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Abstract

Federated Learning (FL) is a distributed machine
learning approach where multiple clients work
together to solve a machine learning task. One
of the key challenges in FL is the issue of partial
participation, which occurs when a large num-
ber of clients are involved in the training process.
The traditional method to address this problem is
randomly selecting a subset of clients at each com-
munication round. In our research, we propose
a new technique and design a novel regularized
client participation scheme. Under this scheme,
each client joins the learning process every R
communication rounds, which we refer to as a
meta epoch. We have found that this participation
scheme leads to a reduction in the variance caused
by client sampling. Combined with the popular
FedAvg algorithm (McMahan et al., 2017), it re-
sults in superior rates under standard assumptions.
For instance, the optimization term in our main
convergence bound decreases linearly with the
product of the number of communication rounds
and the size of the local dataset of each client, and
the statistical term scales with step size quadrati-
cally instead of linearly (the case for client sam-
pling with replacement), leading to better conver-
gence rate O(1/T 2) compared to O(1/T), where
T is the total number of communication rounds.
Furthermore, our results permit arbitrary client
availability as long as each client is available for
training once per each meta epoch. Finally, we
corroborate our results with experiments.
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1. Introduction
Federated learning (FL) aims to train models in a decen-
tralized manner, preserving the privacy of client personal
data by leveraging local computational capabilities. Clients’
data never leave their devices; instead, the clients commu-
nicate with a server via updates intended for immediate
aggregation to train a global model. Due to such advantages
and promises, FL is now deployed in a variety of applica-
tions (Hard et al., 2018; Apple, 2019) and is a promising
direction for smart healthcare, where privacy is of an essen-
tial importance (Rieke et al., 2020; Sheller et al., 2020).

In this paper, we consider the standard FL problem formula-
tion of solving an empirical risk minimization problem over
the data available from all participating clients, i.e.,

min
x∈Rd

[
f(x)

def
=

1

M

M∑
m=1

fm(x)

]
, (1)

where

fm(x)
def
=

1

N

N∑
j=1

f j
m(x).

The term f j
m corresponds to the local loss of the current

model parameterized by x ∈ Rd evaluated for the j-th data
point on the dataset belonging to the m-th client. 1

We assume that there is a large number of small clients.
This setting is often referred to as cross-device FL. Cross-
device FL leverages edge devices such as mobile phones and
different Internet of Things (IoT) devices to exploit data dis-
tributed over potentially millions of data sources (Bonawitz
et al., 2017; Bhowmick et al., 2018; Niu et al., 2020). As
such, it brings unique challenges compared to standard dis-
tributed learning. For instance, optimization methods must
contend with issues related to edge computing (Lim et al.,
2020; Xia et al., 2021), participant selection (Yang et al.,
2021; Chen et al., 2022; Cho et al., 2020; Ribero & Vikalo,
2020), system heterogeneity (Diao et al., 2020; Horváth
et al., 2021) and communication constraints such as low
network bandwidth and high latency (Arjevani & Shamir,

1Although we focus on the setting, where each client has the
same amount of data, our results can be extended using techniques
introduced by Mishchenko et al. (2021).
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2015; McMahan et al., 2017; Stich, 2018; Yu et al., 2019;
Horváth & Richtárik, 2020).

In this work, we focus on partial participation, i.e., clients
only intermittently participate in the collaborative training
process (Bonawitz et al., 2017). As previously discussed,
in cross-device FL, the number of participating devices M
can be in the order of millions. At this scale, client sam-
pling (i.e., using a subset of clients for each update) is a
necessity since it is impractical for all devices to participate
in every round because it would require computation and
communication that can consume a large amount of energy
and also lead to network congestion. In addition, clients are
only sometimes available. For example, suppose the client
devices are smartphones. In that case, they may be willing
to participate in FL only when they are charging and con-
nected to a high-speed network (usually during night hours)
to avoid draining the battery and creating a negative user
experience. Finally, each device may only participate once
or a few times during the entire training process, so stateless
methods (which do not rely on each client maintaining and
updating local state throughout training) are particularly
interesting.

A typical approach to limit the number of clients participat-
ing in each is to employ uniform sampling (McMahan et al.,
2017). In each round, the orchestrator (global server) picks
C clients sampled uniformly at random that perform local
training. A more general approach is to select clients with a
given importance-sampling-based probability distribution
that is independent across rounds (Fraboni et al., 2021a;b;
Chen et al., 2022; Horváth et al., 2022). In this work, we
introduce a novel client sampling strategy, where we do
not sample clients independently. Instead, we propose a
regularized participation strategy, where each client partic-
ipates once during a period we refer to as a meta-epoch.
Our motivation stems from centralized training, where it
is now well-understood that random reshuffling, i.e., data
sampling without replacement, has a variance-reducing ef-
fect (Mishchenko et al., 2020). Therefore, we propose to
apply the random reshuffling procedure at the client level.
We discuss random reshuffling and client sampling in detail
in the related work section.

2. Contributions
The key contributions of our work are the following

• We design a novel client participation strategy based on
regularized participation, where each client participates
once during each meta epoch.

• We combine the proposed client selection scheme with
the FedAvg-like method that, apart from partial partic-
ipation, incorporates local steps, local dataset shuffling,
and server and client step sizes. We refer to this new

method as RR-CLI. We provide rigorous convergence
guarantees and show that in the considered setups, our
results give state-of-the-art performance by providing
the best scaling in terms of both the linearly decreasing
optimization term and the statistical term proportional
to squared step sizes.

• The theoretical analysis is corroborated by the experi-
mental evaluation that validates our findings.

3. Description of Algorithm
The backbone of the proposed algorithm is based on the
celebrated FedAvg (McMahan et al., 2017) further inspired
by recent advances (Horváth et al., 2022; Malinovsky et al.,
2021a). Our method combines previously considered local
steps, local dataset reshuffling, and server and client step
sizes, but, in addition, we also introduce regularized client
participation, i.e., sampling without replacement of clients,
to the algorithm. This extra feature is the main algorithmic
contribution of our work.

Each meta epoch t starts with the partitioning of all M

clients into M/C cohorts St =
{
Sλr
t

}R−1

r=0
, each Sλr

t with
size C. These cohorts are either obtained using the without-
replacement sampling of clients, i.e., the outer loop of the
double shuffling procedure or given by client availability.
In our main theoretical part, we assume cohorts St to be
obtained using the without-replacement sampling of clients,
but we also provide an extension that works with any (in-
cluding deterministic) reshuffling. Client shuffling could
be the same or resampled for each meta epoch, our theory
handles both cases, and they lead to the same convergence
bound.

We also use permutations locally, i.e., shuffling of local
client’s data points, which corresponds to the inner loop of
the double shuffling procedure. For both permutations, we
admit two options. Either we sample one permutation at
the beginning that is used in each step, we call this option
Shuffle-Once, or we resample new permutations in each
meta epoch, which we refer to as Random Reshuffling. Sim-
ilarly to the previous case, both options lead to the same
convergence bound.

Each meta epoch contains R = M/C communication
rounds. For each communication round r, the server sends
the current model estimate xr

t to clients, which belong to
cohort Sλr

t . Each client m ∈ Sλr
t sets xr,0

m,t = xr
t and pro-

ceeds with N local steps using permutation of datapoints
πj
m, i.e.,

xr,j+1
m,t = xr,j

m,t − γ∇f
πj
m

m

(
xr,j
m,t

)
.

Once the local epoch (N local steps) is finished, each client
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Figure 1: Visualization of double-shuffling procedure for 6 clients, each with 3 datapoints. Two clients are sampled in each
communication round.

m ∈ Sλr
t forms the following local gradient estimator

grm,t =
1

γN

(
xr
t − xr,N

m,t

)
.

All clients in the cohort Sλr
t send their estimated directions

grm,t to the server, and these updates are aggregated using
averaging operator

grt =
1

C

∑
m∈Sλr

t

grm,t.

The aggregated gradient estimator grt is used to perform the
server-side step, which is taken from the initial point xr

t

xr+1
t = xr

t − ηgrt .

Note that if we set η = γN , then we have that the updated
model xr+1

t equal to the average of models on the clients
from the current cohort Sλr

t .

xr+1
t = xr

t − ηgrt = xr
t − η

1

C

∑
m∈Sλr

t

grm,t

= xr
t − η

1

C

∑
m∈Sλr

t

1

γN

(
xr
t − xr,N

m,t

)
= xr

t −
η

γµ

1

C

∑
m∈Sλr

t

xr
t +

η

γµ

1

C

∑
m∈Sλr

t

xr,N
m,t

=
1

C

∑
m∈Sλr

t

xr,N
m,t .

Similar to the local update, the server constructs the global
update xt−xR

t

ηR at the end of the meta epoch t, when all
clients participated and apply this update for its global step
to obtain new estimator in the form

xt+1 = xt − γ
xt − xR

t

ηR
.

Analogously to server-side steps after local epochs, if we
set γ = ηR, then the new model xt+1 is equal to xR

t

xt+1 = xt − γ
xt − xR

t

ηR

= xt − ηR
xt − xR

t

ηR

= xt − xt + xR
t = xR

t .

The pseudocode for this procedure is provided in Algo-
rithm 1. The introduction of extra global step sizes η and γ
is a useful algorithmic trick that will enable faster rates in
scenarios, where we can’t directly analyze local improve-
ment, e.g., see (Karimireddy et al., 2019a). Our main result
(Theorem C.1) does not require this trick and provides the
fastest convergence guarantees.

Due to space limitation all theoretical results are pre-
sented in the appendix.

4. Numerical experiments
We conduct numerical experiments in which we analyzed
how RR-CLI algorithm (Algorithm 1) compares with its
closest competitors, namely NASTYA (Malinovsky et al.,
2021a) and FED-AVG (McMahan et al., 2017). For the
shuffling, we use the Shuffle Once option.

4.1. Computing and software environment

We performed experiments on a cluster with nodes running
CentOS Linux release 7.9.2009 and Linux Kernel 3.10.0-
1160 x86 64. Each experiment runs on a compute node
with an NVIDIA GPU and 40 GBytes of virtual memory
for the Python interpreter. We use double precision (fp64)
float point arithmetic. The distributed environment within
each experiment is simulated using Python software suite
FL PyTorch (Burlachenko et al., 2021).
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Algorithm 1 RR-CLI: Federated optimization with server step sizes and global step sizes, random shuffling and partial
participation with shuffling

1: Input: client step size γ > 0; server step size η > 0; global step size θ > 0; cohort size C ∈ {1, 2, . . . ,M}; number of
rounds R = M/C; initial iterate/model x0 ∈ Rd; number of epochs T ≥ 1

2: Client-Shuffle-Once option: sample a permutation λ = (λ0, λ1, . . . , λR) of [R]
3: Data-Shuffle-Once option: for each client m, sample a permutation πm = (π0

m, π1
m, . . . , πN−1

m ) of [N ]
4: for meta-epoch t = 0, 1, . . . , T − 1 do
5: Client-Reshuffling option: sample a permutation λ = (λ0, λ1, . . . , λR) of [R]
6: for communication rounds r = 0, . . . , R− 1 do
7: Send model xr

t to all participating clients m ∈ Sλr
t (server broadcasts xr

t to all clients m ∈ Sλr
t )

8: for all clients m ∈ Sλr
t , locally in parallel do

9: xr,0
m,t = xr

t (client m initializes local training using the latest global model xr
t )

10: Data-Random-Reshuffling option: sample a permutation πm = (π0
m, π1

m, . . . , πN−1
m ) of [N ]

11: for all local training data points j = 0, 1, . . . , N − 1 do
12: xr,j+1

m,t = xr,j
m,t − γ∇f

πj
m

m (xr,j
m,t) (client m makes one pass over its local training data in the order dictated by πm)

13: end for
14: grm,t =

1
γn (x

r
t − xr,N

m,t) (client m computes local update direction gm,t)
15: end for
16: grt = 1

C

∑
m∈Sλr

t

grm,t (server aggregates the local update directions gm,t discovered by the cohort St of clients)

17: xr+1
t = xr

t − ηgrt (server updates the model using the aggregated direction gt and applying server step size η)
18: end for
19: xt+1 = xt − θ

xt−xR
t

ηR global step after all communication rounds during meta-epoch
20: end for

4.2. Optimization problem and experimental setup

We consider the following formulation. Each fm(x) is in the
form of empirical risk minimization objective for logistic
loss with additive L2 regularization term for local data Di

fm(x) =
1

N

N∑
j=1

ljm(x, a(j), b(j)) +
α

2
∥x∥2,

ljm(x, a, b) = log(1 + exp(−b(j)m · x⊤a(j)m )).

For our experiments, we have considered three LIBSVM
datasets (Chang & Lin, 2011) – phishing, w3a and a3a.
To distribute the dataset across clients, we reshuffle this
dataset D uniformly and split it into M = 12 clients so that
each client has N = ⌊ |D|

M ⌋ data samples. Along different
runs, we have fixed the split of data across the clients and
the initial iterate x0. In the main part, we include only
the phishing dataset. The remaining experiments are
provided in Appendix J.

Since we use logistic regression, we can exactly compute
the smoothness parameters. We set the regularizer α =
5e − 4. This results in having the condition number κ ≈
104 for phishing. Quantities of our interest are the rate
of decreasing distance to the optimal point ∥xk − x⋆∥2
and functional gap f(xk)− f(x⋆). We have pre-computed
numerically x⋆ such that ∥∇f(x⋆)∥ ≤ 10−14. All our

experiments involve 5 independent runs to obtain estimates
of E[f(xk)− f⋆] and E[∥xk − x⋆∥2].

4.3. Theoretical step sizes

Firstly, we use theoretical step sizes for all methods de-
scribed in the original papers, except FED-AVG for which
we have used theoretical step size from more recent pa-
per (Karimireddy et al., 2019b). The FED-AVG uses uni-
form sampling without replacement with 10% of local data
points sampled in each local step. Both FED-AVG and
NASTYA sample 3 clients from a total of n = 12 clients
in each round uniformly at random. The RR-CLI samples
clients using the random reshuffling procedure with 4 co-
horts, each with 3 clients. All algorithms make 10 local
steps before communication with the central server. This
makes all the algorithms equivalent in terms of local com-
putations and communication. Since different algorithms
use different sampling strategies, we measure the number
of epochs, where one epoch is the amount of computation
equivalent to the computation of the full gradient across the
whole dataset. Our results are presented in Figure 4. One
can note that RR-CLI outperforms both baselines. Firstly, as
theory predicts, RR-CLI dominates NASTYA due to smaller
variance from partial participation since the variance terms
scaled with γ2 (RR-CLI) instead of γ (NASTYA). FED-
AVG exhibit poor behaviour its theory only permits small
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Figure 2: Training Logistic Regression on phishing with n = 12 clients. Theoretical global step size and tune local step
sizes. Partial participation with 3 clients per round with 10 local steps.
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Figure 3: Training Logistic Regression on phishing with n = 12 clients with heoretical global step size and tuned local step
sizes. Partial participation with 3 clients per round, 100 local step. Local and global step size are decaying ∝ 1

1+#passedepochs
. Local

gradient estimators are computed with 1% of local samples.

step size γ =
1

L+ α
.

4.4. Tuned step sizes

Since we provide the worst-case analysis, the step size esti-
mates might be too conservative. The goal of this ablation
is to analyze how much we can increase local step sizes in
practice. To test this, we consider the list of multipliers for
theoretical local step size: {1, 2, 3, 5, 10, 12, 15}. In Fig-
ure 2, we showcase a comparison of the three considered
algorithms using the tuned local step sizes. We note that
RR-CLI still outperforms both baselines.

4.5. Tuned step sizes with decaying

In the last experiment, we consider decaying local
and global step size with factor ∝ 1

#passed epochs+1 .
In this experiment, we again analyze several pos-
sible multipliers of theoretical step size, concretely
{1, 2, 3, 5, 10, 12, 15, 50, 100}. In this experiment, we in-
crease the number of local steps to 100 by decreasing the
local batch size by a factor of 10. Results are presented in
Figure 3. We note that both NASTYA and RR-CLI follow a
similar trend, while FED-AVG lacks in performance.

5. Conclusion and Future Work
In conclusion, we propose a new technique for addressing
the issue of partial participation in Federated Learning. We
design a novel regularized client participation scheme. By
having each client join the learning process once during
each meta epoch, the proposed scheme leads to a reduction
in the variance caused by client sampling that is reflected
both in theoretical analysis and practical performance.

For future work, we are interested in combining the pro-
posed algorithm with momentum or different adaptive meth-
ods to make it more practical.
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Gürbüzbalaban, M., Ozdaglar, A., and Parrilo, P. A. Why
random reshuffling beats stochastic gradient descent.
Mathematical Programming, 186(1):49–84, 2021.
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Horváth, S., Ho, C.-Y., Horváth, L., Sahu, A. N., Canini,
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Appendix
A. Related Work
Cross-device FL can be hindered by communication costs, as edge devices such as mobile phones and IoT devices often
have limited bandwidth and connectivity (Van Berkel, 2009; Huang et al., 2013). These limitations can make wireless
connections and internet connections expensive and unreliable. Additionally, limitations in the capacity of the aggregating
master and other FL system factors can restrict the number of clients allowed to participate in each communication round. To
address these issues, there is significant interest in reducing the communication bandwidth of FL systems through techniques
such as local updates, communication compression, and client selection methods. Our work primarily focuses on client
selection techniques, but it is worth noting that these approaches can be combined to achieve a more effective outcome.

A.1. Local Methods

This strategy involves reducing the frequency of communication and emphasising local computation, where each device
performs multiple local steps before communicating its updates back to the central node. A prototypical method in this
category is the Federated Averaging (FedAvg) algorithm (McMahan et al., 2017), an adaption of local-update to parallel
SGD, where each client runs some predefined number of SGD steps based on its local data before local updates are averaged to
form the global pseudo-gradient update for the global model on the master node. Recently, there has been significant interest
and attempts to provide theoretical guarantees for this method, or its variants (Stich, 2018; Lin et al., 2018; Karimireddy et al.,
2019a; Stich & Karimireddy, 2020; Khaled et al., 2020; Hanzely & Richtárik, 2020; Malinovskiy et al., 2020; Koloskova
et al., 2020; Mishchenko et al., 2022; Malinovsky et al., 2022) as the original work was a heuristic, offering no theoretical
guarantees.

A.2. Communication Compression Methods

Another popular technique works by reducing the size of the updates communicated from clients to the master. This
approach is referred to as communication compression. In this approach, instead of transmitting the full-dimensional
update vector g ∈ Rd, each client only transmits a compressed vector C(g), where C : Rd → Rd is a (possibly random)
operator chosen such that C(g) can be represented using fewer bits than g, for instance, by using limited bit representation
(quantization) (Alistarh et al., 2017; Wen et al., 2017; Zhang et al., 2017; Horváth et al., 2019; Ramezani-Kebrya et al., 2019)
or by enforcing sparsity (sparsification) (Wangni et al., 2018; Konečný & Richtárik, 2018; Stich et al., 2018; Mishchenko
et al., 2019; Vogels et al., 2019).

A.3. Client Sampling/Selection Methods

On top of the uniform (McMahan et al., 2017; Karimireddy et al., 2019a; Grudzień et al., 2022) or arbitrary sampling (Horváth
et al., 2022), several proposed approaches focus on a careful selection of the participating clients to improve communication
complexity (Cho et al., 2020; Nguyen et al., 2020; Ribero & Vikalo, 2020; Lai et al., 2021; Luo et al., 2022; Chen et al.,
2022). These techniques rely on the extra partial information, such as the client’s loss or the norms of the updates, to
speed up the training by selecting more informative updates. Another stream of works tackles convergence under arbitrary
client participation patterns (Yang et al., 2022; Wang & Ji, 2022; Gu et al., 2021; Yan et al., 2020; Ruan et al., 2020). In
contrast, our proposed method selects clients using regularized sampling strategy based on client reshuffling. We note
that such sampling is not independent across communication rounds and is not arbitrary, i.e., our goal is not to provide
bounds for arbitrary participation patterns, as we assume we have access to client sampling to provide a better practical and
theoretical sampling strategy. To account for the standard practice of FL training, where clients are only available during
certain hours when their device is on charge and connected to the high-speed network, we also provide the convergence
rates under non-random deterministic client shuffling that can still guarantee convergence under this challenging scenario;
see Remark C.4.

A.4. Random reshuffling

A particularly successful technique to optimize the empirical risk minimization objective is to randomly permute (i.e.,
reshuffle) the training data at the beginning of every epoch (Bottou, 2012) instead of randomly sampling a data point (or a
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subset of them) with replacement at each step, as in the standard analysis of SGD. This process is repeated several times, and
the resulting method is usually referred to as Random Reshuffling (RR). RR is often observed to exhibit faster convergence
than sampling with replacement, which can be intuitively attributed to the fact that RR is guaranteed to process each training
sample exactly once every epoch. In contrast, with-replacement sampling needs more steps than the equivalent of one
epoch to see every sample with a high probability. Correctly understanding the random reshuffling trick and why it works
has been a challenging open problem (Bottou, 2009; Ahn & Sra, 2020; Gürbüzbalaban et al., 2021) until recent advances
in Mishchenko et al. (2020) introduced a significant simplification of the convergence analysis technique. The difficulty of
analyzing RR stems from the fact that updates conditioned on the previous iterate result in biased gradient estimates, unlike
with-replacement sampling. The subsequent works provide better convergence guarantees for RR in different settings (Ahn
et al., 2020; Malinovsky et al., 2021b; Beznosikov & Takáč, 2021). To our knowledge, in terms of FL, RR was only explored
in terms of local steps. Initial works (Mishchenko et al., 2021; Yun et al., 2021; Malinovsky & Richtárik, 2022; Sadiev et al.,
2022) require full participation in each communication round. The partial participation framework was considered in the
following works (Malinovsky et al., 2021a; Horváth et al., 2022), but the authors only consider unbiased client participation.
In this work, we fill this missing gap and show that RR employment on the client level leads to superior theoretical and
practical performance in FL.

B. Notation and Assumptions
The loss function for client m is made up of individual losses f j

m(x) for each local data point j, where x is a parameter
that we want to optimize. We assume that client i has access to an oracle that, when given input (j, x), returns the gradient
∇f j

m(x). We denote [l] = {1, 2, . . . , l} for any l ∈ N. To show the convergence of our method, we make certain standard
assumptions.

Assumption B.1. The function h is µ-convex for µ ≥ 0; i.e.,

⟨∇h(x), y − x⟩ ≤ −
(
h(x)− h(y) +

µ

2
∥x− y∥2

)
. (2)

We say that h is µ-strongly convex if µ > 0, and otherwise h is (general) convex.

Assumption B.2. The function h are L-smooth; i.e., there is L > 0

∥∇h(x)−∇h(y)∥ ≤ L∥x− y∥ . (3)

We also define the Bregman divergence

Dh(x, y)
def
= h(x)− h(y)− ⟨∇f(y), x− y⟩ . (4)

Next, we proceed with the definition of double shuffling sampling, which plays a key role in our theoretical analysis.

Definition B.3 (Double Shuffling). Let π̃ = {π̃1, π̃2, . . . , π̃M} be a random permutation of [M ] and {π̂m ={
π̂1
m, π̂2

m, . . . , π̂N
m

}
}Mm=1 is a set of M independent random permutations of [N ]. Then the double-shuffling procedure

π = {π1, π2, . . . , πMN} is defined as

πk = π̂jk
π̃mk

def
= πj

m, ∀k ∈ [MN ], (5)

where mk =
⌊

k
N

⌋
and jk = k −mkN , i.e., jk and mk are quotient and remainder of k with respect to M .

For the case of mini-batching with batch size C, we, for simplicity, assume M = CR. We first split M clients into
C equisized groups G1, G2, . . . , GC obtained by without-replacement sampling from [N ], i.e.,

⋃N
o=1 Go = [N ] and

Gi ∩Gj = ∅, ∀i ̸= j. To obtain C samples in steps 1, . . . , RN , we apply double-shuffling within each group.

The visualization of the double-shuffling process is displayed in Figure 1. Equipped with these definitions, we proceed with
the proposed algorithm and the main results.
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C. Convergence Guarantees
Before proceeding with our theoretical results, we first define the variance quantities that commonly appear in the convergence
analysis of stochastic methods

σ̃2
⋆

def
=

1

M

M∑
m=1

∥∇fm(x⋆)∥2,

σ2
⋆

def
=

1

MN

M∑
m=1

N∑
j=1

∥∥∇f j
m(x⋆)

∥∥2, (6)

and the star sequence

x0
⋆ = x0,0

m,⋆ = x⋆, ∀m ∈ Sλ0
t

xr,j+1
m,⋆ = xr,j

m,⋆ − γ∇f
πj
m

m (x⋆) , ∀m ∈ [M ],

xr+1
⋆ =

1

C

∑
m∈Sλr

t

xr,N
m,⋆.

(7)

that corresponds to running our algorithm with the optimal solution x⋆ being the starting point and all the local gradients are
estimated at x⋆. Note that for this sequence, xR

⋆ = x⋆. Equipped with these definitions, we proceed with the analysis.

We start with the main result, where we assume each function f j
m to be µ-strongly convex. In this case, we show that the

optimization term decreases linearly with the power that is a product of the number of local data points N , the number of
communications rounds in each meta-epoch R and the number of meta-epochs T . In addition, due to applying sampling
without replacement of both data points and cohorts, the statistical term scales proportionally to the squared step size γ2.
The following theorem formulates the claim.

Theorem C.1. Suppose each function f j
m is µ-strongly convex and L-smooth. Then for Algorithm 1 with constant step sizes

γ ≤ 1
L , η = γN , θ = ηR, the iterates generated by the Algorithm 1 satisfy

E
[
∥xT − x⋆∥2

]
≤ (1− γµ)NRT ∥x0 − x⋆∥2

+
2γ2

µ
max
r,m

σ2
m,DS,

where σ2
m,DS

def
= 1

γ2E
[
D

f
πj
m

(
xr,j
m,⋆, x⋆

)]
.

To our knowledge, this bound is the first result in FL literature which combines exponentially fast decaying in the first term
(optimization term), which is proportional to the number of all gradient steps (# of data ×# of round ×# of meta-epochs)
and the second term (variance/statistical term), which is proportional to γ2. This result is possible due to our careful
algorithmic construction that involves sampling without the replacement of both clients and local data points. Let us now
analyze the variance term σ2

m,DS. Lemma E.4 in the appendix gives the following upper bound

max
m∈[M ]

σ2
m,DS ≤ L

(
MN2

2C2
+ 2N2

)
σ̃2
⋆ +

LN

2
σ2
⋆,

which is independent of γ and T . Therefore, the final convergence rate also scales with O(1/T 2) compared to O(1/T)
to any method that samples clients uniformly at random in each step, e.g., FedAvg (McMahan et al., 2017) and SCAF-
FOLD (Karimireddy et al., 2019b).

The next set of results is slightly weaker than the theorem above since we analyse problem (1) under the weaker assumptions,
where we assume that only local functions fm are µ-strongly convex while individual loss functions f j

m are general convex
and L-smooth. In this regime, we can’t guarantee a linear decrease in each local step. Therefore, the linear part of the
convergence result has power, which is the product of the number of communications rounds in meta-epoch R and the
number of meta-epochs T . In addition, the linear term depends on server-side step size η. The variance term is decoupled
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into two parts. The first part, which is proportional to η2 (note that this is still quadratic dependence), is related to sampling
without replacement of clients. The second part, which is proportional to γ2 is related to the reshuffling of data points. Due
to the biased nature of updates and lack of individual strong convexity, the step size should be significantly small with the
condition γ ≤ 1

8NL
√
κ

. This is not surprising and is consistent with the analysis of biased SGD (Ajalloeian & Stich, 2020).
The formal statement of the theorem follows.
Theorem C.2. Assume that each fm is µ-strongly convex. Also, assume that each f j

m is convex and L-smooth. Let η ≤ 1
4L

and γ ≤ 1
8NL

√
κ

, then for iterates generated by Algorithm 1, we have

E
[
∥xT − x⋆∥2

]
≤ (1− ηµ)RT ∥x0 − x⋆∥2

+
4

µ
η2 max

r,m
σ2
m,CS

+ 12κ2γ2N2σ2
⋆ + 12γ2κ2Nσ2

⋆,

where σ2
m,CS = 1

η2E [Dfm (xr
⋆, x⋆)] .

Note that the last two terms can be as small as we want by taking γ2 small enough. For the first two terms, we first give the
upper bound on σ2

m,CS using Lemma E.4 from the appendix that gives

max
m∈[M ]

σ2
m,CS ≤ LM

2C2
σ̃2
⋆.

which is independent of η or T . Therefore, similar to the prior case, the final convergence rate scales with O(1/T 2).
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Figure 4: Training Logistic Regression on phishing, with n = 12 clients. Theoretical local and global step sizes, 3 clients
per round with 10 local steps.

The final theorem analyzes the most restrictive case when only the function f is µ strongly convex and individual losses
are general convex and L-smooth. In this case, the trick with three step sizes is suitable as this helps us to decompose the
bound into three parts. The linear part depends on global step size θ, the variance coming from the sampling of data points,
which depends on γ, and the variance coming from the sampling of clients, which depends on η. This is summarized in the
following theorem.
Theorem C.3. Suppose that each f j

m is convex and L-smooth, f is µ-strongly convex. Then provided the step size satisfies
γNR ≤ ηR ≤ θ ≤ 1

16L the final iterate generated by Algorithm 1 satisfies

E
[
∥xT − x⋆∥2

]
≤
(
1− θµ

2

)T

∥x0 − x⋆∥2

+ 16γ2κN2σ2
⋆

+ 16γ2κNσ̃2
⋆

+ 16η2
κ

N2R

M − C

(M − 1)C
σ2
⋆.

Note that because of our decomposition, the last three terms can be arbitrarily small by taking γ and η sufficiently small. For
the first term, we can take θ = 1

16L to obtain linear convergence.
Remark C.4. All these results can be also adjusted to work with the deterministic client shuffling with the minor change of
the rates and convergence analysis; see Section I in the appendix for a detailed discussion.
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D. Notation
For the ease of the reader, we provide the table with the used notation below.

Table 1: Notation

Symbol Description
M the total number of clients.
N the total number of data points per client.
C the cohort size of clients selected for participation.

R = M/C the number of communication rounds during meta-epoch.
r index of communication round in meta-epoch.
j index of data point in local epoch.
λr permutation of cohorts for communication round r.
πj permutation of data point with index j.
Sλr
t set of C clients in cohort corresponding to communication round r during meta epoch t.
xr
t the initial point for round r in epoch t.

xr,j
m,t the intermediate point for round r in epoch t on client m and for j-th data point.
grt the approximation of gradient for round r in epoch t.

E. Variance bounds
In this section, we present bounds that can be used to bound the variance of the gradient estimators used in this work. We
start by introducing standard variance decomposition and then presenting two lemmas.

For random variable X and any y ∈ Rd, the variance can be decomposed as

E
[
∥X −E [X]∥2

]
= E

[
∥X − y∥2

]
− ∥E [X]− y∥2. (8)

The following lemma bounds the variance of the estimator obtained using the sampling without replacement with respect to
both clients and local data points.

Lemma E.1. Let {
{
ζjm
}M
m=1

}Nj=1 ∈ Rd be fixed vectors, and

ζ̃
def
=

1

MN

M∑
m=1

N∑
j=1

ζjm, ζ̃m
def
=

1

N

M∑
j=1

ζjm

be their averages, and

σ2 def
=

1

NM

M∑
m=1

N∑
j=1

∥∥∥ζjm − ζ̃
∥∥∥2, σ̃2 def

=
1

M

M∑
m=1

∥∥∥ζ̃m − ζ̃
∥∥∥2,

be the population variances.

1. Fix any k ∈ {1, . . . ,MN}, let ζπ1
, . . . ζπk

be sampled using double-shuffling procedure (see Definition B.3) from
{
{
ζjm
}m
j=1

}ni=1 and ζ̃kπ be their average. Then, the following holds for the sample average and variance

E
[
ζ̃kπ

]
= ζ̃,

σ̄2(k)
def
= E

[∥∥∥ζ̃kπ − ζ̃
∥∥∥2] = jk(N − jk)

k2(N − 1)
σ2 +

(
(mkN

2 + j2k)(MN − 1)

k2(N − 1)(M − 1)
− N

k(N − 1)
− 1

M − 1

)
σ̃2.

(9)

2. Let N = CR and G1, G2, . . . , GC be sets with R elements each, obtained by sampling uniformly at random without
replacement from [N ], i.e.,

⋃b
o=1 Go = [N ] and G1 ∩Gj = {}, ∀i ̸= j. Fix any k ∈ {1, . . . , NR}, let ζoπ1

, . . . ζoπk
be
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sampled using double-shuffling procedure (see Definition B.3) from {
{
ζjm
}m
j=1

}m∈Go for o ∈ [R]. Let kN
def
=
⌊

k
N

⌋
N

and

ζ̃kπ,o
def
=

1

k

(
kN∑
i=1

1

C

C∑
p=1

ζpπi
+

k∑
i=kN+1

ζoπi

)
. (10)

Then the following holds for the expectation and variance of ζ̃kπ,o

E
[
ζ̃kπ,o

]
= ζ̃, E

[∥∥∥ζ̃kπ,o − ζ̃
∥∥∥2] = (kN

k

)2

σ̄2(kNC) +

(
k − kN

k

)2

σ̄2(k − kN )− 2kN (k − kN )

k2C(M − 1)
σ̃2. (11)

Proof. The first claim follows from the linearity of expectation and uniformity of sampling with respect to both permutations.
Therefore,

E
[
ζ̃kπ

]
=

1

k

k∑
i=1

ζπk
=

1

k

k∑
i=1

1

M

M∑
m=1

1

N

N∑
j=1

ζjm = ζ̃.

To prove the second claim, let us first establish the identities for cov(ζπr
, ζπs

) for any r ̸= s. Firstly, we consider the case
such that

⌊
r
N

⌋
=
⌊

s
N

⌋
. Then,

cov[ζπr
, ζπs

] = E
[〈

ζπr
− ζ̃, ζπs

− ζ̃
〉]

=
1

M

M∑
m=1

1

N(N − 1)

N∑
k=1

N∑
l=1,k ̸=l

〈
ζmk − ζ̃, ζml − ζ̃

〉

=
1

M

M∑
m=1

1

N(N − 1)

N∑
k=1

N∑
l=1

〈
ζmk − ζ̃, ζml − ζ̃

〉
− 1

M

M∑
m=1

1

N(N − 1)

N∑
k=1

∥∥∥ζmk − ζ̃
∥∥∥2

=
1

MN(N − 1)

M∑
m=1

(
N2
∥∥∥ζ̃m − ζ̃

∥∥∥− N∑
k=1

∥∥∥ζmk − ζ̃
∥∥∥2)

=
1

N − 1

(
Nσ̃2 − σ2

)
For the case,

⌊
r
N

⌋
̸=
⌊

s
N

⌋
, we have

cov[ζπr
, ζπs

] = E
[〈

ζπr
− ζ̃, ζπs

− ζ̃
〉]

=
1

M(M − 1)

M∑
m=1

M∑
o=1,i̸=o

1

N2

N∑
k=1

N∑
l=1

〈
ζmk − ζ̃, ζol − ζ̃

〉

=
1

M(M − 1)

M∑
m=1

M∑
o=1

1

N2

N∑
k=1

N∑
l=1

〈
ζmk − ζ̃, ζol − ζ̃

〉
− 1

M(M − 1)

M∑
m=1

1

N2

N∑
k=1

N∑
l=1

〈
ζmk − ζ̃, ζml − ζ̃

〉
=

1

M(M − 1)

1

N2

〈
N∑

m=1

N∑
k=1

ζmk − ζ̃,

M∑
o=1

N∑
l=1

ζol − ζ̃

〉
− 1

M(M − 1)

M∑
m=1

〈
1

N

M∑
k=1

(
ζmk − ζ̃

)
,
1

N

M∑
l=1

(
ζml − ζ̃

)〉

= − 1

M(M − 1)

M∑
m=1

∥∥∥ζ̃m − ζ̃
∥∥∥2 = − σ̃2

M − 1
.
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Therefore, these identities help us to establish the formula for the sample variance

E

[∥∥∥ζ̃kπ − ζ̃
∥∥∥2] = 1

k2

k∑
i=1

k∑
j=1

cov
[
ζπi

, ζπj

]

=
1

k2

E

[
k∑

i=1

∥∥∥ζπi − ζ̃
∥∥∥2]+ k∑

r=1

k∑
s=1,⌊ r

N ⌋=⌊ s
N ⌋ & jr ̸=js

cov[ζπr , ζπs ] +

k∑
r=1

k∑
s=1,⌊ r

N ⌋ ̸=⌊ s
N ⌋

cov[ζπr , ζπs ]


=

1

k2

(
kσ2 +

mkN
2 + j2k − k

N − 1

(
Nσ̃2 − σ2

)
− k2 −mkN

2 − j2k
M − 1

σ̃2

)
=

jk(N − jk)

k2(N − 1)
σ2 +

(
(mkN

2 + j2k)(MN − 1)

k2(N − 1)(M − 1)
− N

k(N − 1)
− 1

M − 1

)
σ̃2.

(12)

For the second part, we have

E
[
ζ̃kπ,o

]
= E

[
1

k

(
kN∑
i=1

1

C

C∑
p=1

ζpπi
+

k∑
i=kN+1

ζoπi

)]
=

1

k

(
kN∑
i=1

1

C

C∑
p=1

ζ̃ +

k∑
i=kN+1

ζ̃

)
= ζ̃.

Then, for the variance

E

[∥∥∥ζ̃kπ,o − ζ̃
∥∥∥2] = E

∥∥∥∥∥1k
(

kN∑
i=1

1

C

C∑
p=1

(
ζpπi

− ζ̃
)
+

k∑
i=kN+1

(
ζoπi

− ζ̃
))∥∥∥∥∥

2

=

(
kN
k

)2

E

∥∥∥∥∥ 1

kNC

kN∑
i=1

C∑
p=1

(
ζpπi

− ζ̃
)∥∥∥∥∥

2

+

(
k − kN

k

)2

E

∥∥∥∥∥ 1

k − kN

k∑
i=kN+1

(
ζoπi

− ζ̃
)∥∥∥∥∥

2


+
2

k2C2
E

[〈
kN∑
i=1

C∑
p=1

(
ζpπi

− ζ̃
)
,

k∑
i=kN+1

(
ζoπi

− ζ̃
)〉]

=

(
kN
k

)2

σ̄2(kNC) +

(
k − kN

k

)2

σ̄2(k − kN )− 2kN (k − kN )

k2C(M − 1)
σ̃2

Let us now analyse the obtained results. Firstly, one can notice that in the case C = 1, (11) is equivalent to (9) since
kN = mkN and k − kN = jk. Next, we link the obtained result with the existing works. In the special case M = 1, we
have σ̃2 = 0. Therefore, σ̄2(k) = k(N−k)

k2(N−1)σ
2 that recovers the variance bound of (Mishchenko et al., 2020, Lemma 1) for

simple random reshuffling. In the full participation case, i.e., M = C, we have kN = mk = 0 and jk = k. Therefore,

E

[∥∥∥ζ̃kπ − ζ̃
∥∥∥2] = σ̄2(k) =

k(N − k)

k2(N − 1)
σ2 +

N

N − 1

(
1− 1

k

)
σ̃2 ≤ N

2k2
σ2 + 2σ̃2.

The expression above can be used to recover the variance bound for full participation algorithm FedRR (Mishchenko et al.,

2021, Theorem 1). The next step of the analysis is to give an upper bound on the quantity k2E

[∥∥∥ζ̃kπ − ζ̃
∥∥∥2], which is the

key quantity that we use to bound the variance due to double reshuffling sampling procedure.

Lemma E.2. Let the settings of Lemma E.1, then

k2E

[∥∥∥ζ̃kπ − ζ̃
∥∥∥2] ≤ ( M

2C2
+ 2

)
N2σ̃2 +

N

2
σ2 (13)
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Proof. First, we recall the definition of E
[∥∥∥ζ̃kπ − ζ̃

∥∥∥2]. We have

E

[∥∥∥ζ̃kπ,o − ζ̃
∥∥∥2] = (kN

k

)2

σ̄2(kNC) +

(
k − kN

k

)2

σ̄2(k − kN )− 2kN (k − kN )

C(M − 1)
σ̃2.

Since kN = mkN and k − kN = jk, then

k2E

[∥∥∥ζ̃kπ,o − ζ̃
∥∥∥2] = k2N

(
kNCN(MN − 1)

k2NC2(N − 1)(M − 1)
− N

kNC(N − 1)
− 1

M − 1

)
σ̃2

+ j2k

(
jk(N − jk)

j2k(N − 1)
σ2 +

(
j2k(MN − 1)

j2k(N − 1)(M − 1)
− N

jk(N − 1)
− 1

M − 1

)
σ̃2

)
− 2kN jk

k2C(M − 1)
σ̃2

=

(
kNN(MN − 1)

C(N − 1)(M − 1)
− kNN

C(N − 1)
− k2N

M − 1

)
σ̃2

+
jk(N − jk)

(N − 1)
σ2 +

(
j2k(MN − 1)

(N − 1)(M − 1)
− jkN

(N − 1)
− j2k

M − 1

)
σ̃2 − 2kN jk

C(M − 1)
σ̃2

=

(
kNMN

C(M − 1)
− k2N

M − 1

)
σ̃2 +

jk(N − jk)

(N − 1)
σ2 +

(
j2kM

M − 1
− jkN

(N − 1)

)
σ̃2 − 2kN jk

C(M − 1)
σ̃2.

To obtain the upper bound, we first use jk(N−jk)
(N−1) ≤ N

2 . Therefore,

k2E

[∥∥∥ζ̃kπ,o − ζ̃
∥∥∥2] ≤ ( kNMN

C(M − 1)
− k2N

M − 1

)
σ̃2 +

N

2
σ2 +

(
j2kM

M − 1
− jkN

(N − 1)

)
σ̃2 − 2kN jk

C(M − 1)
σ̃2.

The first part of the first term is a quadratic function with respect to kN , so we can estimate its maximum by equating its
derivative to zero. For the term j2kM

M−1 , we have j2kM
M−1 ≤ 2N2 for M ≥ 2. We ignore other negative terms. This yields the

following upper bound

k2E

[∥∥∥ζ̃kπ,o − ζ̃
∥∥∥2] ≤ (MN2

2C2
+ 2N2

)
σ̃2 +

N

2
σ2,

which concludes the proof.

In the next step, we will use this result to upper bound the following sequence

x0
⋆ = x0,0

m,⋆ = x⋆, ∀m ∈ Sλ0
t

xr,j+1
m,⋆ = xr,j

m,⋆ − γ∇f
πj
m

m (x⋆) , ∀m ∈ [M ],

xr+1
⋆ =

1

C

∑
m∈Sλr

t

xr,N
m,⋆.

(14)

Concretely, we are interested in upper bounding the distance of this sequence from the optimal solution x⋆ as this quantity
will be useful to provide the upper bound for the statistical term in our convergence analysis. Note that xr+1

⋆ = x⋆. Our
result is summarized in the next lemma.
Lemma E.3. The distance from the optimum of the iterates defined by (7) is bounded, i.e.,

E
[∥∥xr,j+1

m,⋆ − x⋆

∥∥2] ≤ γ2

(
MN2

2C2
+ 2N2

)
σ̃2 +

γ2N

2
σ2, (15)

where σ̃2
⋆

def
= 1

M

∑M
m=1∥∇fm(x⋆)∥2 and σ2

⋆
def
= 1

MN

∑M
m=1

∑N
j=1

∥∥∇f j
m(x⋆)

∥∥2.
Proof. Using (7), we get

E
[∥∥xr,j+1

m,⋆ − x⋆

∥∥2] = γ2E


∥∥∥∥∥∥ 1C

r−1∑
q=1

∑
z∈Sλr

t

N∑
i=1

∇f
πi
z

z (x⋆) +

j∑
l=0

∇f
πj
m

m (x⋆)

∥∥∥∥∥∥
2

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This is exactly the setup of the double shuffling procedure discussed in Lemma E.1. Therefore, we can apply Lemma E.2
that yields

E
[∥∥xr,j+1

m,⋆ − x⋆

∥∥2] ≤ γ2

(
MN2

2C2
+ 2N2

)
σ̃2 +

γ2N

2
σ2,

where the corresponding value for σ̃2 = 1
M

∑M
m=1∥∇fm(x⋆)∥2 and for σ2 = 1

MN

∑M
m=1

∑N
j=1

∥∥∇f j
m(x⋆)

∥∥2, which
concludes the proof.

Using the above results, we can upper bound both quantities, based on the Bregman divergence, that appear in our analysis,
i.e., σ2

m,DS and σ2
m,CS. The lemma follows.

Lemma E.4. The variance introduced by Algorithm 1 is bounded, i.e.,

max
m∈[M ]

σ2
m,DS ≤ L

(
MN2

2C2
+ 2N2

)
σ̃2
⋆ +

LN

2
σ2
⋆,

max
m∈[M ]

σ2
m,CS ≤ LM

2C2
σ̃2
⋆.

(16)

Proof. First, we recall the definition of σ2
m,DS and apply the smoothness assumption.

σ2
m,DS =

1

γ2
E
[
D

f
πj
m

(
xr,j
m,⋆, x⋆

)] (3)
≤ L

γ2
E
[∥∥xr,j

m,⋆ − x⋆

∥∥2] .
Then, we apply (15) that gives desired result

σ2
m,DS ≤ L

(
MN2

2C2
+ 2N2

)
σ̃2
⋆ +

LN

2
σ2
⋆.

For the second term, we again use its definition and the smoothness assumption. Therefore,

σ2
m,CS =

1

η2
E
[
Dfm

(
xr
m,⋆, x⋆

)] (3)
≤ L

η2
E
[∥∥xr

m,⋆ − x⋆

∥∥2] .
This setup is also reflected in Lemma E.1, but with N = 1. Therefore, σ2 = σ̃2. Furthermore, we can’t apply (9) directly
as it is not defined for N = 1. We can instead derive the variance bound for the case N = 1 using the proof techniques
provided in the proof of Lemma E.1, where we ignore the middle term in (12) as the number of summands satisfying
condition s = 1,

⌊
r
N

⌋
̸=
⌊

s
N

⌋
is zero for N = 1. This, combined with the fact that mk = k and jk = 0, yields The above

result together with (15) yields σ̄2(k) = σ̃2(M−k)
k(M−1) for k ∈ [MC ]. We can plug this equality to (11), where k1 = k. Therefore,

σ2
m,DS ≤ L

L

γ2
E
[∥∥xr

m,⋆ − x⋆

∥∥2] ≤ Lk2σ̄2(kC)

=
Lσ̃2

⋆k(M − kC)

C(M − 1)
=

Lσ̃2
⋆

C2

kC(M − kC)

kC(M − 1)
≤ Lσ̃2

⋆M

2C2
,

which concludes the proof.

Equipped with the bounds for the variance terms, we are ready to proceed with the exact convergence bounds.
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F. Proof in case of f j
m’s strong convexity

In this section, we need to use the following equalities to prove convergence guarantees:

xr+1
t =

1

C

∑
m∈Sλr

t

xr,n
m,t,

xr,j+1
m,t = xr,j

m,t − γ∇fπj
m

(
xr,j
m,t

)
, xr,j

m,t = xr
t − γ

j−1∑
k=1

∇fπk
m

(
xr,k
m,t

)
,

xr+1
t = xr

t − γ
1

C

∑
m∈Sλr

t

N−1∑
j=1

∇fπj
m

(
xr,j
m,t

)
.

These equations are necessary for one-step, local, and meta-epoch analysis. Let us start from the case when all individual
functions are µ-strongly convex.

Theorem F.1. Suppose that the functions f1, . . . , fn are µ-strongly convex and L-smooth. Then for Algorithm 1 with a
constant stepsize γ ≤ 1

L , the iterates generated by either of the algorithm satisfy

E
[
∥xT − x⋆∥2

]
≤ (1− γµ)NRT ∥x0 − x⋆∥2 +

2γ2

µ
max
r,m

σ2
m,DS. (17)

Proof. We start our proof by analyzing the distance between intermediate point xr,j+1
m,t and a point of auxiliary sequence:

E

[∥∥∥xr,j+1
m,t − xr,j+1

m,⋆

∥∥∥2] = E

[∥∥∥xr,j
m,t − γ∇fπj

m

(
xr,j
m,t

)
−
(
xr,j
m,⋆ − γ∇fπj

m (x⋆)
)∥∥∥2]

= E

[∥∥∥xr,j
m,t − xr,j

m,⋆ − γ
(
∇fπj

m

(
xr,j
m,t

)
− γ∇fπj

m (x⋆)
)∥∥∥2]

= E

[∥∥∥xr,j
m,t − xr,j

m,⋆

∥∥∥2 − 2γ
〈
∇fπj

m

(
xr,j
m,t

)
−∇fπj

m (x⋆) , x
r,j
m,t − xr,j

m,⋆

〉]
+ γ2E

[∥∥∥∇fπj
m

(
xr,j
m,t

)
−∇fπj

m (x⋆)
∥∥∥2] . (18)

Using a three-point identity, we have〈
∇fπj

m

(
xr,j
m,t

)
−∇fπj

m (x⋆) , x
r,j
m,t − xr,j

m,⋆

〉
= D

f
πj
m

(
xr,j
m,⋆, x

r,j
m,t

)
+D

f
πj
m

(
xr,j
m,t, x⋆

)
−D

f
πj
m

(
xr,j
m,⋆, x⋆

)
. (19)

Plugging (19) into (18) we obtain

E

[∥∥∥xr,j+1
m,t − xr,j+1

m,⋆

∥∥∥2] = E

[∥∥∥xr,j
m,t − xr,j

m,⋆

∥∥∥2]− 2γE
[
D

f
πj
m

(
xr,j
m,⋆, x

r,j
m,t

)]
− 2γE

[
D

f
πj
m

(
xr,j
m,t, x⋆

)]
+ 2γE

[
D

f
πj
m

(
xr,j
m,⋆, x⋆

)]
+ γ2E

[∥∥∥∇fπj
m

(
xr,j
m,t

)
−∇fπj

m (x⋆)
∥∥∥2] .

Using µ-convexity and L-smoothness, we have

µ

2

∥∥∥xr,j
m,⋆ − xr,j

m,t

∥∥∥2 ≤ D
f
πj
m

(
xr,j
m,⋆, x

r,j
m,t

)
,

E

[∥∥∥∇fπj
m

(
xr,j
m,t

)
−∇fπj

m (x⋆)
∥∥∥2] ≤ 2LD

f
πj
m

(
xr,j
m,t, x⋆

)
.
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Using this inequality, we have

E

[∥∥∥xr,j+1
m,t − xr,j+1

m,⋆

∥∥∥2] ≤ (1− γµ)E

[∥∥∥xr,j
m,t − xr,j

m,⋆

∥∥∥2]− 2γE
[
D

f
πj
m

(
xr,j
m,t, x⋆

)]
+ 2γE

[
D

f
πj
m

(
xr,j
m,⋆, x⋆

)]
+ 2Lγ2D

f
πj
m

(
xr,j
m,t, x⋆

)
≤ (1− γµ)E

[∥∥∥xr,j
m,t − xr,j

m,⋆

∥∥∥2]+ 2γE
[
D

f
πj
m

(
xr,j
m,⋆, x⋆

)]
− 2γ (1− γL) E

[
D

f
πj
m

(
xr,j
m,t, x⋆

)]
.

Using γ ≤ 1
L and definition of σ2

m,CS, we get the following bound:

E

[∥∥∥xr,j+1
m,t − xr,j+1

m,⋆

∥∥∥2] ≤ (1− γµ)E

[∥∥∥xr,j
m,t − xr,j

m,⋆

∥∥∥2]+ 2γ3σ2
m,CS.

Unrolling this recursion, we obtain

E
[∥∥xr,n

m,t − xr,n
m,⋆

∥∥2] ≤ (1− γµ)NE

[∥∥∥xr,0
m,t − xr,0

m,⋆

∥∥∥2]+ 2γ3σ2
m,CS

N−1∑
j=0

(1− γµ)j

= (1− γµ)NE
[
∥xr

t − xr
⋆∥

2
]
+ 2γ3σ2

m,CS

N−1∑
j=0

(1− γµ)j .

Now we need to establish recursion for rounds of communication:

E
[∥∥xr+1

t − xr+1
⋆

∥∥2] = E


∥∥∥∥∥∥ 1C

∑
m∈Sλr

t

xr,n
m,t −

1

C

∑
m∈Sλr

t

xr,n
m,⋆

∥∥∥∥∥∥
2


≤ 1

C

∑
m∈Sλr

t

E
[∥∥xr,n

m,t − xr,n
m,⋆

∥∥2]

≤ 1

C

∑
m∈Sλr

t

(1− γµ)NE
[
∥xr

t − xr
⋆∥

2
]
+ 2γ3σ2

m,CS

N−1∑
j=0

(1− γµ)j


= (1− γµ)NE

[
∥xr

t − xr
⋆∥

2
]
+ 2γ3 max

m
σ2
m,CS

N−1∑
j=0

(1− γµ)j .

Using the fact that xt+1 = xR
t and x⋆ = xR

⋆ , we can unroll this recursion again for index r:

E
[
∥xt+1 − x⋆∥2

]
= E

[∥∥xR
t − xR

⋆

∥∥2]
≤ (1− γµ)NRE

[
∥xt − x⋆∥2

]
+ 2γ3 max

r,m
σ2
m,DS

N−1∑
j=0

(1− γµ)j
R−1∑
r=0

(1− γµ)rN .

Unrolling this recursion again for index t and using tower property, we have

E
[
∥xT − x⋆∥2

]
≤ (1− γµ)NRT ∥x0 − x⋆∥2

+ 2γ3 max
r,m

σ2
m,DS

N−1∑
j=0

(1− γµ)j
R−1∑
r=0

(1− γµ)rN
T−1∑
t=0

(1− γµ)tRN

≤ (1− γµ)NRT ∥x0 − x⋆∥2 + 2γ3
NRT−1∑

j=0

(1− γµ)j max
r,m

σ2
m,DS

≤ (1− γµ)NRT ∥x0 − x⋆∥2 +
2γ2

µ
max
r,m

σ2
m,DS.
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G. Proof in case of fi’s strong convexity
This section provides convergence bounds for the case when only fm is µ-strongly convex. In this regime, we cannot use
the trick with the additional sequence as we do in the previous section. Due to the biased nature of gradient updates, we
cannot take expectations directly, and we need to get an error bound of gradient approximation. Formally, we have a lemma
for this below.

Lemma G.1. Assume that each f j
m is L-smooth, then we have

E


∥∥∥∥∥∥grt − 1

C

∑
m∈Sλr

t

∇fm(xr
t )

∥∥∥∥∥∥
2
 ≤ L2V r

t ,

where V r
t is defined as

V r
t =

1

M

M∑
m=1

1

N

N−1∑
j=0

∥∥∥xr,j
m,t − xr

t

∥∥∥2 .
Proof. We start from definition of grt and then we apply Jensen’s inequality and L-smooth assumption:

E


∥∥∥∥∥∥grt − 1

C

∑
m∈Sλr

t

∇fm(xr
t )

∥∥∥∥∥∥
2
 = E


∥∥∥∥∥∥ 1C

∑
m∈Sλr

t

1

N

N−1∑
j=0

∇fπj
m (xr,j

m,t)−
1

C

∑
m∈Sλr

t

∇fm(xr
t )

∥∥∥∥∥∥
2


= E


∥∥∥∥∥∥ 1C

∑
m∈Sλr

t

1

N

N−1∑
j=0

∇fπj
m (xr,j

m,t)−
1

C

∑
m∈Sλr

t

1

N

N−1∑
j=0

∇fπj
m (xr

t )

∥∥∥∥∥∥
2


= E


∥∥∥∥∥∥ 1C

∑
m∈Sλr

t

1

N

N−1∑
j=0

(
∇fπj

m (xr,j
m,t)−∇fπj

m (xr
t )
)∥∥∥∥∥∥

2


Y
≤ E

 1

C

∑
m∈Sλr

t

1

N

N−1∑
j=0

∥∥∥∇fπj
m (xr,j

m,t)−∇fπj
m (xr

t )
∥∥∥2


L
≤ L2 1

M

M∑
m=1

1

N

N−1∑
j=0

∥∥∥xr,j
m,t − xr

t

∥∥∥2
= L2V r

t .

We manage to get an error bound using the sum of distances between intermediate point xr,j
m,t and starting point xr

t . Now we
need to provide bounds for such sums Vt. The following lemma does it formally.

Lemma G.2. Assume that each fm,j is L-smooth, then we have

E [V r
t ] ≤ 8γ2n2L

1

M

M∑
m=1

Dfm (xr
t , x⋆) + 2γ2n2 1

M

M∑
m=1

∥∇fm(x⋆)∥2 + 2γ2n
1

M

M∑
m=1

1

N

N−1∑
j=0

∥∇fπj
m (x⋆)∥2 . (20)

Proof. We start with the update rule:

xr,j
m,t = xr

t − γ

j−1∑
k=0

∇fπj
m

(
xr,k
m,t

)
.
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Using this form, we get

E

[∥∥∥xr,j
m,t − xr

t

∥∥∥2] = γ2E

∥∥∥∥∥
j−1∑
k=0

∇fπk
m

(
xr,k
m,t

)∥∥∥∥∥
2


≤ 2γ2E

∥∥∥∥∥
j−1∑
k=0

(
∇fπk

m

(
xr,k
m,t

)
−∇fπk

m (xr
t )
)∥∥∥∥∥

2
+ 2γ2E

∥∥∥∥∥
j−1∑
k=0

∇fπk
m (xr

t )

∥∥∥∥∥
2


≤ 2γ2j

j−1∑
k=0

E

[∥∥∥∇fπk
m

(
xr,k
m,t

)
−∇fπk

m (xr
t )
∥∥∥2]+ 2γ2E

∥∥∥∥∥
j−1∑
k=0

∇∇fπk
m (xr

t )

∥∥∥∥∥
2


≤ 2γ2jL2

j−1∑
k=0

E

[∥∥∥xr,k
m,t − xr

t

∥∥∥2]+ 2γ2E

∥∥∥∥∥
j−1∑
k=0

∇fπk
m (xr

t )

∥∥∥∥∥
2


≤ 2γ2jL2

j−1∑
k=0

E

[∥∥∥xr,k
m,t − xr

t

∥∥∥2]+ 2γ2

(
j2
∥∥∇fλr

m (xr
t )
∥∥2 + j(N − j)

N − 1
(σm,t)

2

)
.

Now we can sum these inequalities:

1

M

M∑
m=1

1

N

N−1∑
j=0

E

[∥∥∥xr,j
m,t − xr

t

∥∥∥2] ≤ 2γ2L2 1

M

M∑
m=1

1

N

N−1∑
j=0

j

j−1∑
k=0

E

[∥∥∥xr,k
m,t − xr

t

∥∥∥2]

+ 2γ2 1

M

M∑
m=1

1

N

N−1∑
j=0

(
j2 ∥∇fm(xr

t )∥
2
+

j(N − j)

N − 1
(σm,t)

2

)
.

Now we are ready to prove the theorem.

Theorem G.3. Assume that each fm is µ-strongly convex. Also, assume that each f j
m is convex and L-smooth. Let η ≤ 1

4L
and γ ≤ 1

8NL
√
κ

, then for iterates generated by Algorithm 1, we have

E
[
∥xT − x⋆∥2

]
≤ (1− ηµ)RT ∥x0 − x⋆∥2 +

4

µ
η2 max

r,m
σ2
m,CS + 12κ2γ2N2σ2

⋆ + 12γ2κ2Nσ2
⋆,

where σ2
m,CS = 1

η2E [Dfm (xr
⋆, x⋆)] .

Proof. We start from the following equations:

xr+1
t = xr

t − η
1

C

∑
m∈Sλr

t

1

N

N−1∑
j=0

∇fπj
m

(
xr,j
m,t

)
= xr

t − ηgrt ,

grt =
1

C

∑
m∈Sλr

t

1

N

N−1∑
j=0

∇fπj
m (xr,j

m,t),

xr
⋆ = x⋆ − η

R−1∑
r=0

1

C

∑
m∈Sλr

t

∇fm

(
xr,j
m,t

)
, xr+1

⋆ = xr
⋆ − η

1

C

∑
m∈Sλr

t

∇fm(x⋆).

21



Federated Learning with Regularized Client Participation

We start from the distance to the solution:

E
[∥∥xr+1

t − xr+1
⋆

∥∥2] = E


∥∥∥∥∥∥xr

t − ηgrt −

xr
⋆ − η

1

C

∑
m∈Sλr

t

∇fm(x∗)

∥∥∥∥∥∥
2


= E

∥xr
t − xr

⋆∥
2 − 2η

〈
grt −

1

C

∑
m∈Sλr

t

∇fm(x⋆), x
r
t − xr

⋆

〉
+ η2

∥∥∥∥∥∥grt − 1

C

∑
m∈Sλr

t

∇fm(x⋆)

∥∥∥∥∥∥
2


= E

∥xr
t − xr

⋆∥
2
+ η2

∥∥∥∥∥∥grt + 1

C

∑
m∈Sλr

t

∇fm(xr
t )−

1

C

∑
m∈Sλr

t

∇fm(xr
t )−

1

C

∑
m∈Sλr

t

∇fm(x⋆)

∥∥∥∥∥∥
2


− 2ηE

〈grt + 1

C

∑
m∈Sλr

t

∇fm(xr
t )−

1

C

∑
m∈Sλr

t

∇fm(xr
t )−

1

C

∑
m∈Sλr

t

∇fm(x⋆), x
r
t − xr

⋆

〉 .

Using Young’s inequality we have

E
[∥∥xr+1

t − xr+1
⋆

∥∥2] = E

∥xr
t − xr

⋆∥
2
+ η2

∥∥∥∥∥∥grt + 1

C

∑
m∈Sλr

t

∇fm(xr
t )−

1

C

∑
m∈Sλr

t

∇fm(xr
t )−

1

C

∑
m∈Sλr

t

∇fm(x⋆)

∥∥∥∥∥∥
2


− 2ηE

〈grt + 1

C

∑
m∈Sλr

t

∇fm(xr
t )−

1

C

∑
m∈Sλr

t

∇fm(xr
t )−

1

C

∑
m∈Sλr

t

∇fm(x⋆), x
r
t − xr

⋆

〉 .

Applying Young’s inequality again, we have

E
[∥∥xr+1

t − xr+1
⋆

∥∥2] ≤ E

∥xr
t − xr

⋆∥
2
+ 2η2

∥∥∥∥∥∥grt − 1

C

∑
m∈Sλr

t

∇fm(xr
t )

∥∥∥∥∥∥
2


+ 2η2E


∥∥∥∥∥∥ 1C

∑
m∈Sλr

t

∇fm(xr
t )−

1

C

∑
m∈Sλr

t

∇fm(x⋆)

∥∥∥∥∥∥
2


− 2ηE

〈grt − 1

C

∑
m∈Sλr

t

∇fm(xr
t ), x

r
t − xr

⋆

〉
− 2ηE

〈 1

C

∑
m∈Sλr

t

∇fm(xr
t )−

1

C

∑
m∈Sλr

t

∇fm(x⋆), x
r
t − xr

⋆

〉 .
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Using Young’s inequality for inner product −2 ⟨a, b⟩ ≤ 1
t ∥a∥

2 + t∥b∥2 we get

E
[∥∥xr+1

t − xr+1
⋆

∥∥2] ≤ E

∥xr
t − xr

⋆∥
2
+ 2η2

∥∥∥∥∥∥grt − 1

C

∑
m∈Sλr

t

∇fm(xr
t )

∥∥∥∥∥∥
2


+ 2η2E


∥∥∥∥∥∥ 1C

∑
m∈Sλr

t

∇fm(xr
t )−

1

C

∑
m∈Sλr

t

∇fm(x⋆)

∥∥∥∥∥∥
2


+ ηE

µ
2
∥xr

t − xr
⋆∥

2
+

2

µ

∥∥∥∥∥∥grt − 1

C

∑
m∈Sλr

t

∇fm(x⋆)

∥∥∥∥∥∥
2


− 2ηE

〈 1

C

∑
m∈Sλr

t

∇fm(xr
t )−

1

C

∑
m∈Sλr

t

∇fm(x⋆), x
r
t − xr

⋆

〉 .

Rearraging terms leads to

E
[∥∥xr+1

t − xr+1
⋆

∥∥2] ≤ E

(1 + µη

2

)
∥xr

t − xr
⋆∥

2
+

(
2η2 + 2

η

µ

)∥∥∥∥∥∥grt − 1

C

∑
m∈Sλr

t

∇fm(xr
t )

∥∥∥∥∥∥
2
 (21)

+ 2η2E


∥∥∥∥∥∥ 1C

∑
m∈Sλr

t

∇fm(xr
t )−

1

C

∑
m∈Sλr

t

∇fm(x⋆)

∥∥∥∥∥∥
2
 (22)

− 2ηE

〈 1

C

∑
m∈Sλr

t

∇fm(xr
t )−

1

C

∑
m∈Sλr

t

∇fm(x⋆), x
r
t − xr

⋆

〉 . (23)

Let us consider the last term:

〈
1

C

∑
m∈Sλr

t

∇fm(xr
t )−

1

C

∑
m∈Sλr

t

∇fm(x⋆), x
r
t − xr

⋆

〉
=

〈
1

C

∑
m∈Sλr

t

(∇fm(xr
t )−∇fm(x⋆)) , x

r
t − xr

⋆

〉

=
1

C

∑
m∈Sλr

t

⟨∇fm(xr
t )−∇fm(x⋆), x

r
t − xr

⋆⟩ .

Let us look at inner product and use three-point identity:

⟨∇fm(xr
t )−∇fm(x⋆), x

r
t − xr

⋆⟩ = Dfm (xr
⋆, x

r
t ) +Dfm (xr

t , x⋆)−Dfm (xr
⋆, x⋆) . (24)

By µ-strong convexity of fm, the first term in (24) satisfies

µ

2
∥xr

t − xr
⋆∥

2
(2)

≤ Dfm (xr
⋆, x

r
t ) . (25)
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Combining (25),(27) and using in (24) we have

−2ηE

 1

C

∑
m∈Sλr

t

⟨∇fm(xr
t )−∇fm(x⋆), x

r
t − xr

⋆⟩

 = −2ηE

 1

C

∑
m∈Sλr

t

Dfm (xr
⋆, x

r
t ) +Dfm (xr

t , x⋆)


+ 2ηE

 1

C

∑
m∈Sλr

t

Dfm (xr
⋆, x⋆)


≤ −ηµE

[
∥xr

t − xr
⋆∥2
]

− 2ηE

 1

C

∑
m∈Sλr

t

Dfm (xr
t , x⋆)


+ 2ηE

 1

C

∑
m∈Sλr

t

Dfm (xr
⋆, x⋆)

 . (26)

Applying (26) in (21) we obtain

E
[∥∥xr+1

t − xr+1
⋆

∥∥2] ≤ E

(1 + µη

2

)
∥xr

t − xr
⋆∥

2
+

(
2η2 + 2

η

µ

)∥∥∥∥∥∥grt − 1

C

∑
m∈Sλr

t

∇fm(xr
t )

∥∥∥∥∥∥
2


+ 2η2E


∥∥∥∥∥∥ 1C

∑
m∈Sλr

t

∇fm(xr
t )−

1

C

∑
m∈Sλr

t

∇fm(x⋆)

∥∥∥∥∥∥
2
− ηµE

[
∥xr

t − xr
⋆∥2
]

− 2ηE

 1

C

∑
m∈Sλr

t

Dfm (xr
t , x⋆)

+ 2ηE

 1

C

∑
m∈Sλr

t

Dfm (xr
⋆, x⋆)

 .

We can bound first term in second line using L-smoothness:

1

2L
∥∇fm (xr

t )−∇fm (x⋆)∥2
(3)

≤ Dfm (xr
t , x⋆) . (27)

Applying (27) we get

E
[∥∥xr+1

t − xr+1
⋆

∥∥2] ≤ E

(1 + µη

2

)
∥xr

t − xr
⋆∥

2
+

(
2η2 + 2

η

µ

)∥∥∥∥∥∥grt − 1

C

∑
m∈Sλr

t

∇fm(xr
t )

∥∥∥∥∥∥
2


+ 4Lη2E

 1

C

∑
m∈Sλr

t

Dfm (xr
t , x⋆)

− ηµE
[
∥xr

t − xr
⋆∥2
]

− 2ηE

 1

C

∑
m∈Sλr

t

Dfm (xr
t , x⋆)

+ 2ηE

 1

C

∑
m∈Sλr

t

Dfm (xr
⋆, x⋆)

 .
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Rearranging the terms we have

E
[∥∥xr+1

t − xr+1
⋆

∥∥2] ≤ E

(1− µη

2

)
∥xr

t − xr
⋆∥

2
+

(
2η2 + 2

η

µ

)∥∥∥∥∥∥grt − 1

C

∑
m∈Sλr

t

∇fm(xr
t )

∥∥∥∥∥∥
2


+ 2η (2ηL− 1)E

 1

C

∑
m∈Sλr

t

Dfm (xr
t , x⋆)

+ 2ηE

 1

C

∑
m∈Sλr

t

Dfm (xr
⋆, x⋆)



= E

(1− µη

2

)
∥xr

t − xr
⋆∥

2
+ 2η

(
η +

1

µ

)∥∥∥∥∥∥grt − 1

C

∑
m∈Sλr

t

∇fm(xr
t )

∥∥∥∥∥∥
2


+ 2η (2ηL− 1)E

 1

C

∑
m∈Sλr

t

Dfm (xr
t , x⋆)

+ 2ηE

 1

C

∑
m∈Sλr

t

Dfm (xr
⋆, x⋆)

 .

Since L ≥ µ and η ≤ 1
2L we have η ≤ 1

2µ . Using this we get

E
[∥∥xr+1

t − xr+1
⋆

∥∥2] ≤ E

(1− µη

2

)
∥xr

t − xr
⋆∥

2
+

3η

µ

∥∥∥∥∥∥grt − 1

C

∑
m∈Sλr

t

∇fm(xr
t )

∥∥∥∥∥∥
2


+ 2η (2ηL− 1)E

 1

C

∑
m∈Sλr

t

Dfm (xr
t , x⋆)

+ 2ηE

 1

C

∑
m∈Sλr

t

Dfm (xr
⋆, x⋆)

 .

Applying lemma we have

E
[∥∥xr+1

t − xr+1
⋆

∥∥2] ≤ E
[(

1− µη

2

)
∥xr

t − xr
⋆∥

2
]

+
3η

µ
L2

(
8γ2n2L

1

M

M∑
m=1

Dfm (xr
t , x⋆) + 2γ2n2 1

M

M∑
m=1

∥∇fm(x⋆)∥2
)

+
3η

µ
L2

2γ2n
1

M

M∑
m=1

1

N

N−1∑
j=0

∥∇fπj
m (x⋆)∥2


+ 2η (2ηL− 1)

1

M

M∑
m=1

Dfm (xr
t , x⋆) + 2ηE

 1

C

∑
m∈Sλr

t

Dfm (xr
⋆, x⋆)

 .

Rearraging terms leads to

E
[∥∥xr+1

t − xr+1
⋆

∥∥2] ≤ E
[(

1− µη

2

)
∥xr

t − xr
⋆∥

2
]

+
3η

µ
L2

(
2γ2n2 1

M

M∑
m=1

∥∇fm(x⋆)∥2
)

+
3η

µ
L2

2γ2n
1

M

M∑
m=1

1

N

N−1∑
j=0

∥∇fπj
m (x⋆)∥2


+ 2η

(
2ηL− 1− 12γ2N2L2κ

) 1

M

M∑
m=1

Dfm (xr
t , x⋆) + 2ηE

 1

C

∑
m∈Sλr

t

Dfm (xr
⋆, x⋆)

 .
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Using η ≤ 1
4L and γ ≤ 1

5NL
√
κ

we have 2ηL− 1− 12γ2N2L2κ ≥ 0. Finally, we get

E
[∥∥xr+1

t − xr+1
⋆

∥∥2] ≤ E
[(

1− µη

2

)
∥xr

t − xr
⋆∥

2
]
+ 2ηE

 1

C

∑
m∈Sλr

t

Dfm (xr
⋆, x⋆)


+

3η

µ
L2

(
2γ2n2 1

M

M∑
m=1

∥∇fm(x⋆)∥2
)

+
3η

µ
L2

2γ2n
1

M

M∑
m=1

1

N

N−1∑
j=0

∥∇fπj
m (x⋆)∥2

 .

Using xt+1 = xR
t , xR

⋆ = x⋆, x0
t = xt and x0

⋆ = x⋆ we can unroll the recursion:

E
[
∥xt+1 − x⋆∥2

]
≤ (1− ηµ)R∥xt − x⋆∥2

+

R−1∑
r=0

(1− ηµ)r

(
3η

µ
L2

(
2γ2n2 1

M

M∑
m=1

∥∇fm(x⋆)∥2
))

+

R−1∑
r=0

(1− ηµ)r

3η

µ
L2

2γ2n
1

M

M∑
m=1

1

N

N−1∑
j=0

∥∇fπj
m (x⋆)∥2


+

R−1∑
r=0

(1− ηµ)r

2ηmax
r

E

 1

C

∑
m∈Sλr

t

Dfm (xr
⋆, x⋆)

 .

Unrolling this recursion across T epochs, we obtain

E
[
∥xT − x⋆∥2

]
≤
(
1− 1

2
ηµ

)RT

∥x0 − x⋆∥2

+

T−1∑
t=0

(
1− 1

2
ηµ

)Rt R−1∑
r=0

(
1− 1

2
ηµ

)r
(
3η

µ
L2

(
2γ2n2 1

M

M∑
m=1

∥∇fm(x⋆)∥2
))

+

T−1∑
t=0

(
1− 1

2
ηµ

)Rt R−1∑
r=0

(
1− 1

2
ηµ

)r
3η

µ
L2

2γ2n
1

M

M∑
m=1

1

N

N−1∑
j=0

∥∇fπj
m (x⋆)∥2


+

T−1∑
t=0

(
1− 1

2
ηµ

)Rt R−1∑
r=0

(
1− 1

2
ηµ

)r
2ηmax

r
E

 1

C

∑
m∈Sλr

t

Dfm (xr
⋆, x⋆)

 .

Note that

T−1∑
t=0

(
1− 1

2
ηµ

)Rt R−1∑
r=0

(
1− 1

2
ηµ

)r

=

T−1∑
t=0

R−1∑
r=0

(
1− 1

2
ηµ

)tR+r

≤ 2

ηµ
.

Applying this inequality leads to

E
[
∥xT − x⋆∥2

]
≤ (1− ηµ)RT ∥x0 − x⋆∥2

+ 12κ2γ2N2 1

M

M∑
m=1

∥∇fm(x⋆)∥2

+ 12κ2γ2N
1

M

M∑
m=1

1

N

N−1∑
j=0

∥∇fπj
m (x⋆)∥2

+
4

µ
max

r
E

 1

C

∑
m∈Sλr

t

Dfm (xr
⋆, x⋆)

 .
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Using definition we obtain

E
[
∥xT − x⋆∥2

]
≤ (1− ηµ)RT ∥x0 − x⋆∥2 + 12κ2γ2N2σ2

⋆ + 12κ2γ2N
1

M

M∑
m=1

σ2
m,⋆ +

4

µ
η2 max

r,m
σ2

m,CS.

H. Proof in case of f ’s strong convexity
In this section we prove the bound for the most general case. We need to bound the second moment of the gradient
approximation.

Lemma H.1. Assume that each f j
m is L-smooth function, then we have the following bound:∥∥∥∥∥∥ 1R

R−1∑
r=0

1

C

∑
m∈Sλr

t

1

N

N−1∑
j=0

∇fπj
m

(
xr,j
m,t

)∥∥∥∥∥∥
2

≤ 2L2Vt + 4L(f(xt)− f(x⋆)).

Proof. We use Young’s inequality and L-smoothness to obtain the following bound:∥∥∥∥∥∥ 1R
R−1∑
r=0

1

C

∑
m∈Sλr

t

1

N

N−1∑
j=0

∇fπj
m

(
xr,j
m,t

)∥∥∥∥∥∥
2

≤ 2

∥∥∥∥∥∥ 1R
R−1∑
r=0

1

C

∑
m∈Sλr

t

1

N

N−1∑
j=0

∇fπj
m

(
xr,j
m,t

)
−∇f(x⋆)

∥∥∥∥∥∥
2

+ 2∥∇f(xt)∥2

≤ 2L2

RCN

R−1∑
r=0

∑
m∈Sλr

t

N−1∑
j=0

∥∥∥xt − xr,j
m,t

∥∥∥2 + 4L (f(xt)− f(x⋆))

≤ 2L2Vt + 4L(f(xt)− f(x⋆)).

As previously, we need to bound the sum of distances Vt:

Lemma H.2. Assume that each f j
m is L-smooth function, then we have the following bound:

E [Vt] ≤ 8η2L(2 +R2)Df (xt, x⋆) + 4η2
R

N2

M − C

(M − 1)C
σ2
⋆ + 4γ2N2 1

M

M∑
m=1

∥∇fm(x⋆)∥2 + 4γ2N
1

M

M∑
m=1

σ2
m,⋆.

Proof. We start from definition of
∥∥∥xt − xr,j

m,t

∥∥∥2:

∥∥∥xt − xr,j
m,t

∥∥∥2 =
∥∥∥xr,j

m,t − xt

∥∥∥2
=

∥∥∥∥∥∥∥−η

r−1∑
k=0

1

C

∑
m∈S

λk
t

1

N

N−1∑
j=0

∇fπj
m

(
xk,j
m,t

)
− γ

j−1∑
l=0

∇fπl
m

(
xr,l
m,t

)∥∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥η
r−1∑
k=0

1

C

∑
m∈S

λk
t

1

N

N−1∑
j=0

∇fπj
m

(
xk,j
m,t

)
+ γ

j−1∑
l=0

∇fπl
m

(
xr,l
m,t

)∥∥∥∥∥∥∥
2

≤ 2

∥∥∥∥∥∥∥η
r−1∑
k=0

1

C

∑
m∈S

λk
t

1

N

N−1∑
j=0

∇fπj
m

(
xk,j
m,t

)∥∥∥∥∥∥∥
2

+ 2

∥∥∥∥∥γ
j−1∑
l=0

∇fπl
m

(
xr,l
m,t

)∥∥∥∥∥
2

.
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Using Young’s inequality, we obtain

∥∥∥xt − xr,j
m,t

∥∥∥2 ≤ 4

∥∥∥∥∥∥∥η
r−1∑
k=0

1

C

∑
m∈S

λk
t

1

N

N−1∑
j=0

(
∇fπj

m

(
xk,j
m,t

)
−∇fπj

m (xt)
)∥∥∥∥∥∥∥

2

+ 4

∥∥∥∥∥∥∥η
r−1∑
k=0

1

C

∑
m∈S

λk
t

1

N

N−1∑
j=0

∇fπj
m (xt)

∥∥∥∥∥∥∥
2

+ 4

∥∥∥∥∥γ
j−1∑
l=0

(
∇fπl

m

(
xr,l
m,t

)
− fπl

m (xt)
)∥∥∥∥∥

2

+ 4

∥∥∥∥∥γ
j−1∑
l=0

∇fπl
m (xt)

∥∥∥∥∥
2

.

Using L-smoothness and lemma we have

∥∥∥xt − xr,j
m,t

∥∥∥2 ≤ 4η2r2L2 1

rCN

r−1∑
k=0

∑
m∈Sλr

t

N−1∑
j=0

∥∥∥xt − xk,j
m,t

∥∥∥2 + 4γ2L2j

j−1∑
l=0

∥∥∥xr,l
m,t − xt

∥∥∥2
+ 4γ2

(
j2∥∇fm(xt)∥2 +

j(N − j)

N − 1
σ2
m,t

)
+ 4η2

1

N2C2

(
N2C2r2∥∇f(xt)∥2 +

Cr(M − Cr)

M − 1
σ2
t

)
.

Using this bound we obtain

E [Vt] =
1

CRN

R−1∑
r=0

∑
m∈Sλr

t

N−1∑
j=0

E
∥∥∥xk,j

m,t − xt

∥∥∥2

≤ 1

CRN

R−1∑
r=0

∑
m∈Sλr

t

N−1∑
j=0

4η2r2L2 1

rCN

r−1∑
k=0

∑
m∈Sλr

t

N−1∑
j=0

∥∥∥xt − xk,j
m,t

∥∥∥2 + 4γ2L2j

j−1∑
l=0

∥∥∥xr,l
m,t − xt

∥∥∥2


+
1

CRN

R−1∑
r=0

∑
m∈Sλr

t

N−1∑
j=0

(
4γ2

(
j2∥∇fm(xt)∥2 +

j(N − j)

N − 1
σ2
m,t

))

+
1

CRN

R−1∑
r=0

∑
m∈Sλr

t

N−1∑
j=0

(
4η2

1

N2C2

(
N2C2r2∥∇f(xt)∥2 +

Cr(M − Cr)

M − 1
σ2
t

))
.

Using sums over indices we get

E [Vt] ≤
R(R− 1)

2
4η2L2E [Vt] +

N(N − 1)

2
4γ2L2E [Vt]

+
2

3
γ2 1

M

M∑
m=1

∥∇fm(xt)∥2(N − 1)(2N − 1) +
2

3
γ2(N + 1)

1

M

M∑
m=1

σ2
m,t

+
2

3
η2∥∇f(xt)∥2(R− 1)(2R− 1) +

2

3

M − C

(M − 1)C
η2

R+ 1

N2
σ2
t

≤ 2η2L2(1 +R2)Vt +
2

3
γ2 1

M

M∑
m=1

∥∇fm(xt)∥2(N − 1)(2N − 1)

+
2

3
η2∥∇f(xt)∥2(R− 1)(2R− 1) +

2

3
γ2(N + 1)

1

M

M∑
m=1

σ2
m,t +

2

3
η2

R+ 1

N2

M − C

(M − 1)C
σ2
t .
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To extract the E [Vt] we need to assume that γNR ≤ ηR ≤ θ ≤ 1
16L to have 1− 2η2L2(1 +R2) > 0. This leads to

E [Vt] ≤ 2γ2N2 1

M

M∑
m=1

∥∇fm(xt)∥2 + 2η2R2∥∇f(xt)∥2 + 2γ2N
1

M

M∑
m=1

σ2
m,t + 2η2

R

N2

M − C

(M − 1)C
σ2
t

≤ 4γ2N2 1

M

M∑
m=1

∥∇fm(xt)−∇fm(x⋆)∥2 + 4γ2N2 1

M

M∑
m=1

∥∇fm(x⋆)∥2

+ 4γ2N
1

M

M∑
m=1

1

N

N−1∑
j=0

∥∇fπj
m (xt)−∇fπj

m (x⋆)∥2 + 4γ2N
1

M

M∑
m=1

σ2
m,⋆

+ 2η2R2∥∇f(xt)−∇f(x⋆)∥2 + 4η2R
M − C

(M − 1)C

1

M

M∑
m=1

∥∇fm(xt)−∇fm(x⋆)∥2 + 4η2
R

N2

M − C

(M − 1)C
σ2
⋆

≤ 8η2L(2 +R2)Df (xt, x⋆) + 4η2
R

N2

M − C

(M − 1)C
σ2
⋆ + 4γ2N2 1

M

M∑
m=1

∥∇fm(x⋆)∥2 + 4γ2N
1

M

M∑
m=1

σ2
m,⋆.

We also need to bound the inner product.

Lemma H.3. Assume that each f j
m is L-smooth function and f is µ-strongly convex, then we have the following bound:

−2θ

〈
1

R

R−1∑
r=0

1

C

∑
m∈Sλr

t

1

N

N−1∑
j=0

∇fπj
m

(
xr,j
m,t

)
, xt − x⋆

〉
≤ −θµ

2
∥xt − x⋆∥2 − θ (f(xt)− f(x⋆)) + θLVt.

Proof. We start from initial term:

−2θ

〈
1

R

R−1∑
r=0

1

C

∑
m∈Sλr

t

1

N

N−1∑
j=0

∇fπj
m

(
xr,j
m,t

)
, xt − x⋆

〉
= −2θ

1

RCN

R−1∑
r=0

∑
m∈Sλr

t

N−1∑
j=0

〈
∇fπj

m

(
xr,j
m,t

)
, xt − x⋆

〉
.

Let us consider
〈
∇f

πj
m

(
xr,j
m,t

)
, xt − x⋆

〉
:

〈
∇fπj

m

(
xr,j
m,t

)
, xt − x⋆

〉
= fπj

m (xt)− fπj
m (x⋆) + fπj

m (x⋆)− fπj
m

(
xr,j
m,t

)
+
〈
∇fπj

m

(
xr,j
m,t

)
, xr,j

m,t − x⋆

〉
− fπj

m (xt)

+ fπj
m

(
xr,j
m,t

)
+
〈
∇fπj

m

(
xr,j
m,t

)
, xt − xr,j

m,t

〉
= (fπj

m (xt)− fπj
m (x⋆)) +D

f
πj
m

(
x⋆, x

r,j
m,t

)
−D

f
πj
m

(
xt, x

r,j
m,t

)
.
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Plugging this identity we get

− 2θ
1

RCN

R−1∑
r=0

∑
m∈Sλr

t

N−1∑
j=0

〈
∇fπj

m

(
xr,j
m,t

)
, xt − x⋆

〉

=− 2θ
1

RCN

R−1∑
r=0

∑
m∈Sλr

t

N−1∑
j=0

〈
(fπj

m (xt)− fπj
m (x⋆)) +D

f
πj
m

(
x⋆, x

r,j
m,t

)
−D

f
πj
m

(
xt, x

r,j
m,t

)〉

≤− 2θ (f(xt)− f(x⋆))−
2θ

RCN

R−1∑
r=0

∑
m∈Sλr

t

N−1∑
j=0

D
f
πj
m

(
x⋆, x

r,j
m,t

)
+

θL

RCN

R−1∑
r=0

∑
m∈Sλr

t

N−1∑
j=0

∥∥∥xt − xr,j
m,t

∥∥∥2

=− θ (f(xt)− f(x⋆))− θ (f(xt)− f(x⋆))−
2θ

RCN

R−1∑
r=0

∑
m∈Sλr

t

N−1∑
j=0

D
f
πj
m

(
x⋆, x

r,j
m,t

)

+
θL

RCN

R−1∑
r=0

∑
m∈Sλr

t

N−1∑
j=0

∥∥∥xt − xr,j
m,t

∥∥∥2

≤− θµ

2
∥xt − x⋆∥2 − θ (f(xt)− f(x⋆)) +

θL

RCN

R−1∑
r=0

∑
m∈Sλr

t

N−1∑
j=0

∥∥∥xt − xr,j
m,t

∥∥∥2
≤− θµ

2
∥xt − x⋆∥2 − θ (f(xt)− f(x⋆)) + θLVt,

where

Vt =
1

RCN

R−1∑
r=0

∑
m∈Sλr

t

N−1∑
j=0

∥∥∥xt − xr,j
m,t

∥∥∥2 .

Now we are ready to formulate the final theorem.

Theorem H.4. Suppose that each f j
m is convex and L-smooth, f is µ-strongly convex. Then provided the step size satisfies

γNR ≤ ηR ≤ θ ≤ 1
16L the final iterate generated by Algorithm 1 satisfies

E
[
∥xT − x⋆∥2

]
≤
(
1− θµ

2

)T

∥x0 − x⋆∥2 + 16γ2κn
1

M

M∑
m=1

(
n∥∇fm(x⋆)∥2 + σ2

m,⋆

)
+ 16η2

κ

n2R

M − C

(M − 1)C
σ2
⋆.

Proof. We start from definition of the points xR
t and xr,j

m,t:

xR
t = xt − η

R−1∑
r=0

1

C

∑
m∈Sλr

t

1

N

N−1∑
j=0

∇fπj
m

(
xr,j
m,t

)
,

xr,j
m,t = xt − η

r−1∑
k=0

1

C

∑
m∈S

λk
t

1

N

N−1∑
j=0

∇fπj
m

(
xk,j
m,t

)
− γ

j−1∑
l=0

∇fπl
m

(
xr,l
m,t

)
,

xt+1 = xt −
θ

ηR
(xt − xR

t ).
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Let us start from distance to the solution:

∥xt+1 − x⋆∥2 =

∥∥∥∥xt −
θ

ηR
(xt − xR

t )− x⋆

∥∥∥∥2
= ∥xt − x⋆∥2 − 2

θ

ηR

〈
xt − xR

t , xt − x⋆

〉
+

θ2

η2R2
∥xt − xR

t ∥2

= ∥xt − x⋆∥2 − 2
θ

ηR

〈
η

R−1∑
r=0

1

C

∑
m∈Sλr

t

1

N

N−1∑
j=0

∇fπj
m

(
xr,j
m,t

)
, xt − x⋆

〉

+
θ2

η2R2

∥∥∥∥∥∥η
R−1∑
r=0

1

C

∑
m∈Sλr

t

1

N

N−1∑
j=0

∇fπj
m

(
xr,j
m,t

)∥∥∥∥∥∥
2

.

Finally, we have

∥xt+1 − x⋆∥2 = ∥xt − x⋆∥2 − 2θ

〈
1

R

R−1∑
r=0

1

C

∑
m∈Sλr

t

1

N

N−1∑
j=0

∇fπj
m

(
xr,j
m,t

)
, xt − x⋆

〉

+ θ2

∥∥∥∥∥∥ 1R
R−1∑
r=0

1

C

∑
m∈Sλr

t

1

N

N−1∑
j=0

∇fπj
m

(
xr,j
m,t

)∥∥∥∥∥∥
2

.

Let us apply Lemma H.3 and Lemma H.1 and we obtain

∥xt+1 − x⋆∥2 ≤ ∥xt − x⋆∥2 −
θµ

2
∥xt − x⋆∥2 − θ (f(xt)− f(x⋆)) + θLVt + θ2

(
2L2Vt + 4L(f(xt)− f(x⋆))

)
≤
(
1− θµ

2

)
∥xt − x⋆∥2 − θ (f(xt)− f(x⋆)) (1− 4Lθ) + θLVt(1 + 2Lθ).

Using lemma we have

∥xt+1 − x⋆∥2 ≤
(
1− θµ

2

)
∥xt − x⋆∥2 − θ (f(xt)− f(x⋆)) (1− 4Lθ)

+ θL(1 + 2Lθ)

(
8η2L(2 +R2)Df (xt, x⋆) + 4η2

R

N2

M − C

(M − 1)C
σ2
⋆

)
+ θL(1 + 2Lθ)

(
4γ2N2 1

M

M∑
m=1

∥∇fm(x⋆)∥2 + 4γ2N
1

M

M∑
m=1

σ2
m,⋆

)

≤
(
1− θµ

2

)
∥xt − x⋆∥2 − θ (f(xt)− f(x⋆))

(
1− 4Lθ − 8L(1 + 2Lθ)η2L(2 +R2)

)
+ 4θL(1 + 2Lθ)η2

R

N2

M − C

(M − 1)C
σ2
⋆

+ 4γ2NθL(1 + 2Lθ)

(
1

M

M∑
m=1

N∥∇fm(x⋆)∥2 +
1

M

M∑
m=1

σ2
m,⋆

)
.

Using γNR ≤ ηR ≤ θ ≤ 1
16L we have that

(
1− 4Lθ − 8L(1 + 2Lθ)η2L(2 +R2)

)
≥ 0, it leads to

∥xt+1 − x⋆∥2 ≤
(
1− θµ

2

)
∥xt − x⋆∥2 + 8θLη2

R

N2

M − C

(M − 1)C
σ2
⋆

+ 8γ2NθL

(
1

M

M∑
m=1

N∥∇fm(x⋆)∥2 +
1

M

M∑
m=1

σ2
m,⋆

)
.

31



Federated Learning with Regularized Client Participation

Unrolling this recursion leads to

∥xT − x⋆∥2 ≤
(
1− θµ

2

)T

∥x0 − x⋆∥2 + 16
L

µ
η2

R

N2

M − C

(M − 1)C
σ2
⋆

+ 16γ2N
L

µ

(
1

M

M∑
m=1

N∥∇fm(x⋆)∥2 +
1

M

M∑
m=1

σ2
m,⋆

)
.

This finishes the proof.

I. Deterministic client shuffling
In this section, we discuss how to extend our method’s applicability beyond random reshuffling to any (including determinis-
tic) reshuffling. We discuss each setup individually.

I.1. f j
m is strongly convex

In the provided analysis, we do not specify the type of reshuffling, which means that this result can be applied to any,
including deterministic, type of client shuffling. However, in this case, we have to slightly adjust the analysis as we cannot
take expectations because client sampling is not necessarily random. The absence of randomization means that we need to
consider the worst-case scenario instead of the average and the bound of 1

C

∑
m∈Sλr

t
σ2
m,Shuffle will be more significant.

I.2. fm is strongly convex

Similarly, in the analysis of the case when only fm is µ-convex, we do not specify the type of reshuffling. Therefore, we
can apply any, including deterministic, shuffling of clients. As in the previous case, we cannot use expectations, and the
bound of σ2

r,client will be up to R times larger, similarly to (Mishchenko et al., 2020, Theorem 5 (option 1)), but applied to
the shuffling of clients.

I.3. f is strongly convex

Finally, our analysis uses Lemma 1 from Mishchenko et al. (2020) for the most restrictive case. In the case of any, including
deterministic, permutations, the term connected to client shuffling 16η2 κ

n2R
M−C

(M−1)Cσ2
⋆ will also be up to R times larger,

and we would have 16η2 κ
n2

M−C
(M−1)Cσ2

⋆ appearing in our bound of Theorem C.3 since we cannot take expectations.
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J. Extra Numerical Experiments
In this section, we provide additional numerical experiments missing in the main part. The setup is exactly the same
as described before. We note that the observations that we can make for the extra experiments are consistent with the
conclusions provided in the main paper.
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Figure 5: Training Logistic Regression on a3a, with n = 12 clients. Theoretical global step size and tuned local step sizes.
Partial participation with 3 clients per round with 10 local steps.
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Figure 6: Training Logistic Regression on w3a with n = 12 clients. Theoretical global step size and tuned local step sizes.
Partial participation with 3 clients per round with 10 local steps.
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Figure 7: Training Logistic Regression on a3a with n = 12 clients. Theoretical global step size. Local step sizes are multipliers
of theoretical. PP with 3 clients per round with, 10 local steps.
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Figure 8: Training Logistic Regression on w3a with n = 12 clients. Theoretical global step size and tuned local step sizes.
Partial participation with 3 clients per round with 10 local steps.
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Figure 9: Training Logistic Regression on w3a, with n = 12 clients. Theoretical global step size. Local step sizes are multipliers
of theoretical. Partial participation with 3 clients per round, 100 local step. Local and global step size are decaying ∝ 1

1+#passedepochs
.

Local gradient estimators are computed with 1% of local samples.
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Figure 10: Training Logistic Regression on w3a, with n = 12 clients. Theoretical global step size. Local step sizes are
multipliers of theoretical. Partial participation with 3 clients per round, 100 local step. Local and global step size are decaying
∝ 1

1+#passedepochs
. Local gradient estimators are computed with 1% of local samples.
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