher
accuracy and lower latency than the human baseline (TSR 60 vs. 25; 4.7 min vs. 24.5 min), whereas
on operator-level tasks it is faster (3.5 min vs. 14.2 min) but less accurate (TSR 64 vs. 84). an
in-depth discussion of the implications are provided in Appendix[A.9]

7 CONCLUSION

We present GovBench, the first benchmark designed to comprehensively stress-test large language
model agents on real-world data governance tasks. GovBench offers two main contributions: it
provides a two-tiered task suite that spans from atomic operators to multi-step DAG pipelines, and
for each task, it incorporates unique evaluation logic and scoring metrics. Furthermore, our proposed
DataGovAgent achieves SOTA performance on this new benchmark, significantly outperforming
existing agent frameworks on complex governance pipelines.
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A APPENDIX

Al

BENCHMARK COMPARISON TABLE

Table 6: Evolution of Code & Agent Benchmarks (textual overview; corresponding visual examples

are shown in Figure [3).

Benchmark Evaluation Scope Key Features Methodological Focus
DS-1000 Snippet-level Code generation for data-  Basic code completion
science libraries (NumPy,
Pandas)
DA-Code Task-level Extends DS-1000 with an  Interactive problem solv-
interactive execution envi-  ing
ronment
DataSciBench Workflow-level Systematic ~ LLM-agent Complete  data-science
evaluation with 25 multi-  pipelines
dimensional metrics
ScienceAgentBench Domain-specific Rigorous assessment for Scientific research work-

HumanEval Pro

LiveBench

GovBench

Reasoning-focused

Methodology-focused

Hierarchical
(Operator &
DAG-level)

data-driven scientific dis-
covery

Self-invoking code gener-
ation with progressive rea-
soning

Dynamic benchmark that
mitigates dataset contami-
nation

150 realistic tasks;

reversed-objective noise;
multi-metric scoring (AT-
S/TSR/CRR)

flows

Advanced reasoning capa-
bilities

Evaluation robustness

End-to-end data-
governance pipeline
evaluation
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{

“"prompt": "Given a numpy array a, compute the
mean value. result = ... # put solution in this
variable",

"code_context": "..Python code for
test_execution and reference solution...",

"metadata": {

|l||'bll: "NumpY",
"difficulty": "Easy",

}
}

(a) DS-1000

"task_id": "1"
"dependent_task_ids": [],
"instruction": "Fine-tune the sentiment

classification model using the

EleutherAIL/twitter-sentiment dataset",
"task_type": "predictive modeling",
"code": "tokenizer =

GPT2Tokenizer.from_pretrained('../gpt2-

small/")",

"pesult': "
"is_success": true,
"is_finished": true

B

(c) DataSciBench

"task_id": "HumanEvalPro/1",
"base_problem": {
"prompt": "def add(a: int, b: int) -> int:\n
\"\"\"Add two integers.\"\"\"",
"test_cases": [
{"input": [1, 2], "output": 3},
{"input": [-1, 5], "output": 4}
1
"reference_solution": "def add(a: int, b: int) -
>int:\n returna+b"

"iaro_problem": {

(e) HumanEval Pro

{
"name": "titanic_survival_analysis",
"description": "Given titanic.csv, perform
survival rate analysis grouped by gender.",
"files": [

"filename": "titanic.csv",
"filetype": "csv",
"description": "Passenger data for Titanic

disaster"

]

instruction": "Load titanic.csv and compute

(b) DA-Code

"id": "geoscience_01",

"domain": "geoscience",

"description": "Calculate the NDVI
(Normalized Difference Vegetation Index) for
a given area using satellite image data, and plot
the NDVI time series.",

"inputs": [

“type": "raster",

"name": "red_band",

"description": "Red band image in GeoTIFF
format."

(d) ScienceAgentBench

{

"question_id":
"Odaa7ca38beec4441b9d5c04d0b98912322926
f0a3ac28a5097889d4ed83506f",

"category": "reasoning”,

"ground_truth": "no, yes, yes",

"furns": [

"In this question, assume each person either
always tells the truth or always lies. Tala is at
the movie theater. The person at the
restaurant says the person at the aquarium lies.
Ayaan is at the aquarium. Ryan is at the
botanical garden. The person at the .....}

(f) LiveBench

{
"task_id": "T0004",

"target_en": "Please provide me with an
operator to process JSONL data by performing
the following text cleaning steps in sequence: (1)
remove extra spaces; (2) remove records whose
‘text’ field contains links (such as strings
starting with ‘http://', ‘https://', or ‘www."); (3)
remove records whose ‘text’ field is not in
English; (4) identify and remove records whose
‘text’ field contains spelling or grammatical
errors. The output should be in JSONL format,
UTF-8 encoded, with the original......

(g) GovBench

Figure 3: BenchDemo visual examples laid out two-per-row (last row has one). Compare with the
textual description in Table 6}
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A.2 ALGORITHM FOR DERIVE OP-LEVEL TASK SEQUENCES

Algorithm 1 LCS-constrained sequence synthesis. We randomly sample candidate sequences over
the member set M (without repetition, length 3/4/5), adjust conflicts using candidates from C, and
finally output 50 valid sequences.

Require:
1: Member set M = {mq,ma, ..., mso} {Core task IDs}
2: Candidate set C' = {c1, ¢a, ..., c50 } {Replaceable task IDs}
Ensure:
3: Adjusted set Sygjusica Of size 50, satisfying:
e Vs e Sadjusled7 |S| S {3,4, 5}
* Vsi, 55 € Sadjusted, LCS(54,55) < 1
Step 1: Random sampling of candidate sequences
S0
Budget + 200 {sample budget before adjustment}
while |S| < Budget do
len < RandomChoice({3,4,5})
9:  seq + RandomSampleDistinct(M, len) {prefer covering different items}
10 S« SU{seq}
11: end while
12: Step 2: Conflict adjustment
13: Sadjusted —0
14: fori =0to |S| — 2 do
15 forj=i+1to|S|—1do

AN AR S

16: while ComputeL.CS(S[i], S[j]) > 2 and C # () do
17: les + GetLCS(S[i], S[j])

18: target_seq < (|S[z]| > |S[j]])?S[d] : S[j]

19: replace_pos < RandomSelect(FindOccurrences(Ics, target_seq))
20: ¢ < RandomSelect(C')

21: target_seq|replace_pos] « ¢

22: C <+ C\{c}

23: Sadjusted <~ Sadjusted U {target,seq}

24: end while

25:  end for

26: end for

27. Step 3: Final selection
28: Shinal ~ UniformSample(Sagjusted, 50)
29: return Sgna

A.3 BENCHMARK STATISTICS

15



Under review as a conference paper at ICLR 2026

Op-level Task Distribution
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Figure 4: Distribution of the 100 operator-level tasks in GovBench across six governance categories:
Filtering (22), Refinement (18), Imputation (18), Deduplication & Consistency (15), Integration

(18), and Classification & Labeling (9). The split balances coverage of common governance opera-
tions while slightly emphasizing filtering and transformation tasks.

A.4 TASKS EVAL

Table 7: Evaluation Metrics for Operator-Level Task Categories in GovBench

Task Category Primary Metric(s) Description

Filtering F1 Score Measures the balance
of precision and recall
in correctly identify-
ing and removing er-
roneous or unwanted
data rows.

Refinement Accuracy Assesses the correct-
ness of data trans-
formations, such as
standardizing date for-
mats, parsing text, or
performing unit con-
versions.

Imputation Completion Rate / Imputation Accuracy  Evaluates the model’s
effectiveness in cor-
rectly filling in miss-
ing or null values
based on the ground
truth.

Deduplication & Consistency Duplicate Reduction / Consistency Score ~ Measures the suc-
cess in identifying and
removing duplicate
records or ensuring
that related data en-
tries are consistent.

Data Integration Integration Accuracy Assesses how well
data from different
sources is merged,
particularly in han-
dling schema mis-
matches and resolving
conflicting values.

Classification & Labeling Accuracy, Precision, Recall, F1 Score Uses standard clas-
sification metrics to
evaluate the correct-
ness of labels assigned
to data records by the
model.
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A.5 BENCHMARK EXAMPLES

This part shows details of sample tasks across six Operator-level tasks and DAG tasks, including
natural language task objectives, evaluation script snippets and dataset samples.

1. Filtering Task

Filtering Task Objective

Please write an operator to process jsonl files, filtering out text entries that contain blocked
words (such as offensive, vulgar, or obscene words) in the text field. Each record is a JSON
object, and it is necessary to check whether its text field contains blocked words. After
filtering out these records, output a new JSONL file, keeping the field structure unchanged
and encoded in UTF-8.

Filtering Task Eval Code

def evaluate (expected_path, processed_path):
expected = load_jsonl (expected_path)
processed = load_jsonl (processed_path)

expected_ids = set (entry['id'] for entry in expected)
processed_ids = set (entry['id'] for entry in processed)
true_positives = len (expected_ids & processed_ids)
predicted_total = len(processed_ids)

gold_total = len (expected_ids)

precision = true_positives / predicted_total if predicted_total
> 0 else 0.0

recall = true_positives / gold_total if gold_total > 0 else 0.0
fl = (2 % precision = recall) / (precision + recall) if

precision + recall > 0 else 0.0

result = {"eval_score": f"{fl:.4f}"}
print (result)




Under review as a conference paper at ICLR 2026

Filtering Task Dataset Samples

Raw Data

GT Data

{”id”: 0, ’text”: “The customer service
team is committed to providing excep-
tional assistance to all clients.”}

{ 7id”: 1, “text”: “Customer service
is dedicated to addressing and resolving
client inquiries efficiently.”}

{”id: 2, text”: "The refund policy stip-
ulates that all requests must be submitted
within thirty days of purchase.”}

{ ”id”: 3, text”: "The refund policy al-
lows customers to return products within
30 days for a full refund.”}

{ 7id”: 4, text”: "The product warranty
is valid for a period of one year from the
date of purchase.”}

”id”: 32, “text”: “Fix this crap service

now.”

”id”: 43, “text”: “Fix this damn service
now.”

”id”: 58, “text”: ”This whole thing is to-
tal bitch.”

”id”: 33, "text”: ”Why the bitch is my or-
der delayed?”

”id”: 83, “text”: "Why the bastard is my
order delayed?”

{ 7id”: 0, "text”: “The customer service
team is committed to providing excep-
tional assistance to all clients.”}

{ 7id”: 1, “text”: ”Customer service
is dedicated to addressing and resolving
client inquiries efficiently.”}

{”id”: 2, ”text”: "The refund policy stip-
ulates that all requests must be submitted
within thirty days of purchase.””}

{ 7id”: 3, text”: "The refund policy al-
lows customers to return products within
30 days for a full refund.”}

{ 7id”: 4, ’text”: "The product warranty
is valid for a period of one year from the
date of purchase.”}

\

2. Refinement Task

Refinement Task Objective

Please write an operator to process JSONL files and remove HTML tags from the text field.
Each record is a JSON object, requiring detection of its text field and removal of all HTML
tags (e.g., <p>, <a href='url'>, etc.). Output a new JSONL file, retaining the field structure

unchanged, encoded in UTF-8.

Refinement Task Eval Code

if proc_text is None:
else:

matched += 1
else:

def evaluate (expected_path, processed_path,

mismatches.append((id_,

if normalize (proc_text)

show_diff=5):

expected = load_jsonl (expected_path)
processed = load_jsonl (processed_path)
total = len (expected)

matched = 0

mismatches = []

for id_, exp_text in expected.items() :

proc_text = processed.get (id_)

"missing", exp_text, ""))

== normalize (exp_text) :
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mismatches.append((id_,

proc_text))
accuracy =

result = {"eval_score":
print (result)

"mismatch", exp_text,

matched / total if total > 0 else 0.0

f"{accuracy:.4f}"}

Refinement Task Dataset Samples

Raw Data

GT Data

{ 7id”: 7id_0001”, “topic”: “climate
change”, “text”: ”Climate change poses
significant challenges to the global envi-
ronment and necessitates urgent collec-
tive action.” }

{ 7id”: 7id_0002”, “topic”: climate
change”, “text”: ”Climate change poses
a significant threat to the stability of
ecosystems worldwide.” }

{ 7id”: 7id_0003”, “topic”: “climate
change”, “text”: ”Climate change poses
a significant threat to global ecosystems
and human societies.” }

{ 7id”: 7id_0004”, “topic”: “climate
change”, “text”: “’Climate change poses
a significant threat to global ecosystems
and human societies.” }

{ 7id”:  ”id-0005”, ’’topic”: cli-
mate change”, “text”: “Climate change
presents a significant challenge that re-

quires immediate global attention and ac-
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{ 7id”: 7id_0001”, “topic”: “climate
change”, ”text”: ”Climate change poses
significant challenges to the global envi-
ronment and necessitates urgent collec-
tive action.” }

{ 7id”: 7id_0002”, “topic”: “climate
change”, “text”: ”Climate change poses
a significant threat to the stability of
ecosystems worldwide.” }

{ 7id”: 7id_0003”, “topic”: “climate
change”, "text”: ”Climate change poses
a significant threat to global ecosystems
and human societies.” }

{ 7id”: 7id_0004”, “topic”: “climate
change”, ”text”: ”Climate change poses
a significant threat to global ecosystems
and human societies.” }

{ 7id”:  id_0005”, ’’topic”: cli-
mate change”, ’text”: “Climate change
presents a significant challenge that re-

quires immediate global attention and ac-

i)

tion.” } tion.” }
\ y

3. Imputation Task

Imputation Task Objective

Need a data governance operator that uses the KNN algorithm (k=3) to impute missing
values in a CSV file. 1. Input file: CSV (with header, comma-separated). 2. Supports
numeric and one-hot encoded categorical variables. Encoding: UTF-8, no BOM.

Imputation Task Eval Code

def evaluate (cand: pd.DataFrame,
gt: pd.DataFrame,
raw: pd.DataFrame)

-> float:

if cand.shape != gt.shape:

fail (f"Mismatch in dimensions:
{cand.shape}")
if list(cand.columns) != list (gt.columns):

fail ("Column names or order do not match the reference")

Expected {gt.shape}, Actual
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miss_mask = raw.isna ()

if cand[miss_mask].isna () .any().any():
fail ("There are missing values that were not filled")

diff = np.abs(cand[miss_mask].astype(float) - gt[miss_mask].
astype (float))
if (diff > ATOL) .any () .any () :

fail ("The filled values do not match the reference (non—-KNN
imputation)")

if not cand[ " miss_mask].astype(float) .equals(raw[ miss_mask].
astype (float)) :
fail ("The originally complete data has been modified")

return 1.0
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Imputation Task Dataset Samples

Raw Data

GT Data

customer_id, age, income, color_blue,
color_green, color_red

1, 22.0, 37110.61305675143, True,
False, False

2, 58.0, 55531.26176123748, False,
False, True

3, 52.0, 35616.760987565016, False,
False, True

4, 40.0, 63176.75451960909, True, ,

5, 40.0, 49251.11133520621, False,

True, False
6, 62.0, 47227.06454682109, False, ,

7, 22.0,
False, False
8, 54.0, 68338.12008011046, False, ,
True

9, 28.0, 47682.05776896797,
False, False

10, 22.0, 43575.08266755339, False,
False, True

11, 45.0, , True, False,

39786.05683394088, True,

True,

12, 68.0, 57984.63778330023, True,
False, False

13, , 55481.660965461175, True, False,

14, 57.0, 56190.98917393983, False,
True, False

15, 55.0, 56462.315045118245, , True,
False

customer-id, age, income, color_blue,
color_green, color_red

1, 22.0, 37110.61305675143, 1.0, 0.0,
0.0
2, 58.0, 55531.26176123748, 0.0, 0.0,
1.0
3, 52.0, 35616.760987565016, 0.0, 0.0,
1.0

4, 63176.75451960909,
1.0, 0.3333333333333333,
0.3333333333333333

5, 40.0, 49251.11133520621,
0.0

6, 62.0, 47227.06454682109,
0.3333333333333333

7, 22.0, 39786.05683394088,
0.0

8, 54.0, 68338.12008011046,
1.0

9, 28.0, 47682.05776896797,
0.0

10, 22.0, 43575.08266755339, 0.0,
1.0

11, 45.0, 58632.88840075844, 1.0, 0.0,
0.0

12, 68.0, 57984.63778330023, 1.0, 0.0,
0.0

40.0,

0.0, 1.0,

0.0, 0.0,
1.0, 0.0,
0.0, 0.0,
1.0, 0.0,

0.0,

13, 54.333333333333336,
55481.660965461175, 1.0, 0.0,
0.3333333333333333

14, 57.0, 56190.98917393983, 0.0, 1.0,
0.0

15, 55.0, 56462.315045118245,
0.6666666666666666, 1.0, 0.0

4. De-duplication Task

De-duplication Task Objective

A data governance operator for incremental deduplication on x . csv/ . jsonl: 1. Histor-
ical baseline: . jsonl (already deduplicated, contains id, updated_at, and business fields)
2. New incremental file: . csv (same structure) 3. Primary key: id 4. Deduplication rules:
If the primary key exists in the baseline, ignore the incremental row; if not, append to the
result set; For the same key but different business fields, keep the record with the latest
updated_at.
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De-duplication Task Eval Code

def compute_f1 (
gt_map: Dict[str, Dict],
pred_rows: List[Dict],
) —> float:
if not pred_rows:
return 0.0

tp_ids: Set[str] = set()

fp =0
for row in pred_rows:
rid = str(row.get ("id", ""))
if not rid:
fp += 1
continue

# Duplicate row

if rid in tp_ids:
fp +=1
continue

gt_row = gt_map.get (rid)
if gt_row is None:
fp += 1 # Extra id
continue

# Compare all fields with GT (order doesn't matter)
if row == gt_row:

tp_ids.add(rid)
else:

fp += 1 # Field values do not match

fn = len(gt_map) - len(tp_ids)

precision = len(tp_ids) / (len(tp_ids) + fp) if tp_ids or fp
else 0.0

recall = len(tp_ids) / (len(tp_ids) + fn) if tp_ids or fn else
0.0

if precision + recall ==
return 0.0
return 2 % precision x recall / (precision + recall)
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De-duplication Task Dataset Samples

A

Raw Data

GT Data

Filel: { ~id”: ”C0061”, "updated_at”:
”2025-04-20T13:59:30Z”, ”name’’:
“Isaac”, “tier”: ”gold” }

{ 7id”: 7C0024”, "updated_at™: ~2024-
07-10T13:21:47Z”, “name”: “Xavier”,
“tier”: “bronze” }

{ 7id”: 7C0094”, "updated_at™: 2025-
12-07T09:03:257”, “name”: “Queen”,
“tier”: “gold” }

{ 7id”: 7C0094”, "updated_at”: 2025-
12-07T09:03:257”, “name”: “Queen”,
“tier”: “gold” }

{ 7id”: 7C0075”, "updated_at”: 2025-
07-27T08:12:05Z”, name”: “Xander”,
“tier”: bronze” }...

File2: id,updated_at,name,tier
C0068,2025-06-
25T00:05:48Z7,Paula,silver
C0107,2025-08-
06T05:37:13Z,New107,silver
C0072,2025-07-24T11:00:49Z,Una,gold
C0062,2025-05-
27T05:43:16Z,Jane,silver
C0018,2024-07-
21T07:27:37Z,Rupert,gold...

{ 7id”: ”C0001”, "updated_at”: 72024-
01-15T10:30:00Z”, “name”: “Alice”,
tier”: “gold” }

{ 7id”: 7C0002”, "updated_at”: 72024-
02-03T08:14:127Z”, “name”: “Bob”,
tier”: silver” }

{ 7id”: 7C0003”, "updated_at”: 72024-
02-27T19:22:05Z”, “name”: “Carol”,
“tier”: “bronze” }

{ 7id”: 7C0004”, "updated_at”: 72024-
03-10T07:45:51Z”, ’name”: “Dave”,
tier”: ”gold” }

{ 7id”: 7C0005”, "updated_at”: 72024-
03-19T11:26:31Z”, “name”:  “Eve”,
tier”: silver” }

{ 7id”: 7C0006”, "updated_at”: 72024-
03-27T15:02:437Z”, “name”: “Frank”,
“tier”: “bronze” }

{ 7id”: 7C0007”, "updated_at”: 72024-
04-02T09:56:17Z”, “name”: “Grace”,
“tier”: “gold” }

{ 7id”: 7C0008”, "updated_at”: 72024-
04-11T20:11:00Z”, “name”: “Heidi”,
“tier”: “silver” }

{ 7id”: 7C0009”, "updated_at”: 2024-
04-23T05:33:297”, name”: “Ivan”,
“tier”: “bronze” }

{ 7id”: 7C0010”, "updated_at”: 2024-
04-30T18:44:072”, “name”: “Judy”,
tier”: “gold” }...

5. Integration Task

Integration Task Objective

A data governance operator for composite key join: join by multi-column composite keys
and resolve column conflicts. Input: customerl.csv, customer2.csv. Rule: Composite key:
left(k1,k2,...) = right(k1’,k2’,...) (same number of columns). Conflict resolution: left-
priority/right-priority/left and right suffix. Output: gt.csv.

Integration Task Eval Code

def evaluate(gt_hdr: List([str],
gt_rows: List[Dict[str, strll],
pred_rows: List[Dict[str, str]]) -> float:
# 1. Column completeness
if not pred_rows:
print (" [eval]
return 0.0

Output is empty", file=sys.stderr)

missing = [c for c in gt_hdr if ¢ not in pred_rows[0]]
if missing:
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return 0.0

# 2. Set comparison
gt_counter = rows_to_counter (gt_rows, gt_hdr)
pred_counter = rows_to_counter (pred_rows, gt_hdr)

if gt_counter != pred_counter:
lack = gt_counter - pred_counter
extra = pred_counter - gt_counter
if lack:
print (f" [eval] Missing row examples: {list (lack.
elements()) [:3]} ...", file=sys.stderr)
if extra:
print (f"[eval] Extra row examples: {list (extra.elements
())[:3]} ...", file=sys.stderr)

return 0.0

return 1.0

print (f"[eval] Missing columns: {missing}", file=sys.stderr

24
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Integration Task Dataset Samples

Raw Data GT Data

Filel: country,region,customer_id,email left,
country,region,customer_id,email, signup_date,status_left,notes,email_right
signup_date,status,notes last_order_date,status_right,vip
US,CA,1001,alice @example.com,2021- | US,CA,1001,alice @example.com,2021-
01-10,active,LL1 01-10,active,L1,alice.us@example.com,
US,NY,1002,bob@example.com,2021- 2022-12-01,gold,true

02-12,inactive, .2 US,NY,1002,bob@example.com,2021-
CN,BJ,2001,chen @example.cn,2020- 02-12,inactive,L.2,bob@example.com,
11-05,active, L3 2021-12-11,inactive,false
CN,SH,2002,du @example.cn,2022-07- CN,BJ,2001,chen @example.cn,2020-
19,pending, L4 11-05,active,L.3,chen_new @ex.cn,2023-
DE,BE,3001,eva@example.de,2021-09- | 03-03,active,true

30,active, L5 CN,SH,2002,du@example.cn,2022-
US,CA,1003,frank @example.com,2020- | 07-19,pending,[.4,du@alt.cn,2022-08-
06-15,active,LL6 01,active,true

File2: DE,BE,3001,eva@example.de,2021-09-
country_code,region,id,email, 30,active,L.5,eva@example.de,2022-02-
last_order_date,status,vip 02,paused,false

US,CA,1001,alice.us @example.com, US,CA, 1003 frank @example.com,2020-
2022-12-01,gold,true 06-15,active,L6,frank @example.com,

US,NY,1002,bob@example.com,2021- 2020-07-01,inactive,false
12-11,inactive,false
CN,BJ,2001,chen_new @ex.cn,2023-03-
03,active,true

CN,GD,2005,gao @example.cn,2021-
05-05,active,false
DE,BE,3001,eva@example.de,
2022-02-02,paused,false
US,CA,9999,7z0e @example.com,2023-
04-04,active,false

US,CA, 1003 frank @example.com,2020-
07-01,inactive,false
CN,SH,2002,du@alt.cn,2022-08-
01,active,true

\ S

6. Classification and Labeling Task

Classification and Labeling Task Objective

Use LLMserving to assign sentiment labels to text: Input format: . jsonl with text_id
and content; Sentiment label set: Positive / Neutral / Negative.

Classification and Labeling Task Eval Code

def accuracy(gt: List[Dict[str, Any]], pred: List[Dict[str, Any]])
-> float:

nwn

Calculate the simple classification accuracy between
predictions and ground truth.

# Create {text_id: sentiment} mapping; trim leading and
trailing spaces and standardize case

norm = lambda s: str(s).strip/() # Only trim; case-sensitive
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gt_map = {norm(r["text_id"]
gt}

pred_map = {norm(r["text_id"]
for r in pred}

total = len (gt_map)

correct = sum(1l for k,

== v)

)z
)t

v in gt_map.items ()

norm(r["sentiment"]) for r in

Hll))

norm(r.get ("sentiment",

if pred_map.get (k)

return correct / total if total else 0.0

Classification and Labeling Task Dataset Samples

Raw Data

GT Data

{"text_id”: 700017, ”content”: "The latte
at this coffee shop is so delicious, I will
definitely come back next time!”}
{”text_id”: ”0002”, "content”: The cus-
tomer service response speed is quite
fast, and the problem has been solved.”}
{"text_id”: ”0003”, ”content”: The sun-
light today is really nice, feeling great.”}
{"textid”:  ”0004”, “content”: “The
soundtrack of this movie is very moving,
definitely recommend it.”}

{"textid”:  ”0005”, “content”: “The
project was launched on time, and every-
one is very satisfied.”}

{"text_id”: 700797, “content”: “This is
the second page of the contract.”}
{"text_id”: 00807, “content”: “The
air conditioning temperature is set to
25°C”}

{"text_id”": ”0081”, "content”: “The ser-
vice attitude was terrible, I will never
come again.”}

{"text_id”: ”0082”, “content”: “The
product broke after just two days of use,
very disappointing.”}

{"text_id”: ”0083”, “content”: “The
courier hasn’t updated the logistics for a
week, so annoying.”’}

{"text_id”:”0001”, content”:"The latte
at this coffee shop is so delicious,
I will definitely come back next
time!”,’sentiment”:”’Positive” }
{"text_id”":”0002", content”:"The
customer service response speed is
quite fast, and the problem has been
solved.”,’sentiment’:”"Positive” }

{text_id”:”0003”, content”:"The  sun-
light today is really nice, feeling
great.”,’sentiment”:"Positive” }
{"text_id”:”0004”, content”:"The
soundtrack of this movie is very
moving, definitely recommend
it.”,”sentiment”:”Positive” }
{text_id”:”0005”, content”:"The
project was launched on time,
and everyone is  very  satis-

fied.”,”sentiment”:”’Positive” }
{"text_id":70079”, content”:"This

is the second page of the con-
tract.”,’sentiment”:”’Neutral”’ }
{text_id”":”0080", content”:"The air
conditioning temperature is set to
25°C”’sentiment”:”Neutral” }
{"text_id:”00817, content”:"The  ser-

vice attitude was terrible, I will never
come again.”,’sentiment”:”Negative” }
{text_id:”0082", content”:"The prod-

uct broke after just two days of use, very

disappointing.”,’sentiment”:”Negative” }
{text_id”":”0083", content”:"The

courier hasn’t wupdated the lo-
gistics for a week, so annoy-

99 99

ing.”,’sentiment”:"Negative” }
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7. DAG Task

DAG Task Objective

Write an operator to process JSONL files, executing sequentially: filter out records with
a high proportion of symbols in the text field — remove excess spaces in the text field —
censor profanity in the text field with ****_ for example, “I am fucking happy” becomes
“I am **** happy” — use MinHash for approximate deduplication (>0.9), retaining the
record with the smallest id; output JSONL.

DAG Task Eval Code

def evaluate (processed_path):
expected_path = get_gt ()
expected = load_jsonl (expected_path)
processed = load_jsonl (processed_path)

# Construct mappings for comparison
expected_map = {entry["id"]: entry for entry in expected}
processed_map = {entry["id"]: entry for entry in processed}

# Only evaluate the intersection part
common_ids = set (expected_map.keys()) & set (processed_map.keys

0))

true_positives = 0

for cid in common_ids:
gt = expected_map[cid]
pred = processed_map[cid]

# Check if text is the same (strip leading and trailing

spaces)
if gt["text"].strip() == pred["text"].strip():
true_positives += 1
predicted_total = len(processed_map)

gold_total = len (expected_map)

precision = true_positives / predicted_total if predicted_total
> 0 else 0.0

recall = true_positives / gold_total if gold_total > 0 else 0.0
fl = (2 % precision = recall) / (precision + recall) if

precision + recall > 0 else 0.0

result = {"eval_score": f"{fl:.4f}"}
print (result)
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DAG Task Dataset Samples

Raw Data GT Data
{"id”: 1, items™: [“orange”, “com- | {”id”: 1, “items”: [’orange”, “com-
putel‘”, 99paper”’ ”pearu’ ”bOOk”, putel‘”, aspaper”’ ”pear”’ ”bOOk”,

“phone”], “text”: ”Sports and the envi-
ronment have a complex relationship that
requires careful consideration and action
if we want to keep enjoying both. On
one hand, sporting events bring people
together, promote health, and drive
the economy. On the other hand, they
can be a asshole environmental night-
mare”, “sources”: [’dataset_b.jsonl”,
dataset_a.jsonl”]}

{"id”: 26, "items™: [“orange”, “’book”,
“banana”, “grape”, “computer’], “text’”:
”Engaging in sports is one hell of a
way to boost your overall health and
well-being, both physically and men-
tally. Whether you’re hitting the gym,
playing soccer, or going for a run,
these activities keep your”, “sources’:
[’dataset_b.jsonl”, ’dataset_c.jsonl”’]}

“phone”], “text”: ”Sports and the en-
vironment have a complex relationship
that requires careful consideration and
action if we want to keep enjoying both.
On one hand, sporting events bring
people together, promote health, and
drive the economy. On the other hand,
they can be a **** environmental night-
mare”, “sources”: [’dataset_b.jsonl”,
”dataset_a.jsonl”]}

{"id”: 26, "items™: [“orange”, “book”,
“banana”, “grape”, “computer’], “text’:
”Engaging in sports is one hell of a
way to boost your overall health and
well-being, both physically and men-
tally. Whether you’re hitting the gym,
playing soccer, or going for a run,
these activities keep your”, “sources’:
[’dataset_b.jsonl”, ”dataset_c.jsonl”]}

{"id”: ”d4a6cae8-6250-40dc-9ale-
b9bef91620fd”,  “items”: [’pen”,
“orange”, “grape”’, “computer’, ’ba-
nana”’, “paper’], “text”: “Art has a
**k%% magical way of weaving itself
into the fabric of health, providing both
mental clarity and emotional solace.

Through the **** strokes of a paintbrush
29929222929222272222722222222222977922

or the rhythmic beats of a song, art
offers a therapeutic escape from life’s”,
’sources”: [’dataset_b.jsonl”]}

A.6  AGENT ROLES AND IMPLEMENTATION DETAILS

The Planner: From Intent to High-Level DAG. The initial phase is dedicated to understanding
the user’s goal and formulating a strategic plan. This is achieved through two sequential tasks:

o Intent Understanding: Upon receiving a natural language request, the Planner leverages
a LLM configured with few-shot prompting. It analyzes the user’s intent by conditioning
the model with the provided data schema and data samples. This grounding process ensures
the user’s goal is not only correctly interpreted but also validated for feasibility against the
actual data context.

* Contract-Guided Planning: After intent understanding, the Planner does not directly gen-
erate a concrete blueprint. Instead, it first extracts machine-checkable governance con-
tracts from the user request, data schema, and data samples. Each contract is attached to
an operator in the form of a 2-tuple (PRE, POST), strictly defining the pre-conditions and
post-conditions for execution. The Planner then generates a sequence that satisfies the con-
straints imposed by these contracts, ensuring that the output (POST) of each step fulfills the
input requirements (PRE) of the subsequent step. When a constraint is not met, the system
automatically inserts minimal repair steps (such as imputation or type casting).
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* Pipeline Recommendation: Building on the above deep understanding and contract-guided
planning, the Planner ultimately formulates a high-level governance plan, which is repre-
sented as a preliminary directed acyclic graph (DAG). The nodes of this DAG correspond
to a series of abstract operators (e.g., “Remove Duplicates”, “Standardize Date Format”,
“Impute Missing Values™). These contract-annotated nodes collectively provide a strategic
blueprint for the subsequent execution phase, ensuring that the final generated code strictly
adheres to the validated logical path.

The Executor: Realizing Operators with Retrieval-Augmented Generation. For each abstract
operator in the planned DAG, the Executor is responsible for generating concrete, executable Python
code. It employs a powerful Retrieval-Augmented Generation (RAG) strategy, which synergizes
the reliability of pre-validated code with the flexibility of on-the-fly generation.

* Operator Retrieval: The agent first treats its internal library of validated governance op-
erators as a collection of callable tools. Each tool has a rich description detailing its func-
tionality, parameters, and use cases. The Executor compares the semantic content of the
target operator’s goal (e.g., “standardize date format to YYYY-MM-DD”) against these
tool descriptions to retrieve the top-K (e.g., top-4) most relevant operators.

* Augmented Generation: Rather than simply executing the top retrieved operator or falling
back to free generation if no perfect match is found, the Executor adopts a more robust ap-
proach. The retrieved operators, along with their descriptions, are injected into the LLM’s
prompt as dynamic few-shot examples. This context-rich prompt guides the model to gen-
erate code that is not only tailored to the specific requirements of the task but also adheres
to the established patterns and best practices of the operator library. This hybrid method
significantly reduces hallucinations and improves the quality of the generated code, even
for highly customized or novel tasks.

The Evaluator: Sandboxed Execution and Meta-Cognitive Refinement. Code generation is only
half the battle; rigorous verification is paramount. The Evaluator provides a critical quality assurance
layer through a self-correcting execution and debugging cycle.

* Sandboxed Execution: All generated code is executed within a secure, isolated sandbox
environment. This prevents unintended side effects on the host system and allows the agent
to safely handle diverse data sources and external dependencies.

o Iterative Debugging with Structured Feedback: When the generated code fails to execute
or produces incorrect results, the Evaluator does not simply report the failure. Instead,
it acts as a diagnostician, capturing the runtime state and constructing a highly structured
feedback prompt to guide the Executor’s subsequent refinement. As shown in Figure[2] this
prompt is a rich data object containing a comprehensive diagnostic report: it includes not
only the erroneous code snippet that caused the failure, but also the complete error message
and stack trace, providing technical context for issue localization. More importantly, the
Evaluator also analyzes the situation in light of the relevant contract constraints. If any
contract is found to be unsatisfied, it offers targeted revision suggestions—for example,
Please add a check to handle potential null values in the creation_date column before ap-
plying the datetime conversion.” To keep the agent aligned with the overall objective, the
feedback additionally includes broader task context.

This meta-cognitive feedback allows the Executor to perform targeted, surgical corrections instead
of trial-and-error guessing. This loop continues until the operator code is both runnable and func-
tionally correct, ensuring each component of the final GovDAG is rigorously validated.

A.7 DETAILS OF AGENT FRAMEWORK BASELINES
A.7.1 DERIVED METRICS AND FORMULAS
The following metrics are used to evaluate agent performance throughout the appendix.

* Alignment: A = TSR/CRR.
* Contract gap: A,. = CRR — TSR (in percentage points).
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* Debugging efficiency: £ = TSR/ADI.

* Tokens per successful task: 7* = Avg. Tokens/(TSR/100). This measures the average
number of tokens consumed to achieve one successful task completion.

The following sections provide the specific numerical data and interpretations corresponding to the
visualizations in Figures [5|through[9]

GPT-5 base — DAG-level details

« DataGovAgent (TSR 60, CRR 74, ATS 54.91, Avg. 62.97, ADI 3.29, Tokens 34303.72)
A=081; A, = 14; F = 18.24; T* = 57, 173.

« ChatDev (64, 82, 39.67, 61.89, 14.89, Tokens 28607.22)
A=0.78 A, =18; E = 4.30; T* = 44, 700.

 CAMEL (32, 74, 16.80, 40.93, 5.00, Tokens 11777.50)
A=043; A, =42; F = 6.40; T = 36, 805.

Interpretation: On complex DAG-level tasks, DataGovAgent demonstrates the highest debugging
efficiency (E=18.24) and strong alignment (A=0.81). However, this comes at the highest token cost
per successful task (T* = 57,173). In contrast, CAMEL is the most token-efficient per success
(T = 36,805) but delivers significantly lower quality (TSR 32, ATS 16.80) and poor alignment.
ChatDev offers a middle ground on token efficiency but lags considerably in debugging efficiency.

GPT-5 base — Operator-level details

* DataGovAgent (TSR 64, CRR 88, ATS 55.47, Avg. 69.15, ADI 2.14, Tokens 31503.75)
A=0.73; A, =24; E =29.91; T* = 49, 225.

¢ ChatDev (43, 69, 33.82, 48.61, 14.47, Tokens 26888.26)
A=0.62; A, =26, E =297, T* =62,531.

« CAMEL (34, 92, 20.36, 48.79, 4.50, Tokens 9447.75)
A=037,A,. =58, E=7.56,T* =27,788.

Interpretation: Even on simpler Op-level tasks, DataGovAgent leads in quality (TSR 64, ATS 55.47)
and debugging efficiency (E=29.91). It is also more token-efficient per success than ChatDev (T =
49,225 vs. 62,531). CAMEL remains the most token-efficient overall (T = 27,788) but has the
worst alignment (A=0.37) and a large correctness gap (A,. = 58), indicating that while its raw
token usage is low, it struggles to convert runnability into correct solutions.

Weaker base model (GPT-40) — token-quality trade-off DAG-level:

» DataGovAgent (44, 50, 34.52, 42.84, 4.03, Tokens 27192.45): A = 0.88; A,. = 6;
E =10.92; T* = 61, 801.

* ChatDev (36, 40, 19.12, 31.71, 14.42, Tokens 7261.49): A = 0.90; A,. = 4; E = 2.50;

T* = 20,171.
« CAMEL (24, 60, 8.47, 30.82, 5.00, Tokens 11925.00): A = 0.40; A, = 36; E = 4.80;
T* = 49, 688.

Operator-level:

« DataGovAgent (63, 89, 52.93, 68.31, 2.12, Tokens 23712.14): A = 0.71; A,. = 26;
FE =29.72, T = 37,638.

» ChatDev (43, 63, 34.47, 46.82, 14.20, Tokens 6996.62): A = 0.68; A,. = 20; £ = 3.03;

T* = 16,271.
« CAMEL (29, 91, 14.54, 44.85, 4.40, Tokens 9071.92): A = 0.32; A,. = 62; E = 6.59;
T* = 31,282.

Interpretation: With the weaker GPT-40 model, the trade-offs become more pronounced. DataGov-
Agent still achieves the highest quality (TSR/ATS) and debugging efficiency (E), but at a significantly
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higher token cost per success (T*). Surprisingly, ChatDev becomes the most token-efficient frame-
work (Tx of 20,171 on DAG and 16,271 on Op), despite its low raw success rate and poor debugging
efficiency. This highlights a clear, controllable token-quality frontier where achieving higher quality
and development efficiency with DataGovAgent requires a larger token budget.

A.7.2 PERFORMANCE VISUALIZATIONS

The following figures provide a comparative visualization of agent performance across different
models, task levels, and key metrics.

Quality Metric: Task Success Rate (TSR %)
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Figure 5: Comparison of Task Success Rate (TSR) across agents, base models, and task levels. TSR
measures the percentage of tasks completed successfully.

31



Under review as a conference paper at ICLR 2026

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687 Model: gpt-5 base | Level: DAG-level Model: gpt-5 base | Level: Operator-level
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700 Model: gpt-40 | Level: DAG-level Model: gpt-40 | Level: Operator-level
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711

1712

1713 DataGov-Agent ChatDev CAMEL DataGov-Agent ChatDev CAMEL
Agent Agent
1714

1715 Figure 6: Comparison of Average Task Score (ATS). ATS provides a more nuanced measure of
1716 solution quality beyond simple success or failure.
1717

1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Quality Metric: Average Task Score (ATS)

Average Task Score

Average Task Score

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

60000

50000

40000

30000

20000

Tokens per Success (lower = better)

10000

60000

50000

40000

30000

20000

Tokens per Success (lower = better)

10000

Token Metric: Tokens per Successful Task (T*)

Model: gpt-5 base | Level: DAG-level

Model: gpt-5 base | Level: Operator-level

Model: gpt-40 | Level:

DAG-level

Model: gpt-40 | Level: Operator-level

DataGov-Agent ChatDev
Agent

CAMEL

DataGov-Agent ChatDev CAMEL
Agent

Figure 7: Comparison of Tokens per Successful Task (7). This metric normalizes average token
consumption by the success rate, indicating token-efficiency. Lower values are better.
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Efficiency Metric: Debugging Efficiency (E)

Model: gpt-5 base | Level: DAG-level
30

= = N N
o v o v

Debugging Efficiency (TSR / ADI)

v

Model: gpt-4o0 | Level: DAG-level
30

25

20

15

10

Debugging Efficiency (TSR / ADI)

ChatDev
Agent

DataGov-Agent

Model: gpt-5 base | Level: Operator-level

Model: gpt-40 | Level: Operator-level

CAMEL ChatDev CAMEL

Agent

DataGov-Agent

Figure 8: Comparison of Debugging Efficiency (). This metric reflects how many successful tasks
are produced per debugging iteration. Higher values are better.
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Figure 9: Token—Quality Trade-off Frontier. Relationship between quality (ATS, y-axis) and token
efficiency (1, z-axis). The ideal position is the top-left corner (high quality, low tokens per suc-

cess).
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A.7.3 MECHANISM ATTRIBUTION AND ABLATIONS

Contracts make business correctness executable: pre-conditions  expose
type/shape/uniqueness/missing-value assumptions; post-conditions render acceptance criteria
as assertions, preventing hidden cross-step assumptions.

Meta-cognitive feedback turns CRR’s blind spots into targeted fixes: the Evaluator couples
failing code spans, stack traces, and violated contracts to produce surgical edits, improving A and
reducing A,.. with far fewer iterations (higher E). Ablations (Op-level, GPT-5 base), as shown in
Table[8:

* w/o Planner: TSR drops from 64 — 38 (—26 pp), CRR 88 — 51, ADI 2.14 — 8.75; ATS
55.47 — 31.20.

* w/o RAG: TSR 64 — 49 (—15 pp), CRR 88 — 65, ADI 2.14 — 5.20; ATS 55.47 —
42.15.

These confirm that contract-guided planning supplies the right decomposition/ordering, while RAG
reduces hallucinations; the Evaluator’s meta-cognitive loop converts these into fewer, more effective
iterations.

A.8 ABLATION STUDY

To dissect the contribution of each component within the DATAGOVAGENT framework, we con-
ducted a series of ablation studies on the GovBench Operator-level tasks. We systematically dis-
abled or replaced key modules—the Planner and the RAG mechanism to quantify their impact on
overall performance. All experiments were run using GPT-5 as the base model. The results are
summarized in Table 8l

Table 8: Ablation study of DataGovAgent on GovBench operator-level tasks. Numbers in brackets
show the change () w.r.t. the full model — red = decrease, green = increase.

Configuration ATS?T TSRt CRR? ADI|
DataGovAgent (Full) 55.47 64.00 88.00 2.14
RQI: Planner’s Role

w/o Planner 31.20 (-24.27)  38.00 (-26.00) 51.00 (-37.00)  8.75( )

RQ2: RAG’s Impact
w/o0 RAG (Free Generation) 42.15 (-13.32) 49.00 (-15.00)  65.00 (-23.00) 5.20 ( )

RQ1: Is the Planner’s high-level DAG planning necessary? To answer this, we created a variant
named ‘w/o Planner¢, where the Executor directly receives the raw natural language instruction and
attempts to generate the entire solution in one go, bypassing the intent understanding and DAG plan-
ning phase. As shown in Table[§] this led to a catastrophic performance drop: the TSR plummeted
from 64.00% to 38.00%, and the Average Debug Iterations (ADI) quadrupled. This result strongly
indicates that for data governance tasks, which often involve implicit multi-step logic, decomposing
the user’s intent into a structured, high-level plan is crucial. Without this planning phase, the LLM
struggles to manage the complexity, leading to logically flawed or incomplete code that is difficult
to debug.

RQ2: How much does Retrieval-Augmented Generation contribute? We investigated this by
creating the ‘w/o RAG’ variant, where the Executor generates code based solely on the abstract
operator name provided by the Planner, without retrieving any code examples from the operator
library. The performance degradation was significant, with TSR dropping by 15 percentage points.
This highlights the value of RAG: grounding the LLM with pre-validated, high-quality code snippets
(even if they are not a perfect match) significantly steers it towards generating more correct and
robust solutions, reducing hallucinations and logical errors.
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A.9 DETAILS OF HUMAN BASELINE

To establish a strong human baseline for DATAGOVAGENT, we evaluated the performance of experi-
enced data-science practitioners on a subset of GOVBENCH. We recruited five data-science experts,
each with more than five years of professional experience in data engineering and analysis.

To ensure a fair comparison, the experts were granted unrestricted access to the same GPT-5
model through an interactive chat interface. They could issue any number of queries but still had to
manually synthesize, test, and iterate on a final Python script. Each expert completed ten randomly
sampled tasks—five Operator-level and five DAG-level. We measured both the TSR and the average
wall-clock time from start to finish.

Table 9] presents the full results of this comparison.

Table 9: Performance of Human Experts vs. DataGovAgent on GovBench Subset.

Method Task TSRy V& Time
(min)|
Human Experts + GPT-5 Op 84.00 14.2
Human Experts + GPT-5 DAG 25.00 24.5
DataGovAgent (GPT-5) Op 64.00 3.5
DataGovAgent (GPT-5) DAG 60.00 4.7

Our study reveals complementary strengths rather than uniform dominance: the agent excels on
complex DAG-Ievel tasks, whereas humans achieve higher accuracy on operator-level tasks. Con-
cretely:

* Operator-level tasks. While human experts achieved a higher TSR, DATAGOVAGENT was
approximately 4.1 x faster on average (3.5 min vs. 14.2 min).

* DAG-level tasks. For more complex tasks, the agent’s advantage was twofold: it achieved
an accuracy 35 percentage points higher than the experts and reduced completion time by
roughly 81% (4.7 min vs. 24.5 min).

These findings suggest that, for well-specified data-governance workloads, a fully automated LLM-
centric agent can translate the reasoning and coding capabilities of GPT-5 into effective end-to-end
execution, particularly on complex DAG workflows. Human expertise remains crucial for open-
ended problem formulation, strategic oversight, and final validation; our results show that routine
to moderately complex data-processing tasks can be accomplished substantially faster by the agent,
with higher accuracy on DAG-level tasks and lower accuracy on operator-level tasks relative to
humans.
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A.10 METRICS

Table 10: Evaluation Metrics for GovBench

Metric

Abbr.

Calculation

Description

Average Task Score

Task Success Rate

Code Runnable Rate

Avg. Score

Average Debug Iterations

Avg. Tokens

Total Cost

Generation Time

Execution Time

ATS

TSR

CRR

ADI

100 ,
Vt Zi:l SZ

chc
N

=

run

N, gen

Savg

1 N,
AT Zi:l D;

Ta'ug

Tgen

Texec

Represents the ATS across all tasks, reflect-
ing the overall quality of the generated solu-
tions. A higher ATS indicates better overall
performance.

The proportion of tasks that fully achieve the
“business objective.” A task is deemed suc-
cessful if its evaluation score is 1.0. This is
the core metric for measuring task comple-
tion quality.

The proportion of generated code scripts
that can be executed directly without any
uncaught errors. This measures the basic
usability of the code.

The average value of the ATS, TSR, and
CRR metrics. This metric provides an over-
all score by averaging these three indicators.

The average number of “generate — exe-
cute — evaluate” cycles required for a task
to succeed. This measures the debugging ef-
ficiency of the agent framework.

The average number of tokens consumed to
complete each individual task. This metric
evaluates the token efficiency for every sin-
gle task.

The monetary cost required to complete each
individual task, calculated based on openai
LLM API pricing. This metric evaluates the
economic efficiency for every single task.

Total wall-clock time (in seconds) consumed
by the LLM to generate all task code solu-
tions. This reflects the raw code synthesis
efficiency.

Total wall-clock time (in seconds) consumed
by running all generated task code solutions.
This reflects the runtime efficiency of the
produced code.

Where: V; is the total number of tasks; S; is the evaluation score for task 7; Ny is the number of successful
tasks; Vg is the number of runnable scripts; N, is the total number of generated scripts; D; is the number
of debug iterations for task ¢; C; is the monetary cost for each individual task; T, is the total generation time
across all tasks; and Tex is the total execution time across all tasks. Notes: ATS = 100 x mean per-task score
(each task score € [0,1]). TSR/CRR are proportions reported as percentages. Higher is better unless noted.
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A.11 PROMPTS
Here’s some prompt templates used in Benchmark Building.

Prompt 1: Prompt for building DAG tasks.

### Task Description

You are given a sequence of task descriptions. Each task description
defines a part of a complex task or operation. The task descriptions
are part of a larger, multi-step process that will form a
comprehensive, integrated task. Your objective is to generate a new,
high-level task objective that combines the individual task
descriptions into a coherent and complex task. This task must
challenge the model's ability to handle intricate data governance
problems.

### Instructions

1. Combine the given task descriptions into a single, cohesive task that
requires handling multiple steps.

2. Incorporate multiple aspects of the given task descriptions into the
final task description to present a significant challenge to data
governance.

### Task Descriptions
- {task_1}
- {task_2}
- {task_3}

### Generated Comprehensive Task
{generated_task}

Prompt 2: Prompt for reverse prompt.

### Original Task Objective
You are given the following task objective. Your goal is to achieve the
stated objective using the provided data examples.

### Task Description
{original_task_description}

### Reversed Task Objective
Now, your task is to generate a reversed task objective based on the
provided task description. The reversed objective should shift the
focus from achieving the task goal to intentionally introducing noise
into the data. Instead of performing actions such as classification,
imputation, or any other task goal, the goal is to create challenges
or distortions in the data. For example, if the original task
involves classification, the reversed task should focus on
introducing noise such as mislabeling or irrelevant features in the
data.

### Data Examples
Here are the provided data examples related to the original task:

- {example_1}
- {example_2}
- {example_3}

### Generated Reversed Task Objective
{generated_reversed_task}

Prompt 3: Prompt for noisy injection.
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### Reversed Task Objective
You are given the following reversed task objective. This objective
describes how to intentionally introduce noise into the dataset.

{reversed_task_objective}

### Data Examples
Here are some sample data records that illustrate the structure and
format of the dataset:

- {example_1}
- {example_2}
- {example_3}

### Instruction

Write executable Python code that introduces the noise into the dataset
as described in the reversed task objective.

The code should:

1. Take as input a dataset file (format consistent with the given
examples) .

2. Implement the noise generation specified in the reversed task
objective.

3. Output the modified dataset to required file path in the same format
as the input.

4. Ensure reproducibility (e.g., by setting a random seed if randomness
is used).

### Expected Output
Provide only the Python code that implements the noise injection process.
The code must be complete and runnable.

Prompt 4: Prompt for evaluation scripts generation.

##4# Task Description
You are given a data governance task description:

{task_description}

### Data Samples
Here are some representative ground truth (expected) data samples:

{gt_samples}
Here are some representative processed data samples:
{processed_samples}

### Instruction
Write a Python evaluation script that compares the processed dataset
against the ground truth dataset and outputs a quantitative score
between 0 and 1, reflecting the models effectiveness in completing
the task.

The evaluation should:

1. Load the ground truth and processed datasets from file paths provided
as arguments.

2. Use evaluation metrics appropriate for the task category:
- Filtering: F1 Score (balance of precision and recall in filtering
unwanted entries).
- Refinement: Accuracy (correctness of standardized or transformed
data fields).
— Imputation: Completion Rate / Imputation Accuracy (ability to
correctly fill in missing values).
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— Deduplication & Consistency: Duplicate Reduction Rate or Consistency
Score (removal of duplicates or ensuring consistent values).

- Data Integration: Integration Accuracy (accuracy of merging
heterogeneous datasets, resolving conflicts).
- Classification & Labeling: Accuracy, Precision, Recall, F1 Score (
standard classification metrics).

3. Output the evaluation result as a dictionary with the key “"eval_score
"* and the corresponding score (float between 0 and 1).

4. Print the dictionary as the final output.

### Expected Output

Provide only the Python code for the evaluation script.

The code should be complete and runnable, following this template
structure:

" “python

def evaluate (processed_path) :
expected_path = get_gt ()
expected = load_gt (expected_path)
processed = load_processed(processed_path)

# implement task-specific evaluation logic here

result = {"eval_score": <score>}
print (result)

To enhance reproducibility and review transparency, this appendix discloses several prompts used in
our experiments (including intent identification, pipeline assembly, operator retrieval, and code de-
bugging). We emphasize that these prompts only support a subset of “minimum viable” functionality
and are not sufficient on their own to constitute the full contract-driven Planner—Executor—Evaluator

framework described in the main paper.

Prompt 5] present the detailed prompts for Planner.

Prompt 5: Prompt for Intent Understanding.

[Role] You are an intent analysis robot. You need to identify the user's
explicit intent from the conversation and analyze the user's data
processing requirements based on the conversation content.

[Task]

You need to determine whether the user's current requirement is for a
single operator or a complete pipeline, and set is_single_operator (
true only if a single operator is required, otherwise false) and
is_pipeline (true if pipeline processing is required, otherwise false
) accordingly.

You need to summarize the user's processing requirements in detail based
on the conversation history, and always provide a natural language
response as the value of assistant_reply.

[Input Content] Conversation history: {history} Current user request: {
target}

[Output Rules]

Reply only in the specified JSON format.

Do not output anything except JSON.

[Example]

{

"is_single_operator": false,

"is_pipeline": true,

"assistant_reply": "I will recommend a suitable data processing pipeline
based on your needs.",

"reason": "The user explicitly requested a recommendation, wants to
process data related to mathematics, and hopes to generate pseudo-
answers.",
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"purpose": "According to the conversation history, the user does not need
a deduplication operator, hopes to generate pseudo-answers, and
wants to keep the number of operators at 3."

Prompt[6] Prompt for the agent in recommend Module.

Prompt 6: Prompt for the agent in recommend Module.

[ROLE]
You are a data governance workflow recommendation system. Based on the
provided context, automatically select the appropriate operator nodes
and assemble them into a complete data processing pipeline.

[INPUT]

You will receive the following information:

- Workflow requirements to be satisfied:
{workflow_bg}

- Sample data information:
{local_tool_for_sample}

- List of available operators:
{operators}

[OUTPUT RULES]

1. Select suitable operator nodes from the available operators and
assemble them into a complete processing pipeline. Output in the
following JSON format:

{"edges": [{"source":nodel, "target":nodel}, {"source":nodel, "target":
node2}]}

2. Provide your reasoning for the selection in the following JSON format:
{"reason": "Please explain your reasoning in detail here. For example:

The pipeline includes multi-level data preprocessing and quality
filtering, performing language filtering, format standardization,
noise removal, privacy protection, length and structure optimization,

and symbol and special character handling sequentially to ensure the

text content is standardized, rich, and compliant."}
3. Verify that the constructed pipeline satisfies all requirements,
especially {workflow_bg}.
4. Check the edges field to ensure all nodes are valid node fields from
the available operators.
5. For each operator, specify the conditions under which it can continue
execution, using the following format:
"nodel": {
"Score": { "operator": ">", "value": 0.5 }

Prompt 7] Prompt for the agent in op lib Module.

Prompt 7: Prompt for the agent in op lib Module.

[ROLE]
You are an expert in data operator retrieval.

[TASK]
Based on the provided operator content {get_operator_content}, user
requirement {target}, and operator names {op_name}, identify the top

{top-k} most similar operator names from the operator library and
provide your reasoning.

[INPUT FORMAT]

The input includes:

— Operator content (get_operator_content)
— User requirement (target)

— Operator names (op_name)
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[OUTPUT RULES]

1. Strictly return the content in the JSON structure shown below. Do not
include any extra content, comments, or additional fields.

2. You must return exactly {top-k} operator names in all cases.

JSON output example:
{

"match_operators": [
"OperatorNamel",
"OperatorName2",
"OperatorName3",
"OperatorName4d"

1,

"reason": "xxx"

Prompt 8] Prompt for the agent in write op Module.

Prompt 8: Prompt for the agent in write op Module.

[ROLE]
You are an expert in data operator development.

[TASK]
Refer to the example operator {example} and write a new operator based on
the requirements described in {target}.

[INPUT FORMAT]

Input includes:

- Example operator (example)
- Target description (target)

[OUTPUT FORMAT]
Please output in the following JSON structure:
{

"code": "Complete source code of the operator",
"desc": "Brief description of the operators function and its input/
output"”
}
[RULES]

1. Carefully analyze and understand the structure and coding style of the

example operator.

2. Write operator code that fully meets the functional requirements of {
target} and can run independently. Do not include any extra code or
comments.

3. Only output the two fields 'code' (the complete operator code as a
string) and 'desc' (a concise explanation of the operators
function and its input/output), strictly following the JSON format.

4. If the operator requires using an LLM, the __init___ method must
include the 1llm_serving field.

5. All output files generated by the operator must be in the same
directory as the current file (os.path.dirname(__file_ )).

Prompt[9] Prompt for the agent in debug Module.

Prompt 9: Prompt for the agent in debug Module.

[ROLE]
You are an expert in code debugging and correction.

[TASK]

Given the original code, error message, requirement, JSON data fields,
and reference code, minimally modify the original code to fix the
error. Ensure your corrections are precise and focus on issues such
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as key alignment or import errors. Output the corrected code and your
reason for modification strictly in JSON format, and follow all
specified requirements.

[INPUT]

You will receive the following information:

— The original code: {code}

— The error message: {error}

— The requirement: {target}

The JSON data fields processed in the target code: {data_keys}
— Reference code retrieved: {cls_detail code}

[OUTPUT RULES]

1. Strictly return your response in JSON format, including: the complete
corrected code, your reason for the modification, and any additional
files that may be needed to better resolve the error. For example: {"
code": xxx, "reason": xxx}

2. Ensure that the operator output file is in the same directory as the
currently executing file (os.path.dirname (file)).

3. Do not include any extra keys, explanations, comments, or markdown
syntax.

4. The returned code must include the if _ name_ == '_ main_ ': block,
so that the file can be run independently.

5. The output must be in JSON format!!!!

6. You must use the files specified in <INPUT_FILES>{INPUT_FILES}</
INPUT_FILES> as input.
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A.12 LLM USAGE STATEMENT

In this research, large language models (LLMs) were used to assist in certain stages, as detailed
below:

1. During the writing process, GPT-5 was utilized for language polishing and grammar cor-
rection.

2. LLMs were used to assist in code generation and the development of visualization scripts.

3. All research ideas, experimental designs, data analyses, and conclusions were indepen-
dently conceived and determined by the authors.

44



	Introduction
	Related Work
	Data Science Benchmarks and LLM Evaluation
	Data Science Agents and Automation

	GovBench: A New Benchmark for Data Governance Automation
	Real-world Data Source
	Hierarchical Task Objective Design
	Targeted Noise Injection
	Task-Specific Evaluation

	DataGovAgent: An End-to-End NL2GovDAG Framework for Data Governance
	Architectural Overview
	Specialized Agent Roles

	Experimental Setup
	Benchmark
	Evaluation Metrics
	Baseline

	Benchmark Results
	Performance of Single-Model Baselines
	Performance of Agent Framework Baselines
	Comparison with Human Baseline

	Conclusion
	Appendix
	Benchmark Comparison Table
	Algorithm for derive Op-level task sequences
	Benchmark Statistics
	Tasks Eval
	Benchmark Examples
	Agent roles and implementation details
	Details of Agent Framework Baselines
	Derived Metrics and Formulas
	Performance Visualizations
	Mechanism Attribution and Ablations

	Ablation Study
	Details of Human Baseline
	Metrics
	Prompts
	LLM Usage Statement


