
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

REASONING LANGUAGE MODEL INFERENCE SERVING
UNVEILED: AN EMPIRICAL STUDY

Anonymous authors
Paper under double-blind review

ABSTRACT

The reasoning large language model (RLLM) has been proven competitive in
solving complex reasoning tasks such as mathematics, coding, compared to tradi-
tional LLM. However, the serving performance and behavior of RLLM remains
unexplored, which may undermine the deployment and utilization of RLLM in
real-world scenario. To close this gap, in this paper, we conduct a comprehensive
study of RLLM service. We first perform a pilot study on comparing the serving
performance between RLLM and traditional LLM and reveal that there are sev-
eral distinct differences regarding serving behavior: (1) significant memory usage
and fluctuations; (2) straggler requests; (3) adaptive running time; (4) domain
preference. Then we further investigate whether existing inference optimization
techniques are valid for RLLM. Our main takeaways are that model quantization
methods and speculative decoding can improve service system efficiency with small
compromise to RLLM accuracy, while prefix caching, KV cache quantization may
even degrade accuracy or serving performance for small RLLM. Lastly, we conduct
evaluation under real world workload modeled by Gamma distribution to verify
our findings. Empirical results for real world workload evaluation across different
dataset are aligned with our main findings regarding RLLM serving. We hope our
work can provide the research community and industry with insights to advance
RLLM inference serving. The reproduction details work can be found in §F.

1 INTRODUCTION

Large language models (LLM) such as GPT (Achiam et al., 2023), Claude (Anthropic, 2024; 2025),
Gemini (Team et al., 2023), Llama (Grattafiori et al., 2024) have emeraged as powerful knowledge
bases through pre-training. These models, trained on vast Internet-crawled corpora such as C4 (Raffel
et al., 2020), PILE (Gao et al., 2020) and guided by scaling law (Kaplan et al., 2020; Rae et al.,
2021), have accumulated large-scale knowledge, and exhibited remarkable performance on various
knowledge extensive tasks. Despite these advancements, LLMs are criticized for their unsatisfactory
capabilities on complex reasoning tasks, e.g., challenging mathematics, and programming tasks.

Recently, reasoning large language models (RLLM) like OpenAI o1 (Jaech et al., 2024), DeepSeek
R1 (Guo et al., 2025), Qwen-3 (team, 2025) have sparked a growing body of research into test time
scaling (Snell et al., 2025; Muennighoff et al., 2025) via long chain-of-thought reasoning (Wei et al.,
2022), significantly improving their mathematical reasoning, coding tasks and knowledge reasoning
capabilities, e.g., even a 1.5B open source RLLM can surpass giant cutting-edge LLMs like GPT-4o
on math tasks (Guo et al., 2025). Such achievements make it possible to deploy a small to medium
RLLM as a powerful assistant to light the burden of workload for the staff of small entities or even
for person, democratizing the use of cutting-edge RLLMs. Hence, it is desirable for small entity with
limited GPU resources to efficiently deploy RLLM with inference engine privately for internal use.

Nevertheless, current LLM serving engine, e.g. vLLM (Kwon et al., 2023), LMDeploy (Contributors,
2023), Tensor-RT (NVIDIA, 2023), are initially designed for traditional LLM , other than for RLLM.
Though optimization techniques for LLM serving (§2) have been extensively studied, it remains
largely unexplored whether RLLM exhibits distinct serving characteristics from LLM. If so, directly
applying existing LLM serving techniques to RLLM may leave sub-optimal serving performance.
Thus, it is natural to ask the following critical research question:

Is there any distinct difference in serving behaviors between LLM and RLLM?

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

To answer the above question, we perform systematic study of efficient RLLM serving. We first
establish the ASU assessment framework (§3.2) for assessing RLLM serving. To justify whether
there exists a distinct difference in serving behavior between RLLM and LLM, we design a benchmark
suite named ASU-Perf and conduct a pilot investigation with it on different scale LLM and RLLM (§4).
We found that when requests arrive in batches, the serving behavior of RLLMs differ significantly
from LLMs, and the main findings can be primarily summarized in the following aspects: (1) RLLM
exhibits significant KV Cache fluctuations and usage; (2) long tail distribution of requests running
time caused by slow requests; (3) RLLM solves different difficulty level problems with adaptive
running time; (4) RLLM excels LLM on math reasoning while on-par on knowledge intensive tasks.

To understanding RLLM serving further, we first conduct extensive evaluations with various optimiza-
tion techniques across diverse benchmarks (§5). We find that the model quantization and speculative
decoding integrated in serving engine can improve serving efficiency and performance with only
small compromising on accuracy of RLLM. However, prefix caching, and KV cache quantization
do not always improve serving efficiency. They degrade the accuracy or serving performance for
small RLLM, e.g., 7B model. Lastly, we conduct evaluation (§6) under real world workload modeled
by Gamma distribution to verify our findings with different scale language models across different
domain. Empirical results of real world workload evaluation indicate that the serving behaviors of
RLLM are distinct from the LLM and are aligned with our main findings regarding RLLM serving.

We hope our work can provide the research community and industry with insightful perspectives to
help advance studies in efficient RLLM serving. To the best of our knowledge, we are the first to
dissect the RLLM serving performance. The main contributions of this paper are the following.

• Conceptually, we propose ASU, a framework to assess RLLM serving, which considers accuracy
of response, RLLM service-provider side metric, and user side performance metrics together (§3).

• Technically, we introduce ASU-Perf, a benchmarking suite for evaluating RLLM serving (§3).
• Empirically, we reveal key differences of serving behaviors between RLLM and LLM: Significant

Memory Fluctuations and Usage, Straggler Requests, and Adaptive Running Time (§4).
• We conduct extensive experiments on some RLLM serving optimization techniques (§5).
• We empirically validate our findings in real-world workload and verify their generalization (§6).

2 PRELIMINARIES

In this section, we provide preliminaries of RLLM, LLM serving and its metric. For comprehensive
introduction of LLM serving optimization and recent advancement, please refer to Appendix E.

RLLM and LLM. LLMs have demonstrated remarkable capabilities across various natural language
processing tasks. However, standard LLMs often encounter difficulties when faced with complex
problems that require multi-step reasoning, planning, and deeper cognitive processes, sometimes
referred as “System-2 tasks” (Li et al., 2025c). To address these limitations, RLLMs have emerged,
specifically engineered to enhance these deliberative reasoning abilities. A key technique employed
by RLLMs is the “long Chain of Thought” (long CoT) prompting strategy (Shao et al., 2024). This
approach encourages the model to generate extended, explicit step-by-step reasoning pathways, break-
ing down complex problems into more manageable parts. Unlike standard LLMs that might provide
more direct or less detailed answers, RLLMs utilizing long CoT can better navigate the intricacies of
tasks, leading to more accurate and justifiable solutions by methodically thinking through the problem.
This distinction allows RLLMs to tackle challenges in domains like advanced mathematics, intricate
logical puzzles, and long-horizon planning more effectively than their conventional counterparts.

LLM Serving. To exploit LLM in real-world scenarios, current practice generally delegates the
inference procedure as an individual serving service. The design goal of such serving systems is
to accommodate inference output to client users with low latency and high throughput and full use
of GPU memories. Unlike the encoder-based language model (Vaswani et al., 2017) like BERT
(Devlin et al., 2019), LLM first processes input prompts with intensive computation at the prefill
stage and then generates output tokens one by one within each iteration at decoding stage, which
limited by the memory capacity of the hardware. Traditional serving systems process prompts batch
by batch, resulting in ineffective memory utilization. Orca (Yu et al., 2022) introduces continuous
batching schedule at granularity of each token generation iteration to improve throughput of serving

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

system. To handle as much input requests, the memory space for serving system should be efficient
yet elaborated managed. Since decoding phase needs to re-use KV values of their prompt tokens
which are stored in GPU, vLLM (Kwon et al., 2023), a high performance serving engine, introduces
PagedAttention with paged memory fragmentation and sharing mechanism , which alleviates memory
fragmentation and enables allocation in demand. Considering the prefill is compute-intensive task,
while the decode is memory-intensive task, for further improvement, DistServe (Zhong et al., 2024)
disaggregates the prefill and decode phase by assign computation of these two stages to different
GPUs, which co-optimizes the resource allocation and parallelism tailored for each phase.

Serving Performance Metrics. To measure the performance of serving system, there are multiple
metrics can be chosen: (1) Time to first token (TTFT) is the time it takes to process the prompt until
generate the first token. It measures how long a user must wait before seeing the model’s output; (2)
End-to-end request latency (E2E latency) indicates the time it takes from submitting the first token of
a request to receiving the last token of response, including the time for queueing and batching and
network latencies in real-world scenario; (3) Time between tokens (TBT, a.k.a Intertoken latency,
ITL) is the average time between the generation of consecutive tokens in a sequence; (4) Tokens per
second (TPS) of system represents the mean of total output tokens number per second , accounting for
all the requests happening simultaneously; (5) Requests per second (RPS) is the average number of
requests that can be successfully completed by the system in a 1-second period. For More details of
LLM benchmarking metrics, please refer to §E.2 and related resource (Vinh et al., 2025; inc, 2024).

3 EXPERIMENTAL SETTINGS

In this section, we present experimental setups (§3.1) and the ASU assessment framework (§3.2).

3.1 SETUPS

Here, we list necessary experimental setups. For implementation details, please refer to Appendix G.

Language Models. We employ 4 different scale models to assess their serving performance and
serving behavior. General LLM : Qwen-2.5-Math 7B (Yang et al., 2024b), Qwen-2.5-14B , Qwen-2.5-
32B (Yang et al., 2024a), and meta-llama/Llama-3.3-70B-Instruct (Grattafiori et al., 2024) and their
long-cot tuned counterparts RLLM: DeepSeek-R1-Distill-Qwen-7B, DeepSeek-R1-Distill-Qwen-
14B, DeepSeek-R1-Distill-Qwen-32B , and DeepSeek-R1-Distill-Llama-70B for fair comparison.

Evaluating Datasets. We adopt four different widely used datasets to evaluate the performance of
RLLM. Since RLLMs are particularly trained for system-2 reasoning tasks (Wei et al., 2022), we
mainly perform benchmarking with mathematical problems. We adopt three different difficulty level
math reasoning datasets: GSM8K (Cobbe et al., 2021) as easy level, MATH-500 (Hendrycks et al.,
2021; Lightman et al., 2023) as medium level, AIME-2024 (Committees, 2024) as the hardest level.
To further distinguish are there any differences of serving performance and behaviors for RLLM
in reasoning math problem or knowledge-based problem , we also used GPQA (Rein et al., 2024)
dataset for knowledge reasoning. More details of these datasets are introduced in §G.1.

LLM Inference Engine. We employ 2 most adopted open source LLM inference engines, vLLM
and SGLang (Zheng et al., 2024) in evaluation. We use OpenAI compatible API of these engines.

Evaluation Suite. We employ ASU-Perf, an benchmark suite proposed by us for evaluating LLM and
RLLM serving performance with different inference engine. We leverage it in all of evaluation.

3.2 THE ASU ASSESSMENT FRAMEWORK

The adoption of RLLM hinges on whether their are capable of generating value that outweighs their
inference costs (Erol et al., 2025). Assessing this tradeoff requires metrics that account for both
performance and serving costs for both service provider and users. For RLLM service providers and
users, the performance metrics they care about differ: providers seek to maximize system throughput,
while users expect rapid model responses. In addition, it is essential to ensure response accuracy
while optimizing RLLM serving system performance as much as possible. Thus, we propose ASU
(Accuracy, Service-end, User-end), a trinity framework for assessing RLLM serving performance
by together considering response accuracy, RLLM service provider end and user end. For accuracy

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

metric, we employ evaluation own metric for each dataset. For service provider side metrics, we
use throughput metric TPS (token per second) . For user-side metrics, we use TTFVT (time to first
visible token) , a variant of TTFT , since we assume reasoning tokens of RLLM are invisible to users
like commercial RLLM like OpenAI o1, and E2E requests running time as metrics.

In the next section, we will dive into the characteristic of RLLM serving via detailed experiments.

4 PILOT INVESTIGATIONS: SERVING LLM V.S. RLLM

In this section, we perform an comprehensive investigation to RLLM and LLM inference serving.

Experiments. We involve eight prevailing models in evaluations. For fair comparison, RLLM
model we employed is the tuned counterpart of evaluated LLM, e.g., Qwen-2.5-Math-7B and its
tuned RLLM counterpart DeepSeek-R1-Distill-Qwen-7B. We conduct evaluation with 7B, 14B, 32B,
70B language models on different inference engines. For comprehensively assessment, we perform
evaluation with different token budget and batch size. We use all the datasets described in §3.1.

0.25K 0.50K 1K 2K 4K 8K 16K 20K
Token Budget (K = 1024 tokens)

0

20

40

60

80

Ac
cu

ra
cy

 (%
)

Token Budget (14B RLLM)
GSM8K
Math500
AIME2024
GPQA

0.25K 0.50K 1K 2K 4K 8K 16K 20K
Token Budget (K = 1024 tokens)

0

20

40

60

80

Ac
cu

ra
cy

 (%
)

Token Budget (32B RLLM)
GSM8K
Math500
AIME2024
GPQA

Figure 1: Results of token budget variation across different datasets for 14B and 32B RLLM .

Main Results. 1) Results with Different Token Budget: Unlike traditional LLMs, RLLMs engage
in deliberate reasoning by generating lengthy chains of thought prior to answer, which significantly
increases token consumption. However, as existing LLM services are priced based on token usage,
this results in substantially higher costs. To justify the impact of token budget for RLLM serving, we
conduct evaluation with varying token budget from 0.5K to 20K across benchmarks. The results are
presented in Figure 1. We found that, for the majority of datasets, a token budget of 4096 to 8192
can achieved sufficiently good performance. It is worth noting that, as the token budget increases,
the performance of RLLMs on the GPQA and AIME24 datasets declined, which may indicate the
overthinking problem (Qu et al., 2025) of RLLM. Please refer to §I.1 for full results.

2) Results with Different Batch Size. We also explore the impact of different batch sizes on RLLM
serving performance with the same experimental setting. We find that increasing the batch size does
not affect model accuracy on various datasets. Nevertheless, it reduces the time required for RLLMs
to process the same number of requests, and improves throughput metric TPS, but at the cost of
increased average TTFVT. Please refer to §I.2 for full results with different batch size.

Serving Performance and Behaviors. To investigate RLLM serving behaviors, we analyzed the
running logs of the inference serving engine and conducted a visualization of the running traces, as
shown in Figure 2. As illustrated, RLLMs achieve much higher accuracy on math datasets than same
scale LLM, but a on-par performance on knowledge reasoning such as GPQA. The full results are
presented in §I.3. To dissect the difference of serving behavior, we present the running trace in §I.4.

Main Findings for RLLM Serving Characteristics. Given the above results in pilot studies, we
have the following findings in comparison of RLLM and LLM serving behaviors :

• Significant Memory Usage and Fluctuations: We observed significant fluctuations in memory
utilization of inference engine when serving RLLM . In extreme cases, the usage varied dramatically
between 3% and 70%, whereas traditional LLMs typically maintain KV cache usage below 3%.
We attribute these fluctuations to the excessive length of the reasoning chains generated by RLLMs,
which result in high memory consumption. During inference, the engine must retain KV caches for
the reasoning chains until the requests are completed, after which they are discarded.

• Straggler Requests: When requests arrive at the inference engine in batches, or an RLLM receives
multiple requests simultaneously, significant disparities in request difficulty can lead to some

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

0 20 40 60
0.0

0.5

1.0

1.5

2.0

GS
M

8K

Time (s)

KV
 U

sa
ge

 (%
)

0 10 20 30

2.5

5.0

7.5

10.0

12.5

15.0

Time (s)

Ru

nn
in

g
Re

qs

LLM RLLM
0.00

0.25

0.50

0.75

1.00

1.25

1.50

Model

Ti
m

e
(s

)

LLM RLLM
0

20

40

60

80

Model

Ac
cu

ra
cy

 (%
)

0 20 40 60 80
0

1

2

3

4

M
AT

H5
00

Time (s)

KV
 U

sa
ge

 (%
)

0 50 100 150 200

2.5

5.0

7.5

10.0

12.5

15.0

Time (s)

Ru

nn
in

g
Re

qs

LLM RLLM
0

5

10

15

Model

Ti
m

e
(s

)

LLM RLLM
0

10

20

30

40

50

60

Model

Ac
cu

ra
cy

 (%
)

0 20 40
0

2

4

6

8

10

12

AI
M

E2
02

4

Time (s)

KV
 U

sa
ge

 (%
)

0 50 100 150 200
4

6

8

10

12

14

16

Time (s)

Ru

nn
in

g
Re

qs

LLM RLLM
0

2

4

6

Model

Ti
m

e
(s

)

LLM RLLM
0

10

20

30

Model

Ac
cu

ra
cy

 (%
)

0 50 100 150

KV cache
0

5

10

15

GP
QA

KV
 U

sa
ge

 (%
)

0 50 100 150

Running Reqs
2.5

5.0

7.5

10.0

12.5

15.0

Ru

nn
in

g
Re

qs

LLM RLLM

Running time
0

5

10

15

20

25

Ti
m

e
(s

)

LLM RLLM

Performance
0

5

10

15

Ac
cu

ra
cy

 (%
)

RLLM LLM

Figure 2: The serving performance and behavior comparison of a batch requests between 7B RLLM
and LLM. We can read from this figure that (1) RLLM exhibits significant KV Cache fluctuations
than LLM; (2) long tail distribution of requests running time caused by straggler requests; (3) adaptive
running time of RLLM; (4) domain preference on math. Please refer to §I.3 for more results.

requests taking much longer time to complete than others. We denote these slow requests as
straggler requests. These straggler requests ends either reaching the token budget or finishing the
reasoning process. During this time, only a small number of requests remain running in inference
engine, resulting in a noticeable drop in system throughput and hardware utilization. In contrast,
LLMs exhibit much smaller variations in execution time for requests within the same batch.

• Adaptive Running Time of RLLM: We found that, given the same number of samples with same
batch size, the runtime of RLLMs varies significantly across different datasets and is strongly
correlated with the difficulty of the tasks. In contrast, traditional LLMs exhibit much smaller
runtime differences across datasets, with little sensitivity to task difficulty. When the number of
samples varies, the runtime of LLMs on each dataset scales approximately linearly with the dataset
size, even when there are substantial differences in task difficulty.

• Domain Preference: RLLMs and LLMs exhibit significant performance differences on the mathe-
matical reasoning , while on-par on knowledge tasks, which align with existing works.

Discussion and Analysis for Findings. Based on the working mechanisms of inference engines we
employed in benchmarking, we discuss the reason of why the above revealed phenomena occur.

1) Straggler requests: In some mathematical datasets, e.g., Math-500, the difficulty of individual
problems varies. We assume that requests arrive in batches, and new requests are sent only after

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Math-500 GSM8K

60

65

70

75

80

85

90

Ac
cu

ra
cy

 (%
)

Accuracy

Math-500 GSM8K

100

200

300

400

500

600

En
d

To
 E

nd
 T

im
e

(s
)

E2E-Time

Math-500 GSM8K

200

300

400

500

600

700

800

To
ke

ns
 P

er
 S

ec
 (t

ok
en

s/
s)

Throughput

Math-500 GSM8K
0

10

20

30

40

 T
TF

VT
 (s

)

First Token Time

AIME-24 GPQA

14

16

18

20

22

24

26

Ac
cu

ra
cy

 (%
)

AIME-24 GPQA
100

200

300

400

500

600

700

800

En
d

To
 E

nd
 T

im
e

(s
)

AIME-24 GPQA

500

550

600

650

700

750

800

850

900

To
ke

ns
 P

er
 S

ec
 (t

ok
en

s/
s)

AIME-24 GPQA

40

45

50

55

60

65

70

75

 T
TF

VT
 (s

)

GPTQ AWQ FP8 Linear 4-bit Baseline

Figure 3: Empirical results of current LLM quantization methods on 7B RLLM. current methods
maintain or improve all serving-related metrics with less memory footprint while keep accuracy.

all requests in a batch are completed. As easier problems are answered shortly, the few remaining
difficult requests continue running in the engine, leading to the entire batch’s runtime being extended
by these straggler requests. This situation results in reduced system throughput.

2) Memory fluctuation and usage: This issue is caused by the KV Cache management strategy of
existing inference engines. Since RLLMs generate more tokens than traditional LLMs, the KV Cache
utilization for RLLM is much higher under the same scale model with same precision in the same
inference engine. This leads to a rapid increase in KV Cache usage, and since current inference
engines discard the KV Cache once completing requests, it results in a sharp drop in cache usage.

3) Adaptive running time: RLLM generates varying reasoning chain lengths depending on problem
difficulty—more difficulty lead to longer chains and running time. Hence, RLLM’s runtime is
typically correlated with problem difficulty, while LLMs generally may not affected by difficulty.

Our findings indicate notable differences in serving RLLMs and LLMs. To enable more effective
deployment of RLLMs, we explore some optimization techniques for inference in the next section.

5 OBSERVATIONS ON RLLM SERVING OPTIMIZATION

In this section, we take a closer look at the techniques that may optimize RLLM serving performance.
The prerequisite for assessing these optimization techniques is that they must preserve the RLLM’s
accuracy as much as possible. It holds throughout this section. More results are presented in §J.

5.1 IS MODEL WEIGHT QUANTIZATION METHODS EFFECTIVE IN BOOSTING RLLM SERVING?

Model weight quantization (MWQ) refers to the techniques that reduce number of bits for model
parameters with the minimal loss in performance. Current LLM quantization methods are mainly
fallen into the post-training quantization approaches. For more comprehensive introduction of LLM
quantization, please refer to (Zhu et al., 2024) and (Gong et al., 2024).To investigate the impact
of model weight quantization, we employ 4 most adopted (also supported by current open source
LLM serving engine) quantization methods for LLM: GPTQ (Frantar et al., 2023) (Int4), AWQ (Lin
et al., 2024) (4-bit), FP8 (Kuzmin et al., 2022), and Linear 4-bit (Dettmers et al., 2023)(L4) with
BitsAndBytes (bitsandbytes foundation, 2022). We conduct experiments on 7B, 14B RLLM.

Main results. The evaluation results of quantized 7B RLLM using different quantization methods are
presented in Figure 3. GPTQ-IN4 and FP8 quantization preserve the original model performance on
most datasets, incurring only a minor degradation of approximately 3% or even perform better, while

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

AIME24 GPQA GSM8k MATH500
0

20

40

60

80

100

Accuracy (%)

AIME24 GPQA GSM8k MATH500
0

100

200

300

400

500

600

700

Throughput (Tokens/s)

AIME24 GPQA GSM8k MATH500
0

100

200

300

400

500

600

700

800
Running Time (s)

Original FP8-E4M3 FP8-E5M2

Figure 4: Empirical results for KV cache quantization on 14B model across different datasets.

maintaining or improving all serving-related metrics with less memory footprint. However, GPTQ
exhibits a substantial performance drop of around 15–25% on more challenging mathematical tasks
such as AIME24. In contrast, AWQ and L4 maintain performance across all datasets but result in a
marked reduction in inference efficiency, nearly doubling E2E time and halving throughput. These
highlight the limitations of these approaches. The comprehensive results are presented in §J.1.

Observation 5.1. MWQ methods exert differing impacts on various metrics of RLLM inference .

5.2 COULD KV CACHE QUANTIZATION LEAD TO BETTER RLLM SERVING PERFORMANCE?

As illustrated in (Kwon et al., 2023), to serve traditional LLM, at least 30% of GPU memory is
perserved to store KV cache in the generation process. For RLLM, the demand for KV cache storage
would be paramount since its much longer output length (including chain of thought reasoning),
which makes it evitable for efficient management of memory. KV cache quantization emerges as an
appealing approach to this end. We employ two KV cache quantization methods natively supported
by vLLM: FP8-E5M2, and FP8-E4M3 (vllm project, 2024) for inference serving evaluation.

Main results. The results of KV Cache quantization for 14B RLLM are presented in Figure 4.
We found that using KV cache quantization effectively accelerates the operation of RLLMs while
maintaining performance comparable to the original. Surprisingly, while the 14B or 32B RLLM
maintained performance with minimal degradation after KV cache quantization, the 7B RLLM
experienced almost complete performance deterioration, as shown in §J.2. Furthermore, we observed
that KV cache quantization can also improve other metrics such as TTFVT and TPS.

Observation 5.2. KV Cache quantization can improve running efficiency for sufficient large RLLM.

5.3 IS PREFIX CACHING USEFUL FOR CONTRIBUTING EFFICIENT RLLM SERVING?

Prefix Cache (PC) is a cache optimization policy that reuse computed KV values for prefill stage. By
using this technique, new prompts that share same prefixes (exactly, same prefix tokens) with previous
prompts processed by serving systems can reuse these KV cache. This technique is very useful such
as long document query or multi-round conversation where requires multiple recomputation of same
text. Empirical studies show that the prefix cache can provide a huge performance benefit in such
scenarios. To evaluate the utility of prefix cache in RLLM serving, we compare the performance of 4
different RLLMs across all datasets with or without prefix caching enabling in vLLM and SGLang.

Main results. The results of PC evaluation on different datasets are shown in Figure 5. We find that
for sufficiently large RLLMs (14B and above), prefix caching significantly improves runtime speed
and serving metrics without compromising performance. However, for 7B models, prefix caching
negatively impacts efficiency, leading to increased latency. Detailed results are in §J.3.

Observation 5.3. PC can accelerate larger RLLMs (14B and above) without performance degrade.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

GSM8k MATH500 AIME24 GPQA
0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

W/ or W/o Prefix Caching : Accuracy

GSM8k MATH500 AIME24 GPQA
0

200

400

600

800

1000

Ti
m

e
(s

)

W/ or W/o Prefix Caching : E2E Time

GSM8k MATH500 AIME24 GPQA
0

50

100

150

200

250

300

350

400

To
ke

ns
 /

s

W/ or W/o Prefix Caching : Throughput

GSM8k MATH500 AIME24 GPQA
0

20

40

60

80

100

120

TT
FV

T
(s

)

W/ or W/o Prefix Caching : TTFVT

With Prefix-Cache Without Prefix-Cache

Figure 5: Empirical results of comparison for enable or disable prefix caching on 32B RLLM.

5.4 DOES SPECULATIVE DECODING HELP TO IMPROVE RLLM SERVING PERFORMANCE?

Speculative decoding (SD) refers to a bunch of approaches that improves inter-token latency in
memory-bound LLM inference. The initial speculating sampling usually employs a faster homoge-
neous LLM as draft model to generate a multiple tokens draft, and then the larger LLM can decide to
accept or reject this draft by scoring. The results in (Chen et al., 2023) show that the overhead of
draft model is much smaller than larger LLM forwarding, which makes it feasible to be utilized in
real world scenario. Recently, many works in speculative decoding (Xia et al., 2024) like n-gram
matching (vLLM Team, 2024), MLP speculators (Wertheimer et al., 2024), and Eagle algorithm (Li
et al., 2024c; 2025b) are proposed. Despite these advancement, current support and compatibility of
speculating decoding for RLLM in serving framework is poor. Given this situation, we only assess
n-gram matching algorithm for 7B, 14B and 32B RLLM serving with vLLM iframework. The other
experimental settings is keeping the same as the settings in Section 5.1 for fair comparison.

Main results. The main results for speculative decoding evaluation of 7B RLLM are listed in Figure
11. See §J.4 for full results. We find that speculative decoding improves the inference serving running
time of RLLM across all scales, without degrading model performance on benchmarks. However,
speculative decoding significantly reduces throughput and degrades the TTFVT metric.

Observation 5.4. SD improves the running time of RLLMs and deteriorates metrics like TPS.

Summary. This section suggests that many existing LLM inference optimization techniques can
be directly applied to RLLMs seamless. However, surprisingly, some of these techniques have the
opposite effect on smaller RLLMs, e.g., 7B. We leave the investigation of this phenomenon to future.

6 APPLYING TO REAL WORLD WORKLOAD

In previous section (§4), we have shown that the serving behaviors of RLLM is significantly different
from the LLM. However, we assumed that the serving engine receives requests simultaneously in
batches, with each new batch arriving only after the system has completed processing the previous
one. This assumption may be overly idealized and not fully consistent with real-world conditions.
Prior works (Wu et al., 2023; Li et al., 2023; Wang et al., 2025) have shown that, in real-world
applications, the burstiness of requests received by the serving engine is typically modeled using
the Gamma distribution. To validate our insights regarding RLLM serving in §4 under real-world
scenarios, we implement a workload generator like BurstGPT-Perf (Wang et al., 2025) that is capable
of producing requests following a Gamma distribution in our proposed Serve-Pref suite, enabling the
generation of streaming, stochastic, and bursty workloads. We then perform empirical studies with it
on various scale language models (7B, 14B, 32B) across different datasets to validate our findings.

Figure 6: KV cache usage of 14B models under real world workload across different datasets.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 7: Num of running requests in the inference engine for 14B models under real-world workload.

Main Results. As shown in Figure 6, the average KV cache usage rate of RLLM is much higher than
LLM. More surprisingly, for RLLM, the utilization of the serving engine’s KV cache can remain close
to 100% for long periods, forcing some new requests to wait in the waiting queue before running.
This may significantly prolong request turnaround time in the serving engine, severely degrading user
experience. We attribute the persistently high KV cache utilization to the accumulation of numerous
stragglers in the system. The running requests in the engine are also much higher when serving
RLLM compared to LLM, as shown in Figure 7. The above phenomena hold consistently across
different datasets, demonstrating the generalizability of our findings. These results demonstrate our
findings in §4 remain valid under real-world workloads. Please refer to Appendix K for more results.

7 RELATED WORK

We introduce necessary related work in this section. More related work can be found in Appendix D.

Reasoning Large Language Models. Recent advancement in RLLM , such as OpenAI o1 (Jaech
et al., 2024) have demonstrated significant improvement in system-2 tasks such as mathematics and
programming via test time scaling , which generates long chain of thought (CoT) reasoning text
before answer the question. Compared with chain-of-thought in traditional LLM, the reasoning
process of RLLM have the following characteristics: (1) much longer reasoning process; (2) extensive
exploration to unreached logic node; (3) backtrack and reflection; (4) aha moment. Recent cutting
edge RLLMs such as QwQ (Team, 2025), Kimi K1.5 (Team et al., 2025), Gemini-2.5-flash (Deep-
Mind, 2025), Seed-think-v.15 (Seed et al., 2025), Qwen3 (team, 2025) have continually improve the
performance on complex reasoning dataset.

LLM Inference and Serving. Due to the large scale of LLM, they present considerable challenges
in efficient serving, undermining the real world utilities of these models. Numerous works have
been proposed to alleviate these problems from 6 different views: (1) model parameter memory
optimization: model weight quantization like gptq (Frantar et al., 2023), awq (Lin et al., 2024), FP8
(Kuzmin et al., 2022), model pruning, model parallelism, CPU offloading ; (2) request scheduling:
inter-request scheduling, and intra-request scheduling (3) dynamic memory optimization: KV cache
quantization (vllm project, 2024), KV cache reuse and dropping (Liu et al., 2025b;a); (4) efficient
decoding: speculating decoding (Chen et al., 2023) (Li et al., 2024c) (Li et al., 2025b), flash decoding
(Tri et al., 2023) ;(5) system optimization: prefill-decoding disaggregation architecture like (Zhong
et al., 2024) (Hu et al., 2024a) (Qin et al., 2025); (6) model and algorithm optimization: hard-aware
algorithm like flash attention (Tri et al., 2023), linear attention, mixture of experts.

8 CONCLUSION

In this work, we systematically investigate the serving performance and behavior of RLLM. We
reveal that RLLMs have several different serving behavior compared with traditional LLM, which
makes current LLM serving engines struggle to unleash the power of RLLM and fall to reach the
optimal performance. Additionally, we further investigate whether existing inference optimization
techniques are valid for RLLM. Lastly, we conduct evaluation under real world workload modeled by
Gamma distribution, and the results are aligned with our main findings regarding RLLM serving.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

9 ETHICS STATEMENT

We, all the authors of this submission, hereby confirm that we have thoroughly read, fully understood,
and explicitly acknowledge the ICLR Code of Ethics. We commit to strictly adhering to its principles
and provisions in all aspects of our conference participation, including but not limited to paper
submission, the reviewing process, and all discussions.

10 REPRODUCIBILITY STATEMENT

Below we summarize some critical aspects to facilitate reproducible results:

• Datasets. The datasets we used are all publicly accessible, which is introduced in G.1. The
website for download these data are listed in F.

• Models. We provide the details about our adopted model and hyperparameters in F.
• Environment. All experiments are conducted with multiple runs on NVIDIA Tesla RTX4090-

24GB GPUs, RTX A6000-48GB GPUs and NVIDIA A100-PCIE-40GB GPUs with Python
3.11 and PyTorch 2.5.

• Code. Our code will be available once accepted.

REFERENCES

Marah Abdin, Sahaj Agarwal, Ahmed Awadallah, Vidhisha Balachandran, Harkirat Behl, Lingjiao
Chen, Gustavo de Rosa, Suriya Gunasekar, Mojan Javaheripi, Neel Joshi, et al. Phi-4-reasoning
technical report. arXiv preprint arXiv:2504.21318, 2025.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Amey Agrawal, Anmol Agarwal, Nitin Kedia, Jayashree Mohan, Souvik Kundu, Nipun Kwatra,
Ramachandran Ramjee, and Alexey Tumanov. Etalon: holistic performance evaluation framework
for llm inference systems. arXiv preprint arXiv:2407.07000, 2024.

Anthropic. The claude 3 model family: Opus, sonnet, haiku, 2024. URL https://www-cdn.
anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_
Card_Claude_3.pdf.

Anthropic. Introducing claude 4. online, 2025. URL https://www.anthropic.com/news/
claude-4.

Akhiad Bercovich, Levy Itay, Izik Golan, Mohammad Dabbah, Ran El-Yaniv, Omri Puny, Ido Galil,
Zach Moshe, Tomer Ronen, et al. Llama-nemotron: Efficient reasoning models, 2025. URL
https://arxiv.org/abs/2505.00949.

bitsandbytes foundation. bitsandbytes, 2022. URL https://github.com/
bitsandbytes-foundation/bitsandbytes.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023.

Yihua Cheng, Kuntai Du, Jiayi Yao, and Junchen Jiang. Do large language models need a content
delivery network? arXiv preprint arXiv:2409.13761, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

MAA Committees. Aime problems and solutions, 2024. URL https://
artofproblemsolving.com/wiki/index.php/AIME_Problems_and_
Solutions.

10

https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www.anthropic.com/news/claude-4
https://www.anthropic.com/news/claude-4
https://arxiv.org/abs/2505.00949
https://github.com/bitsandbytes-foundation/bitsandbytes
https://github.com/bitsandbytes-foundation/bitsandbytes
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

LMDeploy Contributors. Lmdeploy: A toolkit for compressing, deploying, and serving llm. https:
//github.com/InternLM/lmdeploy, 2023.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in neural information processing systems, 35:
16344–16359, 2022.

Google DeepMind. Gemini 2.5: Our most intelligent ai model, 2025.
URL https://blog.google/technology/google-deepmind/
gemini-model-thinking-updates-march-2025.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in neural information processing systems, 36:10088–10115, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171–4186, 2019.

Mehmet Hamza Erol, Batu El, Mirac Suzgun, Mert Yuksekgonul, and James Zou. Cost-of-pass:
An economic framework for evaluating language models, 2025. URL https://arxiv.org/
abs/2504.13359.

Hugging Face. Open r1: A fully open reproduction of deepseek-r1, January 2025. URL https:
//github.com/huggingface/open-r1.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. OPTQ: Accurate quantization
for generative pre-trained transformers. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=tcbBPnfwxS.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text for
language modeling. arXiv preprint arXiv:2101.00027, 2020.

Ruihao Gong, Yifu Ding, Zining Wang, Chengtao Lv, Xingyu Zheng, Jinyang Du, Haotong Qin,
Jinyang Guo, Michele Magno, and Xianglong Liu. A survey of low-bit large language models:
Basics, systems, and algorithms. arXiv preprint arXiv:2409.16694, 2024.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, and Archie Sravankumar. The llama
3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. In
Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track
(Round 2), 2021.

Cunchen Hu, Heyang Huang, Junhao Hu, Jiang Xu, Xusheng Chen, Tao Xie, Chenxi Wang, Sa Wang,
Yungang Bao, Ninghui Sun, et al. Memserve: Context caching for disaggregated llm serving with
elastic memory pool. arXiv preprint arXiv:2406.17565, 2024a.

Cunchen Hu, Heyang Huang, Liangliang Xu, Xusheng Chen, Jiang Xu, Shuang Chen, Hao Feng,
Chenxi Wang, Sa Wang, Yungang Bao, et al. Inference without interference: Disaggregate llm
inference for mixed downstream workloads. arXiv preprint arXiv:2401.11181, 2024b.

Jian Hu, Xibin Wu, Zilin Zhu, Weixun Wang, Dehao Zhang, Yu Cao, et al. Openrlhf: An easy-to-use,
scalable and high-performance rlhf framework. arXiv preprint arXiv:2405.11143, 2024c.

11

https://github.com/InternLM/lmdeploy
https://github.com/InternLM/lmdeploy
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025
https://arxiv.org/abs/2504.13359
https://arxiv.org/abs/2504.13359
https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1
https://openreview.net/forum?id=tcbBPnfwxS
https://arxiv.org/abs/2407.21783

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Nvidia inc. A comprehensive guide to nim llm latency-throughput benchmarking, 2024. URL
https://docs.nvidia.com/nim/benchmarking/llm/latest/metrics.html.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

Renren Jin, Jiangcun Du, Wuwei Huang, Wei Liu, Jian Luan, Bin Wang, and Deyi Xiong. A
comprehensive evaluation of quantization strategies for large language models. In Findings of the
Association for Computational Linguistics ACL 2024, pp. 12186–12215, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Sehoon Kim, Coleman Hooper, Thanakul Wattanawong, Minwoo Kang, Ruohan Yan, Hasan Genc,
Grace Dinh, Qijing Huang, Kurt Keutzer, Michael W. Mahoney, Yakun Sophia Shao, and Amir
Gholami. Full stack optimization of transformer inference: a survey, 2023. URL https:
//arxiv.org/abs/2302.14017.

Andrey Kuzmin, Mart Van Baalen, Yuwei Ren, Markus Nagel, Jorn Peters, and Tijmen Blankevoort.
Fp8 quantization: The power of the exponent. Advances in Neural Information Processing Systems,
35:14651–14662, 2022.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention, 2023. URL https://arxiv.org/abs/2309.06180.

Malgorzata Lazuka, Andreea Anghel, and Thomas Parnell. Llm-pilot: Characterize and optimize per-
formance of your llm inference services. In SC24: International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1–18. IEEE, 2024.

Baolin Li, Yankai Jiang, Vijay Gadepally, and Devesh Tiwari. Llm inference serving: Survey of
recent advances and opportunities. arXiv preprint arXiv:2407.12391, 2024a.

Qi Li, Xiang Liu, Zhenheng Tang, Peijie Dong, Zeyu Li, Xinglin Pan, and Xiaowen Chu. Should we
really edit language models? on the evaluation of edited language models. In Proceedings of the
Thirty-eighth Annual Conference on Neural Information Processing Systems, 2025a.

Shiyao Li, Xuefei Ning, Luning Wang, Tengxuan Liu, Xiangsheng Shi, Shengen Yan, Guohao Dai,
Huazhong Yang, and Yu Wang. Evaluating quantized large language models. In Proceedings of
the 41st International Conference on Machine Learning, pp. 28480–28524, 2024b.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle: Speculative sampling requires
rethinking feature uncertainty. In Forty-first International Conference on Machine Learning, 2024c.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle-3: Scaling up inference ac-
celeration of large language models via training-time test. arXiv preprint arXiv:2503.01840,
2025b.

Zhong-Zhi Li, Duzhen Zhang, Ming-Liang Zhang, Jiaxin Zhang, Zengyan Liu, Yuxuan Yao, Haotian
Xu, Junhao Zheng, Pei-Jie Wang, Xiuyi Chen, et al. From system 1 to system 2: A survey of
reasoning large language models. arXiv preprint arXiv:2502.17419, 2025c.

Zhuohan Li, Lianmin Zheng, Yinmin Zhong, Vincent Liu, Ying Sheng, Xin Jin, Yanping Huang,
Zhifeng Chen, Hao Zhang, Joseph E Gonzalez, et al. {AlpaServe}: Statistical multiplexing with
model parallelism for deep learning serving. In 17th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 23), pp. 663–679, 2023.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, et al. Holistic evaluation of language
models. Transactions on Machine Learning Research, 2023.

12

https://docs.nvidia.com/nim/benchmarking/llm/latest/metrics.html
https://arxiv.org/abs/2302.14017
https://arxiv.org/abs/2302.14017
https://arxiv.org/abs/2309.06180

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
on-device llm compression and acceleration. Proceedings of Machine Learning and Systems, 6:
87–100, 2024.

Xiang Liu, Zhenheng Tang, Hong Chen, Peijie Dong, Zeyu Li, Xiuze Zhou, Bo Li, Xuming Hu,
and Xiaowen Chu. Can llms maintain fundamental abilities under kv cache compression? arXiv
preprint arXiv:2502.01941, 2025a.

Xiang Liu, Zhenheng Tang, Peijie Dong, Zeyu Li, Yue Liu, Bo Li, Xuming Hu, and Xiaowen Chu.
Chunkkv: Semantic-preserving kv cache compression for efficient long-context llm inference,
2025b. URL https://arxiv.org/abs/2502.00299.

Yuhan Liu, Hanchen Li, Yihua Cheng, Siddhant Ray, Yuyang Huang, Qizheng Zhang, Kuntai Du,
Jiayi Yao, Shan Lu, Ganesh Ananthanarayanan, et al. Cachegen: Kv cache compression and
streaming for fast large language model serving. In Proceedings of the ACM SIGCOMM 2024
Conference, pp. 38–56, 2024.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling, 2025. URL https://arxiv.org/abs/2501.19393.

NVIDIA. TensorRT. https://github.com/NVIDIA/TensorRT-LLM, 2023.

OpenAI. Openai o3 and o4-mini system card. Online, 2025. URL https:
//cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/
o3-and-o4-mini-system-card.pdf.

Pratyush Patel, Esha Choukse, Chaojie Zhang, Aashaka Shah, Íñigo Goiri, Saeed Maleki, and Ricardo
Bianchini. Splitwise: Efficient generative llm inference using phase splitting. In 2024 ACM/IEEE
51st Annual International Symposium on Computer Architecture (ISCA), pp. 118–132. IEEE, 2024.

Ruoyu Qin, Zheming Li, Weiran He, Jialei Cui, Feng Ren, Mingxing Zhang, Yongwei Wu, Weimin
Zheng, and Xinran Xu. Mooncake: Trading more storage for less computation—a kvcache-centric
architecture for serving llm chatbot. In 23rd USENIX Conference on File and Storage Technologies
(FAST 25), pp. 155–170, 2025.

Xiaoye Qu, Yafu Li, Zhaochen Su, Weigao Sun, Jianhao Yan, Dongrui Liu, Ganqu Cui, Daizong
Liu, Shuxian Liang, Junxian He, Peng Li, Wei Wei, Jing Shao, Chaochao Lu, Yue Zhang, Xian-
Sheng Hua, Bowen Zhou, and Yu Cheng. A survey of efficient reasoning for large reasoning
models: Language, multimodality, and beyond, 2025. URL https://arxiv.org/abs/
2503.21614.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susannah Young, et al. Scaling language models:
Methods, analysis & insights from training gopher. arXiv preprint arXiv:2112.11446, 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of Machine Learning Research, 21(140):1–67, 2020. URL
http://jmlr.org/papers/v21/20-074.html.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
toward training trillion parameter models. In SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1–16. IEEE, 2020.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System opti-
mizations enable training deep learning models with over 100 billion parameters. In Proceedings
of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, pp.
3505–3506, 2020.

13

https://arxiv.org/abs/2502.00299
https://arxiv.org/abs/2501.19393
https://github.com/NVIDIA/TensorRT-LLM
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://arxiv.org/abs/2503.21614
https://arxiv.org/abs/2503.21614
http://jmlr.org/papers/v21/20-074.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark. In
First Conference on Language Modeling, 2024.

ByteDance Seed, Yufeng Yuan, Yu Yue, Mingxuan Wang, Xiaochen Zuo, Jiaze Chen, Lin Yan,
Wenyuan Xu, Chi Zhang, Xin Liu, et al. Seed-thinking-v1. 5: Advancing superb reasoning models
with reinforcement learning. arXiv preprint arXiv:2504.13914, 2025.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models, 2024. URL https://arxiv.org/abs/
2402.03300.

Noam Shazeer. Fast transformer decoding: One write-head is all you need. arXiv preprint
arXiv:1911.02150, 2019.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. Megatron-lm: Training multi-billion parameter language models using model parallelism.
arXiv preprint arXiv:1909.08053, 2019.

Charlie Victor Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM test-time compute
optimally can be more effective than scaling parameters for reasoning. In The Thirteenth Inter-
national Conference on Learning Representations, 2025. URL https://openreview.net/
forum?id=4FWAwZtd2n.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
multimodal models, 2023.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025.

Qwen team. Qwen3: Think deeper, act faster, 2025. URL https://qwenlm.github.io/
blog/qwen3/.

Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, 2025. URL https:
//qwenlm.github.io/blog/qwq-32b/.

Dao Tri, Haziza Daniel, o Massa Francisc, and Sizov Grigory. Flash-decoding for long-
context inference. online, 2023. URL https://crfm.stanford.edu/2023/10/12/
flashdecoding.html.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Nguyen Vinh, Gao Wenwen, Apsey Emily, Kudleppanavar Ganesh, Shah Neelay, and Bermudez Elias.
Llm benchmarking: Fundamental concepts, 2025. URL https://developer.nvidia.
com/blog/llm-benchmarking-fundamental-concepts/.

vllm project. Llm compressor, 2024. URL https://github.com/vllm-project/
llm-compressor.

vLLM Team. Speculating by matching n-grams in the prompt, 2024. URL https://docs.vllm.
ai/en/latest/features/spec_decode.html.

Yuxin Wang, Yuhan Chen, Zeyu Li, Xueze Kang, Yuchu Fang, Yeju Zhou, Yang Zheng, Zhenheng
Tang, Xin He, Rui Guo, et al. Burstgpt: A real-world workload dataset to optimize llm serving
systems. In Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data
Mining V. 2, pp. 5831–5841, 2025.

14

https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://openreview.net/forum?id=4FWAwZtd2n
https://openreview.net/forum?id=4FWAwZtd2n
https://qwenlm.github.io/blog/qwen3/
https://qwenlm.github.io/blog/qwen3/
https://qwenlm.github.io/blog/qwq-32b/
https://qwenlm.github.io/blog/qwq-32b/
https://crfm.stanford.edu/2023/10/12/flashdecoding.html
https://crfm.stanford.edu/2023/10/12/flashdecoding.html
https://developer.nvidia.com/blog/llm-benchmarking-fundamental-concepts/
https://developer.nvidia.com/blog/llm-benchmarking-fundamental-concepts/
https://github.com/vllm-project/llm-compressor
https://github.com/vllm-project/llm-compressor
https://docs.vllm.ai/en/latest/features/spec_decode.html
https://docs.vllm.ai/en/latest/features/spec_decode.html

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Davis Wertheimer, Joshua Rosenkranz, Thomas Parnell, Sahil Suneja, Pavithra Ranganathan, Raghu
Ganti, and Mudhakar Srivatsa. Accelerating production llms with combined token/embedding
speculators. arXiv preprint arXiv:2404.19124, 2024.

Bingyang Wu, Yinmin Zhong, Zili Zhang, Shengyu Liu, Fangyue Liu, Yuanhang Sun, Gang Huang,
Xuanzhe Liu, and Xin Jin. Fast distributed inference serving for large language models. arXiv
preprint arXiv:2305.05920, 2023.

Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang, Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li, and
Zhifang Sui. Unlocking efficiency in large language model inference: A comprehensive survey
of speculative decoding. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of
the Association for Computational Linguistics: ACL 2024, pp. 7655–7671, Bangkok, Thailand,
August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.456.
URL https://aclanthology.org/2024.findings-acl.456/.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024a.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu,
Jianhong Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu,
Xingzhang Ren, and Zhenru Zhang. Qwen2.5-math technical report: Toward mathematical expert
model via self-improvement, 2024b. URL https://arxiv.org/abs/2409.12122.

Jiayi Yao, Hanchen Li, Yuhan Liu, Siddhant Ray, Yihua Cheng, Qizheng Zhang, Kuntai Du, Shan Lu,
and Junchen Jiang. Cacheblend: Fast large language model serving with cached knowledge fusion.
arXiv preprint arXiv:2405.16444, 2024.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more for
reasoning, 2025a. URL https://arxiv.org/abs/2502.03387.

Zihao Ye, Lequn Chen, Ruihang Lai, Wuwei Lin, Yineng Zhang, Stephanie Wang, Tianqi Chen,
Baris Kasikci, Vinod Grover, Arvind Krishnamurthy, et al. Flashinfer: Efficient and customizable
attention engine for llm inference serving. arXiv preprint arXiv:2501.01005, 2025b.

Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and Byung-Gon Chun. Orca:
A distributed serving system for {Transformer-Based} generative models. In 16th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 22), pp. 521–538, 2022.

Ranran Zhen, Juntao Li, Yixin Ji, Zhenlin Yang, Tong Liu, Qingrong Xia, Xinyu Duan, Zhefeng
Wang, Baoxing Huai, and Min Zhang. Taming the titans: A survey of efficient llm inference
serving. arXiv preprint arXiv:2504.19720, 2025.

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao,
Christos Kozyrakis, Ion Stoica, Joseph E. Gonzalez, Clark Barrett, and Ying Sheng. Sglang:
Efficient execution of structured language model programs, 2024. URL https://arxiv.org/
abs/2312.07104.

Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xuanzhe Liu, Xin Jin, and Hao
Zhang. {DistServe}: Disaggregating prefill and decoding for goodput-optimized large language
model serving. In 18th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 24), pp. 193–210, 2024.

Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping Wang. A survey on model compression for large
language models. Transactions of the Association for Computational Linguistics, 12:1556–1577,
2024.

15

https://aclanthology.org/2024.findings-acl.456/
https://arxiv.org/abs/2409.12122
https://arxiv.org/abs/2502.03387
https://arxiv.org/abs/2312.07104
https://arxiv.org/abs/2312.07104

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

APPENDIX AND SUPPLEMENTARY MATERIAL

A Use of LLMs Statement 18

B Limitation 18

C Boarder Impact 18

D Extended Related Work 18

D.1 Reasoning Large Language Models . 18

D.2 LLM Inference and Serving . 18

D.3 LLM Evaluation . 19

D.4 Ecosystem Support for RLLM Serving. 19

E An Introduction to LLM Serving 20

E.1 Serving Performance . 20

E.2 Serving Metric . 20

F Implementation and Reproduction Details 22

F.1 Code Base . 22

F.2 Models . 22

F.3 Datasets . 22

F.4 Hyperparameters Settings for RLLM . 22

F.5 Hyperparameters Settings for LLM . 23

G Experiments Details 24

G.1 Details Evaluation Datasets . 24

G.2 Running Device . 24

G.3 Inference Engine . 24

H Extend Observation 25

H.1 Can Disaggregated Prefilling Improves RLLM Serving Performance ? 25

I Detailed Empirical Results 25

I.1 Token Budget for Pilot Study . 25

I.2 Main Results for Pilot Study . 25

I.3 Serving Behaviors for Pilot Study . 27

I.4 Running Traces Demo . 34

J Detailed Empirical Results for RLLM Serving Optimization 35

J.1 Model Weight Quantization . 35

J.2 KV Cache Quantization . 35

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

J.3 Prefix Caching . 35

J.4 Speculative Decoding . 35

K Extended Results for Real World Benchmarking 42

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A USE OF LLMS STATEMENT

We solemnly declare that the originality of ideas, writing, overall methodology, experiments, and
other core contributions in this paper are entirely the work of the authors, with no involvement of any
LLMs in the research process. LLMs were used solely for grammar checking and language polishing
after drafting this submission.

B LIMITATION

In this work, we systematically investigate the serving performance of RLLM. Despite our compre-
hensive and thorough experiments, the evaluation of RLLM serving is limited in some extet due to
limited support from the current ecosystem. We hope that future improvements in serving engines
will enable broader and more comprehensive evaluations. Additionally, our hardware resources were
limited, and we aim to extend our evaluations to a wider range of hardware platforms in the future.

C BOARDER IMPACT

In this paper, we systematically investigate the serving performance of RLLM. We hope our work
can provide the research community and industry with insightful perspectives to help advance studies
in efficient RLLM serving, help to democratize the use of cutting-edge RLLMs for social good.

D EXTENDED RELATED WORK

D.1 REASONING LARGE LANGUAGE MODELS

Recent advancement in RLLM , such as OpenAI o1 (Jaech et al., 2024) have demonstrated significant
improvement in system-2 tasks such as mathematics and programming via test time scaling , which
generates long chain of thought (CoT) reasoning text before answer the question. Compared with
chain-of-thought in traditional LLM, the reasoning process of RLLM have the following character-
istics: (1) much longer reasoning process; (2) extensive exploration to unreached logic node; (3)
backtrack and reflection; (4) aha moment. Since OpenAI’s o1 and o3 (OpenAI, 2025) are proprietary
models, the research community has attempted to replicate their performance. s1 (Muennighoff et al.,
2025) try to achieve test time scaling with only 1k post-training samples. LIMO (Ye et al., 2025a)
exploits only 817 curated training samples, improving scores from 6.5% to 57.1% on AIME dataset.
DeepSeek R1 (Guo et al., 2025) is the first open-source RLLM and achieves on-par performance
with OpenAI o1. Followed by (Face, 2025), which aims to fully reproduce R1 by the collaboration of
open-source community. Recent cutting edge RLLMs such as QwQ (Team, 2025), Kimi K1.5 (Team
et al., 2025), Gemini-2.5-flash (DeepMind, 2025), Seed-think-v.15 (Seed et al., 2025), Qwen3 (team,
2025) have continually improve the performance on complex reasoning dataset.

D.2 LLM INFERENCE AND SERVING

LLM has become a cornerstone of deep learning in recent years, reshaping the landscape of AI
research. Due to the large scale of LLM, they present considerable challenges in efficient serving,
undermining the real world utilities of these models. Numerous works have been proposed to alleviate
these problems from 6 different views: (1) model parameter memory optimization: model weight
quantization like gptq (Frantar et al., 2023), awq (Lin et al., 2024), FP8 (Kuzmin et al., 2022), model
pruning, model parallelism, CPU offloading ; (2) request scheduling: inter-request scheduling, and
intra-request scheduling (3) dynamic memory optimization: KV cache quantization (vllm project,
2024), KV cache reuse and dropping; (4) efficient decoding: speculating decoding (Chen et al.,
2023) (Li et al., 2024c) (Li et al., 2025b), flash decoding (Tri et al., 2023) ;(5) system optimization:
prefill-decoding disaggregation architecture like (Zhong et al., 2024) (Hu et al., 2024a) (Qin et al.,
2025); (6) model and algorithm optimization: hard-aware algorithm like flash attention (Tri et al.,
2023), linear attention, mixture of expert.

Recent advances in LLM inference have yielded a variety of specialized frameworks and serving
engines that maximize GPU utilization through optimized kernels and memory strategies. High-

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

performance libraries such as NVIDIA’s FasterTransformer (Shazeer, 2019) and TensorRT-LLM
(NVIDIA, 2023), alongside open-source systems like vLLM (Kwon et al., 2023) and SGLang (Zheng
et al., 2024), employ different techniques with continuous batching(Yu et al., 2022), speculative
decoding(Chen et al., 2023), prefill-decode disaggregation(Zhong et al., 2024) and many other
methods, ensuring the GPU pipeline remains saturated. Complementing these efforts are dynamic
scheduling and memory management schemes that break large KV caches into reusable blocks and
selectively merge or preempt operations, allowing much larger batch sizes with minimal overhead.
Equally important are multi-way parallelism and algorithmic innovations that further boost throughput
and reduce latency. Large models are commonly deployed across GPUs using tensor parallelism
(splitting each layer’s computation), pipeline parallelism (partitioning the model into sequential
stages), and data parallel replication. Mixture-of-Experts (MoE) architectures extend this by routing
tokens to different expert shards via expert parallelism, with communication optimizations to balance
load. On the algorithmic side, parameter-efficient methods such as prompt and prefix tuning adapt
frozen models via small “soft” prompts, speculative decoding (Chen et al., 2023) uses a lightweight
draft model to accelerate token generation, and Simple Test-Time Scaling(Muennighoff et al., 2025)
applies budget-forcing at inference to improve reasoning quality.

Together, these system-level designs and algorithm-level approaches form a cohesive ecosystem that
drives state-of-the-art performance in efficient LLM serving. Please see survey papers (Li et al.,
2024a; Kim et al., 2023; Zhen et al., 2025) for comprehensive introduction (Lazuka et al., 2024).

D.3 LLM EVALUATION

Recently, with the rapid development of LLM, there is a growing interest in evaluating LLM from
different aspects and topics. A holistic evaluation framework of language models is proposed (Liang
et al., 2023). Generally, the technical reports like (Yang et al., 2024a; team, 2025; Guo et al., 2025)
of LLM provides pre-relase comprehensive evaluation results. The quantization methods for LLM
are evaluated in (Jin et al., 2024) and (Li et al., 2024b). In (Li et al., 2025a), it evaluates the general
abilities of post-edit LLM to assess the utility of existing knowledge editing methods. Work (Lazuka
et al., 2024) and (Agrawal et al., 2024) evaluate LLM serving from the new perspective.

D.4 ECOSYSTEM SUPPORT FOR RLLM SERVING.

The development of LLMs has greatly benefited from the research community and the open-source
ecosystem, including open platforms such as Hugging Face, Github, and Modelscope; open-source
LLMs like Llama (Grattafiori et al., 2024), Qwen (Yang et al., 2024a), and Deepseek R1; open-source
LLM infrastructure such as Deepspeed (Rasley et al., 2020), Megatron-LM (Shoeybi et al., 2019),
vLLM (Kwon et al., 2023), OpenRLHF (Hu et al., 2024c), and SGLang (Zheng et al., 2024); various
optimization techniques like Flash-Attention (Dao et al., 2022), FlashInfer (Ye et al., 2025b), ZeRO
(Rajbhandari et al., 2020), and LMCache (Liu et al., 2024; Cheng et al., 2024; Yao et al., 2024).
The advancement of RLLMs continues this trend. With the open-sourcing of Deepseek R1 (Guo
et al., 2025), a large number of open-source RLLMs like Phi-4 reasoning (Abdin et al., 2025) , and
Llama-Nemotron (Bercovich et al., 2025) have emerged, further promoting the democratization of
cutting-edge RLLM technology. Although existing LLM serving systems like vLLM, and SGLang
provide some level of support for RLLMs, current support and optimization techniques remain
significantly limited. Some techniques do not support RLLMs at all, for instance, Eagle speculative
decoding currently lacks compatibility with RLLMs, while others fail to offer targeted optimizations
and improvements specific to RLLM characteristics. As RLLMs continue to advance rapidly, we call
on the research community and industry to collaborate in addressing the issues revealed in this paper.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

E AN INTRODUCTION TO LLM SERVING

The highly increased development of LLMs’ application arise the demand of effectively using LLM
serving systems. In this part, we introduce some optimization methods for serving systems and
introduce more serving metrics. For more comprehensive introduction, please refer to (Zhen et al.,
2025) and (Li et al., 2024a).

E.1 SERVING PERFORMANCE

Recently, there are a lot of researches focus on optimizing the performance of serving system based
on LLM architecture’s characteristics and system-level tricks. Current LLMs are mostly using decode-
only architecture, making the KV values of former tokens becomes key information for the next
token. Hence, the first useful methods is storing all of KV value in memories(particularly in GPUs),
this method significantly improve the efficiency of prefill stage. However, this method had already
deployed for language models. For LLM, the most important method proposed first is continuous
batching(Yu et al., 2022). Continuous batching is processing requests in serving systems in iteration
level, compared with former systems process requests in request-level. By using this technique,
serving systems don’t need to wait until the last request finishes its decoding, but replace requests
with new requests once it ends decoding. This method enhance GPU’s utilization, reducing waiting
time for high-throughput serving systems. Next, considering the difference of prefill and decode
that prefill is compute-intense stage which needs more GPU computing resources, while decode
is memory-intense stage which needs more GPU memories compared with prefill, Prefill-Decode
disaggregation(Zhong et al., 2024) proposed a method that process prefill and decode in different
GPUs, fully utilizing GPU resources based on the characteristics of the two phases. Despite this,
GPU resources are still not fully utilized because the GPU pre-allocates a portion of GPU space
for requests when storing previous KV cache. However, much of this space isn’t effectively used,
resulting in significant waste (for example, if a request occupies 8 tokens, the GPU allocates 2080
token spaces for decoding this request, but actually only produces 80 tokens, wasting space for 2000
tokens). At the same time, since the GPU allocates and reserves space for requests sequentially, this
can lead to memory fragmentation and inefficient resource utilization when requests complete at
different times. Paged attention borrows the concept of CPU paging, and in their serving system
(vLLM) creates a mapping between virtual addresses and actual GPU addresses through virtual
pages(Kwon et al., 2023).

E.2 SERVING METRIC

With the high demand of deploying customized LLMs for practical utilization, there is a need to
measure the cost efficiency of different LLM serving solutions. The cost of serving RLLM depends
on how many requests it can handle per second while being responsive to client users and supporting
an acceptable level of answer accuracy. To measure the performance of LLM serving system, there
are multiple metrics can be chosen: (1) Time to first token (TTFT) is the time it takes to process
the prompt until generate the first token. It measures how long a user must wait before seeing
the model’s output; (2) End-to-end request latency (E2E latency) indicates the time it takes from
submitting the first token of a request to receiving the last token of response, including the time for
queueing and batching and network latencies in real-world scenario; (3) Time between tokens (TBT,
a.k.a Intertoken latency, ITL) is the average time between the generation of consecutive tokens in a
sequence; (4) Tokens per second (TPS) of system represents the mean of total output tokens number
per second , accounting for all the requests happening simultaneously; (5) Requests per second (RPS)
is the average number of requests that can be successfully completed by the system in a 1-second
period. In LLM serving systems, there are many metrics evaluating the performance, In this paper,
we use metrics for reference that companies and personal users care most while using RLLM. I’ll
introduce them here for clear understanding.

• Throughput: Number of processed requests per second. This is the key metric for users
since it directly determines overall system performance.

• Time to First Token (TTFT): Time from receiving a request until the first token is generated
(i.e., the prefill stage is completed). This reflects how quickly the serving system handles the

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

prefill stage. Techniques such as continuous batching (Yu et al., 2022) and paged attention
(Kwon et al., 2023) were proposed to optimize this metric.

• Time to First Visible Token (TTFVT): The time from receiving a request until the first
token is actually displayed to the user. This metric is specific to RLLMs because some
inference systems hide the internal “thinking” steps and only reveal output once thinking is
complete. Since RLLMs often perform a prolonged reasoning chain before producing any
visible token, TTFVT is typically much larger than TTFT.

• Time Between Tokens (TBT): Average time between generation of consecutive tokens. For
RLLMs, both the thinking stage and decoding stage share this metric. Recent algorithm-level
optimizations such as S1 (Muennighoff et al., 2025) target TBT. In this paper, TBT reflects
the real-time per-token responsiveness of the model during interactive generation, capturing
both computational and scheduling overhead.

• KV Cache Utilization: Proportion of total memory occupied by the KV cache during
model execution. High utilization enables reuse of KV values by subsequent requests,
reducing prefill time. However, excessive utilization triggers frequent evictions, degrading
performance. Section 4 analyzes KV cache utilization and its impact on overall performance
for RLLMs across datasets of varying difficulty.

• Tokens per Second (TPS): Total number of tokens generated per second across all active
sessions. This combines throughput and per-token speed into one measure of generation
capacity.

• Requests per Second (RPS): Total number of full-request pipelines completed per second.
Unlike throughput (which counts raw requests), RPS tracks end-to-end request handling.

• Model Initialization Latency: Total time from service startup—including loading model
weights, constructing computation graphs, allocating GPU memory, initializing optimizers,
and any warm-up steps—until the system is ready to handle its first request. For MoE
models (such as the DeepSeek model used in this paper) with Tensor Parallelism (TP) and
Pipeline Parallelism (PP), this also involves partitioning and distributing parameters across
multiple GPUs. This metric helps compare how different serving systems optimize model
loading and initialization.

• End-to-End Latency (E2E Latency): Time from user request submission until receipt
of the final token. This metric significantly influences user experience; for enterprises,
improving RLLM end-to-end latency is also a critical concern.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

F IMPLEMENTATION AND REPRODUCTION DETAILS

In this section, we would like to provide details for reproducing our experimental results.

F.1 CODE BASE

Our code and the ASU-Perf suite will be available once this paper accepted.

F.2 MODELS

Here, we list all of the model checkpoints used in our experiments.

RLLM checkpoints:

• deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B https://hf-mirror.com/
deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B

• deepseek-ai/DeepSeek-R1-Distill-Qwen-7B https://hf-mirror.com/
deepseek-ai/DeepSeek-R1-Distill-Qwen-7B

• deepseek-ai/DeepSeek-R1-Distill-Qwen-14B https://hf-mirror.com/
deepseek-ai/DeepSeek-R1-Distill-Qwen-14B

• deepseek-ai/DeepSeek-R1-Distill-Qwen-32B https://hf-mirror.com/
deepseek-ai/DeepSeek-R1-Distill-Qwen-32B

• deepseek-ai/DeepSeek-R1-Distill-Llama-70B https://hf-mirror.com/
deepseek-ai/DeepSeek-R1-Distill-Llama-70B

LLM checkpoints:

• Qwen/Qwen2.5-Math-1.5B https://hf-mirror.com/Qwen/Qwen2.5-Math-1.
5B

• Qwen/Qwen2.5-Math-7B https://hf-mirror.com/Qwen/Qwen2.5-Math-7B

• Qwen/Qwen2.5-14B https://hf-mirror.com/Qwen/Qwen2.5-14B

• Qwen/Qwen2.5-32B https://hf-mirror.com/Qwen/Qwen2.5-32B

• meta-llama/Llama-3.3-70B-Instruct https://hf-mirror.com/meta-llama/
Llama-3.3-70B-Instruct

F.3 DATASETS

Here, we list all of the benchmarking datasets used in our experiments.

• GSM8K https://hf-mirror.com/datasets/openai/gsm8k

• MATH-500 https://hf-mirror.com/datasets/HuggingFaceH4/
MATH-500

• AIME-24 https://hf-mirror.com/datasets/HuggingFaceH4/aime_
2024

• GPQA https://hf-mirror.com/datasets/Idavidrein/gpqa

F.4 HYPERPARAMETERS SETTINGS FOR RLLM

The hyperparameters settings for RLLM we employed are as follows:

Batch Size: 8, 16, 32

Dataset Capacity: 100, (AIME24 30)

Temperature: 0.6, Top-p: 0.95, Top-k: 20, Request Timeout: 1200 sec

Experiments Repeat Time: 3

22

https://hf-mirror.com/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
https://hf-mirror.com/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
https://hf-mirror.com/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
https://hf-mirror.com/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
https://hf-mirror.com/deepseek-ai/DeepSeek-R1-Distill-Qwen-14B
https://hf-mirror.com/deepseek-ai/DeepSeek-R1-Distill-Qwen-14B
https://hf-mirror.com/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B
https://hf-mirror.com/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B
https://hf-mirror.com/deepseek-ai/DeepSeek-R1-Distill-Llama-70B
https://hf-mirror.com/deepseek-ai/DeepSeek-R1-Distill-Llama-70B
https://hf-mirror.com/Qwen/Qwen2.5-Math-1.5B
https://hf-mirror.com/Qwen/Qwen2.5-Math-1.5B
https://hf-mirror.com/Qwen/Qwen2.5-Math-7B
https://hf-mirror.com/Qwen/Qwen2.5-14B
https://hf-mirror.com/Qwen/Qwen2.5-32B
https://hf-mirror.com/meta-llama/Llama-3.3-70B-Instruct
https://hf-mirror.com/meta-llama/Llama-3.3-70B-Instruct
https://hf-mirror.com/datasets/openai/gsm8k
https://hf-mirror.com/datasets/HuggingFaceH4/MATH-500
https://hf-mirror.com/datasets/HuggingFaceH4/MATH-500
https://hf-mirror.com/datasets/HuggingFaceH4/aime_2024
https://hf-mirror.com/datasets/HuggingFaceH4/aime_2024
https://hf-mirror.com/datasets/Idavidrein/gpqa

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Performance Only Mode: False

Reasoning LLM Mode: True

CoT Visible (for TTFT): False

F.5 HYPERPARAMETERS SETTINGS FOR LLM

The hyperparameters settings for LLM we employed are as follows:

Batch Size: 8, 16, 32

Dataset Capacity: 100, (AIME24 30)

Temperature: 0.7, Top-p: 0.8, Top-k: 20, Request Timeout: 1200 sec

Experiments Repeat Time: 3

Performance Only Mode: False

Reasoning LLM Mode: False

CoT Visible (for TTFT): False

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

G EXPERIMENTS DETAILS

G.1 DETAILS EVALUATION DATASETS

We use 4 different datasets in this paper, they are GSM8K, MATH500, AIME24, and GPQA. The
details of these datasets are following.

• GSM8K (Cobbe et al., 2021): The GSM8K dataset is a large collection of mathematical
problem-solving tasks designed for training and evaluating AI models in the context of
elementary school-level math. It primarily focuses on grade school math word problems
that require multiple steps of reasoning and calculations to solve.

• MATH500 (Lightman et al., 2023): a challenging dataset consisting of problems from high
school math competitions across seven subjects (e.g., Prealgebra, Algebra, Number Theory)
and difficulty levels based on AoPS (ranging from 1 to 5). Problems in these competitions
range from level 1, the easiest, often found in AMC 8 exams, to level 5, like those in AIME.

• AIME24 (Committees, 2024):a dataset from the American Invitational Mathematics Ex-
amination, which tests math problem solving across multiple areas (e.g. algebra, counting,
geometry, number theory, and probability). Because AIME 2024 contains only 30 examples,
we don’t considered examples of AIME from other years.

• GPQA (Rein et al., 2024): a graduate-level dataset consisting of multiple-choice questions
in subdomains of physics, chemistry, and biology. For our experiment, we select the highest
quality subset, known as GPQA Diamond (composed of 198 questions).

G.2 RUNNING DEVICE

All of our experiments are running on two devices: a server with 8 RTX A6000 GPUs with 48GB
VRAM, and another server equipped with 8 RTX 4090 GPUs with 24GB VRAM.

G.3 INFERENCE ENGINE

We use vLLM (Kwon et al., 2023) version 0.8.1 and SGLang (Zheng et al., 2024) version 0.4.6.post1.
For evaluation, we use OpenAI compatible API /v1/chat/completions .

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 1: Performance Metrics with PD-disaggregated

Model Method Dataset Accuracy Running Time Token Per Sec TTFVT Output Tokens

7B w/o PD-disa GSM8K 82 0:58 713.3 0.21 41789
w/ PD-disa GSM8K 82 1:12 516.9 0.3 42052
w/o PD-disa MATH500 65 5:21 492.7 0.23 158431
w/ PD-disa MATH500 64 7:57 323.2 0.4 154318
w/o PD-disa AIME2024 266 2:01 935.3 0.27 112492
w/ PD-disa AIME2024 23.3 2:40 711.7 0.4 113718
w/o PD-disa GPQA 11 6:52 894.2 0.36 368377
w/ PD-disa GPQA 20 9:19 662.0 0.6 369821

H EXTEND OBSERVATION

H.1 CAN DISAGGREGATED PREFILLING IMPROVES RLLM SERVING PERFORMANCE ?

As discussed in Section 2 and paper (Zhong et al., 2024), the process of LLM generates responds to
a input prompt can be divided into two different phases. The LLM first processes input prompt in
the prefill phase, which is computation intensive, to generate the first token of response within one
iteration. After it , in the memory bounded decoding phase, LLM generates token one by one in each
iteration until reaching the end token. These two phases have distinct different significance. However,
many existing serving system co-locate the prefill and decoding at the same device, which may leads
to sub-optimal performance and inter-phase interference as revealed in (Zhong et al., 2024). The
disaggregated prefilling architecture was proposed to address this problem. It is first introduced in
(Zhong et al., 2024), followed by lines of recent works like (Hu et al., 2024b), (Patel et al., 2024), (Hu
et al., 2024a), (Qin et al., 2025), notably improving the TTFT and throughput of system. However,
current support for disaggregated prefilling is experimental and only available in vLLM. What’s
more, the only disaggregated prefilling feature support in vLLM is 1P1D scheme (1 prefilling worker
and 1 decoding worker) currently. Hence, we merely perform evaluation with 1P1D on 7B (on two
RTX-4090 GPU) and 14B (on two A6000 GPU) models across 4 evaluation datasets.

Main results. The results of PD-disaggregation are shown in Table 1. We found that under the 1P1D
setup, PD-disaggregation does not improve the serving performance of RLLMs. On the contrary,
it leads to a decline in system performance metrics. We find that the performance bottleneck of
1P1D serving for RLLMs lies in decoding, while the devices used for pre-filling are largely idle,
which leads to suboptimal performance. Additionally, PD-disaggregation requires KV cache transfer
between GPUs, and the communication overhead negatively impacts the serving of RLLMs.

Observation 6. PD-disaggregation (1P1D) deteriorates RLLM serving metrics compared to mixed
PD. Since near half of computing resource is idle.

I DETAILED EMPIRICAL RESULTS

I.1 TOKEN BUDGET FOR PILOT STUDY

Full Figures of token budget exploration are listed in Figure 8.

I.2 MAIN RESULTS FOR PILOT STUDY

We provide full results of RLLM and LLM serving comparison.

• 7B. RLLM in Table 2, LLM in Table 3

• 14B. RLLM in Table 4, LLM in Table 5

• 32B. RLLM in Table 6, LLM in Table 7

• 70B. RLLM in Table 8, LLM in Table 9

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 2: Serving Results of RLLM-7B

Model BS Budget Dataset Acc. Running Time TPS TTFT Output Tokens

RLLM-7B

8

4096

GSM8k 80.67 1m53s 426.87 2.4200 129629
MATH500 61.33 9m34 302.47 16.5500 502833
AIME24 23.33 4m7s 470.37 40.8200 340730
GPQA 15.00 13m29s 477.14 35.3600 1124673

8192

GSM8k 82.33 1m46s 443.95 2.3400 126155
MATH500 64.33 14m09 240.55 20.2900 601161
AIME24 38.89 8m7s 409.92 64.9600 592434
GPQA 26.67 26m42s 410.33 65.9200 1941071

16

4096

GSM8k 84.30 1m1s 791.40 2.3900 126451
MATH500 59.30 5m56s 499.45 17.1000 505796
AIME24 20.00 2m15s 872.91 46.4700 346986
GPQA 14.67 7m40s 838.80 39.3300 1124379

8192

GSM8k 85.00 1m1s 783.22 2.3900 125992
MATH500 62.30 10m29s 351.14 22.2400 623861
AIME24 37.78 4m35s 736.40 73.4100 590741
GPQA 25.33 15m21s 706.20 72.5800 1921405

64

4096

GSM8k 80.67 28s 1700.96 3.7200 128915
MATH500 60.67 2m16s 1303.67 25.1500 506862
AIME24 18.89 1m22s 1413.73 52.9100 345118
GPQA 14.67 3m22s 1929.84 62.5700 1131700

8192

GSM8k 84.67 25s 1872.10 3.5800 125931
MATH500 61.33 4m1s 897.99 30.3300 624385
AIME24 35.56 2m46s 1222.58 82.1100 600925
GPQA 28.00 6m57s 1567.52 102.1000 1936615

Table 3: Serving Results of LLM-7B

Model BS Budget Dataset Acc. Running Time TPS TTFT Output Tokens

LLM-7B

8 4096

GSM8k 69.67 1m47s 394.13 0.0600 107378
MATH500 3.30 3m19s 343.65 0.0713 178459
AIME24 15.56 1m34s 392.93 0.0776 101905
GPQA 3.00 3m45s 324.91 0.1366 183061

16 4096

GSM8k 70.00 1m33s 477.32 0.0991 115613
MATH500 1.67 2m13s 513.34 0.1258 178452
AIME24 18.89 50s 699.36 0.1208 95181
GPQA 0.04 2m42s 495.68 0.2114 204317

32 4096

GSM8k 67.67 57s 762.61 0.1698 111292
MATH500 1.67 1m31s 748.09 0.2006 176704
AIME24 16.67 33s 1063.23 0.1971 94296
GPQA 6.00 1m34s 754.67 0.3807 175708

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

0.25K 0.50K 1K 2K 4K 8K 16K 20K
Token Budget (K = 1024 tokens)

0

20

40

60

80

Ac
cu

ra
cy

 (%
)

Token Budget (7B RLLM)
GSM8K
Math500
AIME2024
GPQA

0.25K 0.50K 1K 2K 4K 8K 16K 20K
Token Budget (K = 1024 tokens)

0

20

40

60

80

Ac
cu

ra
cy

 (%
)

Token Budget (14B RLLM)
GSM8K
Math500
AIME2024
GPQA

0.25K 0.50K 1K 2K 4K 8K 16K 20K
Token Budget (K = 1024 tokens)

0

20

40

60

80

Ac
cu

ra
cy

 (%
)

Token Budget (32B RLLM)
GSM8K
Math500
AIME2024
GPQA

Figure 8: Results of token budget variation across different datasets for different scale RLLM .

I.3 SERVING BEHAVIORS FOR PILOT STUDY

For better presentation, we provide illustration about 14B and 32B model serving visualization in
Figure 9 and 10.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 4: Serving Results of RLLM-14B

Model BS Budget Dataset Acc. Running Time TPS TTFT Output Tokens

RLLM-14B

8

4096

GSM8k 87.00 3m50s 280.83 5.9731 177347
MATH500 55.00 11m49s 277.63 20.0256 566267
AIME24 27.78 4m42s 411.29 50.6600 341998
GPQA 16.33 15m25s 406.14 39.0104 1090910

8192

GSM8k 87.67 3m30s 303.34 6.0476 175210
MATH500 62.33 17m17s 218.77 25.5350 656437
AIME24 47.78 9m18s 338.41 72.4221 558966
GPQA 21.00 30m34s 341.19 67.0687 1842315

16

4096

GSM8k 86.33 2m40s 402.48 7.6400 173204
MATH500 60.33 8m27s 388.92 27.2100 563198
AIME24 27.78 3m11s 594.52 61.7600 335082
GPQA 15.33 10m48s 581.23 52.2400 1098423

8192

GSM8k 86.33 3m01s 382.72 8.1400 180684
MATH500 63.67 13m25s 291.14 33.2600 669369
AIME24 47.78 6m28s 498.79 109.3600 568311
GPQA 22.00 21m16s 481.30 95.8800 1820128

32

4096

GSM8k 85.33 1m38s 619.91 10.1400 169539
MATH500 57.33 5m38s 568.13 36.8600 554485
AIME24 22.22 2m20s 839.99 92.3600 344929
GPQA 15.00 8m18s 770.56 78.5500 1104010

8192

GSM8k 86.33 2m13s 486.36 11.0500 182233
MATH500 66.00 9m09s 414.53 42.8600 654295
AIME24 50.00 4m22s 722.93 140.4300 563372
GPQA 26.67 15m36s 658.74 136.5100 1818245

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table 5: Serving Results of LLM-14B

Model BS Budget Dataset Acc. Running Time TPS TTFT Output Tokens

LLM-14B

8

4096

GSM8k 74.17 1m18s 317.73 0.0603 60286
MATH500 44.00 2m29s 286.86 0.0626 100818
AIME24 2.22 1m47s 240.82 0.0626 69874
GPQA 29.00 2m15s 305.50 0.1222 87836

8192

GSM8k 74.17 1m16s 337.06 0.0164 59314
MATH500 44.67 2m23s 282.50 0.0635 99443
AIME24 3.33 1m54s 252.58 0.0619 77607
GPQA 29.33 2m09s 228.90 0.1217 90576

16

4096

GSM8k 77.33 44s 529.30 0.1536 55856
MATH500 46.00 1m57s 365.86 0.0913 106980
AIME24 3.33 1m05s 388.44 0.0913 66109
GPQA 25.33 1m40s 424.31 0.2250 93954

8192

GSM8k 77.33 45s 554.18 0.0850 57030
MATH500 47.00 1m53s 385.42 0.0920 109010
AIME24 4.44 58s 409.73 0.9020 62213
GPQA 24.67 2m05s 381.19 0.2547 97573

32

4096

GSM8k 74.09 44s 615.89 0.1350 60318
MATH500 47.67 1m04s 597.29 0.1393 94561
AIME24 5.56 41s 616.16 0.1354 68309
GPQA 28.00 1m17s 403.77 0.4789 95110

8192

GSM8k 74.59 52s 526.30 0.1320 61833
MATH500 46.67 1m20s 523.91 0.1385 102168
AIME24 2.22 41s 620.70 0.1445 69811
GPQA 28.67 1m19s 541.19 0.4215 93025

64

4096

GSM8k 84.00 2m15s 463.17 7.3815 169635
MATH500 59.33 7m57s 406.74 25.6479 560880
AIME24 23.33 3m3s 630.49 58.5514 340172
GPQA 17.00 10m22s 607.50 50.8592 1098715

8192

GSM8k 88.00 2m39s 403.58 7.2181 174708
MATH500 68.00 12m53s 299.83 32.5928 667886
AIME24 53.33 6m7s 532.62 112.0436 577277
GPQA 25.33 20m43s 504.45 86.7966 1846931

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Table 6: Serving Results of RLLM-32B

Model BS Budget Dataset Acc. Running Time TPS TTFT Output Tokens

RLLM-32B

8

4096

GSM8k 91.00 4m16s 192.12 5.2715 130170
MATH500 64.00 24m58s 125.59 42.9319 537799
AIME24 21.11 9m12s 215.58 104.0663 349099
GPQA 20.00 5m0s 206.07 73.0046 1071843

8192

GSM8k 90.33 4m11s 194.77 5.2037 129401
MATH500 70.67 36m41s 97.83 51.2373 621128
AIME24 45.56 18m36s 174.28 150.4045 575207
GPQA 24.33 60m31s 166.67 129.2077 1779384

16

4096

GSM8k 90.67 2m27s 324.74 5.4900 128546
MATH500 66.33 14m49 201.98 44.6300 517659
AIME24 25.56 5m03s 388.52 111.2300 346308
GPQA 21.67 17m25s 352.72 74.0400 1070143

8192

GSM8k 92.67 2m30s 324.04 5.5700 128060
MATH500 68.33 25m38s 134.29 53.4000 597129
AIME24 48.89 10m22s 309.03 170.1700 568936
GPQA 28.67 35m30s 283.98 137.9600 1778995

32

4096

GSM8k 91.33 1m39s 490.92 6.7103 129986
MATH500 66.67 9m29s 309.67 47.9789 504391
AIME24 28.89 3m01s 631.69 119.5658 335582
GPQA 18.00 11m25s 541.78 94.9504 1077209

8192

GSM8k 92.33 1m39s 494.92 6.4570 129510
MATH500 68.67 16m6s 213.37 60.4897 593685
AIME24 50.00 6m06s 502.69 186.3563 547959
GPQA 23.00 23m13s 436.05 171.4893 1787777

Table 7: Serving Results of LLM-32B

Model BS Budget Dataset Acc. Running Time TPS TTFT Output Tokens

LLM-32B

8

4096

GSM8k 60.67 7m25s 87.34 0.1271 100271
MATH500 46.67 8m24s 103.76 0.1339 131828
AIME24 6.67 2m43s 131.04 0.1414 57729
GPQA 29.00 7m6s 141.18 0.2291 144033

8192

GSM8k 60.67 7m10s 89.53 0.0867 98287
MATH500 44.00 7m42s 109.18 0.0874 127011
AIME24 4.44 3m24s 127.82 0.0899 71654
GPQA 29.00 6m18s 152.47 0.1141 136446

16

4096

GSM8k 66.33 4m03s 130.10 0.1083 83076
MATH500 49.00 4m32s 170.74 0.1104 115631
AIME24 12.22 2m13s 185.90 0.1092 67231
GPQA 31.00 4m23s 210.62 0.1544 139381

8192

GSM8k 62.67 4m04s 126.56 0.1107 92586
MATH500 46.03 5m01s 156.52 0.1115 122183
AIME24 6.67 1m53s 200.03 0.1179 60391
GPQA 23.33 3m46s 259.97 0.1659 136660

32

4096

GSM8k 63.00 5m24s 125.09 0.1902 96723
MATH500 45.00 5m44 148.90 0.2097 123313
AIME24 7.78 1m39s 211.36 0.2206 57192
GPQA 24.33 4m06s 231.08 0.3894 141199

8192

GSM8k 62.15 3m59s 129.75 0.1094 87157
MATH500 44.37 5m31s 148.39 0.1109 128664
AIME24 7.78 1m52s 200.63 0.1113 63495
GPQA 25.33 4m31s 246.55 0.1872 136403

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table 8: Serving Results of RLLM-70B

Model BS Budget Dataset Acc. Running Time TPS TTFT Output Tokens

RLLM-70B

8

4096

GSM8k 90.00 5m22s 146.65 6.6450 125391
MATH500 54.67 30m29s 102.48 48.4212 538966
AIME24 32.22 11m46s 162.46 108.0681 336881
GPQA 22.67 38m11s 158.29 93.9947 1052080

8192

GSM8k 90.00 5m30s 143.90 6.5438 125874
MATH500 62.00 49m48s 78.31 61.8861 677161
AIME24 54.44 23m18s 135.50 192.8731 561002
GPQA 29.67 75m38s 128.03 159.9508 1702698

16

4096

GSM8k 88.33 3m24s 230.39 7.4600 123185
MATH500 57.00 19m45s 158.60 52.3600 539666
AIME24 26.67 7m01s 277.08 140.8100 342355
GPQA 23.00 23m35s 253.66 98.0500 1042191

8192

GSM8k 88.00 3m32s 228.88 7.7200 125291
MATH500 60.67 32m27s 112.85 69.6400 644132
AIME24 55.56 13m46s 221.77 197.0300 539132
GPQA 30.67 46m01s 204.78 181.9000 1659750

32

4096

GSM8k 88.67 2m11s 352.22 9.7962 122786
MATH500 56.67 13m0s 238.82 66.2581 534918
AIME24 25.56 4m26s 438.58 184.7638 343514
GPQA 23.00 15m57s 378.78 136.1667 1052451

8192

GSM8k 89.00 2m12s 352.59 9.4598 123720
MATH500 62.33 21m36s 166.26 83.2369 621237
AIME24 51.11 8m24s 360.36 246.0471 537908
GPQA 32.00 30m31s 307.04 228.6145 1650647

Table 9: Serving Results of LLM-70B

Model BS Budget Dataset Acc. Running Time TPS TTFT Output Tokens

LLM-70B

8

4096

GSM8k 93.00 3m03s 144.56 0.2030 62746
MATH500 59.33 10m38s 90.67 0.2283 148624
AIME24 30.00 5m35s 107.39 0.2461 99826
GPQA 53.33 12m18s 128.53 0.4749 243123

8192

GSM8k 92.67 2m58s 144.42 0.1143 60838
MATH500 59.00 13m12s 78.52 0.1197 162129
AIME24 23.33 6m1s 99.04 0.1232 98349
GPQA 51.67 11m24s 131.86 0.1847 233596

16

4096

GSM8k 91.33 1m44s 243.39 0.1525 60890
MATH500 60.00 6m35s 139.78 0.1730 144651
AIME24 27.78 3m06s 171.31 0.1678 89789
GPQA 47.67 7m28s 201.44 0.2694 231586

8192

GSM8k 93.67 1m52s 227.03 0.1536 61434
MATH500 59.00 6m38s 139.61 0.1704 142362
AIME24 27.78 5m13s 124.39 0.1715 103021
GPQA 49.00 10m26s 155.10 0.2551 247291

32

4096

GSM8k 92.33 1m17s 346.24 0.6077 61987
MATH500 60.33 5m29s 176.59 0.6520 149612
AIME24 26.56 2m37s 243.93 0.7012 106146
GPQA 51.00 5m40s 268.96 1.5823 237672

8192

GSM8k 93.00 1m14s 357.73 0.2325 60831
MATH500 61.00 7m7s 148.03 0.2520 164985
AIME24 27.78 3m23s 186.51 0.2550 105595
GPQA 53.33 4m54s 306.15 0.5346 233070

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

0 20 40 60
0

1

2

3

4

GS
M

8K

Time (s)

KV
 U

sa
ge

 (%
)

0 10 20 30

2.5

5.0

7.5

10.0

12.5

15.0

Time (s)

Ru
nn

in
g

Re
qs

LLM RLLM
0

2

4

6

8

Model

Ti
m

e
(s

)

LLM RLLM
0

20

40

60

80

Model

Ac
cu

ra
cy

 (%
)

0 25 50 75 100
0.0

2.5

5.0

7.5

10.0

12.5

M
AT

H5
00

Time (s)

KV
 U

sa
ge

 (%
)

0 100 200

2.5

5.0

7.5

10.0

12.5

15.0

Time (s)

Ru

nn
in

g
Re

qs

LLM RLLM
0

5

10

15

20

25

Model
Ti

m
e

(s
)

LLM RLLM
0

10

20

30

40

50

60

Model

Ac
cu

ra
cy

 (%
)

0 20 40 60
0.0

2.5

5.0

7.5

10.0

12.5

15.0

AI
M

E2
02

4

Time (s)

KV
 U

sa
ge

 (%
)

0 100 200 300 400
2.5

5.0

7.5

10.0

12.5

15.0

Time (s)

Ru

nn
in

g
Re

qs

LLM RLLM
0

2

4

6

8

10

12

Model

Ti
m

e
(s

)

LLM RLLM
0

10

20

30

40

50

Model

Ac
cu

ra
cy

 (%
)

0 50 100 150

KV cache
0

10

20

30

GP
QA

KV
 U

sa
ge

 (%
)

0 100 200

Running Reqs

2.5

5.0

7.5

10.0

12.5

15.0

Ru

nn
in

g
Re

qs

LLM RLLM

Running time
0

10

20

30

40

Ti
m

e
(s

)

LLM RLLM

Performance
0

5

10

15

20

25
Ac

cu
ra

cy
 (%

)

RLLM LLM

Figure 9: Results of RLLM vs LLM for 14B model size .

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

0 50 100 150
0.0

0.5

1.0

1.5

2.0

GS
M

8K

Time (s)

KV
 U

sa
ge

 (%
)

0 20 40 60

2.5

5.0

7.5

10.0

12.5

15.0

Time (s)

Ru
nn

in
g

Re
qs

LLM RLLM
0

1

2

3

4

Model

Ti
m

e
(s

)

LLM RLLM
0

20

40

60

80

Model

Ac
cu

ra
cy

 (%
)

0 50 100 150 200
0

1

2

3

4

5

6

M
AT

H5
00

Time (s)

KV
 U

sa
ge

 (%
)

0 100 200
0

5

10

15

Time (s)

Ru

nn
in

g
Re

qs

LLM RLLM
0

5

10

15

20

25

Model
Ti

m
e

(s
)

LLM RLLM
0

20

40

60

Model

Ac
cu

ra
cy

 (%
)

0 20 40 60 80
0.0

2.5

5.0

7.5

10.0

12.5

AI
M

E2
02

4

Time (s)

KV
 U

sa
ge

 (%
)

0 100 200 300

2.5

5.0

7.5

10.0

12.5

15.0

Time (s)

Ru

nn
in

g
Re

qs

LLM RLLM
0

2

4

6

8

10

Model

Ti
m

e
(s

)

LLM RLLM
0

10

20

30

40

50

Model

Ac
cu

ra
cy

 (%
)

0 100 200

KV cache
0.0

2.5

5.0

7.5

10.0

12.5

15.0

GP
QA

KV
 U

sa
ge

 (%
)

0 100 200 300

Running Reqs

2.5

5.0

7.5

10.0

12.5

15.0

Ru

nn
in

g
Re

qs

LLM RLLM

Running time
0

10

20

30

Ti
m

e
(s

)

LLM RLLM

Performance
0

5

10

15

20

25
Ac

cu
ra

cy
 (%

)

RLLM LLM

Figure 10: Results of RLLM vs LLM for 32B model size .

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

I.4 RUNNING TRACES DEMO

INFO : 1 2 7 . 0 . 0 . 1 : 5 3 4 5 8 − "POST / v1 / c h a t / c o m p l e t i o n s HTTP / 1 . 1 "
200 OK

INFO 05−10 1 3 : 0 1 : 4 9 [l o g g e r s . py : 8 0] Avg prompt t h r o u g h p u t : 223 .0
t o k e n s / s , Avg g e n e r a t i o n t h r o u g h p u t : 164 .5 t o k e n s / s , Running :
16 reqs , Wai t i ng : 0 reqs , GPU KV cache usage : 1 .0 \% , P r e f i x
cache h i t r a t e : 11.6\%

INFO 05−10 1 3 : 0 1 : 5 9 [l o g g e r s . py : 8 0] Avg prompt t h r o u g h p u t : 0 . 0
t o k e n s / s , Avg g e n e r a t i o n t h r o u g h p u t : 650 .0 t o k e n s / s , Running :
14 reqs , Wai t i ng : 0 reqs , GPU KV cache usage : 2 .8 \% , P r e f i x
cache h i t r a t e : 11.6\%

INFO 05−10 1 3 : 0 2 : 0 9 [l o g g e r s . py : 8 0] Avg prompt t h r o u g h p u t : 0 . 0
t o k e n s / s , Avg g e n e r a t i o n t h r o u g h p u t : 495 .5 t o k e n s / s , Running :
11 reqs , Wai t i ng : 0 reqs , GPU KV cache usage : 3 .9 \% , P r e f i x
cache h i t r a t e : 11.6\%

INFO 05−10 1 3 : 0 2 : 1 9 [l o g g e r s . py : 8 0] Avg prompt t h r o u g h p u t : 0 . 0
t o k e n s / s , Avg g e n e r a t i o n t h r o u g h p u t : 406 .1 t o k e n s / s , Running :
8 reqs , Wai t i ng : 0 reqs , GPU KV cache usage : 4 .0 \% , P r e f i x
cache h i t r a t e : 11.6\%

INFO 05−10 1 3 : 0 2 : 2 9 [l o g g e r s . py : 8 0] Avg prompt t h r o u g h p u t : 0 . 0
t o k e n s / s , Avg g e n e r a t i o n t h r o u g h p u t : 320 .8 t o k e n s / s , Running :
8 reqs , Wai t i ng : 0 reqs , GPU KV cache usage : 5 .1 \% , P r e f i x
cache h i t r a t e : 11.6\%

INFO 05−10 1 3 : 0 2 : 3 9 [l o g g e r s . py : 8 0] Avg prompt t h r o u g h p u t : 0 . 0
t o k e n s / s , Avg g e n e r a t i o n t h r o u g h p u t : 320 .7 t o k e n s / s , Running :
6 reqs , Wai t i ng : 0 reqs , GPU KV cache usage : 4 .9 \% , P r e f i x
cache h i t r a t e : 11.6\%

INFO 05−10 1 3 : 0 2 : 4 9 [l o g g e r s . py : 8 0] Avg prompt t h r o u g h p u t : 0 . 0
t o k e n s / s , Avg g e n e r a t i o n t h r o u g h p u t : 271 .3 t o k e n s / s , Running :
5 reqs , Wai t i ng : 0 reqs , GPU KV cache usage : 4 .9 \% , P r e f i x
cache h i t r a t e : 11.6\%

INFO 05−10 1 3 : 0 2 : 5 9 [l o g g e r s . py : 8 0] Avg prompt t h r o u g h p u t : 0 . 0
t o k e n s / s , Avg g e n e r a t i o n t h r o u g h p u t : 180 .7 t o k e n s / s , Running :
4 reqs , Wai t i ng : 0 reqs , GPU KV cache usage : 4 .5 \% , P r e f i x
cache h i t r a t e : 11.6\%

INFO 05−10 1 3 : 0 3 : 0 9 [l o g g e r s . py : 8 0] Avg prompt t h r o u g h p u t : 0 . 0
t o k e n s / s , Avg g e n e r a t i o n t h r o u g h p u t : 164 .8 t o k e n s / s , Running :
4 reqs , Wai t i ng : 0 reqs , GPU KV cache usage : 5 .0 \% , P r e f i x
cache h i t r a t e : 11.6\%

INFO 05−10 1 3 : 0 3 : 1 9 [l o g g e r s . py : 8 0] Avg prompt t h r o u g h p u t : 0 . 0
t o k e n s / s , Avg g e n e r a t i o n t h r o u g h p u t : 174 .4 t o k e n s / s , Running :
4 reqs , Wai t i ng : 0 reqs , GPU KV cache usage : 5 .7 \% , P r e f i x
cache h i t r a t e : 11.6\%

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

J DETAILED EMPIRICAL RESULTS FOR RLLM SERVING OPTIMIZATION

J.1 MODEL WEIGHT QUANTIZATION

Full results of model weight quantization with different models are listed in Table 10 and 11.

Table 10: Results of RLLM-7B with Different Quantization Methods

Model Method Dataset Acc. Running Time TPS TTFT Output Tokens

Budget-4096

RLLM-7B

GPTQ

GSM8k 81.67 36s 1258.52 1.5015 125477
MATH500 61.00 3m34s 807.99 10.8316 488868
AIME24 16.67 1m25s 1383.83 28.3623 346988
GPQA 16.00 4m48s 1342.53 23.6366 1127392

AWQ

GSM8k 82.67 2m36s 306.10 5.7903 128626
MATH500 59.33 14m55s 195.01 41.2395 501037
AIME24 21.11 5m02s 390.68 104.9071 347634
GPQA 14.33 17m22s 371.37 89.8281 1124314

FP8

GSM8k 82.67 58s 805.44 1.8947 128016
MATH500 64.00 4m44s 589.49 13.9700 479989
AIME24 25.56 1m49s 1062.28 38.5411 341103
GPQA 15.00 6m13s 1029.07 29.9774 1110873

L4

GSM8k 82.67 1m21s 560.40 3.5042 119344
MATH500 61.00 7m58s 356.31 24.6086 486082
AIME24 20.00 3m05s 630.92 60.3252 343397
GPQA 15.33 10m36s 599.34 51.2468 1109222

Budget-8192

RLLM-7B

GPTQ

GSM8k 80.33 57s 955.97 1.5007 135978
MATH500 64.00 5m54s 591.44 12.3735 600650
AIME24 31.11 2m59s 1156.19 44.9320 618796
GPQA 25.33 9m47s 1131.34 44.2137 1959609

AWQ

GSM8k 80.00 2m35s 306.42 5.6545 126262
MATH500 66.67 25m03s 141.57 54.4308 618240
AIME24 32.22 10m17s 333.68 162.2038 610667
GPQA 24.33 34m54s 314.88 156.5370 1942820

FP8

GSM8k 83.00 1m03s 774.97 2.0614 129654
MATH500 63.00 7m38s 455.87 17.6713 24375
AIME24 40.00 3m42s 880.38 61.7136 582089
GPQA 27.67 12m40s 856.35 57.6786 1915156

L4

GSM8k 80.33 1m24s 562.97 3.6269 123986
MATH500 63.67 13m01s 264.82 29.4854 597768
AIME24 36.67 6m34s 499.62 98.4701 586687
GPQA 31.33 23m07s 461.52 94.4508 1879225

J.2 KV CACHE QUANTIZATION

Full results of KV Cache quantization with different models are listed in Table 12, 13.

J.3 PREFIX CACHING

Full results of KV Cache quantization evaluation with different models are listed in Table 14, 15, 16,
17.

J.4 SPECULATIVE DECODING

The visualizatio for 7B model SD is in Figure 11. Full results of speculative decoding evaluation with
different models are listed in this subsection. For RLLM, results are presneted in Table 18, 19, 20, 21.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Table 11: Results of RLLM-14B with Different Quantization Methods

Model Method Dataset Accuracy Running Time TPS TTFT Output Tokens

Budget-4096

RLLM-14B

GPTQ

GSM8k 87.67 1m55s 531.24 5.2007 167860
MATH500 61.00 5m56s 535.47 18.478 547482
AIME24 22.22 2m25s 811.91 49.699 346219
GPQA 16.33 8m09s 775.78 40.463 1102007

AWQ

GSM8k 86.67 1m30s 617.47 4.6092 151523
MATH500 61.00 6m01s 534.74 19.725 551164
AIME24 21.11 2m30s 771.16 49.545 342303
GPQA 18.33 8m26s 750.95 42.983 1106144

FP8

GSM8k 89.00 2m19s 446.80 6.5690 170719
MATH500 60.67 7m16s 447.51 24.214 560177
AIME24 24.44 2m55s 665.67 62.497 343575
GPQA 14.33 9m49s 650.24 51.583 1113927

L4

GSM8k 83.67 3m27s 323.02 9.9777 187673
MATH500 58.67 9m24s 326.66 30.626 528533
AIME24 26.67 3m41s 525.41 74.833 341339
GPQA 16.33 12m44s 501.28 65.669 1113251

Budget-8192

RLLM-14B

GPTQ

GSM8k 84.67 1m48s 569.94 5.2287 168441
MATH500 65.33 8m49s 418.08 22.0500 638458
AIME24 40.00 5m03s 666.62 76.884 596659
GPQA 25.00 16m14s 638.98 74.9600 1831969

AWQ

GSM8k 86.67 1m48s 585.55 4.7892 155465
MATH500 65.33 9m22s 399.52 23.658 647840
AIME24 47.78 5m04s 640.79 84.494 575835
GPQA 26.33 17m02s 621.02 77.938 1866185

FP8

GSM8k 86.00 2m14s 467.49 6.5689 171349
MATH500 63.33 11m40s 328.62 28.621 667889
AIME24 51.11 5m43s 535.96 90.392 544733
GPQA 27.33 19m27s 529.1 84.797 1817404

L4

GSM8k 83.33 2m47s 376.01 9.3994 172748
MATH500 63.00 14m44s 248.57 36.372 635662
AIME24 47.78 7m58s 401.73 123.95 572091
GPQA 21.33 28m55s 368.01 115.88 1879105

GSM8k MATH500 AIME24 GPQA
0

50

100

150

200

250

300

350

To
ke

ns
/s

Tokens Per Second (TPS)

GSM8k MATH500 AIME24 GPQA
0

20

40

60

80

Se
co

nd
s

Time To First Visble Token (TTFVT)

GSM8k MATH500 AIME24 GPQA
0

200

400

600

800

1000

Se
co

nd
s

Running Time (s)

GSM8k MATH500 AIME24 GPQA
0

10

20

30

40

50

60

70

80

%

Accuracy (%)

GSM8k MATH500 AIME24 GPQA

Figure 11: Results of 7B RLLM with SD enabled .

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Table 12: Results of RLLM-7B with Different KV Cache Quantization Methods

Model Method Dataset Acc. Running Time TPS TTFT Output Tokens

Budget-4096

RLLM-7B

FP8-E4M3

GSM8k 9.33 7m5s 678.93 3.8153 843936
MATH500 4.33 7m26s 849.23 17.1335 1113415
AIME24 0.00 2m13s 936.07 23.4623 732374
GPQA 0.33 16m27s 831.28 73.5032 2428386

FP8-E5M2

GSM8k 2.67 9m8s 624.13 6.5660 1013649
MATH500 0.33 9m28s 731.99 22.0233 1223241
AIME24 0.00 2m50s 733.58 71.2345 367838
GPQA 0.00 9m36s 739.58 36.1577 1225641

Budget-8192

RLLM-7B

FP8-E4M3

GSM8k 8.67 14m23s 634.50 5.0929 1631364
MATH500 4.00 16m01s 796.17 36.4224 2271199
AIME24 0.00 4m18s 855.67 50.5708 732374
GPQA 0.67 7m39s 914.28 33.3658 1225852

FP8-E5M2

GSM8k 2.33 19m04s 563.56 26.7276 1919839
MATH500 0.33 20m02s 681.93 94.8742 2438321
AIME24 0.00 5m59s 682.40 91.3258 730016
GPQA 0.00 20m21s 678.99 102.0499 2450781

Table 13: Results of RLLM-14B with Different KV Cache Quantization Methods

Model Method Dataset Acc. Running Time TPS TTFT Output Tokens

Budget-4096

RLLM-14B

FP8-E4M3

GSM8k 87.33 2m17s 466.06 7.5905 169107
MATH500 63.00 7m37s 417.60 25.1716 547992
AIME24 26.67 2m59s 640.63 63.6228 338613
GPQA 15.00 10m03s 631.30 50.1774 1106576

FP8-E5M2

GSM8k 82.33 2m40s 390.53 7.6730 171445
MATH500 59.33 7m46s 394.45 25.4353 527039
AIME24 26.67 3m02s 632.26 62.9118 339940
GPQA 15.67 10m19s 608.30 49.3198 1094547

Budget-8192

RLLM-14B

FP8-E4M3

GSM8k 83.67 3m03s 357.72 7.7833 180474
MATH500 66.33 12m18s 305.61 30.8091 653017
AIME24 52.22 5m53s 520.69 94.5251 545376
GPQA 24.00 20m23s 511.37 89.8416 1838882

FP8-E5M2

GSM8k 85.33 2m39s 401.41 7.8384 175761
MATH500 62.67 12m48s 289.84 29.0644 633207
AIME24 48.89 6m04s 513.09 92.6786 553741
GPQA 26.67 20m51s 497.93 90.6068 1833865

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Table 14: Results of RLLM-7B without Prefix Cache

Model Dataset Acc. Running Time TPS TTFT Output Tokens

Budget-4096

RLLM-7B

GSM8k 79.00 1m26s 564.90 3.5931 130372
MATH500 60.67 6m54s 420.14 22.4207 498018
AIME24 18.89 2m46s 708.96 58.7487 349035
GPQA 14.67 9m24s 686.08 47.7385 1124613

Budget-8192

RLLM-7B

GSM8k 81.33 1m14s 622.53 3.4274 124776
MATH500 60.33 11m02s 335.91 26.4863 639141
AIME24 38.89 5m26s 599.82 96.2117 588055
GPQA 27.33 18m42s 583.69 89.0785 1932823

Table 15: Results of RLLM-14B without Prefix Cache

Model Dataset Acc. Running Time TPS TTFT Output Tokens

Budget-4096

RLLM-14B

GSM8k 88.00 2m31s 420.23 8.2604 178175
MATH500 57.67 8m17s 404.26 28.1407 576686
AIME24 23.33 3m12s 604.58 69.2730 342347
GPQA 13.67 10m52s 587.18 56.3880 1114920

Budget-8192

RLLM-14B

GSM8k 87.67 2m34s 412.78 8.0207 171501
MATH500 62.33 12m31s 292.60 31.9481 655351
AIME24 48.89 6m22s 502.43 107.6285 569489
GPQA 23.33 21m20s 481.04 91.3230 1817908

Table 16: Results of RLLM-32B without Prefix Cache

Model Dataset Acc. Running Time TPS TTFT Output Tokens

Budget-4096

RLLM-32B

GSM8k 92.67 2m30s 327.11 5.8756 129761
MATH500 61.00 15m30s 196.65 44.8259 529743
AIME24 25.56 5m09s 379.99 113.5958 344566
GPQA 19.00 17m45s 349.79 83.0689 1082837

Budget-8192

RLLM-32B

GSM8k 92.33 2m32s 314.79 5.8947 130188
MATH500 70.00 23m14s 152.31 58.6775 615489
AIME24 56.67 10m24s 302.55 174.7540 559504
GPQA 27.67 36m01s 275.68 139.8732 1752688

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Table 17: Results of RLLM-70B without Prefix Cache

Model Dataset Acc. Running Time TPS TTFT Output Tokens

Budget-4096

RLLM-70B

GSM8k 90.00 3m25s 228.12 8.2671 123955
MATH500 54.00 20m22s 153.16 53.0075 535884
AIME24 31.11 7m05s 269.74 136.8779 336872
GPQA 19.33 24m06s 251.73 110.7695 1055915

Budget-8192

RLLM-70B

GSM8k 90.00 3m39s 218.50 8.3275 126163
MATH500 61.33 31m57s 115.36 73.7041 634981
AIME24 54.44 13m52s 221.07 224.2071 544412
GPQA 31.33 46m37s 200.15 177.5976 1644534

Table 18: Results of RLLM-7B with Different Speculative Decoding Methods

Model Budget Dataset Acc. Running Time TPS TTFT Output Tokens

L-Step: 2

RLLM-7B

4096

GSM8k 83.33 1m21s 411.47 3.8268 84044
MATH500 63.67 8m26s 241.67 28.9989 342214
AIME24 18.89 4m52s 266.43 91.1752 226340
GPQA 14.33 16m04s 261.39 73.0445 720304

8192

GSM8k 82.67 1m21s 412.96 3.7715 83798
MATH500 61.33 13m50s 176.53 34.7626 415561
AIME24 37.78 11m13s 192.58 156.9481 383225
GPQA 26.67 37m16s 187.68 161.3714 1223433

L-Step: 4

RLLM-7B

4096

GSM8k 82.33 1m32s 380.14 3.9015 83812
MATH500 62.00 8m26s 228.30 30.2225 325135
AIME24 18.89 4m49s 250.19 84.2456 213773
GPQA 15.00 16m54s 240.27 86.0878 699813

8192

GSM8k 83.67 1m17s 418.62 4.0124 83857
MATH500 65.00 13m05s 178.65 36.4870 400672
AIME24 37.78 11m13s 180.60 151.0329 356258
GPQA 28.33 37m11s 172.07 152.6671 1119974

L-Step: 8

RLLM-7B

4096

GSM8k 85.67 1m28s 378.44 4.0057 84219
MATH500 61.00 8m35s 228.01 30.6229 328151
AIME24 21.11 4m57s 248.74 92.2684 215501
GPQA 14.67 16m25s 244.13 78.9886 685904

8192

GSM8k 82.33 1m26s 388.10 4.0512 83643
MATH500 60.33 13m15s 174.36 36.0669 392872
AIME24 38.89 10m36s 184.35 146.6946 344680
GPQA 23.33 36m48s 180.27 171.9770 1158190

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Table 19: Results of RLLM-14B with Speculative Decoding Method

Model Budget L-Step Dataset Accuracy Running Time TPS TTFT Output Tokens

RLLM-14B

4096 4

GSM8k 88.00 3m3s 238.27 11.1347 113595
MATH500 59.33 11m52s 187.51 45.6259 373475
AIME24 24.44 6m09s 199.02 126.3789 217784
GPQA 15.67 20m42s 196.47 105.7676 696919

8192 4

GSM8k 85.00 2m47s 255.10 11.5077 112893
MATH500 62.67 17m22s 148.10 52.2801 433701
AIME24 52.22 12m17s 151.99 194.4668 337745
GPQA 23.33 43m14s 146.90 182.6785 1099344

Table 20: Results of RLLM-32B with Speculative Decoding Method

Model Budget L-Step Dataset Accuracy Running Time TPS TTFT Output Tokens

RLLM-32B

4096 4

GSM8k 90.33 2m36s 218.41 7.2955 84809
MATH500 62.33 15m45s 125.10 57.7919 333363
AIME24 25.56 8m12s 148.29 157.7257 211331
GPQA 16.67 26m29s 147.23 117.7640 665233

8192 4

GSM8k 92.00 2m32s 222.34 7.3433 84595
MATH500 68.67 26m6s 84.75 77.4161 376796
AIME24 47.78 18m56s 99.98 240.3189 331180
GPQA 24.00 56m02s 105.96 216.8525 1050802

Table 21: Results of RLLM-70B with Speculative Decoding Method

Model Budget L-Step Dataset Accuracy Running Time TPS TTFT Output Tokens

RLLM-70B

4096 4

GSM8k 88.67 3m30s 157.68 10.0978 84118
MATH500 56.67 22m01s 98.28 72.7944 367031
AIME24 32.22 10m25s 121.87 195.0349 221532
GPQA 23.33 33m40s 117.38 159.7265 678418

8192 4

GSM8k 90.33 3m33s 158.49 10.2136 84802
MATH500 59.00 31m32s 77.02 86.9171 413304
AIME24 51.11 21m15s 94.05 298.7859 349228
GPQA 34.33 66m23s 90.79 278.9286 1049010

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

For LLM, results are presented in Table 22 (7B), 23 (32B).

Table 22: Results of LLM-7B with Different Speculative Decoding Methods

Model Budget L-Step Dataset Accuracy Running Time TPS TTFT Output Tokens

LLM-7B 4096

2

GSM8k 68.67 2m07s 262.59 0.2300 83610
MATH500 2.33 2m40s 299.47 0.3243 119825
AIME24 15.56 1m10s 321.47 0.3449 60913
GPQA 6.33 2m29s 282.74 0.5113 90423

4

GSM8k 66.67 1m47s 304.82 0.2263 80208
MATH500 0.67 2m32s 309.60 0.3160 115604
AIME24 18.89 1m02s 342.77 0.3234 54837
GPQA 3.67 2m24s 297.60 0.5061 36045

8

GSM8k 69.33 1m59s 268.42 0.2257 79618
MATH500 2.00 2m54s 277.62 0.3213 121082
AIME24 21.11 1m06s 313.01 0.3505 54877
GPQA 3.00 2m27s 275.03 0.5067 85956

Table 23: Results of LLM-32B with Speculative Decoding Method

Model Budget L-Step Dataset Accuracy Running Time TPS TTFT Output Tokens

LLM-32B

4096 4

GSM8k 59.67 4m07s 104.92 0.3605 61457
MATH500 45.33 3m57s 142.52 0.5117 77136
AIME24 6.67 1m19s 170.42 0.5746 32802
GPQA 23.67 3m12s 199.91 0.9070 79295

8192 4

GSM8k 63.00 3m33s 108.95 0.3581 53146
MATH500 45.67 3m33s 146.57 0.5238 69419
AIME24 3.33 1m14s 182.46 0.5354 31939
GPQA 24.67 3m04s 204.56 0.8977 77214

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

K EXTENDED RESULTS FOR REAL WORLD BENCHMARKING

Figure 12: KV cache usage of 7B models under real world workload across different datasets.

Figure 13: KV cache usage of 32B models under real world workload across different datasets.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

Figure 14: Num of running requests in the inference engine for 7B models under real-world workload.

Figure 15: Num of running requests in the inference engine for 32B models under real-world
workload.

43

	Introduction
	Preliminaries
	Experimental Settings
	Setups
	The ASU Assessment Framework

	Pilot Investigations: Serving LLM v.s. RLLM
	Observations on RLLM Serving Optimization
	Is model weight quantization methods effective in boosting RLLM serving?
	Could KV Cache Quantization Lead to Better RLLM Serving Performance?
	Is Prefix Caching Useful for Contributing Efficient RLLM Serving?
	Does Speculative Decoding Help to Improve RLLM Serving Performance?

	Applying to Real World Workload
	Related Work
	Conclusion
	Ethics Statement
	Reproducibility Statement
	Use of LLMs Statement
	Limitation
	Boarder Impact
	Extended Related Work
	Reasoning Large Language Models
	LLM Inference and Serving
	LLM Evaluation
	Ecosystem Support for RLLM Serving.

	An Introduction to LLM Serving
	Serving Performance
	Serving Metric

	Implementation and Reproduction Details
	Code Base
	Models
	Datasets
	Hyperparameters Settings for RLLM
	Hyperparameters Settings for LLM

	Experiments Details
	Details Evaluation Datasets
	Running Device
	Inference Engine

	Extend Observation
	Can Disaggregated Prefilling Improves RLLM Serving Performance ?

	Detailed Empirical Results
	Token Budget for Pilot Study
	Main Results for Pilot Study
	Serving Behaviors for Pilot Study
	Running Traces Demo

	Detailed Empirical Results for RLLM Serving Optimization
	Model Weight Quantization
	KV Cache Quantization
	Prefix Caching
	Speculative Decoding

	Extended Results for Real World Benchmarking

