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ABSTRACT

The reasoning large language model (RLLM) has been proven competitive in
solving complex reasoning tasks such as mathematics, coding, compared to tradi-
tional LLM. However, the serving performance and behavior of RLLM remains
unexplored, which may undermine the deployment and utilization of RLLM in
real-world scenario. To close this gap, in this paper, we conduct a comprehensive
study of RLLM service. We first perform a pilot study on comparing the serving
performance between RLLM and traditional LLM and reveal that there are sev-
eral distinct differences regarding serving behavior: (1) significant memory usage
and fluctuations; (2) straggler requests; (3) adaptive running time; (4) domain
preference. Then we further investigate whether existing inference optimization
techniques are valid for RLLM. Our main takeaways are that model quantization
methods and speculative decoding can improve service system efficiency with small
compromise to RLLM accuracy, while prefix caching, KV cache quantization may
even degrade accuracy or serving performance for small RLLM. Lastly, we conduct
evaluation under real world workload modeled by Gamma distribution to verify
our findings. Empirical results for real world workload evaluation across different
dataset are aligned with our main findings regarding RLLM serving. We hope our
work can provide the research community and industry with insights to advance
RLLM inference serving. The reproduction details work can be found in §F.

1 INTRODUCTION

Large language models (LLM) such as GPT (Achiam et al., 2023), Claude (Anthropic, 2024; 2025),
Gemini (Team et al., 2023), Llama (Grattafiori et al., 2024) have emeraged as powerful knowledge
bases through pre-training. These models, trained on vast Internet-crawled corpora such as C4 (Raffel
et al., 2020), PILE (Gao et al., 2020) and guided by scaling law (Kaplan et al., 2020; Rae et al.,
2021), have accumulated large-scale knowledge, and exhibited remarkable performance on various
knowledge extensive tasks. Despite these advancements, LLMs are criticized for their unsatisfactory
capabilities on complex reasoning tasks, e.g., challenging mathematics, and programming tasks.

Recently, reasoning large language models (RLLM) like OpenAl ol (Jaech et al., 2024), DeepSeek
R1 (Guo et al., 2025), Qwen-3 (team, 2025) have sparked a growing body of research into test time
scaling (Snell et al., 2025; Muennighoff et al., 2025) via long chain-of-thought reasoning (Wei et al.,
2022), significantly improving their mathematical reasoning, coding tasks and knowledge reasoning
capabilities, e.g., even a 1.5B open source RLLM can surpass giant cutting-edge LLMs like GPT-40
on math tasks (Guo et al., 2025). Such achievements make it possible to deploy a small to medium
RLLM as a powerful assistant to light the burden of workload for the staff of small entities or even
for person, democratizing the use of cutting-edge RLLMs. Hence, it is desirable for small entity with
limited GPU resources to efficiently deploy RLLM with inference engine privately for internal use.

Nevertheless, current LLM serving engine, e.g. vVLLM (Kwon et al., 2023), LMDeploy (Contributors,
2023), Tensor-RT (NVIDIA, 2023), are initially designed for traditional LLM , other than for RLLM.
Though optimization techniques for LLM serving (§2) have been extensively studied, it remains
largely unexplored whether RLLM exhibits distinct serving characteristics from LLM. If so, directly
applying existing LLM serving techniques to RLLM may leave sub-optimal serving performance.
Thus, it is natural to ask the following critical research question:

Is there any distinct difference in serving behaviors between LLM and RLLM?
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To answer the above question, we perform systematic study of efficient RLLM serving. We first
establish the ASU assessment framework (§3.2) for assessing RLLM serving. To justify whether
there exists a distinct difference in serving behavior between RLLM and LLM, we design a benchmark
suite named ASU-Perf and conduct a pilot investigation with it on different scale LLM and RLLM (§4).
We found that when requests arrive in batches, the serving behavior of RLLMs differ significantly
from LLMs, and the main findings can be primarily summarized in the following aspects: (1) RLLM
exhibits significant KV Cache fluctuations and usage; (2) long tail distribution of requests running
time caused by slow requests; (3) RLLM solves different difficulty level problems with adaptive
running time; (4) RLLM excels LLM on math reasoning while on-par on knowledge intensive tasks.

To understanding RLLM serving further, we first conduct extensive evaluations with various optimiza-
tion techniques across diverse benchmarks (§5). We find that the model quantization and speculative
decoding integrated in serving engine can improve serving efficiency and performance with only
small compromising on accuracy of RLLM. However, prefix caching, and KV cache quantization
do not always improve serving efficiency. They degrade the accuracy or serving performance for
small RLLM, e.g., 7B model. Lastly, we conduct evaluation ( §6) under real world workload modeled
by Gamma distribution to verify our findings with different scale language models across different
domain. Empirical results of real world workload evaluation indicate that the serving behaviors of
RLLM are distinct from the LLM and are aligned with our main findings regarding RLLM serving.

We hope our work can provide the research community and industry with insightful perspectives to
help advance studies in efficient RLLM serving. To the best of our knowledge, we are the first to
dissect the RLLM serving performance. The main contributions of this paper are the following.

» Conceptually, we propose ASU, a framework to assess RLLM serving, which considers accuracy
of response, RLLM service-provider side metric, and user side performance metrics together (§3).

* Technically, we introduce ASU-Perf, a benchmarking suite for evaluating RLLM serving (§3).

» Empirically, we reveal key differences of serving behaviors between RLLM and LLM: Significant
Memory Fluctuations and Usage, Straggler Requests, and Adaptive Running Time (§4).

* We conduct extensive experiments on some RLLM serving optimization techniques (§5).

* We empirically validate our findings in real-world workload and verify their generalization (§6).

2 PRELIMINARIES

In this section, we provide preliminaries of RLLM, LLM serving and its metric. For comprehensive
introduction of LLLM serving optimization and recent advancement, please refer to Appendix E.

RLLM and LLM. LLMs have demonstrated remarkable capabilities across various natural language
processing tasks. However, standard LLMs often encounter difficulties when faced with complex
problems that require multi-step reasoning, planning, and deeper cognitive processes, sometimes
referred as “System-2 tasks” (Li et al., 2025c). To address these limitations, RLLMs have emerged,
specifically engineered to enhance these deliberative reasoning abilities. A key technique employed
by RLLMs is the “long Chain of Thought” (long CoT) prompting strategy (Shao et al., 2024). This
approach encourages the model to generate extended, explicit step-by-step reasoning pathways, break-
ing down complex problems into more manageable parts. Unlike standard LLMs that might provide
more direct or less detailed answers, RLLMs utilizing long CoT can better navigate the intricacies of
tasks, leading to more accurate and justifiable solutions by methodically thinking through the problem.
This distinction allows RLLMs to tackle challenges in domains like advanced mathematics, intricate
logical puzzles, and long-horizon planning more effectively than their conventional counterparts.

LLM Serving. To exploit LLM in real-world scenarios, current practice generally delegates the
inference procedure as an individual serving service. The design goal of such serving systems is
to accommodate inference output to client users with low latency and high throughput and full use
of GPU memories. Unlike the encoder-based language model (Vaswani et al., 2017) like BERT
(Devlin et al., 2019), LLM first processes input prompts with intensive computation at the prefill
stage and then generates output tokens one by one within each iteration at decoding stage, which
limited by the memory capacity of the hardware. Traditional serving systems process prompts batch
by batch, resulting in ineffective memory utilization. Orca (Yu et al., 2022) introduces continuous
batching schedule at granularity of each token generation iteration to improve throughput of serving
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system. To handle as much input requests, the memory space for serving system should be efficient
yet elaborated managed. Since decoding phase needs to re-use KV values of their prompt tokens
which are stored in GPU, vLLM (Kwon et al., 2023), a high performance serving engine, introduces
PagedAttention with paged memory fragmentation and sharing mechanism , which alleviates memory
fragmentation and enables allocation in demand. Considering the prefill is compute-intensive task,
while the decode is memory-intensive task, for further improvement, DistServe (Zhong et al., 2024)
disaggregates the prefill and decode phase by assign computation of these two stages to different
GPUs, which co-optimizes the resource allocation and parallelism tailored for each phase.

Serving Performance Metrics. To measure the performance of serving system, there are multiple
metrics can be chosen: (1) Time to first token (TTFT) is the time it takes to process the prompt until
generate the first token. It measures how long a user must wait before seeing the model’s output; (2)
End-to-end request latency (E2E latency) indicates the time it takes from submitting the first token of
a request to receiving the last token of response, including the time for queueing and batching and
network latencies in real-world scenario; (3) Time between tokens (TBT, a.k.a Intertoken latency,
ITL) is the average time between the generation of consecutive tokens in a sequence; (4) Tokens per
second (TPS) of system represents the mean of total output tokens number per second , accounting for
all the requests happening simultaneously; (5) Requests per second (RPS) is the average number of
requests that can be successfully completed by the system in a 1-second period. For More details of
LLM benchmarking metrics, please refer to §E.2 and related resource (Vinh et al., 2025; inc, 2024).

3 EXPERIMENTAL SETTINGS

In this section, we present experimental setups (§3.1) and the ASU assessment framework (§3.2).

3.1 SETUPS

Here, we list necessary experimental setups. For implementation details, please refer to Appendix G.

Language Models. We employ 4 different scale models to assess their serving performance and
serving behavior. General LLM : Qwen-2.5-Math 7B (Yang et al., 2024b), Qwen-2.5-14B , Qwen-2.5-
32B (Yang et al., 2024a), and meta-llama/Llama-3.3-70B-Instruct (Grattafiori et al., 2024) and their
long-cot tuned counterparts RLLM: DeepSeek-R1-Distill-Qwen-7B, DeepSeek-R1-Distill-Qwen-
14B, DeepSeek-R1-Distill-Qwen-32B , and DeepSeek-R1-Distill-Llama-70B for fair comparison.

Evaluating Datasets. We adopt four different widely used datasets to evaluate the performance of
RLLM. Since RLLMs are particularly trained for system-2 reasoning tasks (Wei et al., 2022), we
mainly perform benchmarking with mathematical problems. We adopt three different difficulty level
math reasoning datasets: GSM8K (Cobbe et al., 2021) as easy level, MATH-500 (Hendrycks et al.,
2021; Lightman et al., 2023) as medium level, AIME-2024 (Committees, 2024) as the hardest level.
To further distinguish are there any differences of serving performance and behaviors for RLLM
in reasoning math problem or knowledge-based problem , we also used GPQA (Rein et al., 2024)
dataset for knowledge reasoning. More details of these datasets are introduced in §G.1.

LLM Inference Engine. We employ 2 most adopted open source LLM inference engines, vLLM
and SGLang (Zheng et al., 2024) in evaluation. We use OpenAl compatible API of these engines.

Evaluation Suite. We employ ASU-Perf, an benchmark suite proposed by us for evaluating LLM and
RLLM serving performance with different inference engine. We leverage it in all of evaluation.

3.2 THE ASU ASSESSMENT FRAMEWORK

The adoption of RLLM hinges on whether their are capable of generating value that outweighs their
inference costs (Erol et al., 2025). Assessing this tradeoff requires metrics that account for both
performance and serving costs for both service provider and users. For RLLM service providers and
users, the performance metrics they care about differ: providers seek to maximize system throughput,
while users expect rapid model responses. In addition, it is essential to ensure response accuracy
while optimizing RLLM serving system performance as much as possible. Thus, we propose ASU
(Accuracy, Service-end, User-end), a trinity framework for assessing RLLM serving performance
by together considering response accuracy, RLLM service provider end and user end. For accuracy
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metric, we employ evaluation own metric for each dataset. For service provider side metrics, we
use throughput metric TPS (token per second) . For user-side metrics, we use TTFVT (time to first
visible token) , a variant of TTFT , since we assume reasoning tokens of RLLM are invisible to users
like commercial RLLM like OpenAl o1, and E2E requests running time as metrics.

In the next section, we will dive into the characteristic of RLLM serving via detailed experiments.

4  PILOT INVESTIGATIONS: SERVING LLM v.s. RLLM

In this section, we perform an comprehensive investigation to RLLM and LLM inference serving.

Experiments. We involve eight prevailing models in evaluations. For fair comparison, RLLM
model we employed is the tuned counterpart of evaluated LLM, e.g., Qwen-2.5-Math-7B and its
tuned RLLM counterpart DeepSeek-R1-Distill-Qwen-7B. We conduct evaluation with 7B, 14B, 32B,
70B language models on different inference engines. For comprehensively assessment, we perform
evaluation with different token budget and batch size. We use all the datasets described in §3.1.
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Figure 1: Results of token budget variation across different datasets for 14B and 32B RLLM .

Main Results. 1) Results with Different Token Budget: Unlike traditional LLMs, RLLMs engage
in deliberate reasoning by generating lengthy chains of thought prior to answer, which significantly
increases token consumption. However, as existing LLM services are priced based on token usage,
this results in substantially higher costs. To justify the impact of token budget for RLLM serving, we
conduct evaluation with varying token budget from 0.5K to 20K across benchmarks. The results are
presented in Figure 1. We found that, for the majority of datasets, a token budget of 4096 to 8192
can achieved sufficiently good performance. It is worth noting that, as the token budget increases,
the performance of RLLMs on the GPQA and AIME24 datasets declined, which may indicate the
overthinking problem (Qu et al., 2025) of RLLM. Please refer to §1.1 for full results.

2) Results with Different Batch Size. We also explore the impact of different batch sizes on RLLM
serving performance with the same experimental setting. We find that increasing the batch size does
not affect model accuracy on various datasets. Nevertheless, it reduces the time required for RLLMs
to process the same number of requests, and improves throughput metric TPS, but at the cost of
increased average TTFVT. Please refer to §1.2 for full results with different batch size.

Serving Performance and Behaviors. To investigate RLLM serving behaviors, we analyzed the
running logs of the inference serving engine and conducted a visualization of the running traces, as
shown in Figure 2. As illustrated, RLLMs achieve much higher accuracy on math datasets than same
scale LLM, but a on-par performance on knowledge reasoning such as GPQA. The full results are
presented in §1.3. To dissect the difference of serving behavior, we present the running trace in §1.4.

Main Findings for RLLM Serving Characteristics. Given the above results in pilot studies, we
have the following findings in comparison of RLLM and LLM serving behaviors :

* Significant Memory Usage and Fluctuations: We observed significant fluctuations in memory
utilization of inference engine when serving RLLM . In extreme cases, the usage varied dramatically
between 3% and 70%, whereas traditional LLMs typically maintain KV cache usage below 3%.
We attribute these fluctuations to the excessive length of the reasoning chains generated by RLLMs,
which result in high memory consumption. During inference, the engine must retain KV caches for
the reasoning chains until the requests are completed, after which they are discarded.

* Straggler Requests: When requests arrive at the inference engine in batches, or an RLLM receives
multiple requests simultaneously, significant disparities in request difficulty can lead to some
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Figure 2: The serving performance and behavior comparison of a batch requests between 7B RLLM
and LLM. We can read from this figure that (1) RLLM exhibits significant KV Cache fluctuations
than LLM; (2) long tail distribution of requests running time caused by straggler requests; (3) adaptive
running time of RLLM; (4) domain preference on math. Please refer to §1.3 for more results.

requests taking much longer time to complete than others. We denote these slow requests as
straggler requests. These straggler requests ends either reaching the token budget or finishing the
reasoning process. During this time, only a small number of requests remain running in inference
engine, resulting in a noticeable drop in system throughput and hardware utilization. In contrast,
LLMs exhibit much smaller variations in execution time for requests within the same batch.

* Adaptive Running Time of RLLM: We found that, given the same number of samples with same
batch size, the runtime of RLLMs varies significantly across different datasets and is strongly
correlated with the difficulty of the tasks. In contrast, traditional LLMs exhibit much smaller
runtime differences across datasets, with little sensitivity to task difficulty. When the number of
samples varies, the runtime of LLMs on each dataset scales approximately linearly with the dataset
size, even when there are substantial differences in task difficulty.

* Domain Preference: RLLMs and LLMs exhibit significant performance differences on the mathe-
matical reasoning , while on-par on knowledge tasks, which align with existing works.

Discussion and Analysis for Findings. Based on the working mechanisms of inference engines we
employed in benchmarking, we discuss the reason of why the above revealed phenomena occur.

1) Straggler requests: In some mathematical datasets, e.g., Math-500, the difficulty of individual
problems varies. We assume that requests arrive in batches, and new requests are sent only after
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Figure 3: Empirical results of current LLM quantization methods on 7B RLLM. current methods
maintain or improve all serving-related metrics with less memory footprint while keep accuracy.

all requests in a batch are completed. As easier problems are answered shortly, the few remaining
difficult requests continue running in the engine, leading to the entire batch’s runtime being extended
by these straggler requests. This situation results in reduced system throughput.

2) Memory fluctuation and usage: This issue is caused by the KV Cache management strategy of
existing inference engines. Since RLLMs generate more tokens than traditional LLMs, the KV Cache
utilization for RLLM is much higher under the same scale model with same precision in the same
inference engine. This leads to a rapid increase in KV Cache usage, and since current inference
engines discard the KV Cache once completing requests, it results in a sharp drop in cache usage.

3) Adaptive running time: RLLM generates varying reasoning chain lengths depending on problem
difficulty—more difficulty lead to longer chains and running time. Hence, RLLM’s runtime is
typically correlated with problem difficulty, while LLMs generally may not affected by difficulty.

Our findings indicate notable differences in serving RLLMs and LLMs. To enable more effective
deployment of RLLMs, we explore some optimization techniques for inference in the next section.

5 OBSERVATIONS ON RLLM SERVING OPTIMIZATION

In this section, we take a closer look at the techniques that may optimize RLLM serving performance.
The prerequisite for assessing these optimization techniques is that they must preserve the RLLM’s
accuracy as much as possible. It holds throughout this section. More results are presented in §J.

5.1 IS MODEL WEIGHT QUANTIZATION METHODS EFFECTIVE IN BOOSTING RLLM SERVING?

Model weight quantization (MWQ) refers to the techniques that reduce number of bits for model
parameters with the minimal loss in performance. Current LLM quantization methods are mainly
fallen into the post-training quantization approaches. For more comprehensive introduction of LLM
quantization, please refer to (Zhu et al., 2024) and (Gong et al., 2024).To investigate the impact
of model weight quantization, we employ 4 most adopted (also supported by current open source
LLM serving engine) quantization methods for LLM: GPTQ (Frantar et al., 2023) (Int4), AWQ (Lin
et al., 2024) (4-bit), FP8 (Kuzmin et al., 2022), and Linear 4-bit (Dettmers et al., 2023)(LL4) with
BitsAndBytes (bitsandbytes foundation, 2022). We conduct experiments on 7B, 14B RLLM.

Main results. The evaluation results of quantized 7B RLLM using different quantization methods are
presented in Figure 3. GPTQ-IN4 and FP8 quantization preserve the original model performance on
most datasets, incurring only a minor degradation of approximately 3% or even perform better, while



Under review as a conference paper at ICLR 2026

Accuracy (%) Throughput (Tokens/s) Running Time (s)
800

700 700 4
80 600 - 600
500 - 500
400 400

404 300 300

200 4 200 4
20 4
m 100 4 100 4
0~ T T = 0-

T T 0 T T T T T T T T
AIME24 GPQA GSM8k MATH500 AIME24 GPQA GSM8k MATH500 AIME24 GPQA GSM8k MATH500

= Original [ FP8-E4M3 [ FP8-E5M2

Figure 4: Empirical results for KV cache quantization on 14B model across different datasets.

maintaining or improving all serving-related metrics with less memory footprint. However, GPTQ
exhibits a substantial performance drop of around 15-25% on more challenging mathematical tasks
such as AIME24. In contrast, AWQ and L4 maintain performance across all datasets but result in a
marked reduction in inference efficiency, nearly doubling E2E time and halving throughput. These
highlight the limitations of these approaches. The comprehensive results are presented in §J.1.

Observation 5.1. MWQ methods exert differing impacts on various metrics of RLLM inference .

5.2 CouLD KV CACHE QUANTIZATION LEAD TO BETTER RLLM SERVING PERFORMANCE?

As illustrated in (Kwon et al., 2023), to serve traditional LLM, at least 30% of GPU memory is
perserved to store KV cache in the generation process. For RLLM, the demand for KV cache storage
would be paramount since its much longer output length ( including chain of thought reasoning ),
which makes it evitable for efficient management of memory. KV cache quantization emerges as an
appealing approach to this end. We employ two KV cache quantization methods natively supported
by vLLM: FP8-E5M2, and FP8-E4M3 (vllm project, 2024) for inference serving evaluation.

Main results. The results of KV Cache quantization for 14B RLLM are presented in Figure 4.
We found that using KV cache quantization effectively accelerates the operation of RLLMs while
maintaining performance comparable to the original. Surprisingly, while the 14B or 32B RLLM
maintained performance with minimal degradation after KV cache quantization, the 7B RLLM
experienced almost complete performance deterioration, as shown in §J.2. Furthermore, we observed
that KV cache quantization can also improve other metrics such as TTFVT and TPS.

Observation 5.2. KV Cache quantization can improve running efficiency for sufficient large RLLM.

5.3 Is PREFIX CACHING USEFUL FOR CONTRIBUTING EFFICIENT RLLM SERVING?

Prefix Cache (PC) is a cache optimization policy that reuse computed KV values for prefill stage. By
using this technique, new prompts that share same prefixes (exactly, same prefix tokens) with previous
prompts processed by serving systems can reuse these KV cache. This technique is very useful such
as long document query or multi-round conversation where requires multiple recomputation of same
text. Empirical studies show that the prefix cache can provide a huge performance benefit in such
scenarios. To evaluate the utility of prefix cache in RLLM serving, we compare the performance of 4
different RLLMs across all datasets with or without prefix caching enabling in vLLM and SGLang.

Main results. The results of PC evaluation on different datasets are shown in Figure 5. We find that
for sufficiently large RLLMs (14B and above), prefix caching significantly improves runtime speed
and serving metrics without compromising performance. However, for 7B models, prefix caching
negatively impacts efficiency, leading to increased latency. Detailed results are in §J.3.

Observation 5.3. PC can accelerate larger RLLMs (14B and above) without performance degrade.
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Figure 5: Empirical results of comparison for enable or disable prefix caching on 32B RLLM.

5.4 DOES SPECULATIVE DECODING HELP TO IMPROVE RLLM SERVING PERFORMANCE?

Speculative decoding (SD) refers to a bunch of approaches that improves inter-token latency in
memory-bound LLM inference. The initial speculating sampling usually employs a faster homoge-
neous LLM as draft model to generate a multiple tokens draft, and then the larger LLM can decide to
accept or reject this draft by scoring. The results in (Chen et al., 2023) show that the overhead of
draft model is much smaller than larger LLM forwarding, which makes it feasible to be utilized in
real world scenario. Recently, many works in speculative decoding (Xia et al., 2024) like n-gram
matching (vLLM Team, 2024), MLP speculators (Wertheimer et al., 2024), and Eagle algorithm (Li
et al., 2024c; 2025b) are proposed. Despite these advancement, current support and compatibility of
speculating decoding for RLLM in serving framework is poor. Given this situation, we only assess
n-gram matching algorithm for 7B, 14B and 32B RLLM serving with vLLM iframework. The other
experimental settings is keeping the same as the settings in Section 5.1 for fair comparison.

Main results. The main results for speculative decoding evaluation of 7B RLLM are listed in Figure
11. See §J.4 for full results. We find that speculative decoding improves the inference serving running
time of RLLM across all scales, without degrading model performance on benchmarks. However,
speculative decoding significantly reduces throughput and degrades the TTFVT metric.

Observation 5.4. SD improves the running time of RLLMs and deteriorates metrics like TPS.

Summary. This section suggests that many existing LLM inference optimization techniques can
be directly applied to RLLMs seamless. However, surprisingly, some of these techniques have the
opposite effect on smaller RLLMs, e.g., 7B. We leave the investigation of this phenomenon to future.

6 APPLYING TO REAL WORLD WORKLOAD

In previous section (§4), we have shown that the serving behaviors of RLLM is significantly different
from the LLM. However, we assumed that the serving engine receives requests simultaneously in
batches, with each new batch arriving only after the system has completed processing the previous
one. This assumption may be overly idealized and not fully consistent with real-world conditions.
Prior works (Wu et al., 2023; Li et al., 2023; Wang et al., 2025) have shown that, in real-world
applications, the burstiness of requests received by the serving engine is typically modeled using
the Gamma distribution. To validate our insights regarding RLLM serving in §4 under real-world
scenarios, we implement a workload generator like BurstGPT-Perf (Wang et al., 2025) that is capable
of producing requests following a Gamma distribution in our proposed Serve-Pref suite, enabling the
generation of streaming, stochastic, and bursty workloads. We then perform empirical studies with it
on various scale language models (7B, 14B, 32B) across different datasets to validate our findings.

Math-500 ShareGPT

DeepSeek-R1-Distill-Qwen-14B Qwen2.5-14B DeepSeek-R1

Figure 6: KV cache usage of 14B models under real world workload across different datasets.
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Main Results. As shown in Figure 6, the average KV cache usage rate of RLLM is much higher than
LLM. More surprisingly, for RLLM, the utilization of the serving engine’s KV cache can remain close
to 100% for long periods, forcing some new requests to wait in the waiting queue before running.
This may significantly prolong request turnaround time in the serving engine, severely degrading user
experience. We attribute the persistently high KV cache utilization to the accumulation of numerous
stragglers in the system. The running requests in the engine are also much higher when serving
RLLM compared to LLM, as shown in Figure 7. The above phenomena hold consistently across
different datasets, demonstrating the generalizability of our findings. These results demonstrate our
findings in §4 remain valid under real-world workloads. Please refer to Appendix K for more results.

7 RELATED WORK

We introduce necessary related work in this section. More related work can be found in Appendix D.

Reasoning Large Language Models. Recent advancement in RLLM , such as OpenAl ol (Jaech
et al., 2024) have demonstrated significant improvement in system-2 tasks such as mathematics and
programming via test time scaling , which generates long chain of thought (CoT) reasoning text
before answer the question. Compared with chain-of-thought in traditional LLM, the reasoning
process of RLLM have the following characteristics: (1) much longer reasoning process; (2) extensive
exploration to unreached logic node; (3) backtrack and reflection; (4) aha moment. Recent cutting
edge RLLMs such as QwQ (Team, 2025), Kimi K1.5 (Team et al., 2025), Gemini-2.5-flash (Deep-
Mind, 2025), Seed-think-v.15 (Seed et al., 2025), Qwen3 (team, 2025) have continually improve the
performance on complex reasoning dataset.

LLM Inference and Serving. Due to the large scale of LLM, they present considerable challenges
in efficient serving, undermining the real world utilities of these models. Numerous works have
been proposed to alleviate these problems from 6 different views: (1) model parameter memory
optimization: model weight quantization like gptq (Frantar et al., 2023), awq (Lin et al., 2024), FP8
(Kuzmin et al., 2022), model pruning, model parallelism, CPU offloading ; (2) request scheduling:
inter-request scheduling, and intra-request scheduling (3) dynamic memory optimization: KV cache
quantization (vllm project, 2024), KV cache reuse and dropping (Liu et al., 2025b;a); (4) efficient
decoding: speculating decoding (Chen et al., 2023) (Li et al., 2024c) (Li et al., 2025b), flash decoding
(Tri et al., 2023) ;(5) system optimization: prefill-decoding disaggregation architecture like (Zhong
et al., 2024) (Hu et al., 2024a) (Qin et al., 2025); (6) model and algorithm optimization: hard-aware
algorithm like flash attention (Tri et al., 2023), linear attention, mixture of experts.

8 CONCLUSION

In this work, we systematically investigate the serving performance and behavior of RLLM. We
reveal that RLLMs have several different serving behavior compared with traditional LLM, which
makes current LLLM serving engines struggle to unleash the power of RLLM and fall to reach the
optimal performance. Additionally, we further investigate whether existing inference optimization
techniques are valid for RLLM. Lastly, we conduct evaluation under real world workload modeled by
Gamma distribution, and the results are aligned with our main findings regarding RLLM serving.
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10 REPRODUCIBILITY STATEMENT

Below we summarize some critical aspects to facilitate reproducible results:

» Datasets. The datasets we used are all publicly accessible, which is introduced in G.1. The
website for download these data are listed in F.

* Models. We provide the details about our adopted model and hyperparameters in F.

* Environment. All experiments are conducted with multiple runs on NVIDIA Tesla RTX4090-
24GB GPUs, RTX A6000-48GB GPUs and NVIDIA A100-PCIE-40GB GPUs with Python
3.11 and PyTorch 2.5.

* Code. Our code will be available once accepted.
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A USE OF LLMS STATEMENT

We solemnly declare that the originality of ideas, writing, overall methodology, experiments, and
other core contributions in this paper are entirely the work of the authors, with no involvement of any
LLMs in the research process. LLMs were used solely for grammar checking and language polishing
after drafting this submission.

B LIMITATION

In this work, we systematically investigate the serving performance of RLLM. Despite our compre-
hensive and thorough experiments, the evaluation of RLLM serving is limited in some extet due to
limited support from the current ecosystem. We hope that future improvements in serving engines
will enable broader and more comprehensive evaluations. Additionally, our hardware resources were
limited, and we aim to extend our evaluations to a wider range of hardware platforms in the future.

C BOARDER IMPACT

In this paper, we systematically investigate the serving performance of RLLM. We hope our work
can provide the research community and industry with insightful perspectives to help advance studies
in efficient RLLM serving, help to democratize the use of cutting-edge RLLMs for social good.

D EXTENDED RELATED WORK

D.1 REASONING LARGE LANGUAGE MODELS

Recent advancement in RLLM , such as OpenAl ol (Jaech et al., 2024) have demonstrated significant
improvement in system-2 tasks such as mathematics and programming via test time scaling , which
generates long chain of thought (CoT) reasoning text before answer the question. Compared with
chain-of-thought in traditional LLM, the reasoning process of RLLM have the following character-
istics: (1) much longer reasoning process; (2) extensive exploration to unreached logic node; (3)
backtrack and reflection; (4) aha moment. Since OpenAI’s ol and 03 (OpenAl, 2025) are proprietary
models, the research community has attempted to replicate their performance. s1 (Muennighoff et al.,
2025) try to achieve test time scaling with only 1k post-training samples. LIMO (Ye et al., 2025a)
exploits only 817 curated training samples, improving scores from 6.5% to 57.1% on AIME dataset.
DeepSeek R1 (Guo et al., 2025) is the first open-source RLLM and achieves on-par performance
with OpenAl ol. Followed by (Face, 2025), which aims to fully reproduce R1 by the collaboration of
open-source community. Recent cutting edge RLLMs such as QwQ (Team, 2025), Kimi K1.5 (Team
et al., 2025), Gemini-2.5-flash (DeepMind, 2025), Seed-think-v.15 (Seed et al., 2025), Qwen3 (team,
2025) have continually improve the performance on complex reasoning dataset.

D.2 LLM INFERENCE AND SERVING

LLM has become a cornerstone of deep learning in recent years, reshaping the landscape of Al
research. Due to the large scale of LLM, they present considerable challenges in efficient serving,
undermining the real world utilities of these models. Numerous works have been proposed to alleviate
these problems from 6 different views: (1) model parameter memory optimization: model weight
quantization like gptq (Frantar et al., 2023), awq (Lin et al., 2024), FP8 (Kuzmin et al., 2022), model
pruning, model parallelism, CPU offloading ; (2) request scheduling: inter-request scheduling, and
intra-request scheduling (3) dynamic memory optimization: KV cache quantization (vllm project,
2024), KV cache reuse and dropping; (4) efficient decoding: speculating decoding (Chen et al.,
2023) (Li et al., 2024c) (Li et al., 2025b), flash decoding (Tri et al., 2023) ;(5) system optimization:
prefill-decoding disaggregation architecture like (Zhong et al., 2024) (Hu et al., 2024a) (Qin et al.,
2025); (6) model and algorithm optimization: hard-aware algorithm like flash attention (Tri et al.,
2023), linear attention, mixture of expert.

Recent advances in LLM inference have yielded a variety of specialized frameworks and serving
engines that maximize GPU utilization through optimized kernels and memory strategies. High-
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performance libraries such as NVIDIA’s FasterTransformer (Shazeer, 2019) and TensorRT-LLM
(NVIDIA, 2023), alongside open-source systems like vVLLM (Kwon et al., 2023) and SGLang (Zheng
et al., 2024), employ different techniques with continuous batching(Yu et al., 2022), speculative
decoding(Chen et al., 2023), prefill-decode disaggregation(Zhong et al., 2024) and many other
methods, ensuring the GPU pipeline remains saturated. Complementing these efforts are dynamic
scheduling and memory management schemes that break large KV caches into reusable blocks and
selectively merge or preempt operations, allowing much larger batch sizes with minimal overhead.
Equally important are multi-way parallelism and algorithmic innovations that further boost throughput
and reduce latency. Large models are commonly deployed across GPUs using tensor parallelism
(splitting each layer’s computation), pipeline parallelism (partitioning the model into sequential
stages), and data parallel replication. Mixture-of-Experts (MoE) architectures extend this by routing
tokens to different expert shards via expert parallelism, with communication optimizations to balance
load. On the algorithmic side, parameter-efficient methods such as prompt and prefix tuning adapt
frozen models via small “soft” prompts, speculative decoding (Chen et al., 2023) uses a lightweight
draft model to accelerate token generation, and Simple Test-Time Scaling(Muennighoff et al., 2025)
applies budget-forcing at inference to improve reasoning quality.

Together, these system-level designs and algorithm-level approaches form a cohesive ecosystem that
drives state-of-the-art performance in efficient LLM serving. Please see survey papers (Li et al.,
2024a; Kim et al., 2023; Zhen et al., 2025) for comprehensive introduction (Lazuka et al., 2024).

D.3 LLM EVALUATION

Recently, with the rapid development of LLM, there is a growing interest in evaluating LLM from
different aspects and topics. A holistic evaluation framework of language models is proposed (Liang
et al., 2023). Generally, the technical reports like (Yang et al., 2024a; team, 2025; Guo et al., 2025)
of LLM provides pre-relase comprehensive evaluation results. The quantization methods for LLM
are evaluated in (Jin et al., 2024) and (Li et al., 2024b). In (Li et al., 2025a), it evaluates the general
abilities of post-edit LLM to assess the utility of existing knowledge editing methods. Work (Lazuka
et al., 2024) and (Agrawal et al., 2024) evaluate LLM serving from the new perspective.

D.4 ECOSYSTEM SUPPORT FOR RLLM SERVING.

The development of LL.Ms has greatly benefited from the research community and the open-source
ecosystem, including open platforms such as Hugging Face, Github, and Modelscope; open-source
LLMs like Llama (Grattafiori et al., 2024), Qwen (Yang et al., 2024a), and Deepseek R1; open-source
LLM infrastructure such as Deepspeed (Rasley et al., 2020), Megatron-LM (Shoeybi et al., 2019),
vLLM (Kwon et al., 2023), OpenRLHF (Hu et al., 2024¢), and SGLang (Zheng et al., 2024); various
optimization techniques like Flash-Attention (Dao et al., 2022), FlashInfer (Ye et al., 2025b), ZeRO
(Rajbhandari et al., 2020), and LMCache (Liu et al., 2024; Cheng et al., 2024; Yao et al., 2024).
The advancement of RLLMs continues this trend. With the open-sourcing of Deepseek R1 (Guo
et al., 2025), a large number of open-source RLLMs like Phi-4 reasoning (Abdin et al., 2025) , and
Llama-Nemotron (Bercovich et al., 2025) have emerged, further promoting the democratization of
cutting-edge RLLM technology. Although existing LLM serving systems like vLLM, and SGLang
provide some level of support for RLLMs, current support and optimization techniques remain
significantly limited. Some techniques do not support RLLMs at all, for instance, Eagle speculative
decoding currently lacks compatibility with RLLMs, while others fail to offer targeted optimizations
and improvements specific to RLLM characteristics. As RLLMs continue to advance rapidly, we call
on the research community and industry to collaborate in addressing the issues revealed in this paper.
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E AN INTRODUCTION TO LLM SERVING

The highly increased development of LLMs’ application arise the demand of effectively using LLM
serving systems. In this part, we introduce some optimization methods for serving systems and
introduce more serving metrics. For more comprehensive introduction, please refer to (Zhen et al.,
2025) and (Li et al., 2024a).

E.1 SERVING PERFORMANCE

Recently, there are a lot of researches focus on optimizing the performance of serving system based
on LLM architecture’s characteristics and system-level tricks. Current LLMs are mostly using decode-
only architecture, making the KV values of former tokens becomes key information for the next
token. Hence, the first useful methods is storing all of KV value in memories(particularly in GPUs),
this method significantly improve the efficiency of prefill stage. However, this method had already
deployed for language models. For LLM, the most important method proposed first is continuous
batching(Yu et al., 2022). Continuous batching is processing requests in serving systems in iteration
level, compared with former systems process requests in request-level. By using this technique,
serving systems don’t need to wait until the last request finishes its decoding, but replace requests
with new requests once it ends decoding. This method enhance GPU’s utilization, reducing waiting
time for high-throughput serving systems. Next, considering the difference of prefill and decode
that prefill is compute-intense stage which needs more GPU computing resources, while decode
is memory-intense stage which needs more GPU memories compared with prefill, Prefill-Decode
disaggregation(Zhong et al., 2024) proposed a method that process prefill and decode in different
GPUs, fully utilizing GPU resources based on the characteristics of the two phases. Despite this,
GPU resources are still not fully utilized because the GPU pre-allocates a portion of GPU space
for requests when storing previous KV cache. However, much of this space isn’t effectively used,
resulting in significant waste (for example, if a request occupies 8 tokens, the GPU allocates 2080
token spaces for decoding this request, but actually only produces 80 tokens, wasting space for 2000
tokens). At the same time, since the GPU allocates and reserves space for requests sequentially, this
can lead to memory fragmentation and inefficient resource utilization when requests complete at
different times. Paged attention borrows the concept of CPU paging, and in their serving system
(VLLM) creates a mapping between virtual addresses and actual GPU addresses through virtual
pages(Kwon et al., 2023).

E.2 SERVING METRIC

With the high demand of deploying customized LLMs for practical utilization, there is a need to
measure the cost efficiency of different LLM serving solutions. The cost of serving RLLM depends
on how many requests it can handle per second while being responsive to client users and supporting
an acceptable level of answer accuracy. To measure the performance of LLM serving system, there
are multiple metrics can be chosen: (1) Time to first token (TTFT) is the time it takes to process
the prompt until generate the first token. It measures how long a user must wait before seeing
the model’s output; (2) End-to-end request latency (E2E latency) indicates the time it takes from
submitting the first token of a request to receiving the last token of response, including the time for
queueing and batching and network latencies in real-world scenario; (3) Time between tokens (TBT,
a.k.a Intertoken latency, ITL) is the average time between the generation of consecutive tokens in a
sequence; (4) Tokens per second (TPS) of system represents the mean of total output tokens number
per second , accounting for all the requests happening simultaneously; (5) Requests per second (RPS)
is the average number of requests that can be successfully completed by the system in a 1-second
period. In LLM serving systems, there are many metrics evaluating the performance, In this paper,
we use metrics for reference that companies and personal users care most while using RLLM. I'll
introduce them here for clear understanding.

* Throughput: Number of processed requests per second. This is the key metric for users
since it directly determines overall system performance.

* Time to First Token (TTFT): Time from receiving a request until the first token is generated
(i.e., the prefill stage is completed). This reflects how quickly the serving system handles the
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prefill stage. Techniques such as continuous batching (Yu et al., 2022) and paged attention
(Kwon et al., 2023) were proposed to optimize this metric.

* Time to First Visible Token (TTFVT): The time from receiving a request until the first
token is actually displayed to the user. This metric is specific to RLLMs because some
inference systems hide the internal “thinking” steps and only reveal output once thinking is
complete. Since RLLMs often perform a prolonged reasoning chain before producing any
visible token, TTFVT is typically much larger than TTFT.

* Time Between Tokens (TBT): Average time between generation of consecutive tokens. For
RLLMs, both the thinking stage and decoding stage share this metric. Recent algorithm-level
optimizations such as S1 (Muennighoff et al., 2025) target TBT. In this paper, TBT reflects
the real-time per-token responsiveness of the model during interactive generation, capturing
both computational and scheduling overhead.

* KV Cache Utilization: Proportion of total memory occupied by the KV cache during
model execution. High utilization enables reuse of KV values by subsequent requests,
reducing prefill time. However, excessive utilization triggers frequent evictions, degrading
performance. Section 4 analyzes KV cache utilization and its impact on overall performance
for RLLMs across datasets of varying difficulty.

* Tokens per Second (TPS): Total number of tokens generated per second across all active
sessions. This combines throughput and per-token speed into one measure of generation
capacity.

* Requests per Second (RPS): Total number of full-request pipelines completed per second.
Unlike throughput (which counts raw requests), RPS tracks end-to-end request handling.

* Model Initialization Latency: Total time from service startup—including loading model
weights, constructing computation graphs, allocating GPU memory, initializing optimizers,
and any warm-up steps—until the system is ready to handle its first request. For MoE
models (such as the DeepSeek model used in this paper) with Tensor Parallelism (TP) and
Pipeline Parallelism (PP), this also involves partitioning and distributing parameters across
multiple GPUs. This metric helps compare how different serving systems optimize model
loading and initialization.

* End-to-End Latency (E2E Latency): Time from user request submission until receipt
of the final token. This metric significantly influences user experience; for enterprises,
improving RLLM end-to-end latency is also a critical concern.
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F IMPLEMENTATION AND REPRODUCTION DETAILS
In this section, we would like to provide details for reproducing our experimental results.

F.1 CODE BASE

Our code and the ASU-Perf suite will be available once this paper accepted.

F.2 MODELS

Here, we list all of the model checkpoints used in our experiments.

RLLM checkpoints:

¢ deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B https://hf-mirror.com/
deepseek-ai/DeepSeek-R1-Distill-Qwen—-1.5B

* deepseek-ai/DeepSeek-R1-Distill-Qwen-7B https://hf-mirror.com/
deepseek—-ai/DeepSeek-R1-Distill-Qwen-7B

¢ deepseek-ai/DeepSeek-R1-Distill-Qwen-14B https://hf-mirror.com/
deepseek-ai/DeepSeek—-R1-Distill-Qwen—-14B

* deepseek-ai/DeepSeek-R1-Distill-Qwen-32B https://hf-mirror.com/
deepseek-ai/DeepSeek—-R1-Distill-Qwen—-32B

* deepseek-ai/DeepSeek-R1-Distill-Llama-70B https://hf-mirror.com/

deepseek-ai/DeepSeek-R1-Distill-Llama-70B
LLM checkpoints:

¢ Qwen/Qwen2.5-Math-1.5B https://hf-mirror.com/Qwen/Qwen2.5-Math-1.
5B

¢ Qwen/Qwen2.5-Math-7B https://hf-mirror.com/Qwen/Qwen2.5-Math-7B
e Qwen/Qwen2.5-14B https://hf-mirror.com/Qwen/Qwen2.5-14B
e Qwen/Qwen2.5-32B https://hf-mirror.com/Qwen/Qwen2.5-32B

* meta-llama/Llama-3.3-70B-Instruct https://hf-mirror.com/meta-1llama/
Llama-3.3-70B-Instruct

F.3 DATASETS
Here, we list all of the benchmarking datasets used in our experiments.

e GSM8K https://hf-mirror.com/datasets/openai/gsm8k

e MATH-500 https://hf-mirror.com/datasets/HuggingFaceH4/
MATH-500

* AIME-24 https://hf-mirror.com/datasets/HuggingFaceH4/aime_
2024

e GPQA https://hf-mirror.com/datasets/Idavidrein/gpga

F.4 HYPERPARAMETERS SETTINGS FOR RLLM

The hyperparameters settings for RLLM we employed are as follows:
Batch Size: 8, 16, 32

Dataset Capacity: 100, (AIME24 30)

Temperature: 0.6, Top-p: 0.95, Top-k: 20, Request Timeout: 1200 sec

Experiments Repeat Time: 3
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Performance Only Mode: False
Reasoning LLM Mode: True
CoT Visible (for TTFT): False

F.5 HYPERPARAMETERS SETTINGS FOR LLM

The hyperparameters settings for LLM we employed are as follows:
Batch Size: 8, 16, 32

Dataset Capacity: 100, (AIME24 30)

Temperature: 0.7, Top-p: 0.8, Top-k: 20, Request Timeout: 1200 sec
Experiments Repeat Time: 3

Performance Only Mode: False

Reasoning LLM Mode: False

CoT Visible (for TTFT): False
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G EXPERIMENTS DETAILS

G.1 DETAILS EVALUATION DATASETS

We use 4 different datasets in this paper, they are GSM8K, MATH500, AIME24, and GPQA. The
details of these datasets are following.

* GSMSK (Cobbe et al., 2021): The GSMS8K dataset is a large collection of mathematical
problem-solving tasks designed for training and evaluating AI models in the context of
elementary school-level math. It primarily focuses on grade school math word problems
that require multiple steps of reasoning and calculations to solve.

* MATHS500 (Lightman et al., 2023): a challenging dataset consisting of problems from high
school math competitions across seven subjects (e.g., Prealgebra, Algebra, Number Theory)
and difficulty levels based on AoPS (ranging from 1 to 5). Problems in these competitions
range from level 1, the easiest, often found in AMC 8 exams, to level 5, like those in AIME.

* AIME24 (Committees, 2024):a dataset from the American Invitational Mathematics Ex-
amination, which tests math problem solving across multiple areas (e.g. algebra, counting,
geometry, number theory, and probability). Because AIME 2024 contains only 30 examples,
we don’t considered examples of AIME from other years.

* GPQA (Rein et al., 2024): a graduate-level dataset consisting of multiple-choice questions
in subdomains of physics, chemistry, and biology. For our experiment, we select the highest
quality subset, known as GPQA Diamond (composed of 198 questions).

G.2 RUNNING DEVICE

All of our experiments are running on two devices: a server with 8 RTX A6000 GPUs with 48GB
VRAM, and another server equipped with 8 RTX 4090 GPUs with 24GB VRAM.

G.3 INFERENCE ENGINE

We use vVLLM (Kwon et al., 2023) version 0.8.1 and SGLang (Zheng et al., 2024) version 0.4.6.post1.
For evaluation, we use OpenAl compatible API /v1/chat/completions .
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Table 1: Performance Metrics with PD-disaggregated

Model Method Dataset Accuracy Running Time Token Per Sec TTFVT  Output Tokens
7B w/o PD-disa ~ GSM8K 82 0:58 7133 0.21 41789
w/ PD-disa GSMSK 82 1:12 516.9 0.3 42052
w/o PD-disa MATH500 65 5:21 492.7 0.23 158431
w/PD-disa ~ MATH500 64 7:57 3232 0.4 154318
w/o PD-disa AIME2024 266 2:01 9353 0.27 112492
w/PD-disa  AIME2024 233 2:40 711.7 0.4 113718
w/o PD-disa GPQA 11 6:52 894.2 0.36 368377
w/ PD-disa GPQA 20 9:19 662.0 0.6 369821

H EXTEND OBSERVATION

H.1 CAN DISAGGREGATED PREFILLING IMPROVES RLLM SERVING PERFORMANCE ?

As discussed in Section 2 and paper (Zhong et al., 2024), the process of LLM generates responds to
a input prompt can be divided into two different phases. The LLM first processes input prompt in
the prefill phase, which is computation intensive, to generate the first token of response within one
iteration. After it, in the memory bounded decoding phase, LLM generates token one by one in each
iteration until reaching the end token. These two phases have distinct different significance. However,
many existing serving system co-locate the prefill and decoding at the same device, which may leads
to sub-optimal performance and inter-phase interference as revealed in (Zhong et al., 2024). The
disaggregated prefilling architecture was proposed to address this problem. It is first introduced in
(Zhong et al., 2024), followed by lines of recent works like (Hu et al., 2024b), (Patel et al., 2024), (Hu
et al., 2024a), (Qin et al., 2025), notably improving the TTFT and throughput of system. However,
current support for disaggregated prefilling is experimental and only available in vLLM. What’s
more, the only disaggregated prefilling feature support in vLLM is 1P1D scheme (1 prefilling worker
and 1 decoding worker) currently. Hence, we merely perform evaluation with 1P1D on 7B (on two
RTX-4090 GPU) and 14B (on two A6000 GPU) models across 4 evaluation datasets.

Main results. The results of PD-disaggregation are shown in Table 1. We found that under the 1P1D
setup, PD-disaggregation does not improve the serving performance of RLLMs. On the contrary,
it leads to a decline in system performance metrics. We find that the performance bottleneck of
1P1D serving for RLLMs lies in decoding, while the devices used for pre-filling are largely idle,
which leads to suboptimal performance. Additionally, PD-disaggregation requires KV cache transfer
between GPUs, and the communication overhead negatively impacts the serving of RLLMs.

Observation 6. PD-disaggregation (1P1D) deteriorates RLLM serving metrics compared to mixed
PD. Since near half of computing resource is idle.

I DETAILED EMPIRICAL RESULTS

1.1 TOKEN BUDGET FOR PILOT STUDY

Full Figures of token budget exploration are listed in Figure 8.

I.2  MAIN RESULTS FOR PILOT STUDY
We provide full results of RLLM and LLM serving comparison.

e 7B. RLLM in Table 2, LLM in Table 3

14B. RLLM in Table 4, LLM in Table 5
32B. RLLM in Table 6, LLM in Table 7
70B. RLLM in Table 8, LLM in Table 9
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Table 2: Serving Results of RLLM-7B

Model BS Budget Dataset Acc.  Running Time TPS TTFT Output Tokens
GSM8k  80.67 1m53s 42687  2.4200 129629

MATH500 61.33 9m34 30247 165500 502833

409 A1ME24 2333 4m7s 47037 40.8200 340730
GPQA  15.00 13m29s 47714 353600 1124673

8 GSMS8k 8233 1m46s 44395 23400 126155
MATH500 64.33 14m09 240.55  20.2900 601161

8192 AIME24  38.89 8m7s 409.92  64.9600 592434
GPQA  26.67 26m42s 41033 65.9200 1941071

GSMS8k  84.30 1mls 79140  2.3900 126451

MATH500  59.30 5m56s 499.45  17.1000 505796

409 AIME24  20.00 2ml15s 87291  46.4700 346986
GPQA  14.67 7m40s 838.80  39.3300 1124379

RLLM-7B 16 GSM8k  85.00 Imls 78322  2.3900 125992
MATH500  62.30 10m29s 35114 22.2400 623861

8192 AIME24  37.78 4m35s 736.40  73.4100 590741
GPQA 2533 15m21s 70620  72.5800 1921405

GSMSk  80.67 285 1700.96  3.7200 128915

MATH500  60.67 2m16s 1303.67  25.1500 506862

409 AIME24  18.89 1m22s 141373 52.9100 345118
GPQA  14.67 3m22s 1929.84  62.5700 1131700

64 GSM8k  84.67 25s 1872.10  3.5800 125931
MATH500 61.33 4mls 897.99  30.3300 624385

8192 AIME24  35.56 2m46s 122258 82.1100 600925
GPQA  28.00 6m57s 1567.52  102.1000 1936615

Table 3: Serving Results of LLM-7B

Model BS Budget Dataset Acc.  Running Time TPS TTFT  Output Tokens

GSMSk  69.67 1m47s 39413 0.0600 107378
MATH500  3.30 3m19s 343.65 00713 178459

8 4096 AME24  15.56 1m34s 392,93 0.0776 101905

GPQA  3.00 3m45s 32491 0.1366 183061

GSMSk  70.00 1m33s 47732 0.0991 115613

6 4006 MATHS00 1.67 2m13s 51334 0.1258 178452
LLM-7B AIME24  18.89 50s 699.36  0.1208 95181
GPQA  0.04 2m42s 495.68 0.2114 204317

GSM8k  67.67 575 762.61  0.1698 111292

MATH500  1.67 1m31s 748.09  0.2006 176704

32409  AIME24  16.67 33s 1063.23  0.1971 94296

GPQA  6.00 1m34s 754.67  0.3807 175708
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Figure 8: Results of token budget variation across different datasets for different scale RLLM .
I.3 SERVING BEHAVIORS FOR PILOT STUDY

For better presentation, we provide illustration about 14B and 32B model serving visualization in
Figure 9 and 10.
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Table 4: Serving Results of RLLM-14B

Model BS Budget Dataset Acc. Running Time  TPS TTFT Output Tokens
GSMSk  87.00 3m50s 280.83  5.9731 177347

MATH500  55.00 11m49s 277.63  20.0256 566267

409 AIME24  27.78 4m42s 41129 50.6600 341998
GPQA 1633 15m25s 406.14  39.0104 1090910

8 GSMS8k  87.67 3m30s 30334 6.0476 175210
MATH500 62.33 17m17s 21877 255350 656437

8192 AIME24  47.78 9m18s 33841  72.4221 558966
GPQA  21.00 30m34s 34119 67.0687 1842315

GSMS8k 8633 2m40s 402.48  7.6400 173204

MATH500  60.33 8m27s 388.92  27.2100 563198

4096 AmME24  27.78 3mlls 59452 61.7600 335082
GPQA 1533 10m48s 58123 52.2400 1098423

RLLM-14B 16 GSM8k  86.33 3m0ls 38272 8.1400 180684
MATH500  63.67 13m25s 291.14  33.2600 669369

8192 AIME24 4778 6m28s 498.79  109.3600 568311
GPQA  22.00 21m16s 48130 95.8800 1820128

GSMSk 8533 1m38s 619.91  10.1400 169539

MATH500 57.33 5m38s 568.13  36.8600 554485

409 AIME24 2222 2m20s 839.99  92.3600 344929
GPQA  15.00 8m18s 770.56  78.5500 1104010

32 GSMS8k 8633 2m13s 48636 11.0500 182233
MATH500  66.00 9m09s 41453 42.8600 654295

8192 AIME24  50.00 4m22s 72293 140.4300 563372
GPQA  26.67 15m36s 658.74 136.5100 1818245

28



Under review as a conference paper at ICLR 2026

Table 5: Serving Results of LLM-14B

Model BS Budget Dataset Acc.  Running Time TPS TTFT Output Tokens
GSM8k  74.17 1m18s 31773 0.0603 60286

MATHS500  44.00 2m?29s 286.86  0.0626 100818

4096  AIME24  2.22 1m47s 240.82  0.0626 69874
GPQA  29.00 2m15s 305.50  0.1222 87836

8 GSMS8k  74.17 lm16s 337.06  0.0164 59314
MATH500 44.67 2m23s 282.50  0.0635 99443

8192 AIME24 333 1m54s 25258  0.0619 77607
GPQA 2933 2m09s 22890  0.1217 90576

GSMS8k  77.33 445 52930  0.1536 55856

MATH500  46.00 1m57s 365.86  0.0913 106980

4096  AIME24 333 1m05s 388.44  0.0913 66109
GPQA 2533 1m40s 42431  0.2250 93954

16 GSMS8k  77.33 45s 554.18  0.0850 57030
MATH500  47.00 1m53s 385.42  0.0920 109010

8192 AIME24  4.44 58s 409.73  0.9020 62213
GPQA 2467 2m05s 381.19  0.2547 97573

LLM-14B GSMS8k  74.09 445 615.89  0.1350 60318
MATH500 47.67 1m04s 597.29  0.1393 94561

4096  AIME24  5.56 41s 616.16  0.1354 68309
GPQA  28.00 Im17s 403.77  0.4789 95110

32 GSM8k  74.59 52s 52630  0.1320 61833
MATH500  46.67 1m20s 52391  0.1385 102168

8192 AIME24 2.22 41s 620.70  0.1445 69811
GPQA  28.67 1m19s 541.19  0.4215 93025

GSMS8k  84.00 2m15s 463.17  7.3815 169635

MATHS500 59.33 7m57s 406.74  25.6479 560880

4096  AIME24 2333 3m3s 630.49 58.5514 340172
GPQA  17.00 10m22s 607.50  50.8592 1098715

64 GSM8k  88.00 2m39s 403.58  7.2181 174708
MATHS500  68.00 12m53s 299.83  32.5928 667886

8192 AIME24  53.33 6m7s 532.62  112.0436 577277
GPQA 2533 20m43s 504.45  86.7966 1846931




Under review as a conference paper at ICLR 2026

Table 6: Serving Results of RLLM-32B

Model BS Budget Dataset Acc. Running Time  TPS TTFT Output Tokens
GSMSk  91.00 4m16s 19212 52715 130170

MATH500  64.00 24m58s 12559  42.9319 537799

4096 AIME24  21.11 9m12s 21558  104.0663 349099
GPQA  20.00 5m0s 206.07  73.0046 1071843

8 GSMS8k 9033 4mlls 19477  5.2037 129401
MATH500  70.67 36m4ls 97.83  51.2373 621128

8192 AIME24  45.56 18m36s 17428  150.4045 575207
GPQA 2433 60m31s 166.67 129.2077 1779384

GSMS8k  90.67 2m27s 32474 5.4900 128546

MATH500  66.33 14m49 201.98  44.6300 517659

409 AIME24 2556 5m03s 388.52  111.2300 346308
GPQA 2167 17m25s 35272 74.0400 1070143

RLLM-32B 16 GSM8k  92.67 2m30s 324.04  5.5700 128060
MATH500 68.33 25m38s 13429 53.4000 597129

8192 AIME24  48.89 10m22s 309.03  170.1700 568936
GPQA  28.67 35m30s 283.98  137.9600 1778995

GSMSk 9133 1m39s 490.92  6.7103 129986

MATH500  66.67 9m29s 309.67  47.9789 504391

4096 AIME24  28.89 3m0ls 631.69 119.5658 335582
GPQA  18.00 11m25s 54178 94.9504 1077209

32 GSMS8k 9233 1m39s 49492 6.4570 129510
MATH500  68.67 16m6s 21337 60.4897 593685

8192 AIME24  50.00 6m06s 502.69 186.3563 547959
GPQA  23.00 23m13s 436.05 171.4893 1787777

Table 7: Serving Results of LLM-32B

Model BS Budget Dataset Acc. Running Time  TPS TTFT  Output Tokens
GSM8K  60.67 7m25s 8734  0.1271 100271

MATH500  46.67 8m24s 103.76  0.1339 131828

409 AIME24  6.67 2m43s 131.04  0.1414 57729
GPQA  29.00 Tmés 141.18  0.2291 144033

8 GSM8k  60.67 Tm10s 89.53  0.0867 98287
MATHS500  44.00 Tm42s 109.18  0.0874 127011

8192 AIME24  4.44 3m24s 127.82 0.0899 71654
GPQA  29.00 6m18s 15247  0.1141 136446

GSM8k  66.33 4m03s 130.10  0.1083 83076

MATH500  49.00 4m32s 17074 0.1104 115631

4096 AmME24 1222 2m13s 185.90 0.1092 67231
GPQA  31.00 4m23s 21062 0.1544 139381

LLM-32B 16 GSM8k  62.67 4m04s 126.56  0.1107 92586
MATHS500  46.03 5SmO0ls 156.52  0.1115 122183

8192 AIME24  6.67 1m53s 200.03  0.1179 60391
GPQA  23.33 3m46s 259.97  0.1659 136660

GSM8k  63.00 Sm24s 125.09  0.1902 96723

MATH500  45.00 Smdd 148.90  0.2097 123313

4096 ArME24  7.78 1m39s 21136 0.2206 57192
GPQA 2433 4m06s 231.08  0.3894 141199

32 GSM8k  62.15 3m59s 129.75 0.1094 87157
MATHS500 4437 Sm31s 14839  0.1109 128664

8192 AIME24 778 1m52s 200.63 0.1113 63495
GPQA 2533 4m31s 246.55 0.1872 136403
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Table 8: Serving Results of RLLM-70B

Model BS Budget Dataset Acc. Running Time  TPS TTFT Output Tokens

GSMSk  90.00 5m22s 146.65  6.6450 125391
MATH500  54.67 30m29s 10248  48.4212 538966
409 AIME24 3222 11md46s 162.46  108.0681 336881
GPQA 2267 38mlls 15829  93.9947 1052080
8 GSMSk  90.00 5m30s 143.90  6.5438 125874
MATH500  62.00 49m48s 7831  61.8861 677161

8192 AIME24  54.44 23m18s 13550 192.8731 561002
GPQA  29.67 75m38s 128.03  159.9508 1702698

GSM8k 8833 3m24s 23039 7.4600 123185
MATH500  57.00 19m45s 158.60  52.3600 539666

409 AIME24  26.67 TmOls 277.08  140.8100 342355

GPQA  23.00 23m35s 253.66  98.0500 1042191

RLLM-70B 16 GSM8k  88.00 3m32s 228.88  7.7200 125291
MATH500  60.67 32m27s 112.85  69.6400 644132

8192 AIME24  55.56 13md46s 22177  197.0300 539132
GPQA  30.67 46m01s 20478 181.9000 1659750

GSMS8k  88.67 2mlls 35222 9.7962 122786
MATHS500 56.67 13m0s 238.82 662581 534918

4096 AIME24 2556 4m26s 43858 1847638 343514
GPQA  23.00 15m57s 378.78  136.1667 1052451

32 GSMS8k  89.00 2m12s 352.59  9.4598 123720
MATH500 6233 21m36s 166.26  83.2369 621237
8192 AIME24 5111 8m24s 360.36  246.0471 537908

GPQA 32.00 30m31s 307.04 228.6145 1650647

Table 9: Serving Results of LLM-70B

Model BS Budget Dataset Acc. Running Time  TPS TTFT  Output Tokens

GSM8k  93.00 3m03s 14456 0.2030 62746
MATHS500  59.33 10m38s 90.67 0.2283 148624

409 AIME24  30.00 5m35s 10739 0.2461 99826
GPQA  53.33 12m18s 12853 0.4749 243123

8 GSM8k  92.67 2m58s 14442 0.1143 60838
MATH500  59.00 13m12s 7852 0.1197 162129

8192 AIME24  23.33 6mls 99.04  0.1232 98349
GPQA  51.67 11m24s 131.86  0.1847 233596

GSM8k 9133 1m4ds 24339  0.1525 60890

MATH500  60.00 6m35s 139.78  0.1730 144651

4096 AmME24  27.78 3m06s 17131 0.1678 89789
GPQA  47.67 7m28s 201.44  0.2694 231586

LLM-70B 16 GSM8k  93.67 1m52s 227.03  0.1536 61434
MATH500  59.00 6m38s 139.61  0.1704 142362

8192 AIME24  27.78 5m13s 12439 0.1715 103021
GPQA  49.00 10m26s 155.10  0.2551 247291

GSM8k 9233 1m17s 34624 0.6077 61987

MATHS500  60.33 5m29s 176.59  0.6520 149612

4096 AIME24  26.56 2m37s 24393 0.7012 106146
GPQA  51.00 5m40s 268.96 1.5823 237672

32 GSMS8k  93.00 Im14s 35773 0.2325 60831
MATH500  61.00 Tm7s 148.03  0.2520 164985

8192 AIME24 2778 3m23s 186.51  0.2550 105595
GPQA  53.33 4m54s 306.15  0.5346 233070
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1.4 RUNNING TRACES DEMO

INFO: 127.0.0.1:53458 — "POST /vl/chat/completions HTTP/1.1"
200 OK

INFO 05-10 13:01:49 [loggers.py:80] Avg prompt throughput: 223.0
tokens/s, Avg generation throughput: 164.5 tokens/s, Running:
16 reqs, Waiting: 0 reqs, GPU KV cache usage: 1.0\%, Prefix
cache hit rate: 11.6\%

INFO 05-10 13:01:59 [loggers.py:80] Avg prompt throughput: 0.0
tokens/s, Avg generation throughput: 650.0 tokens/s, Running:
14 reqs, Waiting: 0 reqs, GPU KV cache usage: 2.8\%, Prefix
cache hit rate: 11.6\%

INFO 05-10 13:02:09 [loggers.py:80] Avg prompt throughput: 0.0
tokens/s, Avg generation throughput: 495.5 tokens/s, Running:
11 reqs, Waiting: 0 reqs, GPU KV cache usage: 3.9\%, Prefix
cache hit rate: 11.6\%

INFO 05-10 13:02:19 [loggers.py:80] Avg prompt throughput: 0.0
tokens/s, Avg generation throughput: 406.1 tokens/s, Running:
8 reqs, Waiting: 0 reqs, GPU KV cache usage: 4.0\%, Prefix
cache hit rate: 11.6\%

INFO 05-10 13:02:29 [loggers.py:80] Avg prompt throughput: 0.0
tokens/s, Avg generation throughput: 320.8 tokens/s, Running:
8 reqs, Waiting: 0 reqs, GPU KV cache usage: 5.1\%, Prefix
cache hit rate: 11.6\%

INFO 05-10 13:02:39 [loggers.py:80] Avg prompt throughput: 0.0
tokens/s, Avg generation throughput: 320.7 tokens/s, Running:
6 reqs, Waiting: 0 reqs, GPU KV cache usage: 4.9\%, Prefix
cache hit rate: 11.6\%

INFO 05-10 13:02:49 [loggers.py:80] Avg prompt throughput: 0.0
tokens/s, Avg generation throughput: 271.3 tokens/s, Running:
5 reqs, Waiting: 0 reqs, GPU KV cache usage: 4.9\%, Prefix
cache hit rate: 11.6\%

INFO 05-10 13:02:59 [loggers.py:80] Avg prompt throughput: 0.0
tokens/s, Avg generation throughput: 180.7 tokens/s, Running:
4 reqs, Waiting: 0 reqs, GPU KV cache usage: 4.5\%, Prefix
cache hit rate: 11.6\%

INFO 05-10 13:03:09 [loggers.py:80] Avg prompt throughput: 0.0
tokens/s, Avg generation throughput: 164.8 tokens/s, Running:
4 reqs, Waiting: 0 reqs, GPU KV cache usage: 5.0\%, Prefix
cache hit rate: 11.6\%

INFO 05-10 13:03:19 [loggers.py:80] Avg prompt throughput: 0.0
tokens/s, Avg generation throughput: 174.4 tokens/s, Running:
4 reqs, Waiting: 0 reqs, GPU KV cache usage: 5.7\%, Prefix
cache hit rate: 11.6\%

34



Under review as a conference paper at ICLR 2026

J  DETAILED EMPIRICAL RESULTS FOR RLLM SERVING OPTIMIZATION

J.1 MODEL WEIGHT QUANTIZATION

Full results of model weight quantization with different models are listed in Table 10 and 11.

Table 10: Results of RLLM-7B with Different Quantization Methods

Model Method Dataset Acc.  Running Time TPS TTFT Output Tokens
Budget-4096

GSMS8k  81.67 36s 1258.52 15015 125477
MATHS500 61.00 3m34s 807.99  10.8316 488868
GPTQ  AIME24 16.67 1m25s 1383.83  28.3623 346988
GPQA  16.00 4m48s 1342.53  23.6366 1127392
GSM8k  82.67 2m36s 306.10  5.7903 128626
MATH500 59.33 14m55s 195.01  41.2395 501037
AWQ  AIME24  21.11 5m02s 390.68  104.9071 347634
GPQA  14.33 17m22s 37137  89.8281 1124314
RLLM-7B GSMSk  82.67 58s 805.44  1.8947 128016
MATHS500  64.00 4mdds 589.49  13.9700 479989

FP8 AIME24  25.56 1m49s 1062.28  38.5411 341103
GPQA  15.00 6m13s 1029.07 29.9774 1110873
GSMS8k  82.67 1m21s 56040  3.5042 119344

MATH500 61.00 7m58s 356.31  24.6086 486082

L4 AIME24  20.00 3m05s 630.92  60.3252 343397
GPQA  15.33 10m36s 59934  51.2468 1109222

Budget-8192

GSMS8k  80.33 57s 95597  1.5007 135978
MATHS500  64.00 5m54s 591.44  12.3735 600650
GPTQ  AIME24 31.11 2m59s 1156.19  44.9320 618796
GPQA 2533 9m47s 1131.34 442137 1959609
GSMS8k  80.00 2m35s 30642  5.6545 126262
MATH500 66.67 25m03s 141.57  54.4308 618240
AWQ  ATIME24 3222 10m17s 333.68  162.2038 610667
GPQA 2433 34m54s 314.88  156.5370 1942820
RLLM-7B GSMSk  83.00 1m03s 77497  2.0614 129654
MATH500  63.00 7m38s 45587  17.6713 24375

FP8 AIME24  40.00 3m42s 880.38  61.7136 582089
GPQA  27.67 12m40s 856.35  57.6786 1915156
GSMS8k  80.33 1m24s 56297  3.6269 123986
MATHS500  63.67 13m01s 264.82  29.4854 597768

L4 AIME24  36.67 6m34s 499.62  98.4701 586687
GPQA  31.33 23m07s 461.52  94.4508 1879225

J.2 KV CACHE QUANTIZATION

Full results of KV Cache quantization with different models are listed in Table 12, 13.

J.3 PREFIX CACHING

Full results of KV Cache quantization evaluation with different models are listed in Table 14, 15, 16,
17.

J.4 SPECULATIVE DECODING

The visualizatio for 7B model SD is in Figure 11. Full results of speculative decoding evaluation with
different models are listed in this subsection. For RLLM, results are presneted in Table 18, 19, 20, 21.
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Table 11: Results of RLLM-14B with Different Quantization Methods

Model Method Dataset Accuracy Running Time TPS TTFT  Output Tokens
Budget-4096

GSM8k 87.67 1m55s 53124 5.2007 167860

MATHS500  61.00 5m56s 53547 18478 547482

GPTQ  AME24 2222 2m25s 811.91  49.699 346219

GPQA 16.33 8m09s 77578 40.463 1102007

GSMS8k 86.67 1m30s 617.47  4.6092 151523

MATH500  61.00 6m01s 53474 19.725 551164

AWQ  AIME24 2111 2m30s 771.16  49.545 342303

RLLM-14B GPQA 18.33 8m26s 750.95  42.983 1106144

GSMS8k 89.00 2m19s 446.80  6.5690 170719

MATH500  60.67 Tm16s 44751 24214 560177

FP8 AIME24 24.44 2m55s 665.67  62.497 343575

GPQA 14.33 9m49s 65024  51.583 1113927

GSMS8k 83.67 3m27s 323.02  9.9777 187673

MATH500  58.67 9m24s 32666  30.626 528533

L4 AIME24 26.67 3mdls 52541  74.833 341339

GPQA 16.33 12m4d4s 501.28  65.669 1113251
Budget-8192

GSMS8k 84.67 1m48s 569.94  5.2287 168441

MATH500  65.33 8m49s 418.08  22.0500 638458

GPTQ  AIME24  40.00 5m03s 666.62  76.884 596659

GPQA 25.00 16m14s 638.98  74.9600 1831969

GSMS8k 86.67 1m48s 585.55  4.7892 155465

MATH500  65.33 9m22s 399.52  23.658 647840

AWQ  AIME24 4778 5m04s 640.79  84.494 575835

RLLM-14B GPQA 26.33 17m02s 621.02  77.938 1866185

GSMS8k 86.00 2mlds 46749  6.5689 171349

MATH500  63.33 11m40s 32862  28.621 667889

FP8 AIME24 51.11 5m43s 535.96  90.392 544733

GPQA 27.33 19m27s 529.1 84797 1817404

GSMS8k 83.33 2m47s 376.01  9.3994 172748

MATH500  63.00 14m4ds 248.57 36372 635662

L4 AIME24 4778 Tm58s 40173 123.95 572091

GPQA 21.33 28m55s 368.01  115.88 1879105

Tokens Per Second (TPS) Time To First Visble Token (TTFVT) Running Time (s) Accuracy (%)
" L H Lm H " H N

GSMBk  MATH500  AIME24

GPQA

GSMBk  MATH500

. GSM8k

AIME24. GPQA GSM8k

MATH500 AIME24

MATHS00  AIME24

GPQA

GPQA

GSM8k

Figure 11: Results of 7B RLLM with SD enabled .
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Table 12: Results of RLLM-7B with Different KV Cache Quantization Methods

Model Method Dataset Acc. Running Time TPS TTFT Output Tokens
Budget-4096

GSMSk 933 7mSs 678.93  3.8153 843936

MATHS00  4.33 Tm26s 84923  17.1335 1113415

FP8-EAM3  A1ME24  0.00 2m13s 936.07 23.4623 732374

GPQA 033 16m27s 831.28  73.5032 2428386

RLLM-7B GSM8k  2.67 9m3s 624.13  6.5660 1013649

MATHS500  0.33 9m28s 731.99  22.0233 1223241

FP8-ESM2  A1ME24  0.00 2m50s 733.58  71.2345 367838

GPQA  0.00 9m36s 739.58  36.1577 1225641
Budget-8192

GSMS8k  8.67 14m23s 63450  5.0929 1631364

MATH500  4.00 16mO1s 796.17  36.4224 2271199

FP8-EAM3  A1ME24  0.00 4m18s 855.67  50.5708 732374

GPQA  0.67 7m39s 91428  33.3658 1225852

RLLM-7B GSM8k  2.33 19m04s 563.56  26.7276 1919839

MATHS00 0.33 20m02s 681.93  94.8742 2438321

FP8-ESM2  A1ME24  0.00 5m59s 682.40  91.3258 730016

GPQA 0.00 20m21s 678.99 102.0499 2450781

Table 13: Results of RLLM-14B with Different KV Cache Quantization Methods

Model Method Dataset Acc.  Running Time TPS TTFT Output Tokens
Budget-4096

GSM8k  87.33 2ml7s 466.06  7.5905 169107

MATHS500  63.00 7m37s 417.60 25.1716 547992

FP8-EAM3  A1ME24  26.67 2m59s 640.63  63.6228 338613

GPQA  15.00 10m03s 631.30 50.1774 1106576

RLLM-14B GSMS8k  82.33 2m40s 390.53  7.6730 171445
MATH500 59.33 7m46s 394.45 25.4353 527039

FP8-ESM2  A1ME24  26.67 3m02s 632.26  62.9118 339940

GPQA 15.67 10m19s 608.30 49.3198 1094547

Budget-8192

GSMS8k  83.67 3m03s 35772 7.7833 180474

MATH500  66.33 12m18s 305.61  30.8091 653017

FP8-EAM3  A1ME24  52.22 5m53s 520.69 94.5251 545376

GPQA  24.00 20m23s 51137 89.8416 1838882

RLLM-14B GSM8k  85.33 2m39s 40141 7.8384 175761
MATH500 62.67 12m48s 289.84  29.0644 633207

FP8-ESM2  A1ME24  48.89 6m04s 513.09  92.6786 553741

GPQA 26.67 20m51s 497.93  90.6068 1833865
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Table 14: Results of RLLM-7B without Prefix Cache

Model Dataset Acc.  Running Time TPS TTFT Output Tokens

Budget-4096

GSM8k  79.00 1m26s 564.90  3.5931 130372

MATH500 60.67 6m54s 420.14  22.4207 498018

RLLM-7B  AIME24  18.89 2m46s 708.96 58.7487 349035

GPQA 14.67 9m24s 686.08 47.7385 1124613
Budget-8192

GSMS8k  81.33 1ml4s 622.53 3.4274 124776

MATH500  60.33 11m02s 33591 26.4863 639141

RLLM-7B AIME24  38.89 5m26s 599.82  96.2117 588055

GPQA 27.33 18m42s 583.69 89.0785 1932823

Table 15: Results of RLLM-14B without Prefix Cache

Model Dataset Acc.  Running Time TPS TTFT Output Tokens

Budget-4096

GSM8k  88.00 2m31s 42023  8.2604 178175

MATHS500 57.67 8m17s 40426  28.1407 576686

RLLM-14B  AIME24 23.33 3m12s 604.58  69.2730 342347

GPQA 13.67 10m52s 587.18  56.3880 1114920
Budget-8192

GSM8k  87.67 2m34s 41278 8.0207 171501

MATHS500 62.33 12m31s 292.60 31.9481 655351

RLLM-14B  AIME24  48.89 6m22s 502.43 107.6285 569489

GPQA  23.33 21m20s 481.04  91.3230 1817908

Table 16: Results of RLLM-32B without Prefix Cache

Model Dataset Acc. Running Time  TPS TTFT Output Tokens
Budget-4096
GSM8k  92.67 2m30s 327.11  5.8756 129761
MATHS00 61.00 15m30s 196.65 44.8259 529743
RLLM-32B  AIME24  25.56 5m09s 379.99  113.5958 344566
GPQA 19.00 17m45s 349.79  83.0689 1082837
Budget-8192
GSM8k  92.33 2m32s 314.79  5.8947 130188
MATHS00 70.00 23ml4s 152.31  58.6775 615489

RLLM-32B  AIME24  56.67 10m24s 302.55 174.7540 559504
GPQA  27.67 36m0ls 275.68 139.8732 1752688
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Table 17: Results of RLLM-70B without Prefix Cache

Model Dataset Acc. Running Time  TPS TTFT Output Tokens

Budget-4096

GSMS8k  90.00 3m25s 228.12  8.2671 123955

MATH500  54.00 20m22s 153.16  53.0075 535884

RLLM-70B  ATME24  31.11 7m05s 269.74 136.8779 336872

GPQA 19.33 24m06s 251.73  110.7695 1055915
Budget-8192

GSM8k  90.00 3m39s 21850  8.3275 126163

MATH500 61.33 31m57s 115.36  73.7041 634981

RLLM-70B  AIME24  54.44 13m52s 221.07 224.2071 544412

GPQA  31.33 46m37s 200.15 177.5976 1644534

Table 18: Results of RLLM-7B with Different Speculative Decoding Methods

Model Budget Dataset Acc.  Running Time TPS TTFT Output Tokens
L-Step: 2
GSM8k  83.33 1m21s 41147  3.8268 84044
MATH500  63.67 8m26s 241.67  28.9989 342214
4096 AIME24  18.89 4m52s 26643  91.1752 226340
GPQA 1433 16m04s 26139  73.0445 720304
RLLM-7B GSM8k  82.67 1m21s 41296  3.7715 83798
MATH500 61.33 13m50s 176.53  34.7626 415561
8192 AIME24 37.78 11m13s 192.58  156.9481 383225
GPQA  26.67 37m16s 187.68 161.3714 1223433
L-Step: 4
GSM8k  82.33 1m32s 380.14  3.9015 83812
MATH500  62.00 8m26s 22830  30.2225 325135
4096 AIME24  18.89 4md49s 250.19  84.2456 213773
GPQA  15.00 16m54s 24027  86.0878 699813
RLLM-7B GSMS8k  83.67 1m17s 418.62  4.0124 83857
MATH500  65.00 13m05s 178.65  36.4870 400672
8192 AIME24 37.78 11m13s 180.60  151.0329 356258
GPQA 2833 37mlls 172.07  152.6671 1119974
L-Step: 8
GSM8k  85.67 1m28s 378.44  4.0057 84219
MATH500  61.00 8m35s 228.01  30.6229 328151
409 AME24  21.11 4m57s 24874 92.2684 215501
GPQA  14.67 16m25s 24413 78.9886 685904
RLLM-7B GSM8k  82.33 1m26s 388.10  4.0512 83643
MATH500  60.33 13m15s 17436 36.0669 392872
8192 AIME24  38.89 10m36s 184.35  146.6946 344680
GPQA 2333 36m48s 180.27 171.9770 1158190
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Table 19: Results of RLLM-14B with Speculative Decoding Method

Model Budget L-Step Dataset Accuracy Running Time TPS TTFT Output Tokens
GSMS8k 88.00 3m3s 23827 11.1347 113595
MATH500  59.33 11m52s 187.51  45.6259 373475
4096 4 AIME24  24.44 6m09s 199.02  126.3789 217784
GPQA 15.67 20m42s 196.47 105.7676 696919
RLLM-14B GSMS8k 85.00 2m47s 255.10  11.5077 112893
MATH500  62.67 17m22s 148.10  52.2801 433701
8192 4 AIME24 5222 12m17s 151.99  194.4668 337745
GPQA 23.33 43m14s 146.90 182.6785 1099344
Table 20: Results of RLLM-32B with Speculative Decoding Method
Model Budget L-Step Dataset Accuracy Running Time TPS TTFT Output Tokens
GSMS8k 90.33 2m36s 21841  7.2955 84809
MATH500  62.33 15m45s 125.10  57.7919 333363
4096 4 AIME24  25.56 8m12s 14829  157.7257 211331
GPQA 16.67 26m29s 147.23  117.7640 665233
RLLM-32B GSM8k 92.00 2m32s 22234 73433 84595
MATH500  68.67 26m6s 8475  77.4161 376796
8192 4 AIME24  47.78 18m56s 99.98  240.3189 331180
GPQA 24.00 56m02s 105.96 216.8525 1050802
Table 21: Results of RLLM-70B with Speculative Decoding Method
Model Budget L-Step Dataset Accuracy Running Time  TPS TTFT Output Tokens
GSMS8k 88.67 3m30s 157.68  10.0978 84118
MATH500  56.67 22m01s 98.28  72.7944 367031
4096 4 AIME24  32.22 10m25s 121.87  195.0349 221532
GPQA 23.33 33m40s 117.38  159.7265 678418
RLLM-70B GSMS8k 90.33 3m33s 158.49  10.2136 84802
MATH500  59.00 31m32s 7702  86.9171 413304
8192 4 AIME24 5111 21ml5s 94.05 298.7859 349228
GPQA 3433 66m23s 90.79  278.9286 1049010

40



Under review as a conference paper at ICLR 2026

For LLM, results are presented in Table 22 (7B), 23 (32B).

Table 22: Results of LLM-7B with Different Speculative Decoding Methods

Model Budget L-Step Dataset Accuracy  Running Time TPS TTFT  Output Tokens
GSM8k 68.67 2m07s 262.59  0.2300 83610
MATHS500 233 2m40s 299.47 0.3243 119825
AIME24 15.56 1m10s 321.47 0.3449 60913
GPQA 6.33 2m29s 282.74  0.5113 90423
GSM8k 66.67 1m47s 304.82  0.2263 80208
4 MATHS500 0.67 2m32s 309.60 0.3160 115604
LLM-7B 4096 AIME24 18.89 1m02s 34277 0.3234 54837
GPQA 3.67 2m24s 297.60 0.5061 36045
GSM8k 69.33 1m59s 268.42 0.2257 79618
MATHS500 2.00 2m54s 277.62 0.3213 121082
AIME24 21.11 1m06s 313.01  0.3505 54877
GPQA 3.00 2m27s 275.03  0.5067 85956
Table 23: Results of LLM-32B with Speculative Decoding Method
Model Budget L-Step Dataset Accuracy Running Time  TPS TTFT  Output Tokens
GSMS8k 59.67 4m07s 104.92  0.3605 61457
MATH500  45.33 3m57s 142,52 0.5117 77136
4096 4 AIME24 6.67 1m19s 17042 0.5746 32802
GPQA 23.67 3ml2s 199.91  0.9070 79295
LLM-32B GSMS8k 63.00 3m33s 108.95 0.3581 53146
MATH500  45.67 3m33s 146.57 0.5238 69419
8192 4 AIME24 333 1m14s 182.46  0.5354 31939
GPQA 24.67 3m04s 204.56  0.8977 77214
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K EXTENDED RESULTS FOR REAL WORLD BENCHMARKING

KV Cache Usage (%)
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Figure 12: KV cache usage of 7B models under real world workload across different datasets.
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Figure 13: KV cache usage of 32B models under real world workload across different datasets.
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Running Requests Over Time
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Figure 14: Num of running requests in the inference engine for 7B models under real-world workload.
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Figure 15: Num of running requests in the inference engine for 32B models under real-world
workload.
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