
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GovBench: FROM NATURAL LANGUAGE TO EXE-
CUTABLE PIPELINES, A NEW BENCHMARK FOR DATA
GOVERNANCE AUTOMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Data governance is essential for scaling modern AI development. To automate
data governance, numerous tools and models have emerged that translate user
intent into executable governance code. However, the effectiveness of existing
tools and models is largely unverified. The evaluation is severely hampered by
the lack of a realistic, standardized, and quantifiable benchmark. This critical
gap presents a significant obstacle to systematically evaluating utility and im-
pedes further innovation in the field. To bridge this gap, we introduce Gov-
Bench, a benchmark featuring a diverse set of tasks with targeted noise to sim-
ulate real-world scenarios and standardized scoring scripts for reproducible eval-
uation. Our analysis reveals that current data governance tools and models strug-
gle with complex, multi-step workflows and lack robust error-correction mecha-
nisms. We therefore propose DataGovAgent, a novel framework for end-to-end
data governance utilizing a Planner-Executor-Evaluator architecture. This design
incorporates contract-guided planning, retrieval from a reliable operator library,
and sandboxed meta-cognitive debugging. Experimental results validate our ap-
proach: DataGovAgent significantly boosts the Average Task Score (ATS) on
complex Directed Acyclic Graph (DAG) tasks from 39.7 to 54.9 and reduces de-
bugging iterations by over 77.9% compared to general-purpose agent frameworks,
a step toward more reliable automation of data governance. Code is available at
https://anonymous.4open.science/r/GovBench-F6C6.

1 INTRODUCTION

Data fuels analytics and machine intelligence, yet the work required to make data trustworthy re-
mains stubbornly manual. Studies report (Ahmadi et al., 2024) that practitioners spend the majority
of their time cleaning, standardizing, integrating, and validating data rather than modeling it, turning
skilled analysts into “data janitors” and creating a persistent bottleneck in the data value chain (Hos-
seinzadeh et al., 2023). Code-centric Extract, Transform, Load (ETL) pipelines and handwritten
SQL/Python are powerful but brittle in the face of schema drift and data heterogeneity (Yang et al.,
2025; Dinesh & Devi, 2024), costly to maintain, and slow to adapt to evolving business rules.

Large language models (LLMs) promise an alternative: specify governance intent in natural lan-
guage and synthesize the required transformations automatically (Pahune & Chandrasekharan, 2025;
Park et al., 2025a). However, progress is critically hampered by a significant evaluation gap. Ex-
isting benchmarks for automated data science often emphasize snippet-level coding or high-level
analytics, failing to capture the unique challenges of data governance. They lack realistic, targeted
noise, do not assess end-to-end workflows with business-grounded correctness, and cannot measure
performance on complex, multi-step DAG pipelines.

To address this evaluation gap, we introduce GovBench, a hierarchically designed benchmark
for natural-language-driven data governance. It contains 150 real-world tasks (100 operator-
level; 50 DAG-level) covering six scenarios: Filtering, Refinement, Imputation, Deduplication &
Consistency, Data Integration, and Classification & Labeling. GovBench’s key innovations in-
clude: 1) a novel “reversed-objective” methodology—that inverts the original task goal to pro-
grammatically generate task-specific noise—to synthesize realistic and measurable noise; 2) a

1

https://anonymous.4open.science/r/GovBench-F6C6

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

longest-common-subsequence–aware (LCS-aware) sequencing algorithm that constructs composi-
tionally deep DAG tasks with minimal pairwise overlap; and 3) auto-generated, task-specific evalu-
ation scripts that provide normalized scores and standardized metrics—Code Runnable Rate (CRR),
Task Success Rate (TSR), and Average Task Score (ATS)—ensuring a principled and reproducible
assessment.

However, a robust benchmark is only half of the solution. When evaluated on GovBench, we find
that even SOTA single-model (OpenAI, 2025; DeepSeek-AI & other authors, 2024; Hurst & other
authors, 2024) baselines and general-purpose agent frameworks (Qian et al., 2024; Li et al., 2023)
exhibit a significant performance gap. They struggle to decompose complex instructions, generate
logically correct multi-step pipelines, and recover from errors, resulting in low task success rates.
This reveals their architectural limitations: a lack of robust planning, insufficient grounding in reli-
able practices, and the absence of effective, structured debugging mechanisms.

To bridge this performance gap, we propose DataGovAgent, an end-to-end natural language to gov-
ernance DAG (NL2GovDAG) framework specifically designed for the complexities of data gover-
nance. It translates natural language into verified governance DAGs through an Agentic Assembly
Line of three specialized roles (Xi et al., 2025; Park et al., 2025b). Its core strengths are: 1) a Plan-
ner that employs contract-guided planning to ground user intent and propose a high-level DAG of
abstract operators with machine-checkable guarantees; 2) an Executor that uses retrieval-augmented
generation over a curated library (DCAI, 2025) of governance tools to reduce hallucination and
improve code quality; and 3) an Evaluator that drives a meta-cognitive debugging loop in a sand-
box, using contract violations to generate structured feedback until the code is both runnable and
functionally correct.

On GovBench-150, DataGovAgent materially improves over strong single-turn baselines and com-
petitive agent frameworks. With GPT-5 (OpenAI, 2025), it raises TSR from 49 to 64 on operator-
level tasks (+15 pp) and from 46 to 60 on DAG-level tasks (+14 pp). Compared to the strongest
agent baselines, ChatDev (Qian et al., 2024) , it lifts operator-level TSR from 43 to 64 (+21 pp) and,
on DAG-level tasks, attains higher ATS (54.91 vs. 39.67, +15.24 points) and higher average score
(mean of ATS, TSR, and CRR, 62.97 vs. 61.89, +1.08 points) while requiring 11.60 fewer debug
iterations (Average Debug Iterations (ADI) 3.29 vs. 14.89).

In summary, our contributions are twofold:

• We introduce GovBench, the first hierarchical benchmark for data governance automation,
which features 150 realistic tasks based on real-world sources, injected noise and a rig-
orous, multi-metric evaluation protocol to address the critical gap in assessing end-to-end
pipeline correctness.

• We propose DataGovAgent, that significantly improves task success by translating natu-
ral language into verified governance pipelines through a unique combination of contract-
guided planning, retrieval-augmented code generation, and meta-cognitive debugging.

2 RELATED WORK

2.1 DATA SCIENCE BENCHMARKS AND LLM EVALUATION

The rapid evolution of LLMs has catalyzed comprehensive evaluation frameworks for automated
data science capabilities. Early benchmarks like DS-1000 (Lai et al., 2023) focused on snippet-level
code generation for data science libraries, extended by DA-Code (Huang et al., 2024) for task-
level evaluation in interactive environments. Recently, DataSciBench (Zhang et al., 2025), which
provides systematic LLM agent evaluation with 25 multidimensional metrics across complete data
science workflows, and ScienceAgentBench (Chen et al., 2025b), which targets rigorous assessment
for data-driven scientific discovery, have been proposed (see Appendix A.1 for detailed benchmark
comparison).

Contemporary evaluation has shifted toward sophisticated multidimensional assessment. Hu-
manEval Pro (Yu et al., 2025) introduces self-invoking code generation requiring progressive rea-
soning capabilities, while mHumanEval (Raihan et al., 2025) extends multilingual code evaluation.
LiveBench (White et al., 2025) addresses contamination issues in LLM evaluation with challenging,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(I) Real-world Data Source (IV) Task-Specific Evaluation(III) Targeted Noise Injection

(II) Hierarchical Task Objective Design

Table
Accusition

Column
Selection

Data Sources

CSV

JSONL

Filtering Refinement Imputation

Deduplicate Integration Classification
& Labeling

100
Op-level

tasks

LCS-Aware Algorithm

50 DAG
tasks

topk

"remove all URLs from text
field. Output new JSONL file..."

"randomly add some URLs to
text field. Output new JSONL

files..."

for d in data:
 d['text'] = insert_url(d['text'])
 ...

1) Task Objective

2) Reversed Prompt

3) Code for Noise Injection

{"id": "1", "text": "Machine
learning
http://example.com is
transforming many
industries."}
...

Human Check

1) Op-level Tasks

Prompt template:
Generate an evaluation script to
assess the performance of the input
data against {task_description},
producing a score between 0 and 1.
Here's the data samples from the
ground truth: {gt_samples} and raw
data: {raw_samples}. For filtering
tasks...

Op-eval
script

eval_score:
T0001:0.20
T0002:0.24
...
(in descending
order)

2) DAG-level Tasks

S(DAG)=ΣW·S(Op)

3) Consistency Check

if not Score(gt)=1.0
and Score(raw)<0.3:
 Redo (III) (IV)

Figure 1: Illustration of the semi-automated pipeline designed for building GovBench, including
real-world source data curation, hierarchical task objective design, targeted noise injection, and
task-specific evaluation.

dynamic benchmarks (see Appendix A). These frameworks demonstrate significant performance
variations, with SOTA models achieving 96.2% on HumanEval but declining to 76.2% on complex
tasks.

2.2 DATA SCIENCE AGENTS AND AUTOMATION

Data science agents have evolved from simple code generators to comprehensive autonomous sys-
tems. Data Interpreter (Hong et al., 2025) employs hierarchical graph modeling for dynamic problem
decomposition, while recent developments include AutoMind (Ou et al., 2025), offering adaptive
knowledgeable agents for automated data science, and AutoML-Agent (Trirat et al., 2025), provid-
ing multi-agent frameworks for full-pipeline AutoML.

Current research emphasizes end-to-end workflow automation with minimal human interven-
tion (Sun et al., 2024). TheAgentCompany (Xu et al., 2025) benchmarks LLM agents on consequen-
tial real-world tasks, while comprehensive surveys (Baek et al., 2025; Wang et al., 2024) highlight
the transition from automation to autonomy in scientific discovery. These systems integrate plan-
ning, reasoning, reflection, and multi-agent collaboration capabilities. However, specialized data
governance benchmarks remain limited. This gap highlights the necessity for benchmarks like our
proposed GovBench.

Our work contributes through efficient data annotation pipelines generating customized evaluation
scripts with standardized metrics including Code Runnable Rate (CRR), Task Success Rate (TSR),
and Average Task Score (ATS), addressing gaps in governance-focused evaluation methodologies.

3 GovBench: A NEW BENCHMARK FOR DATA GOVERNANCE AUTOMATION

GovBench is a hierarchically designed data science benchmark dedicated to evaluating models’ ca-
pabilities in performing data governance tasks. It comprises 150 real-world data governance prob-
lems, including 100 operator-level tasks and 50 DAG-level tasks. For each carefully curated NL task
description, we synthesized ground-truth data and noisy data, accompanied by customized evalua-
tion scripts to ensure precise and normalized scoring. GovBench comprehensively covers common
scenarios encountered in real-life data governance workflows, including filtering, refinement, impu-
tation, deduplication & consistency, data integration, and classification & labeling.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Overview of Benchmark Creation. To construct a hierarchical and realistic evaluation set for
LLM-based data governance agents, we design a semi-automated pipeline comprising four stages:
(1) data collection and column selection, (2) task objective definition and DAG construction via an
LCS-aware algorithm, (3) noise injection, and (4) generation of task-specific evaluation scripts (see
Figure 1; details in Sections 3.1–3.4). Statistics and examples are illustrated in Figure 4.

3.1 REAL-WORLD DATA SOURCE

To ensure comprehensive coverage of real-world scenarios, we curated 30 tables sourced
from (Statista, 2025), spanning diverse domains such as tourism, eco-commerce, sports, and others.
We retained only task-relevant columns (e.g., the date field for format normalization tasks) and
necessary confounding columns (such as birth date, which agents are not required to modify),
thus maintaining data integrity and minimizing extraneous noise. Furthermore, to enhance prob-
lem diversity and facilitate flexible processing, the original CSV files were converted into JSONL
format. These carefully selected and preprocessed datasets serve as the basis for synthesizing task
descriptions, as detailed in Section 3.4.

3.2 HIERARCHICAL TASK OBJECTIVE DESIGN

GovBench comprises 100 Operator-level tasks and 50 DAG-level tasks. For Operator-level tasks, we
designed six scenarios commonly encountered in real-world data governance, including filtering, re-
finement, imputation, deduplication &consistency, data integration, and classification/labeling. All
tasks were carefully crafted by experienced data scientists to ensure clarity and fluency in their de-
scriptions. The distribution of tasks in these scenarios is illustrated in Figure 4. For DAG-level tasks,
we first rank the operator-level tasks by averaging the scores of GPT-5, DeepSeek-V3 (DeepSeek-AI
& other authors, 2024), and the human baseline, thereby mitigating the bias introduced by relying
solely on a single closed-source model, an open-source model, or human subjectivity. We then
select 50 worst-performing Operator-level tasks as seed cases while treating the remaining tasks
as candidates. We then introduce a simple yet efficient LCS-aware algorithm (see A.2) that takes
existing tasks as input and generates task sequences. These sequences will be used to derive new
DAG-level tasks objectives. This algorithm extends the required chain of thought while ensuring the
complexity and diversity of DAG-level tasks by constraining different DAG tasks to share as few
common sub-paths as possible, thereby presenting a substantial challenge to the model’s capacity to
handle intricate data governance problems. Given these sequences, we employ the prompt template
provided in the Prompt 1 to construct new natural language task objectives.

3.3 TARGETED NOISE INJECTION

The process of introducing noise into the dataset is divided into two distinct steps (Zhang et al.,
2023; Akbiyik, 2023; Sousa et al., 2024). This method allows us to generate noisy data that will
serve as a robust test set for evaluating the model’s performance under imperfect conditions.

Generate a Reversed Task Objective. The first step involves generating a reversed task objective
based on the provided data examples and the original task objective. This reversed objective shifts
the focus from achieving the task goal (e.g., classification, imputation) to deliberately introducing
noise into the data. For example, if the original task involves classifying data, the reversed task
objective will focus on how to introduce noise such as mislabeling or irrelevant features. See the
prompt template in Prompt 2.

Generate Code to Introduce Noise. In the second step, the model uses the reversed task objective,
along with the provided data examples, to generate the actual code that will introduce the noise into
the data. This code will implement the instructions described in the reversed objective—whether
that involves adding missing values, creating duplicates, or generating irrelevant features. The goal
is to transform the data in a way that makes it imperfect, allowing the model to be tested against
noisy inputs. See the prompt template in Prompt 3.

At last, we manually check every data file, ensuring no extra noise is introduced because of model
hallucination. This two-step approach allows for a targeted and methodical introduction of noise,
ensuring that the noise is task-specific and realistic, which helps in robustly evaluating the model’s
performance.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

GT Data

Agentic Assembly Line

Raw Data

DataGov Task

Target

Sequentially perform the following
steps: remove HTML tags from text
and decode entities; remove LaTeX

tags/control sequences; replace
English abbreviations with their full
forms (word boundaries, preserve
casing style); remove emojis; filter
out records containing blacklisted

words; finally, deduplicate based on
line fingerprints (SHA-1 of key-value

pairs sorted by key), keeping the
record with the smallest id for

duplicates.

(I) Tasks Meta Info

(a).Intent
Understanding

{
 "is_single_operator": false,
 "is_pipeline": true,
 "operators": [
 "Remove HTML tags and decode
entities",
 "Remove LaTeX tags/control sequences",
 "Expand English abbreviations",
 "Remove emojis",
 "Filter by blacklist",
 "Deduplicate by fingerprint"
],
 "reason": "Each step per......."
}

(b).Contracts-Guided
Planning

Remove HTML Remove Latex Expand English
abbreviations

Remove emojisblacklisted
 words

Deduplicate

[PRE]

[POST]

[PRE]

[POST]

[PRE]

[POST]

[PRE]

[POST]

(c).Pepeline
Recommendation

(II) Planner (III) Executor (IV) Evaluator

(a).Operator Retrieval

Op
nodes

Op nodes

Op
Library

Op’s name

(b).Augmented
Generation

Sandbox Env

Structured
Feedback

Contract OK?

(a).Sandboxed Execution

(b).Iterative Debugging with
Structured Feedback

......

def filter_csv(input_file,
output_file, filter_func):
 with open(input_file,
'r', encoding='utf-8') as
fin, \

def deduplicate(lst):
 seen = set()
 result = []
 for item in lst:
 if item not in seen:

def deduplicate_dicts(lst,
key):
 seen = set()
 result = []
 for item in lst:

def unique_and_filter(rows,
unique_key, filter_func):
 seen = set()
 result = []
 for row in rows:

def
deduplicate_keep_last(lst):
 seen = set()
 result = []

def dedup_by_keys(lst,
keys):
 seen = set()
 result = []
 for item in lst:
 identifier =
tuple(item[k] for k in keys)

Figure 2: An overview of the Agentic Assembly Line, which progresses from intent understanding
to contract-guided planning, followed by operator execution and sandboxed evaluation.

3.4 TASK-SPECIFIC EVALUATION

To evaluate the model’s performance in handling noisy data, we design a prompt template to generate
task-specific evaluation scripts. See the prompt template in Prompt 4. Each task’s script compares
the original dataset with the processed dataset and outputs a quantitative score between 0 and 1,
reflecting the model’s effectiveness in completing the task. Evaluation metrics are adjusted based
on the specific nature of the task to ensure a precise assessment; a detailed breakdown for each
Operator-level task category is provided in Table 7 in the Appendix A.4 .

For DAG tasks, the final score is calculated based on the weighted average of scores from the
operator-level tasks. We still use the average scores of GPT-5, DeepSeek-V3 (DeepSeek-AI & other
authors, 2024), and the human baseline to calculate the weight, to mitigate the bias of any single
source. The weights are determined by the following formula:

wi =
1

1 + α · scorei
(1)

Where wi is the weight of task i, α is a parameter that adjusts the influence of lower task scores, and
scorei is the average performance score of three solutions for each individual task.

Consistency Check After preparing the evaluation scripts, we run them on both the ground truth
data and the input data. The ground truth should yield a score of 1.0, while the raw data should score
below 0.3. If these conditions are not met, we manually adjust either the raw data or the scripts to
ensure compliance with the standard.

4 DataGovAgent: AN END-TO-END NL2GOVDAG FRAMEWORK FOR DATA
GOVERNANCE

To address the challenges of automating data governance, we introduce DataGovAgent, a novel
multi-agent framework designed to interpret natural language instructions and autonomously or-
chestrate a DAG of data governance operations (Guo et al., 2024; Tran et al., 2025). The entire
process, which we term NL2GovDAG, is operationalized through what we call an Agentic Assem-
bly Line—a deterministic multi-agent workflow where specialized agents collaborate sequentially
(Planner → Executor → Evaluator). Each step is governed by formal governance contracts, which
are (pre, post) specifications that define input requirements and output guarantees for each opera-
tion. When execution fails, the system employs meta-cognitive debugging, an iterative refinement

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

process where agents reflect on their execution failures and generate targeted fixes based on contract
violations and error analysis.

4.1 ARCHITECTURAL OVERVIEW

DataGovAgent employs an Agentic Assembly Line architecture (see Figure 2), enabling systematic
decomposition and execution of data governance tasks through multi-agent collaboration.

4.2 SPECIALIZED AGENT ROLES

Our framework is instantiated by three core agent roles—the Planner, Executor, and Evaluator (Xu
et al., 2024; Chen et al., 2025a). Their functions are orchestrated within a deterministic task chain,
ensuring a structured progression from high-level intent to a verified, executable output.

Anchored in the data schema and representative samples, the Planner uses few-shot prompting to
align user intent with the actual data and to assess feasibility; it then extracts machine-checkable
governance contracts that formalize each operator as a (pre, post) tuple (Liu et al., 2024; Godbo-
ley & Krishna, 2025). Under these contracts, the Planner synthesizes an initial DAG of abstract
operators such that the post-condition of each step satisfies the pre-condition of the next; when a
constraint is not met, it inserts minimal repairs (for example, type casting or missing-value imputa-
tion) to ensure the pipeline is topologically coherent and executable.

For each DAG node, the Executor employs retrieval-augmented generation (Parvez et al., 2021;
Trirat et al., 2025): it first retrieves the most relevant, validated operators from a curated library
(DCAI, 2025) and then injects their descriptions and snippets as dynamic in-context exemplars to
guide code synthesis, yielding Python implementations that are tailored to the task while adhering
to established best practices, thereby reducing hallucinations and improving reuse.

The Evaluator executes the generated code in a restricted sandbox; upon any failure or noncompli-
ance, it captures the offending code region, full error messages, and stack traces, and ties them to the
violated contracts to produce targeted revision advice. This meta-cognitive feedback drives a guided
correction loop until each operator is both runnable and contract-compliant, providing progressive
validation on both construction and execution paths of the GovDAG. Implementation details and
prompt templates are provided in Appendix A.6.

5 EXPERIMENTAL SETUP

To comprehensively evaluate the performance of DataGovAgent, we conducted systematic exper-
iments on the newly constructed GovBench benchmark, covering experimental setup, evaluation
metrics, baseline models, and results.

5.1 BENCHMARK

All experiments were conducted on the GovBench-150 benchmark, which consists of 150 real-
world data governance tasks designed to reflect the practical challenges faced by data scientists.
Each single task provides a natural language description, the necessary raw dataset (s), and a custom
evaluation script (eval.py) that objectively assesses output correctness with a normalized score in
the range [0, 1].

Tasks in GovBench-150 are categorized as either Operator-level—fine-grained tasks solvable with
a single operation, such as filtering, format standardization, or simple imputation—or DAG-level
tasks, which require coordinating multiple operations in a directed acyclic graph to accomplish
complex, multi-step data cleaning, transformation, and integration.

5.2 EVALUATION METRICS

We employ the multi-dimensional metrics as shown in Table 10 to evaluate the performance of
different models and frameworks.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance of Open-Source Models on GovBench (Operator-Level)

Model ATS↑ TSR↑ CRR↑ Avg. Score↑ Avg. Tokens↓ Generation
Time (s)↓

Execution
Time (s)↓

Qwen3-235b-a22b 34.73 46.00 69.00 49.91 950.68 1,335.47 519.87
Qwen2.5-coder 27.99 38.00 58.00 41.33 589.57 1,039.39 81.26
Qwen3-coder 38.74 48.00 67.00 51.25 732.50 185.07 122.60
DeepSeek-V3 35.68 47.00 74.00 52.23 680.51 1,663.45 572.13
Llama-3-70B 26.87 35.00 49.00 36.96 536.03 140.12 72.48
Llama-4-scout 14.88 23.00 37.00 24.96 702.50 618.06 151.65
Mistral-7B 10.41 15.00 27.00 17.47 715.78 525.99 87.74
Gemma-3-27B 29.62 43.00 76.00 49.54 1,425.84 4,042.13 60.92
Phi4 23.24 32.00 42.00 32.41 982.37 1,642.61 98.73

Table 2: Performance of Closed-Source Models on GovBench (Operator-Level)

Model ATS↑ TSR↑ CRR↑ Avg. Score↑ Avg. Tokens↓ Generation
Time (s)↓

Execution
Time (s)↓

GPT-5 40.98 49.00 81.00 56.99 3,706.21 3,069.44 598.73
GPT-4o 32.04 41.00 56.00 43.01 555.26 431.85 29.72
o4-mini 41.47 49.00 68.00 52.82 1,510.68 1,127.16 167.28
o1 32.50 41.00 74.00 49.17 1,908.54 3,916.70 35.55
o3 34.48 45.00 63.00 47.49 1,415.08 1,291.82 35.16
Claude-4-sonnet 36.75 46.00 85.00 55.92 1,672.91 3,149.83 229.70
Claude-4-opus 38.30 47.00 79.00 54.77 1,390.04 3,298.22 158.85
Gemini-2.5-flash 40.26 48.00 80.00 56.09 5,234.30 5,727.56 355.65
Grok-3 35.41 44.00 71.00 50.14 688.51 811.22 685.25
Grok-4 36.90 44.00 67.00 49.30 4,575.07 7,700.30 406.62
Kimi-K2-instruct 39.52 49.00 70.00 52.84 721.16 864.21 652.62

5.3 BASELINE

For a comprehensive comparison, we define three categories of baselines:

Single-Model Baselines: In this setting, the model receives the task description and must gener-
ate a complete solution in a single turn, without any multi-agent collaboration or self-debugging
mechanisms. We evaluate mainstream open- and closed-source large language models.

Agent Framework Baselines: We select two representative multi-agent development frame-
works—ChatDev (Qian et al., 2024) and CAMEL (Li et al., 2023)—adapt them to data-governance
tasks, and use a strong closed-source model (e.g., GPT-5, GPT-4o) as the core engine to assess how
existing agent frameworks perform on GovBench.

Human Baseline: We recruited five data science experts, each with over five years of experience
in data engineering and analysis. To ensure a fair comparison, the experts were given unrestricted
access to GPT-5 through a chat interface. They could ask any questions or request code suggestions
as needed. However, they were required to manually synthesize, test, and refine the final Python
solutions themselves.

6 BENCHMARK RESULTS

6.1 PERFORMANCE OF SINGLE-MODEL BASELINES

We evaluated the performance of single-model baselines on the operator-level tasks. The results are
presented in Table 1 and Table 2.

From the performance of the single-model baselines, we observe the following:

Significant Performance Ceiling: Even the most powerful closed-source models, such as GPT-
5 and Claude4-sonnet, fail to exceed a 50% TSR in a single-round code generation setting. This
indicates that the tasks in GovBench are considerably challenging and difficult to solve perfectly
with a single code generation attempt.

Runnable Does Not Equal Correct: Many models, such as Claude4-sonnet, exhibit a very high
Code Runnability Rate (CRR > 80%), yet their TSR is significantly lower. This reveals a critical

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Performance of Open-Source Models on GovBench (DAG-Level)

Model ATS↑ TSR↑ CRR↑ Avg. Score↑ Avg. Tokens↓ Generation
Time (s)↓

Execution
Time (s)↓

Qwen3-235b-a22b 25.64 38.00 50.00 37.88 3,005.22 7,339.20 81.43
Qwen2.5-coder 12.11 26.00 30.00 22.70 738.68 852.36 28.23
Qwen3-coder 20.87 36.00 48.00 34.96 1,075.36 77.32 370.27
DeepSeek-V3 28.65 56.00 72.00 52.22 983.70 1,098.90 305.99
Llama-3-70B 8.07 10.00 16.00 11.36 723.08 284.43 221.09
Llama-4-scout 7.35 12.00 22.00 13.78 864.16 435.08 10.39
Mistral-7B 7.10 18.00 20.00 15.03 897.88 261.90 230.13
Gemma-3-27B 11.31 20.00 38.00 23.10 1,671.34 2,412.24 19.06
Phi-4 6.73 20.00 28.00 18.24 1,081.94 929.29 18.35

Table 4: Performance of Closed-Source Models on GovBench (DAG-Level)

Model ATS↑ TSR↑ CRR↑ Avg. Score↑ Avg. Tokens↓ Generation
Time (s)↓

Execution
Time (s)↓

GPT-5 27.18 46.00 86.00 53.06 6,086.82 7,121.52 310.05
GPT-4o 18.68 38.00 50.00 35.56 754.82 276.54 52.94
o4-mini 31.86 56.00 74.00 53.95 2,075.26 971.14 91.31
o1 27.79 52.00 80.00 53.26 2,574.00 3,270.06 15.68
o3 31.22 46.00 64.00 47.07 2,027.76 1,410.07 85.07
Claude-4-sonnet 34.77 54.00 76.00 54.92 1,890.82 2,007.23 143.01
Claude-4-opus 20.41 34.00 50.00 34.80 1,759.84 2,443.04 74.24
Gemini-2.5-flash 25.40 44.00 68.00 45.80 7,383.40 2,457.91 295.21
Grok-3 27.45 46.00 62.00 45.15 854.72 626.97 194.63
Grok-4 31.38 50.00 66.00 49.13 5,537.42 4,706.45 277.36
Kimi-K2-instruct 20.60 30.00 34.00 28.20 1,107.94 758.61 80.78

issue: models can generate syntactically correct code, but the logic of this code does not necessarily
meet the business objectives of the task.

Potential of Open-Source Models: Leading open-source code models, represented by DeepSeek-
V3, can match or even surpass some closed-source models in TSR. This demonstrates their strong
potential in the data science domain.

Building upon this, we have also systematically evaluated these models on the more challenging
DAG-Level tasks. Unlike single-operator tasks, DAG tasks require the model to generate a complete
data processing workflow in a single pass. This involves: 1) correctly decomposing the task into
sub-tasks, 2) organizing them in a logical execution order, 3) ensuring correct dependency passing
between steps, and 4) producing a final output that meets the specified business objectives. Due to
the significant increase in complexity, the Avg. Score on DAG-Level tasks is generally lower than
that on Operator-Level tasks.

Tables 3 and 4 summarize the baseline results for the open-source and closed-source models.

Top-Tier Open-Source Models Rival Closed-Source Counterparts: On DAG tasks, the leading
open-source model, DeepSeek-V3 (DeepSeek-AI & other authors, 2024), achieved a 56.00 Task
TSR. This performance not only leads the open-source field but also matches the top-performing
closed-source model, o4-mini (56.00 TSR), while outperforming other powerful models like GPT-5
(46.00). This strongly indicates that leading open-source code models are highly competitive for
handling complex, end-to-end data science workflows.

Performance Divergence Among Closed-Source Models: Within the closed-source camp, mod-
els exhibit different strengths. o4-mini demonstrates superior task-solving ability with the highest
TSR. In contrast, Claude4-sonnet excels in ATS and Average Score, suggesting its generated code
has higher overall quality and completeness. This reflects different optimization priorities among
proprietary models.

The “Runnable ̸= Correct” Gap Is More Pronounced: In complex DAG tasks, the disparity be-
tween a high CRR and a low TSR is even more significant (e.g., GPT-5). For instance, GPT-5
shows an 86 CRR but only a 46 TSR. This reaffirms that generating syntactically correct complex
workflows does not guarantee logical adherence to business objectives. Notably, the top-performing
DeepSeek-V3 has a smaller gap between its CRR (72) and TSR (56), potentially indicating a better
alignment between its code’s runnability and its logical correctness.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

A Clear Trade-off Between Efficiency and Performance Persists: The GPT-4o model demon-
strates high generation efficiency, with the lowest token count and generation time among closed-
source models. However, its 38.00 TSR is considerably lower than that of top-tier models. This
highlights a clear trade-off between speed and accuracy when handling complex tasks, where some
models achieve higher accuracy at a greater computational cost, while others are optimized for a
balance between efficiency and performance.

6.2 PERFORMANCE OF AGENT FRAMEWORK BASELINES

We evaluated the ChatDev and CAMEL frameworks on GovBench by pairing them with powerful
GPT-4o and GPT-5 models in Table 5.

Table 5: Performance of Agent Framework Baselines

(a) DAG-Level

Framework Base ATS↑ TSR↑ CRR↑ Avg. Score↑ ADI↓ Avg. Tokens↓

ChatDev (Qian et al., 2024) GPT-4o 19.12 36.00 40.00 31.71 14.42 7,261.49
ChatDev (Qian et al., 2024) GPT-5 39.67 64.00 82.00 61.89 14.89 28,607.22
CAMEL (Li et al., 2023) GPT-4o 8.47 24.00 60.00 30.82 5.00 11,925.00
CAMEL (Li et al., 2023) GPT-5 16.80 32.00 74.00 40.93 5.00 11,777.50
DataGovAgent GPT-4o 34.52 44.00 50.00 42.84 4.03 27,192.45
DataGovAgent GPT-5 54.91 60.00 74.00 62.97 3.29 34,303.72

(b) Op-Level

Framework Base ATS↑ TSR↑ CRR↑ Avg. Score↑ ADI↓ Avg. Tokens↓

ChatDev (Qian et al., 2024) GPT-4o 34.47 43.00 63.00 46.82 14.20 6,996.62
ChatDev (Qian et al., 2024) GPT-5 33.82 43.00 69.00 48.61 14.47 26,888.26
CAMEL (Li et al., 2023) GPT-4o 14.54 29.00 91.00 44.85 4.40 9,071.92
CAMEL (Li et al., 2023) GPT-5 20.36 34.00 92.00 48.79 4.50 9,447.75
DataGovAgent GPT-4o 52.93 63.00 89.00 68.31 2.12 23,712.14
DataGovAgent GPT-5 55.47 64.00 88.00 69.15 2.14 31,503.75

Closing the Runnable–Correct Gap with Contracts and Meta-Cognitive Feedback: On Gov-
Bench, DataGov-Agent consistently turns runnability into business-correct solutions more effi-
ciently than generic agent frameworks. On DAG-level tasks, although ChatDev+GPT-5 attains
the top TSR (64), DataGov-Agent+GPT-5 delivers higher average quality (ATS 54.91 vs. 39.67;
Avg. Score 62.97 vs. 61.89), requires 4.5× fewer debug iterations (ADI 3.29 vs. 14.89). On
operator-level tasks, DataGov-Agent+GPT-5 leads in TSR/ATS/Avg. Score (64/55.47/69.15) and
shows the strongest alignment between runnability and correctness (A=TSR/CRR=0.73 vs. 0.62 for
ChatDev and 0.37 for CAMEL), indicating that contracts and meta-cognitive feedback effectively
convert CRR into TSR. More detailed analysis in Appendix A.7.

6.3 COMPARISON WITH HUMAN BASELINE

To contextualize the performance of DATAGOVAGENT, we conducted a comparative study against a
strong human baseline of experienced data scientists, who were also aided by GPT-5. Our findings
show a consistent pattern: on complex, multi-step DAG tasks, DATAGOVAGENT achieves higher
accuracy and lower latency than the human baseline (TSR 60 vs. 25; 4.7 min vs. 24.5 min), whereas
on operator-level tasks it is faster (3.5 min vs. 14.2 min) but less accurate (TSR 64 vs. 84). an
in-depth discussion of the implications are provided in Appendix A.9.

7 CONCLUSION

We present GovBench, the first benchmark designed to comprehensively stress-test large language
model agents on real-world data governance tasks. GovBench offers two main contributions: it
provides a two-tiered task suite that spans from atomic operators to multi-step DAG pipelines, and
for each task, it incorporates unique evaluation logic and scoring metrics. Furthermore, our proposed
DataGovAgent achieves SOTA performance on this new benchmark, significantly outperforming
existing agent frameworks on complex governance pipelines.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Fatemeh Ahmadi, Yusuf Mandirali, and Ziawasch Abedjan. Performance and scalability of data
cleaning and preprocessing tools: A benchmark on large real-world datasets. Data, 10(5):68,
2024.

M. Eren Akbiyik. Data augmentation in training cnns: Injecting noise to images. arXiv preprint
arXiv:2307.06855, 2023.

Jinheon Baek, Siru Zhao, Jiashun Chen, Sejin Hwang, and Edward Choi. From automation
to autonomy: A survey on large language models in scientific discovery. arXiv preprint
arXiv:2505.13259, 2025.

Xi Chen et al. Position: Towards a responsible llm-empowered multi-agent systems. arXiv preprint
arXiv:2502.01714, 2025a.

Ziru Chen, Colin White, Raymond Aw, Zhongwei Jiao, Viet Dac Lai Ta, Yash Mehta, Tera Prakash,
Gabriel Fonseca, Shengyu Liu, Sanmi Koyejo, et al. Scienceagentbench: Toward rigorous assess-
ment of language agents for data-driven scientific discovery. arXiv preprint arXiv:2410.05080,
2025b.

Team DCAI. Dataflow: A unified framework for data-centric ai. https://github.com/
OpenDCAI/DataFlow, 2025. Accessed: 2025-07-08.

DeepSeek-AI and 199 other authors. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

L. Dinesh and K.G. Devi. An efficient hybrid optimization of etl process in data warehouse of cloud
architecture. Journal of Cloud Computing, 13(12), 2024. doi: 10.1186/s13677-023-00571-y.

Sangharatna Godboley and P. Radha Krishna. Sol-repairer: Solidity smart contract dead code re-
pairer. In Proceedings of the 18th Innovations in Software Engineering Conference. ACM, 2025.

Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V Chawla, Olaf Wiest,
and Xiangliang Zhang. Large language model based multi-agents: a survey of progress and
challenges. In Proceedings of the Thirty-Third International Joint Conference on Artificial Intel-
ligence, pp. 8048–8057, 2024.

Sirui Hong, Yizhang Lin, Bang Liu, Bangbang Liu, Binhao Wu, Ceyao Zhang, Danyang Li, Ji-
aqi Chen, Jiayi Zhang, Jinlin Wang, Li Zhang, Lingyao Zhang, Min Yang, Mingchen Zhuge,
Taicheng Guo, Tuo Zhou, Wei Tao, Robert Tang, Xiangtao Lu, Xiawu Zheng, Xinbing Liang,
Yaying Fei, Yuheng Cheng, Yongxin Ni, Zhibin Gou, Zongze Xu, Yuyu Luo, and Chenglin Wu.
Data interpreter: An LLM agent for data science. In Wanxiang Che, Joyce Nabende, Ekaterina
Shutova, and Mohammad Taher Pilehvar (eds.), Findings of the Association for Computational
Linguistics: ACL 2025, pp. 19796–19821, Vienna, Austria, July 2025. Association for Compu-
tational Linguistics. ISBN 979-8-89176-256-5. doi: 10.18653/v1/2025.findings-acl.1016. URL
https://aclanthology.org/2025.findings-acl.1016/.

Mehdi Hosseinzadeh, Elham Azhir, Omed Hassan Ahmed, Marwan Yassin Ghafour, Sarkar Hasan
Ahmed, Amir Masoud Rahmani, and Bay Vo. Data cleansing mechanisms and approaches for big
data analytics: a systematic study. Journal of Ambient Intelligence and Humanized Computing,
14(1):99–111, 2023.

Yiming Huang, Jianwen Luo, Yan Yu, Yitong Zhang, Fangyu Lei, Yifan Wei, Shizhu He, Lifu
Huang, Xiao Liu, Jun Zhao, et al. Da-code: Agent data science code generation benchmark for
large language models. In Proceedings of the 2024 Conference on Empirical Methods in Natural
Language Processing, pp. 13487–13521, 2024.

OpenAI: Aaron Hurst and 416 other authors. Gpt-4o system card. arXiv preprint arXiv:2410.21276,
2024.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Scott Wen-
tau Yih, Daniel Fried, Sida Wang, and Tao Yu. Ds-1000: A natural and reliable benchmark for data
science code generation. In International Conference on Machine Learning, pp. 18319–18345.
PMLR, 2023.

10

https://github.com/OpenDCAI/DataFlow
https://github.com/OpenDCAI/DataFlow
https://aclanthology.org/2025.findings-acl.1016/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem. Camel: Com-
municative agents for” mind” exploration of large language model society. Advances in Neural
Information Processing Systems, 36:51991–52008, 2023.

Ye Liu et al. Propertygpt: Llm-driven formal verification of smart contracts through retrieval-
augmented property generation. arXiv preprint arXiv:2405.02580, 2024.

OpenAI. Introducing gpt-5. https://openai.com/blog/introducing-gpt-5, aug
2025.

Yongchao Ou, Yang Yang, Qingyun Zhang, Hao Li, Jiahuan Zhang, Zijian Wang, and Enhong
Chen. Automind: Adaptive knowledgeable agent for automated data science. arXiv preprint
arXiv:2506.10974v2, 2025.

Sagar Pahune and Manoj Chandrasekharan. The importance of ai data governance in large language
models. Data, 9(6):147, 2025. doi: 10.3390/data9060147.

Hyunbyung Park et al. Dataverse: Open-source etl (extract, transform, load) pipeline for large
language models. arXiv preprint arXiv:2403.19340, 2025a.

Taejin Park et al. Multi-agent collaboration mechanisms: A survey of llms. In Proceedings of Agent
Papers 2025, 2025b. Multi-agent frameworks and financial applications.

Md Rizwan Parvez, Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang.
Retrieval augmented code generation and summarization. arXiv preprint arXiv:2108.11601,
2021.

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize
Chen, Yusheng Su, Xin Cong, Juyuan Xu, Dahai Li, Zhiyuan Liu, and Maosong Sun. ChatDev:
Communicative agents for software development. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 15174–15186,
Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/
2024.acl-long.810. URL https://aclanthology.org/2024.acl-long.810.

Md Nishat Raihan, Denis Kocetkov, Yizhe Ding, Niklas Muennighoff, Raymond Li, Loubna Ben
Allal, Yacine Jernite, Margaret Mitchell, Angelina McMillan-Major, Dzmitry Bahdanau, et al.
mhumaneval: A multilingual benchmark to evaluate large language models for code generation.
arXiv preprint arXiv:2410.15037v2, 2025.

Jose Sousa, Alfredo Ibias, Rui Pinto Graça, Elena Merino-Garcı́a, Enrique Amigo, and Luis
Espinosa-Anke. Improving noise robustness through abstractions and its impact on machine
learning. arXiv preprint arXiv:2406.08428, 2024.

Statista. Statista: The statistics portal. https://www.statista.com, 2025. Accessed: 2025-
09-06.

Maojun Sun, Jing Xu, Danyang Zhang, Mohan Chen, Jiayi Yao, Zhenni Mu, Wenjie Hu, Muling
Zhang, Xiaoxue Ma, Aoyang Zheng, et al. A survey on large language model-based agents for
statistics and data science. arXiv preprint arXiv:2412.14222, 2024.

Khanh-Tung Tran, Dung Dao, Minh-Duong Nguyen, Quoc-Viet Pham, Barry O’Sullivan, and
Hoang D. Nguyen. Multi-agent collaboration mechanisms: A survey of llms. arXiv preprint
arXiv:2501.06322, 2025.

Patara Trirat, Wonyong Jeong, and Sung Ju Hwang. AutoML-agent: A multi-agent LLM framework
for full-pipeline autoML. In Forty-second International Conference on Machine Learning, 2025.
URL https://openreview.net/forum?id=p1UBWkOvZm.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents.
Frontiers of Computer Science, 18(6):186345, 2024.

11

https://openai.com/blog/introducing-gpt-5
https://aclanthology.org/2024.acl-long.810
https://www.statista.com
https://openreview.net/forum?id=p1UBWkOvZm

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Benjamin Feuer, Siddhartha Jain, Ravid
Shwartz-Ziv, Neel Jain, Khalid Saifullah, Sreemanti Dey, Shubh-Agrawal, Sandeep Singh
Sandha, Siddartha Venkat Naidu, Chinmay Hegde, Yann LeCun, Tom Goldstein, Willie
Neiswanger, and Micah Goldblum. Livebench: A challenging, contamination-limited LLM
benchmark. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=sKYHBTAxVa.

Zhengying Xi et al. Ai agents vs. agentic ai: A conceptual taxonomy, applications and challenges.
arXiv preprint arXiv:2505.10468, 2025.

Frank F Xu, Yufan Liu, Xiaoyang Li, Ming Zheng, Yueqi Zhou, Dawei Zhang, Xianru Wang, De-
vansh Kumar, Jian-Guang Chen, Hao Dong, et al. Theagentcompany: Benchmarking llm agents
on consequential real world tasks. arXiv preprint arXiv:2412.14161v2, 2025.

Jiangang Xu, Wei Du, Xiaodong Liu, Xin Li, Vladimir Filkov, Baishakhi Ray, and Minghui Zhou.
Llm4workflow: An llm-based automated workflow model generation tool. Proceedings of the
39th IEEE/ACM International Conference on Automated Software Engineering, 2024.

Li Yang et al. Designing scalable etl pipelines for multi-source graph database ingestion. Journal
of Computational Analysis and Applications, 34(7), 2025. Schema heterogeneity and data drift
challenges.

Zhaojian Yu, Yilun Zhang, Panupong Pasupat, Linlu Zhao, Yao-Yi Ding, Zhuosheng Zhao, and
Xipeng Qiu. Humaneval pro and mbpp pro: Evaluating large language models on self-invoking
code generation task. In Findings of the Association for Computational Linguistics: ACL 2025,
pp. 13253–13279, 2025.

Wenjie Zhang, Zheng Liu, Yilun Chen, Lutao Zhang, Wangchunshu Ding, Yizhe Tang, Zhuosheng
Zhao, and Xipeng Qiu. Datascibench: An llm agent benchmark for data science. arXiv preprint
arXiv:2502.13897, 2025.

Zeliang Zhang, Xiaodong Yang, Yanzhang Zhao, Qinru Li, Zhengyu Zhang, and Wangdong Guo.
A novel noise injection-based training scheme for better model robustness. arXiv preprint
arXiv:2302.10802, 2023.

12

https://openreview.net/forum?id=sKYHBTAxVa

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 BENCHMARK COMPARISON TABLE

Table 6: Evolution of Code & Agent Benchmarks (textual overview; corresponding visual examples
are shown in Figure 3).

Benchmark Evaluation Scope Key Features Methodological Focus

DS-1000 Snippet-level Code generation for data-
science libraries (NumPy,
Pandas)

Basic code completion

DA-Code Task-level Extends DS-1000 with an
interactive execution envi-
ronment

Interactive problem solv-
ing

DataSciBench Workflow-level Systematic LLM-agent
evaluation with 25 multi-
dimensional metrics

Complete data-science
pipelines

ScienceAgentBench Domain-specific Rigorous assessment for
data-driven scientific dis-
covery

Scientific research work-
flows

HumanEval Pro Reasoning-focused Self-invoking code gener-
ation with progressive rea-
soning

Advanced reasoning capa-
bilities

LiveBench Methodology-focused Dynamic benchmark that
mitigates dataset contami-
nation

Evaluation robustness

GovBench Hierarchical
(Operator &
DAG-level)

150 realistic tasks;
reversed-objective noise;
multi-metric scoring (AT-
S/TSR/CRR)

End-to-end data-
governance pipeline
evaluation

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

{
 "prompt": "Given a numpy array a, compute the
mean value. result = ... # put solution in this
variable",
 "code_context": "...Python code for
test_execution and reference solution...",
 "metadata": {
 "lib": "Numpy",
 "difficulty": "Easy",
 ...
 }
}

{
 "name": "titanic_survival_analysis",
 "description": "Given titanic.csv, perform
survival rate analysis grouped by gender.",
 "files": [
 {
 "filename": "titanic.csv",
 "filetype": "csv",
 "description": "Passenger data for Titanic
disaster"
 }
],
 "instruction": "Load titanic.csv and compute
......

 {
 "task_id": "1",
 "dependent_task_ids": [],
 "instruction": "Fine-tune the sentiment
classification model using the
EleutherAI/twitter-sentiment dataset",
 "task_type": "predictive modeling",
 "code": "tokenizer =
GPT2Tokenizer.from_pretrained('../gpt2-
small/')",
 "result": "",
 "is_success": true,
 "is_finished": true
 },

{
 "id": "geoscience_01",
 "domain": "geoscience",
 "description": "Calculate the NDVI
(Normalized Difference Vegetation Index) for
a given area using satellite image data, and plot
the NDVI time series.",
 "inputs": [
 {
 "type": "raster",
 "name": "red_band",
 "description": "Red band image in GeoTIFF
format."

{
 "task_id": "HumanEvalPro/1",
 "base_problem": {
 "prompt": "def add(a: int, b: int) -> int:\n
\"\"\"Add two integers.\"\"\"",
 "test_cases": [
 {"input": [1, 2], "output": 3},
 {"input": [-1, 5], "output": 4}
],
 "reference_solution": "def add(a: int, b: int) -
> int:\n return a + b"
 },
 "pro_problem": {

{
 "question_id":
"0daa7ca38beec4441b9d5c04d0b98912322926
f0a3ac28a5097889d4ed83506f",
 "category": "reasoning",
 "ground_truth": "no, yes, yes",
 "turns": [
 "In this question, assume each person either
always tells the truth or always lies. Tala is at
the movie theater. The person at the
restaurant says the person at the aquarium lies.
Ayaan is at the aquarium. Ryan is at the
botanical garden. The person at the}

 {
 "task_id": "T0004",
 "target_en": "Please provide me with an
operator to process JSONL data by performing
the following text cleaning steps in sequence: (1)
remove extra spaces; (2) remove records whose
‘text’ field contains links (such as strings
starting with ‘http://’, ‘https://’, or ‘www.’); (3)
remove records whose ‘text’ field is not in
English; (4) identify and remove records whose
‘text’ field contains spelling or grammatical
errors. The output should be in JSONL format,
UTF-8 encoded, with the original......

(a) DS-1000

{
 "prompt": "Given a numpy array a, compute the
mean value. result = ... # put solution in this
variable",
 "code_context": "...Python code for
test_execution and reference solution...",
 "metadata": {
 "lib": "Numpy",
 "difficulty": "Easy",
 ...
 }
}

{
 "name": "titanic_survival_analysis",
 "description": "Given titanic.csv, perform
survival rate analysis grouped by gender.",
 "files": [
 {
 "filename": "titanic.csv",
 "filetype": "csv",
 "description": "Passenger data for Titanic
disaster"
 }
],
 "instruction": "Load titanic.csv and compute
......

 {
 "task_id": "1",
 "dependent_task_ids": [],
 "instruction": "Fine-tune the sentiment
classification model using the
EleutherAI/twitter-sentiment dataset",
 "task_type": "predictive modeling",
 "code": "tokenizer =
GPT2Tokenizer.from_pretrained('../gpt2-
small/')",
 "result": "",
 "is_success": true,
 "is_finished": true
 },

{
 "id": "geoscience_01",
 "domain": "geoscience",
 "description": "Calculate the NDVI
(Normalized Difference Vegetation Index) for
a given area using satellite image data, and plot
the NDVI time series.",
 "inputs": [
 {
 "type": "raster",
 "name": "red_band",
 "description": "Red band image in GeoTIFF
format."

{
 "task_id": "HumanEvalPro/1",
 "base_problem": {
 "prompt": "def add(a: int, b: int) -> int:\n
\"\"\"Add two integers.\"\"\"",
 "test_cases": [
 {"input": [1, 2], "output": 3},
 {"input": [-1, 5], "output": 4}
],
 "reference_solution": "def add(a: int, b: int) -
> int:\n return a + b"
 },
 "pro_problem": {

{
 "question_id":
"0daa7ca38beec4441b9d5c04d0b98912322926
f0a3ac28a5097889d4ed83506f",
 "category": "reasoning",
 "ground_truth": "no, yes, yes",
 "turns": [
 "In this question, assume each person either
always tells the truth or always lies. Tala is at
the movie theater. The person at the
restaurant says the person at the aquarium lies.
Ayaan is at the aquarium. Ryan is at the
botanical garden. The person at the}

 {
 "task_id": "T0004",
 "target_en": "Please provide me with an
operator to process JSONL data by performing
the following text cleaning steps in sequence: (1)
remove extra spaces; (2) remove records whose
‘text’ field contains links (such as strings
starting with ‘http://’, ‘https://’, or ‘www.’); (3)
remove records whose ‘text’ field is not in
English; (4) identify and remove records whose
‘text’ field contains spelling or grammatical
errors. The output should be in JSONL format,
UTF-8 encoded, with the original......

(b) DA-Code

{
 "prompt": "Given a numpy array a, compute the
mean value. result = ... # put solution in this
variable",
 "code_context": "...Python code for
test_execution and reference solution...",
 "metadata": {
 "lib": "Numpy",
 "difficulty": "Easy",
 ...
 }
}

{
 "name": "titanic_survival_analysis",
 "description": "Given titanic.csv, perform
survival rate analysis grouped by gender.",
 "files": [
 {
 "filename": "titanic.csv",
 "filetype": "csv",
 "description": "Passenger data for Titanic
disaster"
 }
],
 "instruction": "Load titanic.csv and compute
......

 {
 "task_id": "1",
 "dependent_task_ids": [],
 "instruction": "Fine-tune the sentiment
classification model using the
EleutherAI/twitter-sentiment dataset",
 "task_type": "predictive modeling",
 "code": "tokenizer =
GPT2Tokenizer.from_pretrained('../gpt2-
small/')",
 "result": "",
 "is_success": true,
 "is_finished": true
 },

{
 "id": "geoscience_01",
 "domain": "geoscience",
 "description": "Calculate the NDVI
(Normalized Difference Vegetation Index) for
a given area using satellite image data, and plot
the NDVI time series.",
 "inputs": [
 {
 "type": "raster",
 "name": "red_band",
 "description": "Red band image in GeoTIFF
format."

{
 "task_id": "HumanEvalPro/1",
 "base_problem": {
 "prompt": "def add(a: int, b: int) -> int:\n
\"\"\"Add two integers.\"\"\"",
 "test_cases": [
 {"input": [1, 2], "output": 3},
 {"input": [-1, 5], "output": 4}
],
 "reference_solution": "def add(a: int, b: int) -
> int:\n return a + b"
 },
 "pro_problem": {

{
 "question_id":
"0daa7ca38beec4441b9d5c04d0b98912322926
f0a3ac28a5097889d4ed83506f",
 "category": "reasoning",
 "ground_truth": "no, yes, yes",
 "turns": [
 "In this question, assume each person either
always tells the truth or always lies. Tala is at
the movie theater. The person at the
restaurant says the person at the aquarium lies.
Ayaan is at the aquarium. Ryan is at the
botanical garden. The person at the}

 {
 "task_id": "T0004",
 "target_en": "Please provide me with an
operator to process JSONL data by performing
the following text cleaning steps in sequence: (1)
remove extra spaces; (2) remove records whose
‘text’ field contains links (such as strings
starting with ‘http://’, ‘https://’, or ‘www.’); (3)
remove records whose ‘text’ field is not in
English; (4) identify and remove records whose
‘text’ field contains spelling or grammatical
errors. The output should be in JSONL format,
UTF-8 encoded, with the original......

(c) DataSciBench

{
 "prompt": "Given a numpy array a, compute the
mean value. result = ... # put solution in this
variable",
 "code_context": "...Python code for
test_execution and reference solution...",
 "metadata": {
 "lib": "Numpy",
 "difficulty": "Easy",
 ...
 }
}

{
 "name": "titanic_survival_analysis",
 "description": "Given titanic.csv, perform
survival rate analysis grouped by gender.",
 "files": [
 {
 "filename": "titanic.csv",
 "filetype": "csv",
 "description": "Passenger data for Titanic
disaster"
 }
],
 "instruction": "Load titanic.csv and compute
......

 {
 "task_id": "1",
 "dependent_task_ids": [],
 "instruction": "Fine-tune the sentiment
classification model using the
EleutherAI/twitter-sentiment dataset",
 "task_type": "predictive modeling",
 "code": "tokenizer =
GPT2Tokenizer.from_pretrained('../gpt2-
small/')",
 "result": "",
 "is_success": true,
 "is_finished": true
 },

{
 "id": "geoscience_01",
 "domain": "geoscience",
 "description": "Calculate the NDVI
(Normalized Difference Vegetation Index) for
a given area using satellite image data, and plot
the NDVI time series.",
 "inputs": [
 {
 "type": "raster",
 "name": "red_band",
 "description": "Red band image in GeoTIFF
format."

{
 "task_id": "HumanEvalPro/1",
 "base_problem": {
 "prompt": "def add(a: int, b: int) -> int:\n
\"\"\"Add two integers.\"\"\"",
 "test_cases": [
 {"input": [1, 2], "output": 3},
 {"input": [-1, 5], "output": 4}
],
 "reference_solution": "def add(a: int, b: int) -
> int:\n return a + b"
 },
 "pro_problem": {

{
 "question_id":
"0daa7ca38beec4441b9d5c04d0b98912322926
f0a3ac28a5097889d4ed83506f",
 "category": "reasoning",
 "ground_truth": "no, yes, yes",
 "turns": [
 "In this question, assume each person either
always tells the truth or always lies. Tala is at
the movie theater. The person at the
restaurant says the person at the aquarium lies.
Ayaan is at the aquarium. Ryan is at the
botanical garden. The person at the}

 {
 "task_id": "T0004",
 "target_en": "Please provide me with an
operator to process JSONL data by performing
the following text cleaning steps in sequence: (1)
remove extra spaces; (2) remove records whose
‘text’ field contains links (such as strings
starting with ‘http://’, ‘https://’, or ‘www.’); (3)
remove records whose ‘text’ field is not in
English; (4) identify and remove records whose
‘text’ field contains spelling or grammatical
errors. The output should be in JSONL format,
UTF-8 encoded, with the original......

(d) ScienceAgentBench

{
 "prompt": "Given a numpy array a, compute the
mean value. result = ... # put solution in this
variable",
 "code_context": "...Python code for
test_execution and reference solution...",
 "metadata": {
 "lib": "Numpy",
 "difficulty": "Easy",
 ...
 }
}

{
 "name": "titanic_survival_analysis",
 "description": "Given titanic.csv, perform
survival rate analysis grouped by gender.",
 "files": [
 {
 "filename": "titanic.csv",
 "filetype": "csv",
 "description": "Passenger data for Titanic
disaster"
 }
],
 "instruction": "Load titanic.csv and compute
......

 {
 "task_id": "1",
 "dependent_task_ids": [],
 "instruction": "Fine-tune the sentiment
classification model using the
EleutherAI/twitter-sentiment dataset",
 "task_type": "predictive modeling",
 "code": "tokenizer =
GPT2Tokenizer.from_pretrained('../gpt2-
small/')",
 "result": "",
 "is_success": true,
 "is_finished": true
 },

{
 "id": "geoscience_01",
 "domain": "geoscience",
 "description": "Calculate the NDVI
(Normalized Difference Vegetation Index) for
a given area using satellite image data, and plot
the NDVI time series.",
 "inputs": [
 {
 "type": "raster",
 "name": "red_band",
 "description": "Red band image in GeoTIFF
format."

{
 "task_id": "HumanEvalPro/1",
 "base_problem": {
 "prompt": "def add(a: int, b: int) -> int:\n
\"\"\"Add two integers.\"\"\"",
 "test_cases": [
 {"input": [1, 2], "output": 3},
 {"input": [-1, 5], "output": 4}
],
 "reference_solution": "def add(a: int, b: int) -
> int:\n return a + b"
 },
 "pro_problem": {

{
 "question_id":
"0daa7ca38beec4441b9d5c04d0b98912322926
f0a3ac28a5097889d4ed83506f",
 "category": "reasoning",
 "ground_truth": "no, yes, yes",
 "turns": [
 "In this question, assume each person either
always tells the truth or always lies. Tala is at
the movie theater. The person at the
restaurant says the person at the aquarium lies.
Ayaan is at the aquarium. Ryan is at the
botanical garden. The person at the}

 {
 "task_id": "T0004",
 "target_en": "Please provide me with an
operator to process JSONL data by performing
the following text cleaning steps in sequence: (1)
remove extra spaces; (2) remove records whose
‘text’ field contains links (such as strings
starting with ‘http://’, ‘https://’, or ‘www.’); (3)
remove records whose ‘text’ field is not in
English; (4) identify and remove records whose
‘text’ field contains spelling or grammatical
errors. The output should be in JSONL format,
UTF-8 encoded, with the original......

(e) HumanEval Pro

{
 "prompt": "Given a numpy array a, compute the
mean value. result = ... # put solution in this
variable",
 "code_context": "...Python code for
test_execution and reference solution...",
 "metadata": {
 "lib": "Numpy",
 "difficulty": "Easy",
 ...
 }
}

{
 "name": "titanic_survival_analysis",
 "description": "Given titanic.csv, perform
survival rate analysis grouped by gender.",
 "files": [
 {
 "filename": "titanic.csv",
 "filetype": "csv",
 "description": "Passenger data for Titanic
disaster"
 }
],
 "instruction": "Load titanic.csv and compute
......

 {
 "task_id": "1",
 "dependent_task_ids": [],
 "instruction": "Fine-tune the sentiment
classification model using the
EleutherAI/twitter-sentiment dataset",
 "task_type": "predictive modeling",
 "code": "tokenizer =
GPT2Tokenizer.from_pretrained('../gpt2-
small/')",
 "result": "",
 "is_success": true,
 "is_finished": true
 },

{
 "id": "geoscience_01",
 "domain": "geoscience",
 "description": "Calculate the NDVI
(Normalized Difference Vegetation Index) for
a given area using satellite image data, and plot
the NDVI time series.",
 "inputs": [
 {
 "type": "raster",
 "name": "red_band",
 "description": "Red band image in GeoTIFF
format."

{
 "task_id": "HumanEvalPro/1",
 "base_problem": {
 "prompt": "def add(a: int, b: int) -> int:\n
\"\"\"Add two integers.\"\"\"",
 "test_cases": [
 {"input": [1, 2], "output": 3},
 {"input": [-1, 5], "output": 4}
],
 "reference_solution": "def add(a: int, b: int) -
> int:\n return a + b"
 },
 "pro_problem": {

{
 "question_id":
"0daa7ca38beec4441b9d5c04d0b98912322926
f0a3ac28a5097889d4ed83506f",
 "category": "reasoning",
 "ground_truth": "no, yes, yes",
 "turns": [
 "In this question, assume each person either
always tells the truth or always lies. Tala is at
the movie theater. The person at the
restaurant says the person at the aquarium lies.
Ayaan is at the aquarium. Ryan is at the
botanical garden. The person at the}

 {
 "task_id": "T0004",
 "target_en": "Please provide me with an
operator to process JSONL data by performing
the following text cleaning steps in sequence: (1)
remove extra spaces; (2) remove records whose
‘text’ field contains links (such as strings
starting with ‘http://’, ‘https://’, or ‘www.’); (3)
remove records whose ‘text’ field is not in
English; (4) identify and remove records whose
‘text’ field contains spelling or grammatical
errors. The output should be in JSONL format,
UTF-8 encoded, with the original......

(f) LiveBench

{
 "prompt": "Given a numpy array a, compute the
mean value. result = ... # put solution in this
variable",
 "code_context": "...Python code for
test_execution and reference solution...",
 "metadata": {
 "lib": "Numpy",
 "difficulty": "Easy",
 ...
 }
}

{
 "name": "titanic_survival_analysis",
 "description": "Given titanic.csv, perform
survival rate analysis grouped by gender.",
 "files": [
 {
 "filename": "titanic.csv",
 "filetype": "csv",
 "description": "Passenger data for Titanic
disaster"
 }
],
 "instruction": "Load titanic.csv and compute
......

 {
 "task_id": "1",
 "dependent_task_ids": [],
 "instruction": "Fine-tune the sentiment
classification model using the
EleutherAI/twitter-sentiment dataset",
 "task_type": "predictive modeling",
 "code": "tokenizer =
GPT2Tokenizer.from_pretrained('../gpt2-
small/')",
 "result": "",
 "is_success": true,
 "is_finished": true
 },

{
 "id": "geoscience_01",
 "domain": "geoscience",
 "description": "Calculate the NDVI
(Normalized Difference Vegetation Index) for
a given area using satellite image data, and plot
the NDVI time series.",
 "inputs": [
 {
 "type": "raster",
 "name": "red_band",
 "description": "Red band image in GeoTIFF
format."

{
 "task_id": "HumanEvalPro/1",
 "base_problem": {
 "prompt": "def add(a: int, b: int) -> int:\n
\"\"\"Add two integers.\"\"\"",
 "test_cases": [
 {"input": [1, 2], "output": 3},
 {"input": [-1, 5], "output": 4}
],
 "reference_solution": "def add(a: int, b: int) -
> int:\n return a + b"
 },
 "pro_problem": {

{
 "question_id":
"0daa7ca38beec4441b9d5c04d0b98912322926
f0a3ac28a5097889d4ed83506f",
 "category": "reasoning",
 "ground_truth": "no, yes, yes",
 "turns": [
 "In this question, assume each person either
always tells the truth or always lies. Tala is at
the movie theater. The person at the
restaurant says the person at the aquarium lies.
Ayaan is at the aquarium. Ryan is at the
botanical garden. The person at the}

 {
 "task_id": "T0004",
 "target_en": "Please provide me with an
operator to process JSONL data by performing
the following text cleaning steps in sequence: (1)
remove extra spaces; (2) remove records whose
‘text’ field contains links (such as strings
starting with ‘http://’, ‘https://’, or ‘www.’); (3)
remove records whose ‘text’ field is not in
English; (4) identify and remove records whose
‘text’ field contains spelling or grammatical
errors. The output should be in JSONL format,
UTF-8 encoded, with the original......

(g) GovBench

Figure 3: BenchDemo visual examples laid out two-per-row (last row has one). Compare with the
textual description in Table 6.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.2 ALGORITHM FOR DERIVE OP-LEVEL TASK SEQUENCES

Algorithm 1 LCS-constrained sequence synthesis. We randomly sample candidate sequences over
the member set M (without repetition, length 3/4/5), adjust conflicts using candidates from C, and
finally output 50 valid sequences.

Require:
1: Member set M = {m1,m2, ...,m50} {Core task IDs}
2: Candidate set C = {c1, c2, ..., c50} {Replaceable task IDs}

Ensure:
3: Adjusted set Sadjusted of size 50, satisfying:

• ∀s ∈ Sadjusted, |s| ∈ {3, 4, 5}
• ∀si, sj ∈ Sadjusted,LCS(si, sj) ≤ 1

4: Step 1: Random sampling of candidate sequences
5: S ← ∅
6: Budget← 200 {sample budget before adjustment}
7: while |S| < Budget do
8: len← RandomChoice({3, 4, 5})
9: seq ← RandomSampleDistinct(M, len) {prefer covering different items}

10: S ← S ∪ {seq}
11: end while
12: Step 2: Conflict adjustment
13: Sadjusted ← ∅
14: for i = 0 to |S| − 2 do
15: for j = i+ 1 to |S| − 1 do
16: while ComputeLCS(S[i], S[j]) ≥ 2 and C ̸= ∅ do
17: lcs← GetLCS(S[i], S[j])
18: target seq ← (|S[i]| ≥ |S[j]|)?S[i] : S[j]
19: replace pos← RandomSelect(FindOccurrences(lcs, target seq))
20: c← RandomSelect(C)
21: target seq[replace pos]← c
22: C ← C \ {c}
23: Sadjusted ← Sadjusted ∪ {target seq}
24: end while
25: end for
26: end for
27: Step 3: Final selection
28: Sfinal ∼ UniformSample(Sadjusted, 50)
29: return Sfinal

A.3 BENCHMARK STATISTICS

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 4: Distribution of the 100 operator-level tasks in GovBench across six governance categories:
Filtering (22), Refinement (18), Imputation (18), Deduplication & Consistency (15), Integration
(18), and Classification & Labeling (9). The split balances coverage of common governance opera-
tions while slightly emphasizing filtering and transformation tasks.

A.4 TASKS EVAL

Table 7: Evaluation Metrics for Operator-Level Task Categories in GovBench

Task Category Primary Metric(s) Description

Filtering F1 Score Measures the balance
of precision and recall
in correctly identify-
ing and removing er-
roneous or unwanted
data rows.

Refinement Accuracy Assesses the correct-
ness of data trans-
formations, such as
standardizing date for-
mats, parsing text, or
performing unit con-
versions.

Imputation Completion Rate / Imputation Accuracy Evaluates the model’s
effectiveness in cor-
rectly filling in miss-
ing or null values
based on the ground
truth.

Deduplication & Consistency Duplicate Reduction / Consistency Score Measures the suc-
cess in identifying and
removing duplicate
records or ensuring
that related data en-
tries are consistent.

Data Integration Integration Accuracy Assesses how well
data from different
sources is merged,
particularly in han-
dling schema mis-
matches and resolving
conflicting values.

Classification & Labeling Accuracy, Precision, Recall, F1 Score Uses standard clas-
sification metrics to
evaluate the correct-
ness of labels assigned
to data records by the
model.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.5 BENCHMARK EXAMPLES

This part shows details of sample tasks across six Operator-level tasks and DAG tasks, including
natural language task objectives, evaluation script snippets and dataset samples.
1. Filtering Task

Filtering Task Objective

Please write an operator to process jsonl files, filtering out text entries that contain blocked
words (such as offensive, vulgar, or obscene words) in the text field. Each record is a JSON
object, and it is necessary to check whether its text field contains blocked words. After
filtering out these records, output a new JSONL file, keeping the field structure unchanged
and encoded in UTF-8.

Filtering Task Eval Code

def evaluate(expected_path, processed_path):
expected = load_jsonl(expected_path)
processed = load_jsonl(processed_path)

expected_ids = set(entry['id'] for entry in expected)
processed_ids = set(entry['id'] for entry in processed)

true_positives = len(expected_ids & processed_ids)
predicted_total = len(processed_ids)
gold_total = len(expected_ids)

precision = true_positives / predicted_total if predicted_total
> 0 else 0.0
recall = true_positives / gold_total if gold_total > 0 else 0.0
f1 = (2 * precision * recall) / (precision + recall) if
precision + recall > 0 else 0.0

result = {"eval_score": f"{f1:.4f}"}
print(result)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Filtering Task Dataset Samples

Raw Data GT Data
{ ”id”: 0, ”text”: ”The customer service
team is committed to providing excep-
tional assistance to all clients.”}
{ ”id”: 1, ”text”: ”Customer service
is dedicated to addressing and resolving
client inquiries efficiently.”}
{ ”id”: 2, ”text”: ”The refund policy stip-
ulates that all requests must be submitted
within thirty days of purchase.”}
{ ”id”: 3, ”text”: ”The refund policy al-
lows customers to return products within
30 days for a full refund.”}
{ ”id”: 4, ”text”: ”The product warranty
is valid for a period of one year from the
date of purchase.”}
”id”: 32, ”text”: ”Fix this crap service
now.”
”id”: 43, ”text”: ”Fix this damn service
now.”
”id”: 58, ”text”: ”This whole thing is to-
tal bitch.”
”id”: 33, ”text”: ”Why the bitch is my or-
der delayed?”
”id”: 83, ”text”: ”Why the bastard is my
order delayed?”

{ ”id”: 0, ”text”: ”The customer service
team is committed to providing excep-
tional assistance to all clients.”}
{ ”id”: 1, ”text”: ”Customer service
is dedicated to addressing and resolving
client inquiries efficiently.”}
{ ”id”: 2, ”text”: ”The refund policy stip-
ulates that all requests must be submitted
within thirty days of purchase.”}
{ ”id”: 3, ”text”: ”The refund policy al-
lows customers to return products within
30 days for a full refund.”}
{ ”id”: 4, ”text”: ”The product warranty
is valid for a period of one year from the
date of purchase.”}

2. Refinement Task

Refinement Task Objective

Please write an operator to process JSONL files and remove HTML tags from the text field.
Each record is a JSON object, requiring detection of its text field and removal of all HTML
tags (e.g., <p>, , etc.). Output a new JSONL file, retaining the field structure
unchanged, encoded in UTF-8.

Refinement Task Eval Code

def evaluate(expected_path, processed_path, show_diff=5):
expected = load_jsonl(expected_path)
processed = load_jsonl(processed_path)

total = len(expected)
matched = 0
mismatches = []

for id_, exp_text in expected.items():
proc_text = processed.get(id_)
if proc_text is None:

mismatches.append((id_, "missing", exp_text, ""))
else:

if normalize(proc_text) == normalize(exp_text):
matched += 1

else:

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

mismatches.append((id_, "mismatch", exp_text,
proc_text))

accuracy = matched / total if total > 0 else 0.0

result = {"eval_score": f"{accuracy:.4f}"}
print(result)

Refinement Task Dataset Samples

Raw Data GT Data
{ ”id”: ”id 0001”, ”topic”: ”climate
change”, ”text”: ”Climate change poses
significant challenges to the global envi-
ronment and necessitates urgent collec-
tive action.” }
{ ”id”: ”id 0002”, ”topic”: ”climate
change”, ”text”: ”Climate change poses
a significant threat to the stability of
ecosystems worldwide.” }
{ ”id”: ”id 0003”, ”topic”: ”climate
change”, ”text”: ”Climate change poses
a significant threat to global ecosystems
and human societies.” }
{ ”id”: ”id 0004”, ”topic”: ”climate
change”, ”text”: ”Climate change poses
a significant threat to global ecosystems
and human societies.” }
{ ”id”: ”id 0005”, ”topic”: ”cli-
mate change”, ”text”: ”Climate change
presents a significant challenge that re-
quires immediate global attention and ac-
tion.” }

{ ”id”: ”id 0001”, ”topic”: ”climate
change”, ”text”: ”Climate change poses
significant challenges to the global envi-
ronment and necessitates urgent collec-
tive action.” }
{ ”id”: ”id 0002”, ”topic”: ”climate
change”, ”text”: ”Climate change poses
a significant threat to the stability of
ecosystems worldwide.” }
{ ”id”: ”id 0003”, ”topic”: ”climate
change”, ”text”: ”Climate change poses
a significant threat to global ecosystems
and human societies.” }
{ ”id”: ”id 0004”, ”topic”: ”climate
change”, ”text”: ”Climate change poses
a significant threat to global ecosystems
and human societies.” }
{ ”id”: ”id 0005”, ”topic”: ”cli-
mate change”, ”text”: ”Climate change
presents a significant challenge that re-
quires immediate global attention and ac-
tion.” }

3. Imputation Task

Imputation Task Objective

Need a data governance operator that uses the KNN algorithm (k=3) to impute missing
values in a CSV file. 1. Input file: CSV (with header, comma-separated). 2. Supports
numeric and one-hot encoded categorical variables. Encoding: UTF-8, no BOM.

Imputation Task Eval Code

def evaluate(cand: pd.DataFrame,
gt: pd.DataFrame,
raw: pd.DataFrame) -> float:

if cand.shape != gt.shape:
fail(f"Mismatch in dimensions: Expected {gt.shape}, Actual

{cand.shape}")
if list(cand.columns) != list(gt.columns):

fail("Column names or order do not match the reference")

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

miss_mask = raw.isna()

if cand[miss_mask].isna().any().any():
fail("There are missing values that were not filled")

diff = np.abs(cand[miss_mask].astype(float) - gt[miss_mask].
astype(float))
if (diff > ATOL).any().any():

fail("The filled values do not match the reference (non-KNN
imputation)")

if not cand[˜miss_mask].astype(float).equals(raw[˜miss_mask].
astype(float)):

fail("The originally complete data has been modified")

return 1.0

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Imputation Task Dataset Samples

Raw Data GT Data
customer id, age, income, color blue,
color green, color red

customer id, age, income, color blue,
color green, color red

1, 22.0, 37110.61305675143, True,
False, False

1, 22.0, 37110.61305675143, 1.0, 0.0,
0.0

2, 58.0, 55531.26176123748, False,
False, True

2, 58.0, 55531.26176123748, 0.0, 0.0,
1.0

3, 52.0, 35616.760987565016, False,
False, True

3, 52.0, 35616.760987565016, 0.0, 0.0,
1.0

4, 40.0, 63176.75451960909, True, , 4, 40.0, 63176.75451960909,
1.0, 0.3333333333333333,
0.3333333333333333

5, 40.0, 49251.11133520621, False,
True, False

5, 40.0, 49251.11133520621, 0.0, 1.0,
0.0

6, 62.0, 47227.06454682109, False, , 6, 62.0, 47227.06454682109, 0.0, 0.0,
0.3333333333333333

7, 22.0, 39786.05683394088, True,
False, False

7, 22.0, 39786.05683394088, 1.0, 0.0,
0.0

8, 54.0, 68338.12008011046, False, ,
True

8, 54.0, 68338.12008011046, 0.0, 0.0,
1.0

9, 28.0, 47682.05776896797, True,
False, False

9, 28.0, 47682.05776896797, 1.0, 0.0,
0.0

10, 22.0, 43575.08266755339, False,
False, True

10, 22.0, 43575.08266755339, 0.0, 0.0,
1.0

11, 45.0, , True, False, 11, 45.0, 58632.88840075844, 1.0, 0.0,
0.0

12, 68.0, 57984.63778330023, True,
False, False

12, 68.0, 57984.63778330023, 1.0, 0.0,
0.0

13, , 55481.660965461175, True, False, 13, 54.333333333333336,
55481.660965461175, 1.0, 0.0,
0.3333333333333333

14, 57.0, 56190.98917393983, False,
True, False

14, 57.0, 56190.98917393983, 0.0, 1.0,
0.0

15, 55.0, 56462.315045118245, , True,
False

15, 55.0, 56462.315045118245,
0.6666666666666666, 1.0, 0.0

4. De-duplication Task

De-duplication Task Objective

A data governance operator for incremental deduplication on *.csv / *.jsonl: 1. Histor-
ical baseline: .jsonl (already deduplicated, contains id, updated at, and business fields)
2. New incremental file: .csv (same structure) 3. Primary key: id 4. Deduplication rules:
If the primary key exists in the baseline, ignore the incremental row; if not, append to the
result set; For the same key but different business fields, keep the record with the latest
updated at.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

De-duplication Task Eval Code

def compute_f1(
gt_map: Dict[str, Dict],
pred_rows: List[Dict],

) -> float:
if not pred_rows:

return 0.0

tp_ids: Set[str] = set()
fp = 0

for row in pred_rows:
rid = str(row.get("id", ""))
if not rid:

fp += 1
continue

Duplicate row
if rid in tp_ids:

fp += 1
continue

gt_row = gt_map.get(rid)
if gt_row is None:

fp += 1 # Extra id
continue

Compare all fields with GT (order doesn't matter)
if row == gt_row:

tp_ids.add(rid)
else:

fp += 1 # Field values do not match

fn = len(gt_map) - len(tp_ids)
precision = len(tp_ids) / (len(tp_ids) + fp) if tp_ids or fp
else 0.0
recall = len(tp_ids) / (len(tp_ids) + fn) if tp_ids or fn else
0.0
if precision + recall == 0:

return 0.0
return 2 * precision * recall / (precision + recall)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

De-duplication Task Dataset Samples

Raw Data GT Data
File1: { ”id”: ”C0061”, ”updated at”:
”2025-04-20T13:59:30Z”, ”name”:
”Isaac”, ”tier”: ”gold” }
{ ”id”: ”C0024”, ”updated at”: ”2024-
07-10T13:21:47Z”, ”name”: ”Xavier”,
”tier”: ”bronze” }
{ ”id”: ”C0094”, ”updated at”: ”2025-
12-07T09:03:25Z”, ”name”: ”Queen”,
”tier”: ”gold” }
{ ”id”: ”C0094”, ”updated at”: ”2025-
12-07T09:03:25Z”, ”name”: ”Queen”,
”tier”: ”gold” }
{ ”id”: ”C0075”, ”updated at”: ”2025-
07-27T08:12:05Z”, ”name”: ”Xander”,
”tier”: ”bronze” }...
File2: id,updated at,name,tier
C0068,2025-06-
25T00:05:48Z,Paula,silver
C0107,2025-08-
06T05:37:13Z,New107,silver
C0072,2025-07-24T11:00:49Z,Una,gold
C0062,2025-05-
27T05:43:16Z,Jane,silver
C0018,2024-07-
21T07:27:37Z,Rupert,gold...

{ ”id”: ”C0001”, ”updated at”: ”2024-
01-15T10:30:00Z”, ”name”: ”Alice”,
”tier”: ”gold” }
{ ”id”: ”C0002”, ”updated at”: ”2024-
02-03T08:14:12Z”, ”name”: ”Bob”,
”tier”: ”silver” }
{ ”id”: ”C0003”, ”updated at”: ”2024-
02-27T19:22:05Z”, ”name”: ”Carol”,
”tier”: ”bronze” }
{ ”id”: ”C0004”, ”updated at”: ”2024-
03-10T07:45:51Z”, ”name”: ”Dave”,
”tier”: ”gold” }
{ ”id”: ”C0005”, ”updated at”: ”2024-
03-19T11:26:31Z”, ”name”: ”Eve”,
”tier”: ”silver” }
{ ”id”: ”C0006”, ”updated at”: ”2024-
03-27T15:02:43Z”, ”name”: ”Frank”,
”tier”: ”bronze” }
{ ”id”: ”C0007”, ”updated at”: ”2024-
04-02T09:56:17Z”, ”name”: ”Grace”,
”tier”: ”gold” }
{ ”id”: ”C0008”, ”updated at”: ”2024-
04-11T20:11:00Z”, ”name”: ”Heidi”,
”tier”: ”silver” }
{ ”id”: ”C0009”, ”updated at”: ”2024-
04-23T05:33:29Z”, ”name”: ”Ivan”,
”tier”: ”bronze” }
{ ”id”: ”C0010”, ”updated at”: ”2024-
04-30T18:44:07Z”, ”name”: ”Judy”,
”tier”: ”gold” }...

5. Integration Task

Integration Task Objective

A data governance operator for composite key join: join by multi-column composite keys
and resolve column conflicts. Input: customer1.csv, customer2.csv. Rule: Composite key:
left(k1,k2,. . .) = right(k1’,k2’,. . .) (same number of columns). Conflict resolution: left-
priority/right-priority/left and right suffix. Output: gt.csv.

Integration Task Eval Code

def evaluate(gt_hdr: List[str],
gt_rows: List[Dict[str, str]],
pred_rows: List[Dict[str, str]]) -> float:

1. Column completeness
if not pred_rows:

print("[eval] Output is empty", file=sys.stderr)
return 0.0

missing = [c for c in gt_hdr if c not in pred_rows[0]]
if missing:

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

print(f"[eval] Missing columns: {missing}", file=sys.stderr
)

return 0.0

2. Set comparison
gt_counter = rows_to_counter(gt_rows, gt_hdr)
pred_counter = rows_to_counter(pred_rows, gt_hdr)

if gt_counter != pred_counter:
lack = gt_counter - pred_counter
extra = pred_counter - gt_counter
if lack:

print(f"[eval] Missing row examples: {list(lack.
elements())[:3]} ...", file=sys.stderr)

if extra:
print(f"[eval] Extra row examples: {list(extra.elements

())[:3]} ...", file=sys.stderr)
return 0.0

return 1.0

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Integration Task Dataset Samples

Raw Data GT Data
File1:
country,region,customer id,email,
signup date,status,notes
US,CA,1001,alice@example.com,2021-
01-10,active,L1
US,NY,1002,bob@example.com,2021-
02-12,inactive,L2
CN,BJ,2001,chen@example.cn,2020-
11-05,active,L3
CN,SH,2002,du@example.cn,2022-07-
19,pending,L4
DE,BE,3001,eva@example.de,2021-09-
30,active,L5
US,CA,1003,frank@example.com,2020-
06-15,active,L6
File2:
country code,region,id,email,
last order date,status,vip
US,CA,1001,alice.us@example.com,
2022-12-01,gold,true
US,NY,1002,bob@example.com,2021-
12-11,inactive,false
CN,BJ,2001,chen new@ex.cn,2023-03-
03,active,true
CN,GD,2005,gao@example.cn,2021-
05-05,active,false
DE,BE,3001,eva@example.de,
2022-02-02,paused,false
US,CA,9999,zoe@example.com,2023-
04-04,active,false
US,CA,1003,frank@example.com,2020-
07-01,inactive,false
CN,SH,2002,du@alt.cn,2022-08-
01,active,true

country,region,customer id,email left,
signup date,status left,notes,email right
last order date,status right,vip
US,CA,1001,alice@example.com,2021-
01-10,active,L1,alice.us@example.com,
2022-12-01,gold,true
US,NY,1002,bob@example.com,2021-
02-12,inactive,L2,bob@example.com,
2021-12-11,inactive,false
CN,BJ,2001,chen@example.cn,2020-
11-05,active,L3,chen new@ex.cn,2023-
03-03,active,true
CN,SH,2002,du@example.cn,2022-
07-19,pending,L4,du@alt.cn,2022-08-
01,active,true
DE,BE,3001,eva@example.de,2021-09-
30,active,L5,eva@example.de,2022-02-
02,paused,false
US,CA,1003,frank@example.com,2020-
06-15,active,L6,frank@example.com,
2020-07-01,inactive,false

6. Classification and Labeling Task

Classification and Labeling Task Objective

Use LLMserving to assign sentiment labels to text: Input format: .jsonl with text id
and content; Sentiment label set: Positive / Neutral / Negative.

Classification and Labeling Task Eval Code

def accuracy(gt: List[Dict[str, Any]], pred: List[Dict[str, Any]])
-> float:
"""
Calculate the simple classification accuracy between
predictions and ground truth.
"""
Create {text_id: sentiment} mapping; trim leading and
trailing spaces and standardize case
norm = lambda s: str(s).strip() # Only trim; case-sensitive

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

gt_map = {norm(r["text_id"]): norm(r["sentiment"]) for r in
gt}
pred_map = {norm(r["text_id"]): norm(r.get("sentiment", ""))
for r in pred}

total = len(gt_map)
correct = sum(1 for k, v in gt_map.items() if pred_map.get(k)
== v)
return correct / total if total else 0.0

Classification and Labeling Task Dataset Samples

Raw Data GT Data
{”text id”: ”0001”, ”content”: ”The latte
at this coffee shop is so delicious, I will
definitely come back next time!”}
{”text id”: ”0002”, ”content”: ”The cus-
tomer service response speed is quite
fast, and the problem has been solved.”}
{”text id”: ”0003”, ”content”: ”The sun-
light today is really nice, feeling great.”}
{”text id”: ”0004”, ”content”: ”The
soundtrack of this movie is very moving,
definitely recommend it.”}
{”text id”: ”0005”, ”content”: ”The
project was launched on time, and every-
one is very satisfied.”}
{”text id”: ”0079”, ”content”: ”This is
the second page of the contract.”}
{”text id”: ”0080”, ”content”: ”The
air conditioning temperature is set to
25°C.”}
{”text id”: ”0081”, ”content”: ”The ser-
vice attitude was terrible, I will never
come again.”}
{”text id”: ”0082”, ”content”: ”The
product broke after just two days of use,
very disappointing.”}
{”text id”: ”0083”, ”content”: ”The
courier hasn’t updated the logistics for a
week, so annoying.”}

{”text id”:”0001”,”content”:”The latte
at this coffee shop is so delicious,
I will definitely come back next
time!”,”sentiment”:”Positive”}
{”text id”:”0002”,”content”:”The
customer service response speed is
quite fast, and the problem has been
solved.”,”sentiment”:”Positive”}
{”text id”:”0003”,”content”:”The sun-
light today is really nice, feeling
great.”,”sentiment”:”Positive”}
{”text id”:”0004”,”content”:”The
soundtrack of this movie is very
moving, definitely recommend
it.”,”sentiment”:”Positive”}
{”text id”:”0005”,”content”:”The
project was launched on time,
and everyone is very satis-
fied.”,”sentiment”:”Positive”}
{”text id”:”0079”,”content”:”This
is the second page of the con-
tract.”,”sentiment”:”Neutral”}
{”text id”:”0080”,”content”:”The air
conditioning temperature is set to
25°C.”,”sentiment”:”Neutral”}
{”text id”:”0081”,”content”:”The ser-
vice attitude was terrible, I will never
come again.”,”sentiment”:”Negative”}
{”text id”:”0082”,”content”:”The prod-
uct broke after just two days of use, very
disappointing.”,”sentiment”:”Negative”}
{”text id”:”0083”,”content”:”The
courier hasn’t updated the lo-
gistics for a week, so annoy-
ing.”,”sentiment”:”Negative”}

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

7. DAG Task

DAG Task Objective

Write an operator to process JSONL files, executing sequentially: filter out records with
a high proportion of symbols in the text field → remove excess spaces in the text field →
censor profanity in the text field with ****, for example, “I am fucking happy” becomes
“I am **** happy” → use MinHash for approximate deduplication (≥0.9), retaining the
record with the smallest id; output JSONL.

DAG Task Eval Code

def evaluate(processed_path):
expected_path = get_gt()
expected = load_jsonl(expected_path)
processed = load_jsonl(processed_path)

Construct mappings for comparison
expected_map = {entry["id"]: entry for entry in expected}
processed_map = {entry["id"]: entry for entry in processed}

Only evaluate the intersection part
common_ids = set(expected_map.keys()) & set(processed_map.keys
())

true_positives = 0
for cid in common_ids:

gt = expected_map[cid]
pred = processed_map[cid]

Check if text is the same (strip leading and trailing
spaces)

if gt["text"].strip() == pred["text"].strip():
true_positives += 1

predicted_total = len(processed_map)
gold_total = len(expected_map)

precision = true_positives / predicted_total if predicted_total
> 0 else 0.0
recall = true_positives / gold_total if gold_total > 0 else 0.0
f1 = (2 * precision * recall) / (precision + recall) if
precision + recall > 0 else 0.0

result = {"eval_score": f"{f1:.4f}"}
print(result)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

DAG Task Dataset Samples

Raw Data GT Data
{”id”: 1, ”items”: [”orange”, ”com-
puter”, ”paper”, ”pear”, ”book”,
”phone”], ”text”: ”Sports and the envi-
ronment have a complex relationship that
requires careful consideration and action
if we want to keep enjoying both. On
one hand, sporting events bring people
together, promote health, and drive
the economy. On the other hand, they
can be a asshole environmental night-
mare”, ”sources”: [”dataset b.jsonl”,
”dataset a.jsonl”]}
{”id”: 26, ”items”: [”orange”, ”book”,
”banana”, ”grape”, ”computer”], ”text”:
”Engaging in sports is one hell of a
way to boost your overall health and
well-being, both physically and men-
tally. Whether you’re hitting the gym,
playing soccer, or going for a run,
these activities keep your”, ”sources”:
[”dataset b.jsonl”, ”dataset c.jsonl”]}
{”id”: ”d4a6cae8-6250-40dc-9a1e-
b9bef91620fd”, ”items”: [”pen”,
”orange”, ”grape”, ”computer”, ”ba-
nana”, ”paper”], ”text”: ”Art has a
**** magical way of weaving itself
into the fabric of health, providing both
mental clarity and emotional solace.
Through the **** strokes of a paintbrush
???????????????????????????????????
???????????????????????????????????
???????????????????????????????????
or the rhythmic beats of a song, art
offers a therapeutic escape from life’s”,
”sources”: [”dataset b.jsonl”]}

{”id”: 1, ”items”: [”orange”, ”com-
puter”, ”paper”, ”pear”, ”book”,
”phone”], ”text”: ”Sports and the en-
vironment have a complex relationship
that requires careful consideration and
action if we want to keep enjoying both.
On one hand, sporting events bring
people together, promote health, and
drive the economy. On the other hand,
they can be a **** environmental night-
mare”, ”sources”: [”dataset b.jsonl”,
”dataset a.jsonl”]}
{”id”: 26, ”items”: [”orange”, ”book”,
”banana”, ”grape”, ”computer”], ”text”:
”Engaging in sports is one hell of a
way to boost your overall health and
well-being, both physically and men-
tally. Whether you’re hitting the gym,
playing soccer, or going for a run,
these activities keep your”, ”sources”:
[”dataset b.jsonl”, ”dataset c.jsonl”]}

A.6 AGENT ROLES AND IMPLEMENTATION DETAILS

The Planner: From Intent to High-Level DAG. The initial phase is dedicated to understanding
the user’s goal and formulating a strategic plan. This is achieved through two sequential tasks:

• Intent Understanding: Upon receiving a natural language request, the Planner leverages
a LLM configured with few-shot prompting. It analyzes the user’s intent by conditioning
the model with the provided data schema and data samples. This grounding process ensures
the user’s goal is not only correctly interpreted but also validated for feasibility against the
actual data context.

• Contract-Guided Planning: After intent understanding, the Planner does not directly gen-
erate a concrete blueprint. Instead, it first extracts machine-checkable governance con-
tracts from the user request, data schema, and data samples. Each contract is attached to
an operator in the form of a 2-tuple (PRE, POST), strictly defining the pre-conditions and
post-conditions for execution. The Planner then generates a sequence that satisfies the con-
straints imposed by these contracts, ensuring that the output (POST) of each step fulfills the
input requirements (PRE) of the subsequent step. When a constraint is not met, the system
automatically inserts minimal repair steps (such as imputation or type casting).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

• Pipeline Recommendation: Building on the above deep understanding and contract-guided
planning, the Planner ultimately formulates a high-level governance plan, which is repre-
sented as a preliminary directed acyclic graph (DAG). The nodes of this DAG correspond
to a series of abstract operators (e.g., “Remove Duplicates”, “Standardize Date Format”,
“Impute Missing Values”). These contract-annotated nodes collectively provide a strategic
blueprint for the subsequent execution phase, ensuring that the final generated code strictly
adheres to the validated logical path.

The Executor: Realizing Operators with Retrieval-Augmented Generation. For each abstract
operator in the planned DAG, the Executor is responsible for generating concrete, executable Python
code. It employs a powerful Retrieval-Augmented Generation (RAG) strategy, which synergizes
the reliability of pre-validated code with the flexibility of on-the-fly generation.

• Operator Retrieval: The agent first treats its internal library of validated governance op-
erators as a collection of callable tools. Each tool has a rich description detailing its func-
tionality, parameters, and use cases. The Executor compares the semantic content of the
target operator’s goal (e.g., “standardize date format to YYYY-MM-DD”) against these
tool descriptions to retrieve the top-K (e.g., top-4) most relevant operators.

• Augmented Generation: Rather than simply executing the top retrieved operator or falling
back to free generation if no perfect match is found, the Executor adopts a more robust ap-
proach. The retrieved operators, along with their descriptions, are injected into the LLM’s
prompt as dynamic few-shot examples. This context-rich prompt guides the model to gen-
erate code that is not only tailored to the specific requirements of the task but also adheres
to the established patterns and best practices of the operator library. This hybrid method
significantly reduces hallucinations and improves the quality of the generated code, even
for highly customized or novel tasks.

The Evaluator: Sandboxed Execution and Meta-Cognitive Refinement. Code generation is only
half the battle; rigorous verification is paramount. The Evaluator provides a critical quality assurance
layer through a self-correcting execution and debugging cycle.

• Sandboxed Execution: All generated code is executed within a secure, isolated sandbox
environment. This prevents unintended side effects on the host system and allows the agent
to safely handle diverse data sources and external dependencies.

• Iterative Debugging with Structured Feedback: When the generated code fails to execute
or produces incorrect results, the Evaluator does not simply report the failure. Instead,
it acts as a diagnostician, capturing the runtime state and constructing a highly structured
feedback prompt to guide the Executor’s subsequent refinement. As shown in Figure 2, this
prompt is a rich data object containing a comprehensive diagnostic report: it includes not
only the erroneous code snippet that caused the failure, but also the complete error message
and stack trace, providing technical context for issue localization. More importantly, the
Evaluator also analyzes the situation in light of the relevant contract constraints. If any
contract is found to be unsatisfied, it offers targeted revision suggestions—for example,
Please add a check to handle potential null values in the creation date column before ap-
plying the datetime conversion.” To keep the agent aligned with the overall objective, the
feedback additionally includes broader task context.

This meta-cognitive feedback allows the Executor to perform targeted, surgical corrections instead
of trial-and-error guessing. This loop continues until the operator code is both runnable and func-
tionally correct, ensuring each component of the final GovDAG is rigorously validated.

A.7 DETAILS OF AGENT FRAMEWORK BASELINES

A.7.1 DERIVED METRICS AND FORMULAS

The following metrics are used to evaluate agent performance throughout the appendix.

• Alignment: A = TSR/CRR.
• Contract gap: ∆rc = CRR− TSR (in percentage points).

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

• Debugging efficiency: E = TSR/ADI.
• Tokens per successful task: T ∗ = Avg. Tokens/(TSR/100). This measures the average

number of tokens consumed to achieve one successful task completion.

The following sections provide the specific numerical data and interpretations corresponding to the
visualizations in Figures 5 through 9.

GPT-5 base – DAG-level details

• DataGovAgent (TSR 60, CRR 74, ATS 54.91, Avg. 62.97, ADI 3.29, Tokens 34303.72)
A = 0.81; ∆rc = 14; E = 18.24; T ∗ = 57, 173.

• ChatDev (64, 82, 39.67, 61.89, 14.89, Tokens 28607.22)
A = 0.78; ∆rc = 18; E = 4.30; T ∗ = 44, 700.

• CAMEL (32, 74, 16.80, 40.93, 5.00, Tokens 11777.50)
A = 0.43; ∆rc = 42; E = 6.40; T ∗ = 36, 805.

Interpretation: On complex DAG-level tasks, DataGovAgent demonstrates the highest debugging
efficiency (E=18.24) and strong alignment (A=0.81). However, this comes at the highest token cost
per successful task (T ∗ = 57, 173). In contrast, CAMEL is the most token-efficient per success
(T = 36, 805) but delivers significantly lower quality (TSR 32, ATS 16.80) and poor alignment.
ChatDev offers a middle ground on token efficiency but lags considerably in debugging efficiency.

GPT-5 base – Operator-level details

• DataGovAgent (TSR 64, CRR 88, ATS 55.47, Avg. 69.15, ADI 2.14, Tokens 31503.75)
A = 0.73; ∆rc = 24; E = 29.91; T ∗ = 49, 225.

• ChatDev (43, 69, 33.82, 48.61, 14.47, Tokens 26888.26)
A = 0.62; ∆rc = 26; E = 2.97; T ∗ = 62, 531.

• CAMEL (34, 92, 20.36, 48.79, 4.50, Tokens 9447.75)
A = 0.37; ∆rc = 58; E = 7.56; T ∗ = 27, 788.

Interpretation: Even on simpler Op-level tasks, DataGovAgent leads in quality (TSR 64, ATS 55.47)
and debugging efficiency (E=29.91). It is also more token-efficient per success than ChatDev (T =
49, 225 vs. 62, 531). CAMEL remains the most token-efficient overall (T = 27, 788) but has the
worst alignment (A=0.37) and a large correctness gap (∆rc = 58), indicating that while its raw
token usage is low, it struggles to convert runnability into correct solutions.

Weaker base model (GPT-4o) – token-quality trade-off DAG-level:

• DataGovAgent (44, 50, 34.52, 42.84, 4.03, Tokens 27192.45): A = 0.88; ∆rc = 6;
E = 10.92; T ∗ = 61, 801.

• ChatDev (36, 40, 19.12, 31.71, 14.42, Tokens 7261.49): A = 0.90; ∆rc = 4; E = 2.50;
T ∗ = 20, 171.

• CAMEL (24, 60, 8.47, 30.82, 5.00, Tokens 11925.00): A = 0.40; ∆rc = 36; E = 4.80;
T ∗ = 49, 688.

Operator-level:

• DataGovAgent (63, 89, 52.93, 68.31, 2.12, Tokens 23712.14): A = 0.71; ∆rc = 26;
E = 29.72; T ∗ = 37, 638.

• ChatDev (43, 63, 34.47, 46.82, 14.20, Tokens 6996.62): A = 0.68; ∆rc = 20; E = 3.03;
T ∗ = 16, 271.

• CAMEL (29, 91, 14.54, 44.85, 4.40, Tokens 9071.92): A = 0.32; ∆rc = 62; E = 6.59;
T ∗ = 31, 282.

Interpretation: With the weaker GPT-4o model, the trade-offs become more pronounced. DataGov-
Agent still achieves the highest quality (TSR/ATS) and debugging efficiency (E), but at a significantly

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

higher token cost per success (T ∗). Surprisingly, ChatDev becomes the most token-efficient frame-
work (T∗ of 20,171 on DAG and 16,271 on Op), despite its low raw success rate and poor debugging
efficiency. This highlights a clear, controllable token-quality frontier where achieving higher quality
and development efficiency with DataGovAgent requires a larger token budget.

A.7.2 PERFORMANCE VISUALIZATIONS

The following figures provide a comparative visualization of agent performance across different
models, task levels, and key metrics.

Figure 5: Comparison of Task Success Rate (TSR) across agents, base models, and task levels. TSR
measures the percentage of tasks completed successfully.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Figure 6: Comparison of Average Task Score (ATS). ATS provides a more nuanced measure of
solution quality beyond simple success or failure.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Figure 7: Comparison of Tokens per Successful Task (T ∗). This metric normalizes average token
consumption by the success rate, indicating token-efficiency. Lower values are better.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Figure 8: Comparison of Debugging Efficiency (E). This metric reflects how many successful tasks
are produced per debugging iteration. Higher values are better.

Figure 9: Token–Quality Trade-off Frontier. Relationship between quality (ATS, y-axis) and token
efficiency (T ∗, x-axis). The ideal position is the top-left corner (high quality, low tokens per suc-
cess).

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

A.7.3 MECHANISM ATTRIBUTION AND ABLATIONS

Contracts make business correctness executable: pre-conditions expose
type/shape/uniqueness/missing-value assumptions; post-conditions render acceptance criteria
as assertions, preventing hidden cross-step assumptions.

Meta-cognitive feedback turns CRR’s blind spots into targeted fixes: the Evaluator couples
failing code spans, stack traces, and violated contracts to produce surgical edits, improving A and
reducing ∆rc with far fewer iterations (higher E). Ablations (Op-level, GPT-5 base), as shown in
Table 8:

• w/o Planner: TSR drops from 64→ 38 (−26 pp), CRR 88→ 51, ADI 2.14→ 8.75; ATS
55.47→ 31.20.

• w/o RAG: TSR 64 → 49 (−15 pp), CRR 88 → 65, ADI 2.14 → 5.20; ATS 55.47 →
42.15.

These confirm that contract-guided planning supplies the right decomposition/ordering, while RAG
reduces hallucinations; the Evaluator’s meta-cognitive loop converts these into fewer, more effective
iterations.

A.8 ABLATION STUDY

To dissect the contribution of each component within the DATAGOVAGENT framework, we con-
ducted a series of ablation studies on the GovBench Operator-level tasks. We systematically dis-
abled or replaced key modules—the Planner and the RAG mechanism to quantify their impact on
overall performance. All experiments were run using GPT-5 as the base model. The results are
summarized in Table 8.

Table 8: Ablation study of DataGovAgent on GovBench operator-level tasks. Numbers in brackets
show the change () w.r.t. the full model — red = decrease, green = increase.

Configuration ATS↑ TSR↑ CRR↑ ADI↓

DataGovAgent (Full) 55.47 64.00 88.00 2.14

RQ1: Planner’s Role
w/o Planner 31.20 (-24.27) 38.00 (-26.00) 51.00 (-37.00) 8.75 (+6.61)

RQ2: RAG’s Impact
w/o RAG (Free Generation) 42.15 (-13.32) 49.00 (-15.00) 65.00 (-23.00) 5.20 (+3.06)

RQ1: Is the Planner’s high-level DAG planning necessary? To answer this, we created a variant
named ‘w/o Planner‘, where the Executor directly receives the raw natural language instruction and
attempts to generate the entire solution in one go, bypassing the intent understanding and DAG plan-
ning phase. As shown in Table 8, this led to a catastrophic performance drop: the TSR plummeted
from 64.00% to 38.00%, and the Average Debug Iterations (ADI) quadrupled. This result strongly
indicates that for data governance tasks, which often involve implicit multi-step logic, decomposing
the user’s intent into a structured, high-level plan is crucial. Without this planning phase, the LLM
struggles to manage the complexity, leading to logically flawed or incomplete code that is difficult
to debug.

RQ2: How much does Retrieval-Augmented Generation contribute? We investigated this by
creating the ‘w/o RAG’ variant, where the Executor generates code based solely on the abstract
operator name provided by the Planner, without retrieving any code examples from the operator
library. The performance degradation was significant, with TSR dropping by 15 percentage points.
This highlights the value of RAG: grounding the LLM with pre-validated, high-quality code snippets
(even if they are not a perfect match) significantly steers it towards generating more correct and
robust solutions, reducing hallucinations and logical errors.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

A.9 DETAILS OF HUMAN BASELINE

To establish a strong human baseline for DATAGOVAGENT, we evaluated the performance of experi-
enced data-science practitioners on a subset of GOVBENCH. We recruited five data-science experts,
each with more than five years of professional experience in data engineering and analysis.

To ensure a fair comparison, the experts were granted unrestricted access to the same GPT-5
model through an interactive chat interface. They could issue any number of queries but still had to
manually synthesize, test, and iterate on a final Python script. Each expert completed ten randomly
sampled tasks—five Operator-level and five DAG-level. We measured both the TSR and the average
wall-clock time from start to finish.

Table 9 presents the full results of this comparison.

Table 9: Performance of Human Experts vs. DataGovAgent on GovBench Subset.

Method Task TSR↑ Avg. Time
(min)↓

Human Experts + GPT-5 Op 84.00 14.2
Human Experts + GPT-5 DAG 25.00 24.5

DataGovAgent (GPT-5) Op 64.00 3.5
DataGovAgent (GPT-5) DAG 60.00 4.7

Our study reveals complementary strengths rather than uniform dominance: the agent excels on
complex DAG-level tasks, whereas humans achieve higher accuracy on operator-level tasks. Con-
cretely:

• Operator-level tasks. While human experts achieved a higher TSR, DATAGOVAGENT was
approximately 4.1× faster on average (3.5 min vs. 14.2 min).

• DAG-level tasks. For more complex tasks, the agent’s advantage was twofold: it achieved
an accuracy 35 percentage points higher than the experts and reduced completion time by
roughly 81% (4.7 min vs. 24.5 min).

These findings suggest that, for well-specified data-governance workloads, a fully automated LLM-
centric agent can translate the reasoning and coding capabilities of GPT-5 into effective end-to-end
execution, particularly on complex DAG workflows. Human expertise remains crucial for open-
ended problem formulation, strategic oversight, and final validation; our results show that routine
to moderately complex data-processing tasks can be accomplished substantially faster by the agent,
with higher accuracy on DAG-level tasks and lower accuracy on operator-level tasks relative to
humans.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

A.10 METRICS

Table 10: Evaluation Metrics for GovBench

Metric Abbr. Calculation Description

Average Task Score ATS
100

Nt

∑Nt

i=1 Si Represents the ATS across all tasks, reflect-
ing the overall quality of the generated solu-
tions. A higher ATS indicates better overall
performance.

Task Success Rate TSR
Nsucc

Nt
The proportion of tasks that fully achieve the
“business objective.” A task is deemed suc-
cessful if its evaluation score is 1.0. This is
the core metric for measuring task comple-
tion quality.

Code Runnable Rate CRR
Nrun

Ngen
The proportion of generated code scripts
that can be executed directly without any
uncaught errors. This measures the basic
usability of the code.

Avg. Score – Savg The average value of the ATS, TSR, and
CRR metrics. This metric provides an over-
all score by averaging these three indicators.

Average Debug Iterations ADI
1

Nt

∑Nt

i=1 Di The average number of “generate → exe-
cute → evaluate” cycles required for a task
to succeed. This measures the debugging ef-
ficiency of the agent framework.

Avg. Tokens – Tavg The average number of tokens consumed to
complete each individual task. This metric
evaluates the token efficiency for every sin-
gle task.

Total Cost – Ci The monetary cost required to complete each
individual task, calculated based on openai
LLM API pricing. This metric evaluates the
economic efficiency for every single task.

Generation Time – Tgen Total wall-clock time (in seconds) consumed
by the LLM to generate all task code solu-
tions. This reflects the raw code synthesis
efficiency.

Execution Time – Texec Total wall-clock time (in seconds) consumed
by running all generated task code solutions.
This reflects the runtime efficiency of the
produced code.

Where:Nt is the total number of tasks; Si is the evaluation score for task i; Nsucc is the number of successful
tasks; Nrun is the number of runnable scripts; Ngen is the total number of generated scripts; Di is the number
of debug iterations for task i; Ci is the monetary cost for each individual task; Tgen is the total generation time
across all tasks; and Texec is the total execution time across all tasks. Notes: ATS = 100 × mean per-task score
(each task score ∈ [0,1]). TSR/CRR are proportions reported as percentages. Higher is better unless noted.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

A.11 PROMPTS

Here’s some prompt templates used in Benchmark Building.

Prompt 1: Prompt for building DAG tasks.
Task Description
You are given a sequence of task descriptions. Each task description

defines a part of a complex task or operation. The task descriptions
are part of a larger, multi-step process that will form a
comprehensive, integrated task. Your objective is to generate a new,
high-level task objective that combines the individual task
descriptions into a coherent and complex task. This task must
challenge the model's ability to handle intricate data governance
problems.

Instructions
1. Combine the given task descriptions into a single, cohesive task that

requires handling multiple steps.
2. Incorporate multiple aspects of the given task descriptions into the

final task description to present a significant challenge to data
governance.

Task Descriptions
- {task_1}
- {task_2}
- {task_3}
- ...

Generated Comprehensive Task
{generated_task}

Prompt 2: Prompt for reverse prompt.
Original Task Objective
You are given the following task objective. Your goal is to achieve the

stated objective using the provided data examples.

Task Description
{original_task_description}

Reversed Task Objective
Now, your task is to generate a reversed task objective based on the

provided task description. The reversed objective should shift the
focus from achieving the task goal to intentionally introducing noise
into the data. Instead of performing actions such as classification,
imputation, or any other task goal, the goal is to create challenges
or distortions in the data. For example, if the original task

involves classification, the reversed task should focus on
introducing noise such as mislabeling or irrelevant features in the
data.

Data Examples
Here are the provided data examples related to the original task:

- {example_1}
- {example_2}
- {example_3}
- ...

Generated Reversed Task Objective
{generated_reversed_task}

Prompt 3: Prompt for noisy injection.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Reversed Task Objective
You are given the following reversed task objective. This objective

describes how to intentionally introduce noise into the dataset.

{reversed_task_objective}

Data Examples
Here are some sample data records that illustrate the structure and

format of the dataset:

- {example_1}
- {example_2}
- {example_3}
- ...

Instruction
Write executable Python code that introduces the noise into the dataset

as described in the reversed task objective.
The code should:
1. Take as input a dataset file (format consistent with the given

examples).
2. Implement the noise generation specified in the reversed task

objective.
3. Output the modified dataset to required file path in the same format

as the input.
4. Ensure reproducibility (e.g., by setting a random seed if randomness

is used).

Expected Output
Provide only the Python code that implements the noise injection process.
The code must be complete and runnable.

Prompt 4: Prompt for evaluation scripts generation.
Task Description
You are given a data governance task description:

{task_description}

Data Samples
Here are some representative ground truth (expected) data samples:

{gt_samples}

Here are some representative processed data samples:

{processed_samples}

Instruction
Write a Python evaluation script that compares the processed dataset

against the ground truth dataset and outputs a quantitative score
between 0 and 1, reflecting the m o d e l s effectiveness in completing
the task.

The evaluation should:
1. Load the ground truth and processed datasets from file paths provided

as arguments.
2. Use evaluation metrics appropriate for the task category:

- Filtering: F1 Score (balance of precision and recall in filtering
unwanted entries).
- Refinement: Accuracy (correctness of standardized or transformed
data fields).
- Imputation: Completion Rate / Imputation Accuracy (ability to
correctly fill in missing values).

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

- Deduplication & Consistency: Duplicate Reduction Rate or Consistency
Score (removal of duplicates or ensuring consistent values).

- Data Integration: Integration Accuracy (accuracy of merging
heterogeneous datasets, resolving conflicts).
- Classification & Labeling: Accuracy, Precision, Recall, F1 Score (
standard classification metrics).

3. Output the evaluation result as a dictionary with the key `"eval_score
"` and the corresponding score (float between 0 and 1).

4. Print the dictionary as the final output.

Expected Output
Provide only the Python code for the evaluation script.
The code should be complete and runnable, following this template

structure:

```python
def evaluate(processed_path):

expected_path = get_gt()
expected = load_gt(expected_path)
processed = load_processed(processed_path)

# implement task-specific evaluation logic here ...

result = {"eval_score": <score>}
print(result)

To enhance reproducibility and review transparency, this appendix discloses several prompts used in
our experiments (including intent identification, pipeline assembly, operator retrieval, and code de-
bugging). We emphasize that these prompts only support a subset of “minimum viable” functionality
and are not sufficient on their own to constitute the full contract-driven Planner–Executor–Evaluator
framework described in the main paper.

Prompt 5 present the detailed prompts for Planner.

Prompt 5: Prompt for Intent Understanding.
[Role] You are an intent analysis robot. You need to identify the user's

explicit intent from the conversation and analyze the user's data
processing requirements based on the conversation content.

[Task]

You need to determine whether the user's current requirement is for a
single operator or a complete pipeline, and set is_single_operator (
true only if a single operator is required, otherwise false) and
is_pipeline (true if pipeline processing is required, otherwise false
) accordingly.

You need to summarize the user's processing requirements in detail based
on the conversation history, and always provide a natural language
response as the value of assistant_reply.

[Input Content] Conversation history: {history} Current user request: {
target}

[Output Rules]
Reply only in the specified JSON format.
Do not output anything except JSON.
[Example]
{
"is_single_operator": false,
"is_pipeline": true,
"assistant_reply": "I will recommend a suitable data processing pipeline

based on your needs.",
"reason": "The user explicitly requested a recommendation, wants to

process data related to mathematics, and hopes to generate pseudo-
answers.",

40



2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

"purpose": "According to the conversation history, the user does not need
a deduplication operator, hopes to generate pseudo-answers, and

wants to keep the number of operators at 3."
}

Prompt 6 Prompt for the agent in recommend Module.

Prompt 6: Prompt for the agent in recommend Module.
[ROLE]
You are a data governance workflow recommendation system. Based on the

provided context, automatically select the appropriate operator nodes
and assemble them into a complete data processing pipeline.

[INPUT]
You will receive the following information:
- Workflow requirements to be satisfied:

{workflow_bg}
- Sample data information:

{local_tool_for_sample}
- List of available operators:

{operators}

[OUTPUT RULES]
1. Select suitable operator nodes from the available operators and

assemble them into a complete processing pipeline. Output in the
following JSON format:
{"edges":[{"source":node0,"target":node1},{"source":node1,"target":
node2}]}

2. Provide your reasoning for the selection in the following JSON format:
{"reason": "Please explain your reasoning in detail here. For example:
The pipeline includes multi-level data preprocessing and quality

filtering, performing language filtering, format standardization,
noise removal, privacy protection, length and structure optimization,
and symbol and special character handling sequentially to ensure the
text content is standardized, rich, and compliant."}

3. Verify that the constructed pipeline satisfies all requirements,
especially {workflow_bg}.

4. Check the edges field to ensure all nodes are valid node fields from
the available operators.

5. For each operator, specify the conditions under which it can continue
execution, using the following format:
"node1": {
"Score": { "operator": ">", "value": 0.5 }

}.

Prompt 7 Prompt for the agent in op lib Module.

Prompt 7: Prompt for the agent in op lib Module.
[ROLE]
You are an expert in data operator retrieval.

[TASK]
Based on the provided operator content {get_operator_content}, user

requirement {target}, and operator names {op_name}, identify the top
{top-k} most similar operator names from the operator library and
provide your reasoning.

[INPUT FORMAT]
The input includes:
- Operator content (get_operator_content)
- User requirement (target)
- Operator names (op_name)

41



2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

[OUTPUT RULES]
1. Strictly return the content in the JSON structure shown below. Do not

include any extra content, comments, or additional fields.
2. You must return exactly {top-k} operator names in all cases.

JSON output example:
{

"match_operators": [
"OperatorName1",
"OperatorName2",
"OperatorName3",
"OperatorName4"

],
"reason": "xxx"

}

Prompt 8 Prompt for the agent in write op Module.

Prompt 8: Prompt for the agent in write op Module.
[ROLE]
You are an expert in data operator development.

[TASK]
Refer to the example operator {example} and write a new operator based on

the requirements described in {target}.

[INPUT FORMAT]
Input includes:
- Example operator (example)
- Target description (target)

[OUTPUT FORMAT]
Please output in the following JSON structure:
{

"code": "Complete source code of the operator",
"desc": "Brief description of the operators function and its input/
output"

}

[RULES]
1. Carefully analyze and understand the structure and coding style of the

example operator.
2. Write operator code that fully meets the functional requirements of {

target} and can run independently. Do not include any extra code or
comments.

3. Only output the two fields 'code' (the complete operator code as a
string) and 'desc' (a concise explanation of the operators
function and its input/output), strictly following the JSON format.

4. If the operator requires using an LLM, the __init__ method must
include the llm_serving field.

5. All output files generated by the operator must be in the same
directory as the current file (os.path.dirname(__file__)).

Prompt 9 Prompt for the agent in debug Module.

Prompt 9: Prompt for the agent in debug Module.
[ROLE]
You are an expert in code debugging and correction.

[TASK]
Given the original code, error message, requirement, JSON data fields,

and reference code, minimally modify the original code to fix the
error. Ensure your corrections are precise and focus on issues such

42



2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

as key alignment or import errors. Output the corrected code and your
reason for modification strictly in JSON format, and follow all

specified requirements.

[INPUT]
You will receive the following information:
- The original code: {code}
- The error message: {error}
- The requirement: {target}
- The JSON data fields processed in the target code: {data_keys}
- Reference code retrieved: {cls_detail_code}

[OUTPUT RULES]
1. Strictly return your response in JSON format, including: the complete

corrected code, your reason for the modification, and any additional
files that may be needed to better resolve the error. For example: {"
code": xxx, "reason": xxx}

2. Ensure that the operator output file is in the same directory as the
currently executing file (os.path.dirname(file)).

3. Do not include any extra keys, explanations, comments, or markdown
syntax.

4. The returned code must include the if __name__ == '__main__': block,
so that the file can be run independently.

5. The output must be in JSON format!!!!
6. You must use the files specified in <INPUT_FILES>{INPUT_FILES}</

INPUT_FILES> as input.

43



2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

A.12 LLM USAGE STATEMENT

In this research, large language models (LLMs) were used to assist in certain stages, as detailed
below:

1. During the writing process, GPT-5 was utilized for language polishing and grammar cor-
rection.

2. LLMs were used to assist in code generation and the development of visualization scripts.
3. All research ideas, experimental designs, data analyses, and conclusions were indepen-

dently conceived and determined by the authors.

44


	Introduction
	Related Work
	Data Science Benchmarks and LLM Evaluation
	Data Science Agents and Automation

	GovBench: A New Benchmark for Data Governance Automation
	Real-world Data Source
	Hierarchical Task Objective Design
	Targeted Noise Injection
	Task-Specific Evaluation

	DataGovAgent: An End-to-End NL2GovDAG Framework for Data Governance
	Architectural Overview
	Specialized Agent Roles

	Experimental Setup
	Benchmark
	Evaluation Metrics
	Baseline

	Benchmark Results
	Performance of Single-Model Baselines
	Performance of Agent Framework Baselines
	Comparison with Human Baseline

	Conclusion
	Appendix
	Benchmark Comparison Table
	Algorithm for derive Op-level task sequences
	Benchmark Statistics
	Tasks Eval
	Benchmark Examples
	Agent roles and implementation details
	Details of Agent Framework Baselines
	Derived Metrics and Formulas
	Performance Visualizations
	Mechanism Attribution and Ablations

	Ablation Study
	Details of Human Baseline
	Metrics
	Prompts
	LLM Usage Statement


