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Abstract
This work investigates neural algorithmic reasoning to develop neural networks
capable of learning from classical algorithms. The main challenge is to develop
graph neural networks that are expressive enough to predict the given algorithm
outputs while generalizing well to out-of-distribution data. In this work, we
introduce a new graph neural network layer called Triplet Edge Attention (TEA),
an edge-aware graph attention layer. Our algorithm works by precisely computing
edge latent, aggregating multiple triplet messages using edge-based attention.
We empirically validate our TEA layer in the CLRS benchmark and demonstrate
a 5% improvement on average. In particular, we achieve a 30% improvement for
the string algorithms compared to the state-of-the-art model.

1 Introduction

Neural networks are undergoing rapid development and unprecedented performance in tackling
intricate tasks across a wide range of domains. However, a critical vulnerability of neural networks
lies in their robustness, which is the capacity to maintain consistent performance on all inputs
[1]. Despite their high accuracy on the training distribution, neural networks often exhibit subpar
performance during the inference stage, particularly when confronting input data lying outside the
training data distribution. Neural algorithmic reasoning [2] is a promising avenue to address this
robustness problem by combining neural network models with classical algorithms, which entails
training the algorithm itself to the neural network.

In contrast to traditional algorithmic solutions for real-world tasks, which embed the task into a
known domain and then select an algorithm to solve the proxy-domain problem, neural algorithmic
reasoning allows direct input without the proxy step [2]. Furthermore, neural algorithmic networks
can be repurposed as a pretrained model without losing their generality. This versatility enables
the execution of complex tasks by synthesizing multiple algorithmic reasoning layers and even
discovering new algorithms from unconventional perspectives compared to human analyses [3].

Algorithmic reasoning tasks are commonly accomplished using graph neural networks (GNNs) [4],
which excel in terms of expression power compared to models using sequential or grid-based inputs.
Corresponding attribute facilitates the efficient expression of algorithms [5] such as Breadth-First
Search [6] or Bellman-Ford [7]. This research aims to develop a graph-based algorithmic learner, a
GNN capable of learning various algorithms involving diverse input types. The previous state-of-the-
art (SOTA) model, i.e., Triplet-GMPNN [8], displayed remarkable enhancements across the CLRS
benchmark [3] thanks to its capability to reason over triplet of vertices.

Contribution. In this work, we focus on refining neural architectures to better align with the
algorithmic reasoning tasks. To this end, we devise a novel edge-attention method tailored for
reasoning, coined Triplet Edge Attention (TEA), an efficient method for computing edge latent
suitable for both node-based and edge-based algorithms. We use the newly proposed attention to
construct Triplet Edge Attention Message passing neural network (TEAM), which we combine
with the encoder-processor-decoder network to enhance the computation of algorithmic outputs. We
evaluate our algorithm on the CLRS-30 benchmark [3] and achieve state-of-the-art results with an
average rank of 1.63.
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2 Preliminaries
Problem setting. Algorithms solve a particular problem in a finite amount of time with unambigu-
ous and executable steps. Several algorithms in the CLRS-30 benchmark, such as the Matrix-Chain-
Order algorithm [9] or the Floyd-Warshall algorithm [10], require edge-based reasoning to determine
the next states of algorithms. Thus, given graph G = (V, E) with vertices V and edges E , handling a
|V|3 message is beneficial for edge-level reasoning by aggregating intermediate node effects [11].

Hints. Hints are time series data that represent algorithm states, which contain the necessary
information needed to replicate the logical, step-by-step execution of algorithms [3]. The type of hints
depends on the task and can be stored at node, edge, or graph level. In the absence of monitoring the
model with ground-truth hints, it is difficult to confirm that the intended algorithm is being learned
during the training. For example, when an insertion sort algorithm is given as input, the model might
learn other behaviors such as heap sort [12] or quicksort [13] algorithm without the help of hints. To
address this issue, we adopted an architecture that anticipates the algorithm’s hint trajectory through
an iterative process before generating the final output.

Encode-process-decode paradigm. We embrace the encode-process-decode paradigm as presented
in the CLRS benchmark [3]. For a given task τ , at each t-th time step, the encoder fτ performs
linear encoding for input and hint, embedding them as high-dimensional vectors. These embeddings
of inputs and hints located in the nodes all have the same dimension and are added together; the
same happens with hints and inputs located in the edges, and in the graph. Thus, at the end of the
encoding step for a time step t of the algorithm, we have a single set of embeddings {x(t)

i , e
(t)
ij ,g

(t)}
with x

(t)
i ∈ Rn×h, e(t)ij ∈ Rn×n, g(t) ∈ Rh, in the nodes, edges, and graphs, respectively. Note that

this process remains independent of the size or type of the inputs and hints inherent to a particular
algorithm, allowing us to share this latent space across all the thirty algorithms in CLRS.

3 Triplet Edge Attention
We propose a novel Triplet Edge Attention (TEA) which captures multiple node features to compute
the edge latent values. Previous attempts for graph attention were made in both node-based and
edge-based level [14–19]. Our TEA computes the edge latent representation hij as follows:

hij = ReLU

 ∑
k∈Ni∪Nj

αijk (W
′eik)

 , (1)

where αijk is the newly proposed edge-based triplet attention computed as follows:

t′ijk = aT LeakyReLU(tijk), αijk =
exp(t′ijk)∑

k′∈Ni∪Nj
exp(t′ijk′)

, (2)

tijk = W[xi ∥ xj ∥ xk ∥ eij ∥ eik ∥ ejk ∥ g]. (3)

Note that the multi-head attention can also be implemented as follows:

hij =

M∥∥∥
m=1

ReLU

 ∑
k∈Ni∪Nj

αm
ijk (W

meik)

 (4)

where, ∥ indicates concatenation, and the activation function from Equation (1), (4) may be changed
depending on the task. The major difference of previous triplet reasoning and our TEA is that,
we efficiently map representations for all additional nodes through edge-level attention, instead of
maximization over triplet messages. The computational complexity of a single attention head TEA
layer is expressed as O

(
|V|2h2 + |V|3h

)
which matches the time complexity of triplet reasoning

method, where h is the hint dimension. This enables fair comparison between TEA and triplet
reasoning based models respective to its computational cost. Practical ratios of the number of
parameters are stated in 3.

Our TEA method exhibits effectiveness not only for edge-based reasoning problems but also for
node-based reasoning problems. Compared to the traditional message passing with two steps, where
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(a) TEA for edge AB (b) Final Computation for node A

Figure 1: Triplet Edge Attention structure for edge latent AB and final computation process for
Node A’s Output. A solid line represents an edge, and a dotted line implies that the nodes are not
directly connected but are still considered for TEA. Colored nodes from 1b are A’s neighbors which
are considered for the output computation.

the effects of 2-hop neighbors are indirectly computed through 1-hop nodes, TEA directly calculates
the influence of 2-hop neighbors relative to the target node’s state. This direct calculation ensures
accurate attention score computation. The TEA method is also beneficial when dealing with fully-
connected graphs, which aligns with the practical condition of our experiment. Contrary to the
two-step message passing or two-step graph attention, which stores information as node latents,
the TEA method preserves computed information as edge latents. This distinction becomes critical
within a fully-connected graph, where all node latents are used to predict the output of each node. In
contrast, our edge latent solely affects the two connected nodes during the final step. This difference
in the influence scope allows precise reasoning for individual nodes and the aggregation of multiple
conditions to determine the next execution state of the algorithm.

We demonstrate the effectiveness of our TEA in the example of Figure 1a. Here, the effect of node
C is embedded in the edge latent hAB considering features of nodes A, B, C, edges AB, BC, AC,
and graph G. It is noteworthy that edge AC could be a zero vector if the two nodes are not connected.
In the case we are computing the output for node A, as shown in Figure 1b, the traditional message
passing method with two steps would embed the effect of node C into node B, then propagate it
to node A. On the other hand, even when nodes A and C are not directly linked, our TEA method
computes the influence of node C relative to the state of node A, enabling accurate computation of
attention score.

4 Experiment
4.1 Implementation

Our experiments were conducted using the CLRS benchmark [3], which includes 30 classical
algorithms categorized into 8 distinct groups, reformatted as graph structure enabling training on
GNNs. During the training process, we applied model improvement techniques [8] to enhance the
model’s robustness. Additionally, we replaced the in-distribution validation set of size 16 into a OOD
data of size 32, to prevent over-fitting on a particular graph size and assure the model is learning the
general algorithm. We also applied OOD validation to the previous SOTA model to make comparison
of its effect. The effect of changing validation set is examined in the results section. For the test set,
OOD data of size 64 were used.

We use the Triplet-GMPNN architecture [8] as a baseline model for this research. The model
is designed with encoder-processor-decoder architecture for hint-based tasks introduced from the
previous work [3]. The processor network for Triplet-GMPNN is a fully connected MPNN [20] with
triplet reasoning and gating method [8].

4.2 Results

We evaluated OOD performance over CLRS-30 benchmark [3], with 5 repetitions. Table 1, 2 and
Figure 2 present the micro-F1 score for OOD test data, comparing the baseline Triplet-GMPNN [8],
the baseline with OOD validation set, and our TEAM model. TEAM model exhibited the highest
performance, showing a 5.09% improvement compared to the previous SOTA, while the appliance of
OOD validation in the baseline model yielded a 3.51% improvement. Additionally, our TEAM model
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Figure 2: Bar chart for OOD micro-F1 scores of baseline (Triplet-GMPNN), baseline with OOD
validation set, and our best model TEAM, after 10,000 training steps on each algorithm.

Table 1: Average OOD micro-F1 scores of Memnet, MPNN, PGN, baseline (Triplet-GMPNN),
baseline with OOD validation set, and our best TEAM model, after 10,000 training steps on each
algorithm category.

Algorithm Memnet [3] MPNN [3] PGN [3] Baseline [8] Baseline + OOD Val TEAM (Ours)

Div.&C. 13.05%± 0.14 20.30%± 0.85 65.23%± 4.44 76.36%± 1.34 65.70%± 3.72 69.79%± 1.60
DP 67.94%± 8.20 65.10%± 6.44 70.58%± 6.48 81.99%± 4.98 88.83%± 5.06 83.61%± 10.57
Geometry 45.14%± 11.95 73.11%± 17.19 61.19%± 7.01 94.09%± 2.30 88.02%± 6.63 94.03%± 1.57
Graphs 24.12%± 5.30 62.79%± 8.75 60.25%± 8.42 81.41%± 6.21 77.89%± 21.49 81.6%± 23.33
Greedy 53.42%± 20.82 82.39%± 3.01 75.84%± 6.59 91.21%± 2.95 90.08%± 5.06 91.80%± 4.68
Search 34.35%± 21.67 41.20%± 19.87 56.11%± 21.56 58.61%± 24.3 61.89%± 45.48 62.79%± 43.66
Sorting 71.53%± 1.41 11.83%± 2.78 15.45%± 8.46 60.37%± 12.7 72.08%± 21.31 68.75%± 18.64
Strings 1.51%± 0.46 3.21%± 0.94 2.04%± 0.20 49.09%± 23.5 75.33%± 22.57 81.24%± 25.05

Average 38.88% 44.99% 50.84% 74.14% 77.65% 79.23%
Rank Avg. 5.38 4.75 4.63 2.38 2.25 1.63

> 90% 0/30 6/30 3/30 11/30 11/30 15/30
> 50% 10/30 17/30 18/30 24/30 26/30 27/30

outperformed the baseline across 6 algorithm categories, displaying the highest rank among models,
suggesting that TEAM shows the most robust performance overall in all algorithm categories.

Significant performance increases were observed in sorting algorithms (insertion sort, bubble sort,
heapsort [12], quicksort [13]) and string algorithms (Naive string matching, Knuth-Morris-Pratt
(KMP) string matcher [21]). In particular, our TEAM model achieved an 81.24% performance for
string algorithms requiring multiple comparison capability, a considerable improvement over the
previous best of 49.09%.

The appliance of the new training framework with the OOD validation set improved the baseline
model in terms of overall average score and average rank. It also increased the number of algorithms
solvable exceeding 50% performance compared to the baseline. Whereas, our TEAM model, also
using the OOD validation set, showed the best result for all standards including average performance,
average rank, and the number of algorithms over 50% & 90% OOD performance. A notable
observation is the large intersection of algorithms surpassing the baseline between the baseline with
OOD validation and our TEAM model. This implies that the effectiveness of the OOD validation
method might be dependent on the target task’s characteristics.

5 Conclusion

In this work, we present a new TEA (Triplet Edge Attention) method, designed to compute edge
latent during the algorithmic reasoning process. Based on the method, we propose the TEAM (Triplet
Edge Attention Message Passing Neural Network) model. Our TEAM model with OOD validation
set exhibited improvements across the CLRS benchmark algorithms and demonstrated a particularly
significant enhancement with string algorithms, as compared to the baseline model [8]. In conclusion,
we have developed a novel model and training methodology for algorithmic reasoning tasks and
we are confident that additional developments within the reasoning field can lead even to higher
performance levels, eventually unlocking the potential for a generally effective model.
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A Implementation details
A.1 Processor

The processor is the key component in the encoder-processor-decoder architecture for algorithmic
reasoning. We designed a new TEAM (Triplet Edge Attention Message Passing Neural Network)
network for training algorithms, combining the triplet edge attention (TEA) layer to a fully connected
MPNN (Message Passing Neural Network) [20] as Figure 3.
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Figure 3: The TEAM Processor Network composed of Triplet Edge Attention Layer and Message
Passing Neural Network.

The embedded results from the encoder are processed through the TEA layer to compute the edge
latents. Afterward, the computed edge latents and the embeddings from the encoder are given as
input for the fully connected MPNN. The MPNN is responsible for predicting the algorithm’s hints,
which are then fed to the decoder to get the current state. In contrast to the previous triplet reasoning
approach [8], which fed the edge latent directly to the decoder, we have replaced the edge feature
to our TEA-derived edge latent for MPNN computation. This change permits reasoning on nodes
utilizing our edge latents.

A.2 Encoder and Decoder

The encoder and decoder from the baseline were adopted in our approach. For an algorithm τ ,
encoder fτ and decoder gτ are defined tasks specifically since each algorithm requires different hints
to predict the algorithm’s subsequent state. The encoder performs linear embeddings of node features,
edge features, graph features, and the hints of the preceding state into a higher-dimensional space.
The embedded results are then fed to our processor network to predict the hints for the next stage
of the algorithm. Finally, the decoder estimates the algorithmic reasoning for the current state by
linearly decoding the processor network’s output.

A.3 Additional Experiment Results
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Figure 4: The learning curve of each algorithm, where the blue line indicates the learning curve of
our TEAM model, and the orange line indicates the learning curve of the baseline model with OOD
validation. The algorithms are ordered in alphabetical order, the same as the Table 2
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Table 2: Average OOD micro-F1 scores of the baseline (Triplet-GMPNN), baseline with OOD
validation set, and our best TEAM model, after 10,000 training steps on single algorithm tasks.

Algorithm Baseline [8] Baseline + OOD Val TEAM (Ours)

Activity Selector 95.18%± 0.45 94.60%± 1.19 95.90%± 1.61
Articulation Points 88.32%± 2.01 54.35%± 9.56 86.89%± 7.03
Bellman-Ford 97.39%± 0.19 95.35%± 1.20 96.08%± 0.48
BFS 99.73%± 0.04 99.58%± 0.19 99.85%± 0.09
Binary Search 77.58%± 2.35 86.27%± 5.49 85.31%± 4.42
Bridges 93.99%± 2.07 91.87%± 5.68 97.53%± 1.39
Bubble Sort 67.68%± 5.50 84.26%± 10.30 74.35%± 14.15
DAG Shortest Paths 98.19%± 0.30 93.75%± 1.33 98.13%± 0.27
DFS 47.79%± 4.19 61.97%± 16.66 59.31%± 27.75
Dijkstra 96.05%± 0.60 93.87%± 1.08 93.14%± 0.93
Find Max. Subarray 76.36%± 0.43 65.70%± 3.72 69.79%± 1.60
Floyd-Warshall 48.52%± 1.04 42.56%± 2.15 35.33%± 2.82
Graham Scan 93.62%± 0.91 90.77%± 4.25 94.12%± 1.61
Heapsort 31.04%± 5.82 47.95%± 23.13 54.42%± 8.85
Insertion Sort 78.14%± 4.64 91.11%± 2.22 90.73%± 2.89
Jarvis’ March 91.01%± 1.30 85.22%± 10.84 93.02%± 1.91
Knuth-Morris-Pratt 19.51%± 4.57 62.85%± 24.11 62.59%± 23.28
LCS Length 80.51%± 1.84 86.38%± 0.26 85.67%± 0.27
Matrix Chain Order 91.68%± 0.59 95.48%± 0.75 94.46%± 0.88
Minimum 97.78%± 0.55 97.67%± 1.13 99.23%± 0.13
MST-Kruskal 89.80%± 0.77 86.96%± 3.25 78.47%± 2.36
MST-Prim 86.39%± 1.33 89.24%± 1.21 93.30%± 1.74
Naive String Matcher 78.67%± 4.99 87.81%± 14.98 99.90%± 0.15
Optimal BST 73.77%± 1.48 84.64%± 0.43 70.70%± 5.45
Quickselect 0.47%± 0.25 1.73%± 0.83 3.84%± 3.56
Quicksort 64.64%± 5.12 64.98%± 11.66 55.49%± 15.60
Segments Intersect 97.64%± 0.09 92.15%± 0.13 94.96%± 0.21
SCC 43.43%± 3.15 47.14%± 5.89 44.30%± 3.43
Task Scheduling 87.25%± 0.35 85.56%± 1.18 87.70%± 2.17
Topological Sort 87.27%± 2.67 78.08%± 24.27 100.00%± 0.01

Overall Avg. 75.98% 78.00% 79.82%
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Table 3: The ratio of the number of parameters between the baseline model (Triplet-GMPNN) and
our TEAM model.

Algorithm TEAM (Ours) / Baseline [8]

Activity Selector 1.46
Articulation Points 1.17
Bellman-Ford 1.17
BFS 1.17
Binary Search 1.46
Bridges 1.16
Bubble Sort 1.17
DAG Shortest Paths 1.07
DFS 1.11
Dijkstra 1.17
Find Max. Subarray 1.46
Floyd-Warshall 1.14
Graham Scan 1.26
Heapsort 1.11
Insertion Sort 1.17
Jarvis’ March 1.46
Knuth-Morris-Pratt 1.26
LCS Length 1.44
Matrix Chain Order 1.14
Minimum 1.46
MST-Kruskal 1.26
MST-Prim 1.17
Naive String Matcher 1.46
Optimal BST 1.14
Quickselect 1.26
Quicksort 1.17
Segments Intersect 1.46
SCC 1.11
Task Scheduling 1.46
Topological Sort 1.11

Overall Avg. 1.25
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