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Abstract

Recent advances in large multimodal foundation models
(LLMs, VLMs, and VLAMs) have demonstrated promis-
ing capabilities in perception and reasoning across visual
and linguistic modalities. Yet, their effectiveness in long-
horizon, safety-critical planning—a core requirement for au-
tonomous driving—remains insufficiently understood. This
work presents Planning Beyond Perception (PBP), a bench-
mark for systematically evaluating the planning and decision-
making abilities of multimodal foundation models in real-
istic driving contexts. PBP encompasses tasks requiring sit-
uational reasoning under multimodal inputs, plan decom-
position and adaptation across dynamic traffic scenarios,
and safety-aware control constrained by real-world driv-
ing rules. Using standardized environments derived from
CARLA and nuScenes, we assess multiple architectures, in-
cluding LLM-, VLM-, and VLAM-based agents, on their
ability to generate interpretable, robust, and executable driv-
ing plans. Our findings reveal that while these models excel
in short-horizon perception and description, they exhibit sig-
nificant limitations in causal reasoning, temporal abstraction,
and reliable action synthesis. PBP provides an open, repro-
ducible framework to benchmark and advance the develop-
ment of foundation models for trustworthy autonomous plan-
ning.

Introduction

Autonomous driving (AD) integrates perception, predic-
tion, planning, and control into a unified decision-making
pipeline. While recent advances in perception and motion
prediction have greatly improved environmental understand-
ing, robust and interpretable long-horizon planning under
uncertainty remains an open challenge. Conventional mod-
ular approaches—where perception, prediction, and control
are optimized separately—often lack generalization and fail
to handle unseen, multi-agent scenarios (Shalev-Shwartz,
Shammabh, and Shashua 2017; Chen et al. 2021).

In parallel, large multimodal foundation models (FMs),
including large language models (LLMs) and vision-
language(-action) models (VLMs, VLAMs), have shown re-
markable generalization and reasoning ability across diverse
domains (OpenAl 2023; Li et al. 2023; Driess et al. 2023;
Brohan et al. 2023). Recent work such as DriveLM (Chen
et al. 2023) and Talk2Drive (Mehta et al. 2024) demon-
strates that foundation models can connect perception with

linguistic reasoning and interactive decision making. Yet,
despite these promising results, the capacity of FMs for
safety-critical, causal, and temporally consistent planning
in realistic driving contexts remains poorly characterized
(Wang et al. 2024; Zeng, Zhang, and Wang 2024). To ad-
dress this gap, we introduce Planning Beyond Perception
(PBP), a benchmark designed to evaluate the reasoning and
planning capabilities of LLM-, VLM-, and VLAM-based
agents for autonomous driving. PBP focuses on three core
dimensions: (1) situational reasoning under multimodal
sensory and map inputs, (2) plan decomposition and adap-
tation to dynamic traffic conditions, and (3) safety-aware
decision making under real-world constraints. Using stan-
dardized environments derived from CARLA (Dosovitskiy
et al. 2017) and nuScenes (Caesar et al. 2020), PBP mea-
sures plan validity, robustness under perturbation, and align-
ment with human rationales. By releasing this benchmark,
task suite, and evaluation toolkit, our goal is to establish
a reproducible and extensible foundation for benchmark-
ing planning-oriented reasoning in multimodal foundation
models—bridging perception, abstraction, and control in au-
tonomous systems.

Problem Definition

We consider the problem of autonomous driving planning
with multimodal foundation models. Let £ denote the
driving environment composed of a set of dynamic agents
(e.g., vehicles, pedestrians) and static map elements (e.g.,
lanes, traffic lights, intersections). At each discrete timestep
t, the ego vehicle observes multimodal sensory inputs:
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where I$™ denotes camera images, L% represents LIDAR
point clouds, M™# provides high-definition maps or seman-
tic lanes, and S§™*° encodes the ego state (position, velocity,
heading).

A multimodal foundation model fy (e.g., LLM, VLM, or
VLAM) conditions on these inputs and produces an inter-
pretable plan representation:
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where 7; denotes a sequence of high-level or low-level ac-
tions (e.g., turn-left, accelerate, yield), and H is the planning



horizon. The objective is to generate a plan that satisfies the
following properties:

* Executability — the plan must be physically feasible
within £ and obey vehicle dynamics.

 Safety — the plan must remain collision-free and comply
with traffic rules and environmental constraints.

 Rationality — the plan should align with human driving
preferences and demonstrate causal reasoning.

e Adaptivity — the plan must remain robust under dy-
namic agent behavior and sensor perturbations.

Formally, the benchmark evaluates fy by minimizing a
composite error functional:
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where \; are weighting coefficients balancing different as-
pects of plan quality. Each term corresponds to metrics com-
puted from simulation or human-annotated trajectories.

The overall goal of Planning Beyond Perception (PBP)
is therefore to assess how well multimodal foundation mod-
els can transform raw sensory streams into interpretable,
safe, and temporally consistent driving plans—bridging per-
ception, reasoning, and control within a unified evaluation
framework.

Proposed Benchmark

The Planning Beyond Perception (PBP) benchmark pro-
vides a standardized framework for evaluating multimodal
foundation models (FMSs) in long-horizon, safety-critical
planning. Unlike prior driving benchmarks that focus pri-
marily on perception or motion prediction, PBP explicitly
measures the ability of models to reason, decompose, and
execute structured driving plans from raw sensory input. The
benchmark is designed around three complementary compo-
nents: scenario suite, model interface, and evaluation met-
rics.

Scenario Suite

PBP includes a curated set of urban driving tasks derived
from CARLA (Dosovitskiy et al. 2017) and nuScenes (Cae-
sar et al. 2020). Each scenario S; is represented as a tuple:
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where O1.7 denotes multimodal observations (camera, Li-
DAR, and map), Aj., are ground-truth expert trajectories,
M encodes the road topology and semantic map, and C
represents environmental constraints such as traffic rules
and safety zones. The benchmark covers diverse interaction-
heavy scenes including intersections, lane changes, merges,
and unprotected turns.

Model Interface

Each foundation model fy (LLM, VLM, or VLAM) receives
sequential multimodal inputs and produces a structured plan
m¢ = fp(01.t). To ensure comparability, all models interact
with the environment through a unified perception-to-action
API:
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and g(-) maps high-level textual or symbolic plans into low-
level control signals (steering, acceleration, braking). Op-
tional modules allow planner-in-the-loop integration with
A*, MCTS, or learned motion controllers for hybrid reason-
ing experiments.

Evaluation Metrics

To quantify overall planning quality, PBP defines a compos-
ite evaluation loss:
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where each component reflects a distinct aspect of planning
performance:

* Lyaidgiy: trajectory deviation from expert demonstrations
or reachable goal states;

J Esafety: penalty for collisions, rule violations, or unsafe
distances;

* Lrationality: divergence from human-preferred maneuvers
and causal consistency checks;

* Liobustness: Stability under sensor noise or dynamic agent
perturbations.

Each metric is normalized to [0, 1] for fair cross-model com-
parison. The final benchmark score is defined as:

Scorepgp = 1 — Lpgp,

representing overall plan quality, where higher values indi-
cate better performance.

Benchmark Goals

Through this formulation, PBP aims to (i) provide a re-
producible testbed for evaluating multimodal reasoning-to-
action capabilities, (ii) reveal failure modes in causal or
temporal reasoning of foundation models, and (iii) support
the development of interpretable, safety-aware agents that
generalize across driving domains. The benchmark imple-
mentation, evaluation toolkit, and baseline model configu-
rations are released to facilitate transparent and comparable
research in foundation-model-based autonomous planning.

Expected Results

We expect multimodal foundation models to exhibit strong
short-term situational reasoning but limited long-horizon
consistency in autonomous planning. VLM-based agents are
likely to outperform purely textual LLMs in spatial under-
standing, while VLAM architectures (e.g., PALM-E (Driess
et al. 2023), RT-2 (Brohan et al. 2023)) may achieve higher
plan executability through grounded action representation.
Nonetheless, challenges in causal dependency tracking, tem-
poral abstraction, and adherence to safety constraints are an-
ticipated to remain open problems.

Through this benchmark, we aim to reveal the trade-
off between multimodal grounding and planning reliabil-
ity, offer diagnostic insights into reasoning bottlenecks, and
establish baseline performance for reproducible, trustwor-
thy autonomous decision-making. In summary, Planning
Beyond Perception (PBP) provides a unified framework
for evaluating and advancing foundation-model-based plan-
ning—>bridging perception, reasoning, and control toward
safer and more interpretable autonomous systems.
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