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Abstract

Finetuning large language model (LLM) agents
with multi-turn reinforcement learning (RL) is a
promising direction. However, applying multi-
turn RL to agentic tasks presents unique chal-
lenges not typically encountered in reasoning
tasks such as solving math problems. These in-
clude long interaction histories that hinder rel-
evant context retrieval, sparse rewards that slow
down learning, and variable trajectory lengths that
reduce training efficiency. To address these chal-
lenges, we propose Context-lite Multi-turn RL,
a framework that incorporates: (1) customizable
agent memory mechanism, allowing the agent
to flexibly include different lengths of histori-
cal interaction in each turn’s prompt based on
task requirements, and (2) Dual-discounting GAE,
which decouples step-level and token-level credit
assignment. Experiments demonstrate that our
method surpasses the zero-shot performance of
state-of-the-art LLMs across four BabyAI scenar-
ios, while also achieving greater efficiency and
effectiveness than variants lacking either the mem-
ory mechanism or dual-discounting GAE.

1. Introduction
Reinforcement learning (RL) has been widely applied to
reasoning tasks to enhance the deep thinking capabilities of
large language models (LLMs) (Guo et al., 2025; Pan et al.,
2025), and recent work has extended RL to multi-turn set-
tings with promising results (Zhou et al., 2025; Chen et al.,
2024). However, multi-turn tasks differ significantly from
typical reasoning tasks, posing challenges for directly ap-
plying existing RL methods. First, during inference, as the
number of turns increases, LLM agents struggle to extract
task-relevant information from overly long histories (Laban
et al., 2025). Second, during training, longer trajectories
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result in sparser rewards, since reward signals are typically
provided only at the end, thereby hindering effective learn-
ing. At the system level, large variance in trajectory lengths
results in inefficient GPU utilization, as shorter trajectories
must wait for longer ones to finish.

To address these issues, we propose a context-lite multi-turn
RL framework, which has the following advantages: (1)
It supports customizable agent memory mechanism, allow-
ing users to design agent memory mechanisms tailored to
specific tasks rather than always using the entire trajectory
as input, which we show improves training efficiency and
convergent performance in agentic tasks such as BabyAI.
(2) It adopts dual discounting GAE for finer-grained credit
assignment. Specifically, a larger discount factor is applied
to tokens within a turn to encourage extended reasoning,
while a smaller discount factor is used across turns to dis-
courage unnecessarily long dialogues. (3) It enables batch
training with trajectories of varying lengths, significantly
improving GPU utilization.

2. Related Works
We compare our method against existing multi-turn RL
frameworks for training LLM agents. RAGEN (Wang et al.,
2025) supports multi-turn RL but is limited to tasks with
short decision horizons (5-10 turns). VeRL (Sheng et al.,
2024) enables asynchronous rollouts, improving efficiency
when response lengths vary across turns, but does not ad-
dress challenges posed by a large and variable number of
dialogue turns. SkyRL (Cao et al., 2025) supports long-
horizon tasks and asynchronous environments, but does not
explore efficient memory mechanisms for multi-turn RL.
In contrast, our method supports long-horizon, multi-turn
tasks, enabling effective credit assignment by using differ-
ent discount factors (and thus different effective horizons)
at the token and step levels.

We also notice KIMI K1.5 (Team et al., 2025), a single-turn
RL method that handles over-length responses by truncating
and storing them in the replay buffer, continuing genera-
tion in subsequent training steps. However, this approach
is incompatible with PPO-based multi-turn extensions, as
PPO is an on-policy algorithm that requires responses to be
sampled from the current policy.
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(b) Multi-turn PPO with memory length 1.

Figure 1. (a) Prior work applies PPO at the token level, where each
action token ati is generated based on all preceding information:
s0, a0, · · · , st, at0:t(i−1). (b) In contrast, our algorithm limits
the context length and introduces a dual discounting strategy for
PPO training. Specifically, when computing GAEs, we apply
γtoken, λtoken within individual turns and γstep, λstep across turns, as
illustrated by the arrows. Although the first turn does not receive a
reward, we can still leverage γstepV6 as a training signal.

3. Preliminary
A Markov Decision Process (MDP) can be described as a
tuple (S,A, P, r, γ, ρ0). Here, S and A represent the state
and action space, respectively; P : S × A× S → [0, 1] is
the transition kernel; r : S ×A → R is a reward function;
γ ∈ [0, 1) is the discount factor. The goal of RL agents is
to learn a policy π : S × A → [0, 1] that maximizes the
expected return:

Es0,a0,s1,···

[ ∞∑
t=0

γtr(st, at)

]
, (1)

where s0 ∼ ρ0(·), at ∼ π(·|st), st+1 ∼ P (·|st, at). LLM
agent tasks involve multiple turns. At each turn t, the agent
receives a state prompt st (task description + feedback from
the previous turn) and outputs a series of action tokens at
(e.g., tool calling or acting). Agents are fine-tuned via multi-
turn RL with verifiable, often sparse rewards to improve
sequential decision-making.

4. Methodology
In the following section, we address two key challenges in
multi-turn RL training for LLM agents: designing efficient
agent memory mechanisms and assigning temporal credit
across dialogue turns.

4.1. Context-lite Multi-turn RL

Prior work (Wang et al., 2025) typically treats the entire
trajectory (i.e., τ = [s0, a0, · · · , sT , aT ]) as a single train-
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Gradient
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… …

𝑉2

Figure 2. Each trajectory is shown in a different color. For each
gradient update, a fixed number of turns are executed. If a trajec-
tory does not terminate within the rollout, the value function of the
final state is used as a training signal to guide the LLM agent.

ing data point, with the full trajectory as the context, a
reward signal at the end, and training only the action tokens
(as shown in Figure 1(a)). In particular, the policy is de-
fined and trained as π(a0, · · · , aT |τ), where the historical
information s0, a0, · · · , st is treated as valid input when
generating each action at.

Using such long contexts can lead to inefficient RL training,
as it imposes high memory demands and may cause the
LLM to lose focus on decision-making at the current time
step. In contrast, our framework enables more customizable
and granular context usage. Specifically, we treat each turn
as an individual training data point, allowing flexible control
over how many previous turns are included in the current
prompt st.

As illustrated in Figure 1(b), we truncate outdated state-
action pairs from the trajectory and retain only the most re-
cent memory length state-action pairs along with the current
state in the context window. The second row in Figure 1(b)
demonstrates the case where the memory length is set to one
and the data point at each turn t involves (st−1, at−1, st) as
the context and at as the action.

Early Trajectory Truncation in PPO Training: When the
number of turns in a trajectory exceeds the training batch
size, the reward signal may not be immediately available.
To address this, our PPO implementation supports early
truncation of trajectories, using the value of the final state as
a training signal. It is very common for the number of turns
in a trajectory to exceed the training batch size. For example,
consider a training batch size of 256. To improve inference
efficiency, practitioners often increase the number of parallel
environments since rollout time becomes the bottleneck in
multi-turn RL training. If 16 parallel environments are used,
then any task with an episode length exceeding 16 turns
may lead to issues in prior frameworks that lack support for
early truncation. As shown in Figure 2, this design offers an
additional benefit: when trajectory lengths vary significantly,
we can truncate trajectories as soon as enough turns have
been collected, without waiting for the longest rollout to
complete. This improves the overall system throughput.

4.2. Dual Discounting Strategy for Multi-turn RL

In single-turn RL fine-tuning, we typically want to avoid re-
sponse length shrinkage after training. A common practice
is to set the token-level discount factor, γtoken, to 1. How-
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Table 1. Win Rate (%) across BabyAI tasks for different memory length. The results show that shorter memory lengths (1 to 4) generally
lead to higher performance across BabyAI tasks. Values are mean ± standard error.

Memory length 1 2 4 8 16 32 64
BabyAI (avg) 31.87±3.68 28.13±3.55 25.00±3.42 17.50±3.00 14.47±2.79 15.72±2.89 18.24±3.06

goto 87.50±5.85 81.25±6.90 50.00±8.84 53.13±8.82 46.88±8.82 37.50±8.56 56.25±8.77

pickup 40.63±8.68 28.13±7.95 25.00±7.65 18.75±6.90 15.63±6.42 28.13±7.95 18.75±6.90

pick up seq go to 21.88±7.31 21.88±7.31 34.38±8.40 6.25±4.28 6.25±4.28 9.68±5.31 12.90±6.02

open 9.38±5.15 9.38±5.15 15.63±6.42 6.25±4.28 3.13±3.08 3.13±3.08 0.00±0.00

ever, in multi-turn RL fine-tuning, our goal often shifts to-
ward encouraging the agent to complete the task efficiently,
minimizing the number of dialogue turns, which can be
achieved by using a step-level discount factor γstep < 1.
Unfortunately, this creates a tension with the need for
longer, more coherent reasoning paths, which require more
tokens per turn. To address this conflict, we propose a
dual-discounting strategy for multi-turn RL Generalized
Advantage Estimates (GAE) (Schulman et al., 2015) ap-
proximation, where we decouple the token-level discount
factors (γtoken, λtoken) from the step-level discount factors
(γstep, λstep), when computing GAE. This approach allows
us to independently control reasoning granularity within a
step and the overall conversational efficiency across steps.
We set γstep = 0.99, λstep = 0.95, γtoken = 1, λtoken = 1 in
this work.

With the dual discounting strategy, the GAE formulation is
recursively defined as follows:

Ât = γλÂt+1 + δVt , (2)

where γλ = γstepλstep if token t and token t + 1 are in the
different turns and γλ = γtokenλtoken otherwise. δVt , i.e., the
TD-residual, is defined as δVt = −V (st) + rt + γV (st+1),
where V (st) is the value function. Note that both states and
actions consist of multiple tokens. However, the recursive
process described in Equation (2) is not applied between
state tokens, as states are not generated by the LLM and can
be treated as a single chunk of input.

5. Results
In this section, we address the following research questions
(RQs): RQ1: What is the impact of the memory length on
the performance of LLM agents in multi-turn tasks? RQ2:
Can our proposed multi-turn RL fine-tuning approach im-
prove the performance of LLM agents compared to their
zero-shot capabilities? RQ3: Does the proposed dual dis-
counting strategy improve value function approximation
and lead to improved performance of LLM agents? RQ4:
How would the memory length impact multi-turn RL fine-
tuning for LLM agents? We evaluate our algorithms on four
BabyAI (Carta et al., 2023) scenarios, each with a maximum
episode length ranging from 64 to 128 steps. In all settings,
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Figure 3. LLM agents trained with dual discounting GAE show
faster convergence, and lower PPO value loss on challenging
BabyAI pickup scenario.

both the policy inputs (observations) and outputs (actions)
are represented in text form. The action space is discrete
and enumerable.

5.1. Impact of Memory Length on Zero-Shot
Capabilities of LLM Agents (RQ1)

We evaluate the zero-shot performance of Qwen-2.5-3B-
Instruct in the BabyAI environment using different memory
lengths. We define the memory length as the number of pre-
vious turns included in the policy’s context window. Unlike
prior work that defaults to including the entire trajectory
history (with memory length fixed at 64 for BabyAI tasks),
our implementation enables flexible memory configurations
tailored to specific tasks.

As shown in Table 1, this flexibility yields substantial gains:
with proper memory length, performance improves by over
2× compared to the baseline. Interestingly, we observe that
simpler tasks, such as goto and pickup, perform best with
memory length 1, while more complex tasks like open and
pick up seq go to benefit most from memory length 4.

This simple memory mechanism already demonstrates sig-
nificant potential, highlighting that memory design is a criti-
cal yet underexplored component of LLM agents.

5.2. Benchmarking Context-Lite Multi-Turn RL (RQ2)

In this subsection, we evaluate the performance of our pro-
posed method across four distinct BabyAI scenarios and
compare it against the zero-shot performance of GPT-4o
Mini, LLaMA-3.2-3B-Instruct (Grattafiori et al., 2024), and

3
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Table 2. Comparison of model performance across four BabyAI scenarios. We report the average win rate over 96 trajectories for each
method. Our fine-tuned 3B model outperforms the zero-shot performance of larger and comparable-sized models, including GPT-4o Mini,
Llama-3.2-3B-Instruct (Grattafiori et al., 2024), and Qwen2.5-3B-Instruct (Yang et al., 2025).

Task Qwen2.5-3B-Instruct Llama-3.2-3B-Instruct GPT-4o mini Ours

BabyAI(avg) 39.60 32.03 69.53 86.96
goto 87.50 56.25 81.25 100.00
pickup 40.63 31.25 53.13 96.88
pick up seq go to 21.88 34.38 68.75 70.83
open 9.38 6.25 75.00 78.13
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Figure 4. Effect of memory length on multi-turn RL fine-tuning. Shorter memory lengths (1–2) lead to higher performance, likely due to
improved zero-shot behavior and denser reward signals. Incorporating limited context supports consistent reasoning while avoiding the
inefficiencies introduced by longer histories.

Qwen-2.5-3B-Instruct (Yang et al., 2025). As shown in
Table 2, our method fine-tunes a 3B model, Qwen-2.5-3B-
Instruct, that ultimately outperforms the larger GPT-4o Mini
by 20% on average across all four scenarios.

5.3. Multi-turn RL Benefits from Dual Discounting
GAE (RQ3)

We conduct an ablation study on the proposed dual discount-
ing GAE and demonstrate its effectiveness in improving
value function estimation and enhancing the sample effi-
ciency of multi-turn RL training for LLM agents. As shown
in Figure 3, agents trained with dual discounting outper-
form those using the baseline configuration (γstep = λstep =
γtoken = λtoken = 1) in the BabyAI pickup task, exhibiting
higher sample efficiency. This improvement is primarily
due to the step-level discounting mechanism, which enables
more effective temporal credit assignment. Furthermore,
dual discounting GAE leads to lower value prediction er-
rors, reflecting a more stable and reliable training process.

5.4. Impact of Memory Length on Multi-turn RL with
LLM Agents (RQ4)

In this subsection, we investigate the effect of memory
length on multi-turn RL fine-tuning for LLM agents. As
shown in Table 4, the LLM agent achieves higher perfor-
mance when using a shorter memory length during fine-
tuning. In particular, memory lengths of one and two con-

sistently yield the highest performance across settings. We
observe that longer memory lengths can lead to lower zero-
shot performance, which results in sparser reward signals
and less efficient RL fine-tuning. Additionally, the agent’s
reasoning paths often reference or revise plans from previ-
ous turns. This behavior appears to enhance planning con-
sistency across turns, suggesting that RL fine-tuning with
contextual information is more effective than fine-tuning
without context.

6. Conclusion
In this work, we propose Context-lite Multi-turn RL, a
framework designed to address key challenges in fine-tuning
LLM agents for multi-turn tasks. By introducing customiz-
able memory length and a dual-discounting GAE, our ap-
proach tackles issues of long interaction histories, sparse re-
ward signals, and inefficiencies arising from variable-length
trajectories. Through extensive experiments on four BabyAI
scenarios, we systematically investigate the impact of mem-
ory design and discounting strategies on LLM performance
and demonstrate the state-of-the-art performance of our al-
gorithm in multi-turn reasoning tasks. A limitation of our
approach is that it does not support value-function-free RL
fine-tuning methods, such as GRPO (Shao et al., 2024) and
RLOO (Ahmadian et al., 2024).

4



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Context-lite Multi-turn Reinforcement Learning for LLM Agents

References
Ahmadian, A., Cremer, C., Gallé, M., Fadaee, M., Kreutzer,
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