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Abstract001

Recent advances in large language models002
(LLMs) have significantly enhanced the per-003
formance of automated essay scoring (AES).004
However, relying on a single LLM often re-005
sults in inconsistent evaluations due to its in-006
herent biases. To overcome this challenge, We007
introduce ADBIAS, a novel multi-agent AES008
framework designed to systematically iden-009
tify and mitigate model-specific biases across010
multiple LLMs—namely, GPT-4o, Claude 3.5011
Sonnet, LLaMA 4 Maverick, and Gemini 2.5012
Flash. ADBIAS follows a three-stage process:013
(1) generating trait-level scores and rationales014
from each LLM, (2) quantifying scoring ten-015
dencies using the Many-Facet Rasch Model016
(MFRM), and (3) producing final scores via a017
bias-aware Meta-LLM that integrates metadata018
including bias information. Empirical results019
on the ASAP and ASAP++ datasets show that020
ADBIAS improves scoring accuracy (+6.4%021
QWK) and substantially reduces bias variance022
(–57.9%) compared to both single-model and023
ensemble baseline models. By incorporating ex-024
plicit bias modeling and calibrated aggregation,025
ADBIAS advances the reliability, fairness, and026
interpretability of LLM-based essay evaluation.027

1 Introduction028

The integration of automated essay scoring (AES)029

into educational contexts has been increasingly030

recognized, especially for its potential to alleviate031

grading workloads and provide timely and effective032

feedback.033

Early AES systems were designed to predict a034

single holistic score. This approach gained pop-035

ularity due to its ability to reduce human raters’036

workload and simplify the evaluation of overall037

writing performance (Page, 1966; Page et al., 1997).038

However, relying on a single score to represent the039

multiple dimensions of writing ability has raised040

concerns about its inadequacy in capturing the mul-041

tifaceted nature of writing.042
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Figure 1: Unlike existing methods (A) that rely on a
single LLM, our ADBIAS framework (B) first generates
independent evaluations from multiple LLMs. It then
quantitatively computes the scoring bias of each model
and integrates this bias information into a final Meta-
LLM to produce a fairer and more consistent evaluation.

To overcome these challenges, research has 043

shifted toward multi-trait scoring, aiming to capture 044

the diverse dimensions of writing more accurately. 045

Building on this, recent approaches have been de- 046

veloped to enhance the explainability and reliability 047

of scoring systems by leveraging large language 048

models (LLMs) to generate rationales—either be- 049

fore scoring, as supporting evidence for generating 050

score predictions, or after scoring, to explain the 051

reasoning behind their scoring decisions (Chu et al., 052

2025; Do et al., 2025b). 053

Despite these advancements, the reliability of 054

current AES systems remains questionable, as the 055

underlying LLMs may carry inherent biases. 056

One of the key challenges in applying LLMs 057

to AES lies in the variability of scoring outcomes 058

across models. Even when evaluating the same es- 059

say, different LLMs often produce divergent scores 060

due to inherent differences in their evaluative ten- 061

dencies. For example, GPT-3.5 tends to regress 062
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Figure 2: The overall pipeline of our proposed ADBIAS framework, consisting of three main stages: (1) Multi-LLMs
Trait-wise Score and Rationale Generation, (2) Quantifying LLM Scoring Biases using MFRM, and (3) Final
Evaluation with a Meta-LLM.

toward mid-range scores, GPT-4 yields a broader063

score distribution, and Claude 2 exhibits a more064

conservative scoring pattern, frequently assigning065

lower scores (Tang et al., 2024). These model-066

specific biases raise concerns about the reliability,067

consistency, and fairness of AES systems. A recent068

study empirically confirmed model-specific scor-069

ing biases by analyzing inter-model variance and070

F1 score differences on identical prompts (Ito and071

Ma, 2025).072

To address these issues, the use of multi-LLM073

collaboration in AES systems has recently emerged074

as a promising alternative.075

A notable example is the GET framework, which076

quantifies the bias of each LLM, labels its evalu-077

ative tendency in textual form, and then has each078

model independently assess the essay. Based on079

both labeled tendencies and individual evaluations,080

the framework adopts a Tree-of-Thought (ToT)081

structure to derive a final judgment through a struc-082

tured debate process (Ito and Ma, 2025).083

While this approach provides a structured mech-084

anism for incorporating model-specific tendencies,085

it leaves open the question of how these biases are086

explicitly captured and systematically leveraged 087

to improve scoring reliability. In GET, such bias 088

signals primarily serve as qualitative references 089

rather than being formally structured or calibrated, 090

making it difficult to trace or adjust for bias in a 091

consistent and measurable way. As a result, the ex- 092

tent to which bias influences the final evaluation 093

remains unclear, highlighting the need for a more 094

explicit and accountable framework for bias-aware 095

scoring. 096

To address these challenges, we propose AD- 097

BIAS (Adjusting Multi-LLM Biases via Trait- 098

Based Quantitative Analysis for Automated Es- 099

say Scoring), a framework that explicitly quanti- 100

fies model-specific scoring biases and incorporates 101

them into the evaluation process. This approach 102

aims to mitigate LLM-inherent bias and lay the 103

groundwork for a more reliable and consistent 104

AES system. 105

Fig. 2 illustrates the proposed framework, which 106

is structured around three core stages of operation.: 107

(1) We employ four state-of-the-art LLMs (GPT- 108

4o, Claude 3.5 Sonnet, Llama 4 Maverick, and 109

Gemini 2.5 Flash) to independently generate 110
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trait-specific scores and evaluation rationales111

for each essay.112

(2) We apply the Many-Facet Rasch Measurement113

(MFRM) model to systematically quantify114

model-specific scoring biases based on the115

trait-specific scores produced by each LLM.116

(3) We provide the outputs of multiple LLMs,117

including trait-level scores, evaluation ratio-118

nales, and quantified bias information. These119

outputs are passed to a final evaluator model,120

the Meta-LLM (Llama 4 Maverick), which121

references the peer evaluations and their as-122

sociated bias tendencies to generate the final123

score and rationale for each essay.124

2 Related Work125

2.1 Holistic Scoring126

Early AES research focused on predicting a sin-127

gle holistic score for essays. However, this ap-128

proach faced limitations in capturing the multi-129

dimensional nature of writing and providing trait-130

specific feedback essential for subjective assess-131

ment interpretability (Taghipour and Ng, 2016).132

To address this, AES research shifted toward trait-133

based scoring, enabling more fine-grained assess-134

ment and improving pedagogical utility.(Hussein135

et al., 2020).136

2.2 Advancements in Trait-Based AES:137

Cross-Prompt Generalization138

As trait-based scoring evolved, the need for cross-139

prompt generalization—aiming to maintain scoring140

consistency across unseen prompts—has emerged141

as a key objective. Recent approaches have lever-142

aged trait-attention mechanisms and multi-task143

learning architectures to enhance scoring perfor-144

mance while jointly predicting both holistic and145

trait-level scores (Ridley et al., 2021).146

Notably, the ProTACT model adopted a struc-147

ture that explicitly captures the interaction between148

prompts and traits, which helps maintain consistent149

trait-level scoring across different prompts. (Do150

et al., 2023). Furthermore, Grammar-aware Cross-151

Prompt Trait Scoring (GAPS), which incorporates152

grammatical error correction, has been proposed153

to improve trait-specific evaluation by focusing154

on general grammatical features regardless of the155

prompt (Do et al., 2025a).156

However, studies have shown that cross-prompt157

AES can be effectively achieved using simple neu-158

ral network architectures, indicating that model 159

complexity alone is not essential for improving gen- 160

eralization performance (Li and Ng, 2024). This 161

underscores the importance of efficient feature en- 162

gineering and model design in achieving robust 163

cross-prompt generalization. 164

2.3 The Emergence of LLMs and Innovation 165

in AES 166

Numerous studies have demonstrated the effective- 167

ness of LLM-based AES systems in both scoring 168

accuracy and feedback quality. For example, GPT- 169

based models have achieved QWK scores up to 170

0.68 and high agreement with human feedback 171

(Liew and Tan, 2024), and show strong perfor- 172

mance in both holistic and trait-level scoring (Man- 173

sour et al., 2024; Seßler et al., 2024). Prompt en- 174

gineering techniques—such as few-shot learning 175

and temperature calibration—have been shown to 176

improve alignment with human judgment, partic- 177

ularly in dimensions like Ideas and Organization 178

(Tang et al., 2024). 179

To address the black-box nature of LLMs, re- 180

cent work has focused on enhancing scoring trans- 181

parency. RMTS incorporates LLM-generated ra- 182

tionales into smaller models (Chu et al., 2025), 183

while RaDME combines LLM reasoning with 184

lightweight scoring to improve explainability (Do 185

et al., 2025b). In addition, hybrid approaches inte- 186

grating linguistic features with LLMs have shown 187

promise in improving both in-domain and cross- 188

domain performance (Hou et al., 2025). 189

2.4 Multi-LLM Collaboration and Reasoning 190

Ability Enhancement 191

To address the inherent limitations of single-LLM 192

systems—such as model-specific biases and incon- 193

sistency—the paradigm of multi-LLM collabora- 194

tion has been introduced (Feng et al., 2025). An En- 195

semble Tree-of-Thought (ToT) framework, which 196

employs simulated debate among multiple LLMs, 197

has also been proposed to enhance evaluation accu- 198

racy and the quality of generated explanations (Ito 199

and Ma, 2025). In addition, research on LLM-based 200

creativity assessment has shown that multi-LLM 201

collaboration can improve the originality of gener- 202

ated content (Zhao et al., 2025). 203

3 Dataset 204

To enable trait-level modeling and systematic bias 205

analysis, we utilize the original ASAP corpus and 206
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its extended version, ASAP++. These datasets pro-207

vide reliable annotations across diverse prompts208

and scoring traits. According to their providers,209

both datasets were collected with consent for aca-210

demic use and are publicly available for non-211

commercial research purposes.212

3.1 ASAP213

The Automated Student Assessment Prize (ASAP)214

dataset comprises 12,978 English essays from215

U.S. students (grades 7–10) across eight writing216

prompts. Each essay received holistic scores from217

two to three expert raters. Prompts 7 and 8 also218

include trait-level scores for Organization, Conven-219

tions, Style, and Sentence Fluency.220

This dataset, publicly available via Kaggle, cur-221

rently lacks explicitly stated official licenses or222

terms of use. We exclusively use it for academic223

research, refraining from commercial use or redis-224

tribution.225

3.2 ASAP++226

ASAP++ extends the original dataset by adding227

trait-level annotations to prompts 1–6, which previ-228

ously lacked them. In this study, we use ASAP++229

annotations for prompts 1–6 and retain the origi-230

nal ASAP trait scores for prompts 7–8, forming231

a unified corpus that supports prompt-trait level232

modeling of both performance and scoring bias.233

The ASAP++ dataset is available under the Cre-234

ative Commons Attribution-ShareAlike 4.0 Inter-235

national (CC BY-SA 4.0) License. This resource236

can be accessed online at https://cfilt.iitb.237

ac.in/~egdata/.238

Derivatives from data accessed for research239

purposes in this study, including our framework,240

should not be used outside of research contexts.241

Pr Grade Es Score Range Traits

1 8 1783 1–6 Cont, Org, WC, SF, Conv
2 10 1800 1–6 Cont, Org, WC, SF, Conv
3 10 1726 0–3 Cont, PA, Nar, Lang
4 10 1772 0–3 Cont, PA, Nar, Lang
5 8 1805 0–4 Cont, PA, Nar, Lang
6 10 1800 0–4 Cont, PA, Nar, Lang
7 7 1569 0–3 Cont, Org, Style, Conv
8 10 723 1–6 Cont, Org, WC, SF, Conv, Voice

Table 1: Trait abbreviations: Cont = Content, Org = Or-
ganization, WC = Word Choice, SF = Sentence Fluency,
Conv = Conventions, PA = Prompt Adherence, Nar =
Narrativity, Lang = Language, Style = Style, Voice =
Voice

4 Methodology 242

We introduce ADBIAS, a three-stage framework 243

designed to improve both the accuracy and fairness 244

of automated essay scoring by explicitly quanti- 245

fying and correcting for model-specific bias. The 246

system leverages multiple LLMs to independently 247

evaluate essays, applies a Rasch-based model to 248

estimate trait-level bias, and then synthesizes all 249

information through a bias-aware Meta-LLM. 250

4.1 Overview of ADBIAS 251

ADBIAS consists of the following three stages: 252

1. Independent Scoring by Multiple LLMs: 253

Four diverse LLMs (GPT-4o, Claude 3.5, 254

Llama 4, and Gemini 2.5) independently eval- 255

uate each essay based on a shared prompt 256

and rubric. All models follow a standardized 257

prompt structure, operate under determinis- 258

tic conditions (temperature = 0), and produce 259

both trait-level scores and rationales. 260

2. Bias Quantification via MFRM: Using trait 261

scores from the LLMs, we apply the Many- 262

Facet Rasch Model (MFRM) to estimate 263

model-specific severity parameters (β). These 264

values capture systematic scoring tendencies 265

and are converted into odds ratios that are em- 266

bedded into the Meta-LLM’s input. 267

3. Final Scoring with Meta-LLM: The Meta- 268

LLM (LLaMA 4) aggregates peer evaluations 269

and associated bias signals to produce final 270

trait scores. Instead of naïvely averaging peer 271

outputs, the model performs structured rea- 272

soning that accounts for each peer’s scoring 273

tendencies, enabling a more fair and consis- 274

tent evaluation. 275

4.2 Model Selection 276

We intentionally selected four LLMs with diverse 277

architectures and behaviors to capture a wide spec- 278

trum of scoring tendencies: 279

• GPT-4o (OpenAI): Strong general-purpose 280

model with top-tier performance 281

• Claude 3.5 (Anthropic): Known for its con- 282

servative and bias-sensitive scoring style 283

• LLaMA 4 (Meta): Stable open-source model, 284

chosen as the Meta-LLM 285
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• Gemini 2.5 (Google): Lightweight and effi-286

cient, used for examining speed–bias tradeoffs287

All models were run under identical conditions and288

prompts to ensure fairness and comparability.289

For all models, temperature = 0 was fixed to290

ensure deterministic evaluation results.291

4.3 Prompt Design292

Each model received a two-part prompt:293

• A system message defining the model’s role294

as an evaluator and providing the full rubric.295

• A user message containing the prompt, stu-296

dent essay, and instructions to produce trait-297

wise rationales and scores.298

Trait evaluations followed a fixed sequence to re-299

duce interference across traits, and all outputs were300

returned in a structured dictionary format for easy301

parsing and analysis.302

4.4 Bias Estimation with MFRM303

MFRM (Many-Facet Rasch Mode)

Score(κ)

Odds Ratio (exp(β)) 
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θ
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4
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Figure 3: Overview of MFRM-based bias estimation
and aggregation.Each LLM generates trait-level scores
and rationales. The Many-Facet Rasch Model (MFRM)
estimates scorer severity (β), trait thresholds (τ ), and es-
say ability (θ), which inform the Meta-LLM to produce
bias-aware final scores.

MFRM was used to estimate three key parameters:304

Ln,j,s,t := θn,t − βj,s,t − τs,t (1)305

306

Pr(Xn,j,t = k) =
exp

(∑k−1
s=0 Ln,j,s,t

)
∑mt−1

c=0 exp
(∑c−1

s=0 Ln,j,s,t

) (2)307

• Ability (θ): The student’s latent proficiency308

for each trait309

• Severity (β): Trait-specific bias of each model 310

across prompts 311

• Threshold (τ): Difficulty of each trait’s scor- 312

ing categories 313

All parameters were estimated using a PyTorch 314

implementation with warm-up scaling and online 315

connection to the Meta-LLM, allowing real-time 316

bias adjustment. 317

• θ: nn.Embedding(NpNt,1) 318

• β: nn.Embedding(NrNs,1) 319

• τ : cum.softplus(Embedding) 320

• ID constraints (batch): center θ, β; 321

fix τ1; scalings 1.0, 0.5, 0.2 → 0.5 322

4.5 Severity Fit Verification (Infit · Outfit 323

Analysis) 324

To verify the trait-specific evaluation fit of the mod- 325

els, Infit and Outfit Mean-Square (MSQ) values 326

were calculated. For a total of 144 model × set 327

× trait combinations observed from 8 essay sets 328

× 4 models, the proportion of MSQ values falling 329

within the recommended range (0.5 ≤ MSQ ≤ 330

1.5) was measured to confirm evaluation fit. 331

4.6 Meta-LLM Selection and 332

Meta-Evaluation Method 333

LLaMA 4 was chosen as the Meta-LLM due to its 334

lenient scoring pattern and minimal bias variance, 335

making it a stable anchor for integration. During in- 336

ference, the Meta-LLM receives all peer scores, ra- 337

tionales, and β metadata, and generates final scores 338

through reasoning that balances strict and lenient 339

perspectives. 340

This bias-aware aggregation process enables AD- 341

BIAS to outperform traditional ensembles by pro- 342

ducing more consistent and human-aligned scoring 343

decisions. 344

4.7 Meta-Prompting via ADBIAS 345

Meta-LLM (LLaMA4 Maverick) receives: 346

• Raw rationales from all LLMs 347

• Trait-specific severity, OR, threshold 348

• Consistency warnings when rationale contra- 349

dicts score (Zhao et al., 2025) 350

• Self-consistency probing (Wang et al., 2023) 351

ensures coherence in meta-LLM output. 352
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Multi-LLM
 (4× Trait Reasoning)

Instruction: Explain the reasoning behind each trait score.  

Prompt: Write about patience... 

Essay: Being patience is hard to do, …

Step 1: Multi-LLM Peer Reviews

Step 2: Bias-aware Aggregator

Meta-LLM

"Content ": {
        "rationale": "The essay presents a clear opinion….", "score": 1},
“Organization": {
        "rationale": "The essay has a basic structure,….","score": 1},
“Word Choice ": {
        "rationale": "The essay presents a clear opinion….", "score": 1}, 
 …

Aggregation
& Bias-aware

"Content ": {
        "rationale": "The essay attempts to….", "score": 1},
" Organization ": {
        "rationale": "The essay has a basic structure,….","score": 1}, …

LLM 1 

"Content ": {
        "rationale": "The essay attempts to….", "score": 1},
" Organization ": {
        "rationale": "The essay has a basic structure,….","score": 1}, …

LLM 2

…

Final Evaluation ResultInstruction: Aggregate peer reviews and finalize trait 
scores.  
Prompt: Write about patience…
Essay: Being patience is hard to do, …

Peer Reviews —  
LLM1: Content 2 → lacks depth LLM2: 3 → clear ideas 
some support LLM3: 2 → clear but underdeveloped

Severity: LLM2 > LLM3 > LLM1 

Peer Reviews —  
LLM1: Content 2 → lacks depth LLM2: 3 → clear ideas 
some support LLM3: 2 → clear but underdeveloped

Severity: LLM2 > LLM3 > LLM1

Figure 5: Final evaluation process via Meta-LLM. It generates bias-aware trait scores by aggregating peer re-
views(scores and rationales) and incorporating severity(β) metadata, enabling fairer and more consistent evaluations.

5 Experiments & Results353

This section provides an empirical assessment of354

the proposed ADBIAS framework. We assess both355

scoring accuracy, using Quadratic Weighted Kappa356

(QWK), and fairness, measured by rater bias vari-357

ance (β), through statistical analysis and abla-358

tion studies conducted on the ASAP and ASAP++359

datasets.360

5.1 Dataset and Experimental Design361

We conducted experiments using the full ASAP362

and ASAP++ datasets for two main reasons:363

First, to enable robust estimation of scoring bias.364

Since MFRM estimates severity (β) separately for365

each prompt–trait pair, evaluating across all sets366

helps isolate rater bias from prompt-specific dif-367

ficulty, preventing potential confounding that can368

arise in single-prompt setups.369

Second, to examine the generalizability of our370

framework in realistic educational settings, where371

essay prompts vary in grade level, genre, rubric372

design, and scoring range. Including all sets allows373

us to evaluate the universality of model-specific374

biases and the flexibility of our system.375

Accordingly, each of the four LLMs indepen-376

dently scored the essays, producing trait-specific377

scores and rationales. We recorded their raw scores,378

rationale texts, MFRM-estimated β values, and379

Meta-LLM outputs, and compared them against380

human scores. QWK and β variance were used as381

the primary evaluation metrics.382

5.2 Results383

5.2.1 RQ-A: Do different LLMs produce384

significantly different trait-specific score385

distributions?386

To assess whether different LLMs show distinct387

scoring tendencies, we conducted statistical tests388

across 36 prompt–trait combinations. To analyze389

the data, a one-way ANOVA assessed mean dif-390

ferences, while Levene’s test evaluated variance 391

equality. Multiple comparisons were adjusted us- 392

ing the Bonferroni correction. 393

All 36 combinations showed statistically sig- 394

nificant differences in both means and variances 395

(p < 0.05). The average F-statistic across condi- 396

tions was 137.1 for means and 108.2 for variances. 397

These results confirm that different LLMs ex- 398

hibit systematic and model-specific scoring bi- 399

ases—not random variation—when evaluating the 400

same prompt and rubric. This underscores the 401

importance of bias estimation and correction as 402

adopted in the ADBIAS framework. 403

5.2.2 RQ-B: Is the MFRM-derived severity 404

parameter (β) a reliable indicator of 405

rater bias? 406

We estimated 144 severity parameters (β) across 407

all LLMs × prompt × trait combinations. To verify 408

their reliability, we examined both model fit and 409

predictive power. 410

For model fit, we used Infit and Outfit Mean 411

Square (MSQ) statistics. 69.4% (100 out of 144) 412

of β estimates fell within the accepted Rasch 413

range (0.5 to 1.5), significantly higher than chance 414

(p ≈ 1.7× 10−6)). Median Infit and Outfit values 415

were 1.12 and 1.02, respectively. The average stan- 416

dard error of β was 0.044 logits (maximum: 0.076), 417

indicating high estimation precision. 418

To assess predictive power, we computed the 419

Pearson correlation between each model’s β value 420

and the deviation of its average trait scores 421

from the overall mean. A strong negative corre- 422

lation (r = –0.91, p < 10−36) confirmed that 423

higher β values correspond to lower average 424

scores—demonstrating that β accurately captures 425

scoring strictness. 426

Taken together, these results show that the β pa- 427

rameter is both statistically sound and a meaningful 428

signal of model-specific rater bias. 429
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5.2.3 RQ-C: Does injecting β metadata into430

the Meta-LLM improve accuracy and431

reduce bias?432

We compared two conditions: a β-Aware Meta-433

LLM that incorporates rater bias metadata, and434

a β-Blind baseline using LLaMA-4 without such435

information.436

Metric β-Blind
(LLaMA-4)

β-Aware
(Meta-LLM)

∆
(Abs / %) Test Stat. p-value 95%

CI
Accuracy
(QWK) 0.4326 0.4600 +0.0275

(+6.4%)
t(45)
= 2.11

0.041 [+0.0021,
+0.0527]

Mean
|β| 0.0775 0.0380 –0.0395

(–50.9%) – – –

Var
β

0.00192 0.00081 –0.00111
(–57.9%)

Levene F
= 4.17

0.045 –

Table 2: Comparison between β-Blind and β-Aware
(Meta-LLM) settings across QWK accuracy, mean ab-
solute β, and β variance.

In terms of accuracy, the β-Aware condition437

achieved an average QWK of 0.4600, significantly438

higher than the β-Blind baseline (0.4326), with a439

gain of +6.4% (t(45) = 2.11, p = 0.041).440

In terms of fairness, the average absolute β441

decreased from 0.0775 to 0.0380 (–50.9%), and442

β variance dropped from 0.00192 to 0.00081443

(–57.9%), with Levene’s test confirming the sig-444

nificance (p = 0.045).445

At the essay set level, QWK improved in 6446

out of 8 sets, and β variance decreased across447

all sets—most notably in Set 4 (–86%) and Set448

6 (–72%).449

ES QWK
β-Aware

QWK
β-Blind ∆

Var
β-Aware

Var
β-Blind

β
Var.

1 0.396 0.388 +0.007 0.00224 0.00175 -28%
2 0.544 0.550 -0.005 0.00026 0.00180 -85%
3 0.555 0.490 +0.065 0.00053 0.00064 -18%
4 0.570 0.491 +0.080 0.00029 0.00201 -86%
5 0.579 0.514 +0.065 0.00022 0.00036 -38%
6 0.431 0.386 +0.045 0.00031 0.00111 -72%
7 0.298 0.350 -0.053 0.00101 0.00266 -62%
8 0.462 0.407 0.055 0.00103 0.00084 -23%

Table 3: Comparison of QWK and variance metrics
across scoring conditions.

When grouped by prompt difficulty (based on450

MFRM threshold medians), easier prompts showed451

larger QWK gains, while harder prompts saw452

greater reductions in β variance. A Pearson cor-453

relation (r ≈ `0.41) confirmed that accuracy gains454

decline as difficulty increases, whereas bias mitiga-455

tion remains robust.456

5.2.4 RQ-D: How does the β-Aware457

Meta-LLM compare to single LLMs and458

simple ensembles?459

We compared the β-Aware Meta-LLM with four460

single models (GPT-4o, Claude 3.5, Gemini 2.5,461

LLaMA-4) and an unweighted ensemble.462

Trait QWK
β-Aware

QWK
β-Blind ∆

Var
β-Aware

Var
β-Blind

β
Var.

Cont 0.516 0.448 +0.068 0.00105 0.00175 –40%
Conv 0.272 0.357 –0.085 0.00096 0.00119 –19%
Lang 0.535 0.467 +0.068 0.00038 0.00353 –89%
Narr 0.592 0.523 +0.069 0.00041 0.00187 –78%
Org 0.505 0.423 +0.082 0.00039 0.00158 –75%

Table 4: Trait-wise QWK scores and β variance com-
parisons between β-aware and β-blind settings.

Method Avg.
QWK

∆
QWK*

Var
β

∆ Var
β

Meta-LLM
(β-Aware) 0.460 — 0.0008 —

Claude 3.5 0.471 +0.011 0.0017 +101%
GPT-4o 0.398 –0.062 0.0041 +395%
Gemini 2.5 0.420 –0.040 0.0033 +292%
LLaMA-4 0.433 –0.027 0.0020 +137%
Majority Voting 0.430 –0.030 — —

Table 5: Comparison of average QWK, variance in β,
and relative changes across LLM-based methods.

In terms of QWK, the Meta-LLM achieved 463

0.4600, outperforming GPT-4o (0.398), Gemini 464

(0.420), LLaMA (0.433), and the ensemble (0.430). 465

Only Claude slightly exceeded it (0.471), but the 466

difference (+0.011) is marginal and not practically 467

significant. 468

In terms of bias, the Meta-LLM recorded the 469

lowest β variance (0.0008), reducing rater bias by 470

44.6% compared to Claude and by over 70% rela- 471

tive to GPT-4o and Gemini. 472

These findings support the claim that ADBIAS 473

achieves a balanced trade-off between accuracy and 474

fairness that neither single LLMs nor simple ensem- 475

ble methods can offer. The framework’s structural 476

integration of bias signals enables both improved 477

performance and more equitable scoring. 478

5.3 Case Studies 479

5.3.1 Prompt 1. Essay 525 480

Trait Peer
Mean

Meta
Score

Human
Score Claude Gemini GPT LLaMA

Cont 4.5 5.0 5.0 4.0 5.0 5.0 4.0
Conv 3.5 4.0 4.0 3.0 4.0 4.0 3.0
Org 4.5 5.0 5.0 4.0 5.0 5.0 4.0
SF 3.5 4.0 4.0 3.0 4.0 4.0 3.0
WC 3.5 4.0 4.0 3.0 4.0 4.0 3.0

Table 6: Trait-level scores for essay #525 across peer
models, Meta-LLM, human rating, and individual
LLMs.

In this essay, for traits such as content and orga- 481

nization, Claude and LLaMA assigned a conserva- 482

tive score of 4, while GPT and Gemini assigned a 483

5. The Human rater gave a 5 for this item, and the 484

Meta model also assigned the same score as Human. 485

Particularly for conventions, sentence_fluency, and 486

7



word_choice, Claude and LLaMA repeatedly gave487

a score of 3, showing a somewhat lower evaluation,488

whereas Gemini and GPT gave a 4. In this situation489

where Claude and LLaMA showed a consistent490

downward trend, and GPT and Gemini showed a491

somewhat lenient trend, Meta compromised these492

extremes to ultimately derive a score that precisely493

matched the Human evaluation. This is significant494

in that the Meta rater makes reliable judgments495

without simply averaging the biases of multiple496

LLMs.497

5.3.2 Prompt 5. Essay 12389498

Trait Peer
Mean

Meta
Score

Human
Score Claude Gemini GPT LLaMA

Cont 1.75 1.0 1.0 2.0 1.0 2.0 2.0
Lang 2.00 2.0 2.0 2.0 1.0 3.0 2.0
Nar 1.75 1.0 1.0 2.0 1.0 2.0 2.0
PA 1.75 1.0 1.0 2.0 1.0 2.0 2.0

Table 7: Trait-level scores for essay #12389 from
peer models, Meta-LLM, human raters, and individ-
ual LLMs.

This essay generally received low scores. For the499

traits of content, narrativity, and prompt_adherence,500

Human assigned a score of 1 to all. Claude and501

LLaMA also mostly gave low scores around 2, and502

Gemini’s scores were generally concentrated be-503

tween 1 and 2. However, GPT uniquely assigned504

a 3 for the language trait, giving a relatively le-505

nient evaluation. Meta predicted a 2 for this item,506

same as Human, suppressing overestimation, and507

consistently presented scores identical to Human508

scores for the remaining traits. This case shows that509

when GPT attempted to overestimate in some items,510

Meta did not uncritically reflect this but made ad-511

justments based on the overall LLM tendencies and512

Human criteria.513

5.3.3 Prompt 8. Essay 21385514

Trait Peer
Mean

Meta
Score

Human
Score Claude Gemini GPT LLaMA

Cont 5.00 5.0 5.0 5.0 4.0 6.0 5.0
Conv 5.00 5.0 5.0 5.0 5.0 5.0 5.0
Org 5.00 5.0 5.0 5.0 4.0 6.0 5.0
SF 5.00 5.0 5.0 5.0 4.0 6.0 5.0

Voice 5.25 5.0 5.0 6.0 4.0 6.0 5.0
WC 5.00 5.0 5.0 5.0 4.0 6.0 5.0

Table 8: Trait-level scores for essay #21385 from
peer models, Meta-LLM, human raters, and individ-
ual LLMs.

This essay was a high-scoring essay where the515

Human evaluation score was a perfect 5 for all516

traits. Claude assigned a 5 for all items, consistent517

with Human, and LLaMA and Meta also recorded518

the same scores. In contrast, Gemini gave a 4 for all519

traits, consistently evaluating lower than Human, 520

while GPT showed overestimation by assigning a 521

6 for traits like voice, word_choice, and organiza- 522

tion. Even in this situation where Gemini under- 523

estimated and GPT overestimated, Meta remained 524

steadfast and consistently assigned a 5, the same 525

score as Human. This shows that through the bias 526

signal inserted into the Meta model, extreme bi- 527

ases among LLMs were not directly reflected, and 528

the existing judgment capability of LLaMA was 529

maintained. 530

These three cases demonstrate that ADBIAS 531

does not simply average the scores of multiple 532

LLMs but performs intelligent calibration based 533

on consistency, rubric fidelity, and alignment with 534

human evaluation. In particular, by suppressing ex- 535

treme scores and placing greater weight on the judg- 536

ments of reliable models, ADBIAS consistently 537

produces more stable and human-like evaluation 538

results than individual LLM raters. 539

Through the experiments above, it was com- 540

prehensively verified that the proposed ADBIAS 541

framework is effective in improving evaluation 542

accuracy and substantially mitigating inter-model 543

scoring bias in automated essay evaluation. 544

6 Conclusion 545

We introduced ADBIAS, a modular framework for 546

bias-aware essay scoring that integrates multiple 547

LLMs through trait-wise evaluation and Rasch- 548

based calibration. By explicitly modeling rater bias 549

and incorporating severity metadata into a Meta- 550

LLM, our approach enables more consistent and 551

fair scoring across diverse prompts. Empirical re- 552

sults demonstrate that ADBIAS improves both 553

agreement with human ratings and inter-model con- 554

sistency, particularly under conditions of high trait- 555

level variance. While our framework addresses a 556

key gap in LLM-based AES, several open chal- 557

lenges remain, which we outline below. 558

8



Limitation559

While ADBIAS represents a step toward more ac-560

countable and transparent essay scoring, several561

limitations warrant further investigation.562

Model set dependency563

Our framework relies on a predefined set of four564

LLMs. Although chosen for diversity, the system’s565

performance is inevitably shaped by the charac-566

teristics of these specific models. In future work,567

integrating adaptive model selection or confidence-568

weighted aggregation strategies could make the569

framework more flexible and robust to model vari-570

ability.571

Unmodeled rationale quality572

Although each peer model provides rationales573

alongside trait scores, the Meta-LLM does not as-574

sess their quality directly. This leaves open the risk575

that misleading or low-quality rationales could in-576

fluence final decisions. Incorporating rationale eval-577

uation modules or rationale-weighted scoring could578

strengthen reliability and interpretability.579

Simplified bias modeling580

We adopt a trait-specific, additive formulation of581

bias via MFRM. While effective, this approach582

may overlook more complex interactions—such583

as non-linear dependencies between traits, prompt584

difficulty, or topic familiarity. Future extensions585

might explore neural or hybrid approaches to bias586

modeling that go beyond additive assumptions.587

Limited domain and language scope588

Our evaluation focuses exclusively on English-589

language essays from the ASAP dataset. The gen-590

eralizability of ADBIAS to other languages, genres591

(e.g., argumentative, narrative), or domains (e.g.,592

scientific writing) remains an open question. Ex-593

tending this framework to cross-lingual or cross-594

domain settings could reveal new dimensions of595

model bias and calibration.596

Alignment with human scoring standards597

While ADBIAS improves inter-model agreement,598

it is not explicitly optimized for alignment with hu-599

man raters. Closing this gap may require additional600

supervision signals—such as human-provided ra-601

tionales or calibration through reference scores—or602

training the Meta-LLM with contrastive examples603

to reflect human expectations more closely.604

We view ADBIAS as a foundation rather than a 605

finished solution—one that offers a principled and 606

extensible framework for multi-agent AES. By ex- 607

plicitly adjusting bias, employing a modular archi- 608

tecture, and supporting a wide range of LLMs, the 609

framework offers a scalable, fair, and interpretable 610

solution for automated writing assessment. 611
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Appendix A Supplementary Tables and758

Figures759

Table 9: Summary of AES-related Research Features: A
= Multi-Trait, B = LLM, C = Multi-LLM, D = Rationale,
E = MFRM

Reference Model A B C D E

Hussein et al. (2020) LSTM-AES ✓ ✗ ✗ ✗ ✗
Ridley et al. (2021) Trait-attn. ✓ ✗ ✗ ✗ ✗
Do et al. (2023) ProTACT ✓ ✗ ✗ ✗ ✗
Li & Ng (2024) ShallowNN ✓ ✗ ✗ ✗ ✗
Liew & Tan (2024) 4LLMs ✓ ✓ ✗ ✗ ✗
Paul et al. (2024) REFINER ✓ ✓ ✗ ✓ ✗
Tang et al. (2024) GPT, LLaMA ✓ ✓ ✗ ✓ ✗
Yamashita et al. (2024) GPT ✓ ✓ ✗ ✗ ✓
Chu et al. (2025) RMTS ✓ ✓ ✗ ✓ ✗
Do et al. (2025a) RaDME ✓ ✓ ✗ ✓ ✗
Do et al. (2025b) GAPS ✓ ✓ ✗ ✓ ✗
Hou et al. (2025) LLM+LF ✓ ✓ ✗ ✗ ✗
Ito & Ma (2025) GET ✓ ✓ ✓ ✓ ✗
Anonymous (2025) ADBIAS ✓ ✓ ✓ ✓ ✓

Table 10: QWK scores by model across different traits.

Trait Claude Gemini GPT LLaMA ADBIAS
Content 0.564 0.484 0.448 0.454 0.488
Conv. 0.306 0.265 0.296 0.390 0.314
Lang. 0.529 0.541 0.401 0.467 0.485
Narr. 0.608 0.559 0.521 0.523 0.553
Org. 0.552 0.477 0.427 0.428 0.471
PA 0.504 0.390 0.389 0.415 0.425
SF 0.427 0.401 0.402 0.498 0.432
Style 0.241 0.250 0.215 0.267 0.255
Voice 0.379 0.471 0.466 0.393 0.486
WC 0.443 0.385 0.382 0.455 0.428

AVG 0.455 0.417 0.395 0.429 0.454

Table 11: QWK scores by model across different
prompts (essay sets).

Prompt Claude Gemini GPT LLaMA ADBIAS
S1 0.419 0.360 0.338 0.388 0.396
S2 0.567 0.528 0.480 0.550 0.544
S3 0.542 0.512 0.480 0.490 0.555
S4 0.592 0.561 0.483 0.491 0.570
S5 0.595 0.557 0.447 0.514 0.579
S6 0.492 0.346 0.367 0.386 0.431
S7 0.306 0.296 0.229 0.350 0.298
S8 0.450 0.383 0.439 0.407 0.462

AVG 0.495 0.443 0.408 0.447 0.479

LLM Prompt Generation Output

System Prompt:
You are a rater for essays written by
students. . .
Use the scoring criteria
{rubric_guide}
User Prompt:
– Write a justification for each trait. . .
– Assign a score from 1–6. . .
Return as Python dict:. . .

{"essay_id":"1",
"essay_set":"1",
"scores":{. . . }}

Figure 6: Prompt structure and expected generation for-
mat. All LLMs followed a unified prompt design consist-
ing of system and user instructions. The prompt guides
the model to generate trait-wise rationales and scores in
a consistent Python dictionary format, facilitating reli-
able evaluation and parsing.

Figure 7: (a) Mean Severity for Meta and other LLMs

Figure 8: (b) Mean QWK scores for Meta and other
LLMs

11


	Introduction
	Related Work
	Holistic Scoring
	Advancements in Trait-Based AES: Cross-Prompt Generalization
	The Emergence of LLMs and Innovation in AES
	Multi-LLM Collaboration and Reasoning Ability Enhancement

	Dataset
	ASAP
	ASAP++

	Methodology
	Overview of ADBIAS
	Model Selection
	Prompt Design
	Bias Estimation with MFRM
	Severity Fit Verification (Infitto.7em·Outfit Analysis)
	Meta-LLM Selection and Meta-Evaluation Method
	Meta-Prompting via ADBIAS

	Experiments & Results
	Dataset and Experimental Design
	Results
	RQ-A: Do different LLMs produce significantly different trait-specific score distributions?
	RQ-B: Is the MFRM-derived severity parameter () a reliable indicator of rater bias?
	RQ-C: Does injecting  metadata into the Meta-LLM improve accuracy and reduce bias?
	RQ-D: How does the -Aware Meta-LLM compare to single LLMs and simple ensembles?

	Case Studies
	Prompt 1. Essay 525
	Prompt 5. Essay 12389
	Prompt 8. Essay 21385


	Conclusion
	Supplementary Tables and Figures

