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ABSTRACT

Modelling complex 3D dynamics—from molecular conformations to particle in-
teractions and human motion—requires capturing dependencies spanning long
temporal horizons and non-local spatial interactions. Graph neural networks
(GNNs) have shown promise in spatio-temporal settings but often suffer from
instability and degraded accuracy in long-range forecasting. We propose the Graph
Mamba Operator (GRAMO), a neural operator that integrates state-space models
(SSMs) with geometric learning to capture spatio-temporal correlations jointly.
To jointly model complex dynamics, GRAMO integrates a stable, SSM-based
temporal backbone with an SSM-parameterized graph update to capture long-
range spatial dependencies. Unlike stepwise predictors that accumulate errors over
time, GRAMO learns entire trajectories in a single forward pass. Across diverse
benchmarks ranging from molecular dynamics to human motion capture, GRAMO
shows notable improvements in trajectory fidelity, stability, and robustness over
strong baselines with relative improvements of over 26.3% on motion capture
benchmarks and 25.2% on MD17 final-state prediction. Ablation studies reveal
that temporal SSM components consistently improve performance, while spatial
SSM updates show task-dependent benefits—helping with long-range interactions
in large molecules but potentially hindering performance on systems with primarily
local dependencies. Altogether, these results suggest that selective integration
of SSM components with graph neural networks can improve performance on
particle-based systems, with applications in molecular simulations, articulated rigid
body dynamics, and particle systems.

1 INTRODUCTION

Particle-based systems are fundamental to understanding natural phenomena across diverse domains
ranging from physics to biology to engineering. Molecular dynamics (MD) simulations capture how
atoms interact to drive chemical reactions and protein folding Frenkel & Smit (2023); Hollingsworth
& Dror (2018). Gravitational N-body problems describe celestial mechanics that shape galactic
structures. These systems, while operating at vastly different scales, share a common mathematical
foundation: collections of interacting entities whose collective behavior emerges from local interaction
rules governed by ordinary differential equations. Accurately modeling and predicting the evolution
of such systems is essential for scientific discovery and technological advancement. Traditional
numerical methods solve these equations using symplectic integrators such as Verlet or velocity
Verlet schemes (Donnelly & Rogers, 2005; Bou-Rabee, 2013). However, these approaches become
computationally prohibitive for complex systems with many particles or long temporal horizons
(Hollingsworth & Dror, 2018; Bou-Rabee, 2013), motivating alternative data-driven methods.

Graph neural networks have emerged as a promising approach for learning particle dynamics by
naturally representing entities as nodes and their interactions as edges (Kipf et al., 2018; Martinkus
et al., 2021; Sanchez-Gonzalez et al., 2020; Pfaff et al., 2020; Bihani et al., 2024; Bishnoi et al., 2023).
This representation enables physically informed models that can generalize across different system
configurations (Xu et al., 2024; Bishnoi et al., 2022). Neural operators provide a robust framework for
modeling dynamical systems by learning mappings between infinite-dimensional functional spaces
and serving as universal approximators for complex dynamics. Among these, the Fourier Neural
Operator (Li et al., 2020; 2023; Bonev et al., 2023) has achieved state-of-the-art results on partial
differential equations by leveraging Fourier-domain representations. However, current graph-based
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approaches face fundamental limitations when modeling long-term dynamics. Their reliance on
local message passing restricts information flow to immediate neighbors at each step, leading to
over-squashing of long-range dependencies and error accumulation over time (Dwivedi et al., 2022;
Di Giovanni et al., 2023; Arroyo et al., 2025; Topping et al., 2021). These methods also suffer from
vanishing gradients and degraded performance on long horizons (Liu et al., 2019).

State-space models (SSMs) offer a complementary perspective by treating discrete observations as
samples from underlying continuous-time processes (Gu & Dao, 2023). SSMs maintain compact
latent representations and update them through linear dynamics, enabling efficient modeling of
long-range temporal dependencies while avoiding the vanishing gradient problems that plague
recurrent approaches (Mehta et al., 2022). Recent work has demonstrated that SSMs can be effective
in modelling partial differential equations and have shown competitive performance compared to
traditional neural operators on various benchmarks (Tiwari et al., 2025). Additionally, selective SSMs
have achieved remarkable success in sequence modeling tasks across multiple domains (Dao & Gu,
2024). However, extending SSMs to graph-structured data remains challenging because it requires
reconciling sequential temporal updates with complex spatial topologies (Wang et al., 2024).

We propose the Graph Mamba Operator (GRAMO), which integrates state-space modeling with graph
neural networks to capture both long-range spatial and temporal dependencies in particle dynamics.
GRAMO employs bidirectional SSMs for temporal modeling and introduces a SSM-parameterized
message passing scheme that enables non-local spatial interactions while maintaining computational
efficiency. The key insight is that spatial message passing can itself be formulated as a state-space
process, where node states evolve according to graph-aware dynamics. Unlike stepwise predictors
that accumulate errors over time, GRAMO learns to predict entire trajectories in a single forward
pass. Our main contributions are:

1. GRAMO. We present GRAMO, unifying SSM-based temporal modeling with graph mes-
sage passing to jointly capture spatial and temporal dependencies in particle systems.

2. Theoretical Analysis. We analyze the stability properties of our SSM-based spatial updates
and show how they extend local graph interactions to capture long-range dependencies.

3. Empirical Validation. Across benchmarks spanning molecular dynamics, human motion,
and N-body systems, GRAMO achieves consistent improvements over strong baselines,
with mean relative gains of 26.3% on motion capture and 25.2% on MD17.

2 RELATED WORK

Neural Operators. Neural operators learn mappings between infinite-dimensional function spaces,
providing data-driven alternatives to classical numerical solvers (Kovachki et al., 2023). Specifically,
Fourier Neural Operator (FNO) (Li et al., 2020; 2023), a seminal work in the field, parameterizes
integral operators in Fourier space, achieving state-of-the-art performance on fluid dynamics and
atmospheric modeling (Li et al., 2020; 2023; Bonev et al., 2023). Recent operator frameworks
leverage state-space models to capture long-range temporal dependencies (Gu & Dao, 2023; Tiwari
et al., 2025), showing competitive performance on PDE benchmarks. However, these approaches
treat spatial and temporal dynamics independently, limiting effectiveness for coupled particle systems
where spatial interactions evolve over time.

Graph Neural Networks. Message-passing networks (Kipf & Welling, 2017a; Hamilton et al.,
2017; Veličković et al., 2018) naturally represent particle systems by treating entities as nodes and
interactions as edges (Kipf & Welling, 2017b). Despite conceptual appeal, they face fundamental
limitations: over-squashing prevents long-range information flow (Arroyo et al., 2025), while iterative
prediction leads to error accumulation. Graph Transformers address some issues through global
attention but incur quadratic computational costs. Continuous-time formulations like Graph ODEs
(Fang et al., 2021; Luo et al., 2023) avoid discretization errors but suffer from expensive solvers and
numerical instability. Most relevant to our work, EGNOs (Xu et al., 2024) predict entire trajectories
in single passes, reducing error accumulation, but struggle with long-range temporal dependencies
and non-stationary dynamics due to their reliance on fixed Fourier parameterizations.

State Space Models on Graphs. Structured SSMs have demonstrated remarkable success in sequence
modeling (Gu & Dao, 2023; Dao & Gu, 2024) and recently shown promise for PDE solving (Tiwari
et al., 2025). Extensions to graphs have explored various approaches: survey work (Qu et al., 2024)
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categorizes SSM applications across domains, including vision (Zhu et al., 2024) and graphs (Wang
et al., 2024). However, current graph SSM methods impose artificial sequential orderings through
degree-based sorting (Wang et al., 2024) or random walks (Behrouz & Hashemi, 2024), breaking
permutation equivariance or losing structural information. Recent spatio-temporal approaches (Sahili
& Awad, 2023; Cini et al., 2023) address temporal modeling but do not fully exploit SSMs’ long-
range capabilities for spatial interactions. To the best of our knowledge, no prior work successfully
integrates SSM temporal operators with principled graph message passing for particle dynamics.

3 BACKGROUND AND PROBLEM SETTING

State-Space Models (SSMs). A continuous-time linear state-space model (also known as a Linear
Time-Invariant, LTI system) characterizes the evolution of a hidden state under the influence of
external inputs. Let the input be x(t) ∈ Rdx , the hidden state be h(t) ∈ Rdh , and the output be
y(t) ∈ Rdy . The system dynamics are described by the continuous-time state-space as follows:

ḣ(t) = Ah(t) +Bx(t), y(t) = Ch(t), (1)

where A ∈ Rdh×dh is the state transition matrix, B ∈ Rdh×dx is the input projection, and C ∈
Rdy×dh is the output mapping and the model learnable parameters.

Discretization. For integration of continuous-time SSMs into neural network architectures, it is
necessary to derive a discrete-time formulation. Let ∆ ∈ R+ denote the sampling interval, and
assume a zero-order hold (ZOH) scheme for discretization. The continuous dynamics in equation 2
takes the following discrete representation form:

h[k] = Ā h[k − 1] + B̄ x[k], y[k] = Ch[k]. (2)

where Ā and B̄ are the discretized system matrices (derivation in Appendix B), defined as follows:

Ā = exp(∆A), B̄ = A−1(exp(∆A)− I)B. (3)

with I denoting the identity matrix. For sufficiently small ∆, one may approximate B̄ ≈ ∆B.

An equivalent view of the discrete-time SSM is obtained by unfolding the recurrence into a convolu-
tional operator (Gu & Dao, 2023). Specifically, the output sequence y can be expressed as:

y = x ∗K, K =
[
CB, CAB, . . . , CAL−1B

]
, (4)

where K ∈ RL is the convolutional kernel the system’s impulse response.

Selective State-Space Models (S6). The Selective SSM framework, introduced in Mamba (Gu &
Dao, 2023), extends classical SSMs by allowing certain parameters to depend on the input signal. In
particular, the input-dependent parameterization of B, C, and the discretization step ∆ enhances both
expressivity and efficiency, bringing the performance of SSMs closer to transformer-based sequence
models. Under this formulation, the convolutional kernel in Equation 4 is generalized to following:

K =
{
CLBL, CLAL−1BL−1, . . . , CL

( L−1∏
i=1

Ai

)
B1

}
, (5)

where the matrices {Ai,Bi,Ci} are selectively modulated by the input at each step. This adaptive
construction yields a richer class of convolutional operators.

Newtonian–SSM Connection. Consider Newtonian dynamics for a particle system governed by
ẋ = v and mv̇ = −F(x,v, t)− γv, where F(x,v) represents forces, m represent the masses, and
γ is a damping coefficient. By defining the state vector h = [x;v], the second-order system can be
written in first-order state-space form:

ḣ = Ah+Bu(h), (6)

where A =

[
0 I
0 −γI

]
, B =

[
0
−I

]
, and u(h) = F(x,v).

When forces are linear in the state variables, this reduces to a linear time-invariant (LTI) system. For
nonlinear forces, the system becomes a nonlinear state-space model. The explicit form is:

Ż =

[
ẋ
mv̇

]
=

[
v

−F(x,v)− γv

]
=

[
0 I
0 −γI

] [
x
v

]
+

[
0
−I

]
F(x,v) (7)
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This formulation provides a natural connection between particle dynamics and state-space representa-
tions, motivating the use of SSM-based approaches for trajectory prediction. Note that this equation
is analogous to Hamiltonian dynamics with x and mv corresponding to the canonical coordinates q
and p representing positions and momenta of the particles, respectively.

Problem Setting. We study the temporal evolution of interacting particle systems represented as a
sequence of graphs {Gt}Tt=1. Each graph Gt = (V, E ,Ht,Zt) shares a fixed node set with |V| = N
nodes, defining a mapping f : t 7→ Gt.
The graph structure captures both static and dynamic particle properties. Node features Ht ∈ RN×d

encode time-invariant attributes such as atom type or charge. Time-varying geometric descriptors
Zt ∈ RN×m×3 represent evolving particle states, commonly instantiated as Zt = [xt,vt] where
xt ∈ RN×3 denotes positions and vt ∈ RN×3 denotes velocities, giving m = 2.

In our formulation, structural features remain constant over time (Ht = H) while system dynamics
evolve through the geometric tensors Zt. The graph connectivity is defined by an adjacency matrix
A ∈ RN×N , constructed from either domain-specific interactions (e.g., chemical bonds in molecular
systems) or distance-based neighborhoods.

Problem Statement (Trajectory Prediction). Let T be a set of spatio-temporal trajectories of
interacting particle systems sampled from data distribution pdata. Each trajectory consists of a
sequence of graphs {G(t+∆t) : ∆t ∈ [0,∆T ]} representing particle states over time. Let U : D →
RN×m×3 denote the target trajectory space. Our goal is to learn a neural operator that predicts
complete trajectories from initial conditions. Towards that end, we want to learn:

1. A neural operator Fθ : G(t) 7→ {G(t+∆t) : ∆t ∈ [0,∆T ]} that approximates the true
solution operator F† and maps initial graph states to complete future trajectories in a single
forward pass, unlike prior approaches (Thomas et al., 2018; Wang & Chodera, 2023).

2. The operator must capture both long-range spatial dependencies through graph structure and
long-range temporal dependencies across the prediction horizon.

3. The learned operator should maintain permutation equivariance with respect to particle
ordering and exhibit stable predictions over extended time horizons.

The training objective minimizes the expected trajectory discrepancy:

min
θ

EG(t)∼pdata

[
L
(
Fθ(G(t)),F†(G(t))

)]
, (8)

where L measures trajectory discrepancy using the L2 norm.

Once learned, this neural operator can predict trajectories of unseen particle systems across domains,
including molecular dynamics, human motion, and N-body systems.

In practice, we approximate the continuous objective through empirical risk minimization (ERM)
over P uniformly sampled time points {τp}Pp=1 ⊂ [0,∆T ]:

min
θ

EG(t)∼pdata

1

P

P∑
p=1

∥∥∥Fθ(G(t))(τp)−F†(G(t))(τp)
∥∥∥
2
. (9)

We focus on modeling geometric evolution: the time-varying descriptors Zt capture system dynamics
while structural node features H remain time-invariant.

4 GRAPH MAMBA OPERATOR

We propose GRAMO, a neural operator that predicts entire future trajectories in a single step.
Inspired by Mamba (Gu & Dao, 2023), which employs dynamic weights (input dependent) for SSM,
we employ a temporal SSM that learns frequency-dependent temporal dynamics, coupled with an
SSM-based spatial update that preserves graph topology while capturing long-range interactions.

4.1 PROPOSED METHOD

Overview. The proposed method, illustrated in Figure 1, can be summarized as follows:

Fθ = (S ◦ T )l ◦ (S ◦ T )l−1 ◦ · · · ◦ (S ◦ T )2 ◦ (S ◦ T )1 ◦ E , (10)
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Figure 1: Overview. The framework encodes the input graph G(t), processes it through L stacked GRAMO
blocks, and decodes future trajectories. (Left.) Overall architecture. (Right Top.) Temporal block: bidirectional
Mamba capturing long-range temporal dependencies. (Right Bottom.) Spatial block: SSM-inspired message
passing enabling non-local interactions (in Appendix Algorithm 1-2). The horizon ∆T is discretized into P

steps {∆tp}Pp=1, and the decoder outputs trajectories {G(t+∆tp)}Pp=1 in parallel as predicted dynamics fG(t).

where ◦ denotes composition. Specifically, the encoder E maps the initial graph state G(0) to the
trajectory sequence {G(t)}. Each S represents a spatial convolution block, while T corresponds to a
temporal convolution block. The parameter l denotes the total number of stacked GRAMO layers.
Finally, it generates the complete trajectory, producing the final output representation.

Encoder (E). The encoder E maps the initial graph G(0) into a predicted trajectory {G(t)}Pt=1.
Following (Xu et al., 2024), we replicate G(0) into P copies {G(0)}Pp=1 and augment each with
a learnable time embedding e(∆tp), enabling the model to incorporate timestep information for
trajectory prediction (Ho et al., 2020). The sequence is then processed by interleaved temporal blocks
(T ) and spatial blocks (S), allowing stacked GRAMO layers to evolve the full trajectory.

GRAMO Blocks. GRAMO is structured as a hierarchical stack of temporal convolution blocks
(T ) and spatial convolution blocks (S). The temporal blocks capture long-range dynamics across
nodes, while the spatial blocks operate on the graph topology to model inter-node dependencies.
By interleaving and stacking these components, GRAMO jointly encodes temporal and spatial
correlations, yielding a rich representation for learning the dynamics of graph-structured systems.

Temporal Convolution (T ). Let f : D → G denote the input trajectory function with f(t) =
[fh; fZ(t)]

⊤, where fh is time-invariant and fZ(t) is time-varying. 1 The temporal convolution layer
T applies a residual update which can be described as follows:

(T f)(t) = f(t) + σ
(
(Kf)(t)

)
, (11)

where σ denotes a pointwise nonlinearity, and K represents the integral operator (Li et al., 2020)
defined as Kf(t) =

∫
T
K(t, τ) f(τ) dτ . We parameterize K using a bidirectional state-space model

(SSM) applied across nodes to capture temporal dynamics. As shown in (Tiwari et al., 2025), SSMs
approximate integral kernels, which allows K to represent both causal and anti-causal responses. As
shown in Equation 2 we can represent the Kf in discretized form as follows:

Kf = SSMforward(A, B̄, C̄)f + SSMbackward(A, B̄, C̄)f (12)
where SSMforward and SSMbackward denote the forward and backward state-space models applied along
the temporal dimension of the nodes. The forward model is parameterized as SSM(A, B̄, C̄), and
the backward model as SSM(A, B̄, C̄). Unlike EGNO, where the kernel parameters remain fixed,
our formulation employs dynamic parameters that adapt to the temporal evolution of the system.

Spatial Convolution (S). We design a Mamba-inspired message passing layer that extends state-
space updates to graph-structured data. Let {G(t)} denote a temporal sequence of graphs with fixed

1For simplicity, In this paper f denotes fG .
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topology (V, E) and node features {X(t)}, obtained by concatenating the intrinsic node features H(t)

with the geometric features Z(t), where Z(t) encodes the positions and velocities of the nodes. Each
graph is associated with a hidden state S(t), which evolves through the following structured update:

S(t+1) = Â S(t) W +X(t) B, Y(t+1) = S(t+1) C. (13)

Here, S(t) ∈ RN×n denotes the hidden state at step t, X(t) ∈ RN×dx the input node features, and
Y(t) ∈ RN×dy the output node features. The operators are given by Â ∈ RN×N ,W ∈ Rn×n,B ∈
Rdx×n,C ∈ Rn×dy . The matrix Â denotes the normalized adjacency Â = D− 1

2 (A + I)D− 1
2 ,

where A is the adjacency matrix, I adds self-loops, and D is the corresponding degree matrix. The
matrices W,B,C are model learnable parameters.
Remark 4.1. If we set B = C = 0 and initialize S(t) = X(t), then after applying a nonlinearity σ(·),
the update reduces to Y = σ

(
ÂXW

)
, which recovers the standard GCN message-passing rule.

Selectivity and Interpretability. Spatial convolution design is inspired by the notion of selectivity
in sequence models, where dynamics are adaptively weighted by input content. To achieve this,
the parameters B and C are made input-dependent, dynamically generated from X(t) via graph
convolution (e.g., GCN, GraphSAGE) at each step. This provides finer control over information flow:
Â governs state propagation through normalized adjacency (as in message passing neural networks),
while B and C regulate how new inputs update the hidden state S(t) and how the state contributes to
the output Y(t). Such selectivity enables the model to filter irrelevant signals, compress long contexts
into compact states, and balance content-driven input modulation with context-driven state dynamics.

4.2 THEORETICAL INSIGHTS

We now provide a theoretical analysis of the proposed components, with complete proofs in Ap-
pendix B. Lemma 4.2 establishes the stability of Equation 13 by showing that the normalized
adjacency Â has spectral radius equal to unity. Moreover, unrolling the recurrence introduces powers
of Â, and Appendix Proposition B.7 demonstrates that Ât encodes all walks of length t. Conse-
quently, after t steps, each node aggregates information from all nodes within t hops, thereby enabling
the model to effectively capture long-range information across nodes in the graph.

Lemma 4.2 (Spectrum and Neumann Series ). Let G be an undirected graph and Â = D− 1
2 (A+

I)D− 1
2 . Then σ(Â) ⊆ [−1, 1] and ∥Â∥2 = ρ(Â) = 1, with max eigenvalue 1 and eigenvector

proportional to D1/21. Consequently, the Neumann series
∑∞

t=0 Â
t diverges. However, for any

α ∈ (0, 1) the damped series
∑∞

t=0(αÂ)t converges to (I− αÂ)−1.

Next, in Proposition 4.3, we establish the permutation equivariance of Equation 13: permuting the
node ordering results in the output being permuted in the same way, a desired property for GNNs.
Proposition 4.3 (Permutation Equivariance ). Let Π ∈ {0, 1}N×N be any permutation matrix and
define Â′ = ΠÂΠ⊤, S

′(t) = ΠS(t), X
′(t) = ΠX(t). Then the update:

S(t+1) = ÂS(t)W +X(t)B, Y(t+1) = S(t+1)C (14)
is permutation equivariant:

S
′(t+1) = Â′S

′(t)W +X
′(t)B = ΠS(t+1), Y

′(t+1) = S
′(t+1)C = ΠY(t+1). (15)

Finally, Proposition 4.4 establishes that repeated updates can either amplify or attenuate signals
depending on the spectral properties of Â and W. The dynamics remain stable provided the spectral
radii are bounded: as shown in Lemma 4.2, Â has spectral radius 1, and by ensuring that ρ(W) is
bounded, the update equation maintains stable dynamics throughout rollouts.
Proposition 4.4 (Multi–Step Jacobian). For the spatial SSM update

S(t) = Â S(t−1)W +X(t−1)B, (16)

with S(t)∈RN×n, Â∈RN×N , and W∈Rn×n, the Jacobian of S(t) with respect to S(s) for t > s is

∂ S(t)

∂ S(s)
=
[
(Â t−s)ij W

t−s
]N
i,j=1

and
∂ vec(S(t))

∂ vec(S(s))
=
(
W⊤ ⊗ Â

)t−s
. (17)
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Table 1: Evaluation of the N-Body and Mocap Capture. F-MSE (×10−2) on the N-Body simulation and
Motion Capture datasets (Subject #35 Walk, Subject #9 Run). The ”Gain %” quantifies the relative reduction
achieved by our model compared to the second-best performer on each benchmark. First and Second denotes
best results. Lower value denotes better performance. Baseline results reported from Xu et al. (2024).

Dataset SE(3)-Tr. TFN MPNN RF ClofNet EGNN EGNO GRAMO Gain %

N-body 2.44±0.03 1.55±0.02 1.07 ±0.03 1.04 ±0.03 0.65±0.02 0.71±0.02 0.65 ±0.01 0.62±0.02 4.61%
#35 (Walk) 31.5 ±2.1 32.0 ±1.8 36.1 ±1.5 188.0 ±1.9 – 28.7 ±1.6 9.61 ±1.6 6.9 ±0.21 28.19%
#9 (Run) 61.2 ±2.3 56.6 ±1.7 66.4 ±2.2 521.3 ±2.3 – 50.9 ±0.9 37.18 ±0.7 28.12±0.43 24.37%

5 NUMERICAL EXPERIMENTS

We systematically evaluate GRAMO across diverse trajectory prediction tasks, comparing against
established baselines and performing detailed component analyses to validate our design choices.

5.1 IMPLEMENTATION DETAILS

Benchmark Details. We evaluate GRAMO on diverse trajectory-prediction tasks spanning physical,
biological, and human-motion domains. Benchmarks include the 3D N-body suite (Satorras et al.,
2021a), human motion from CMU Mocap (Walk #35 and Run #9) (CMU, 2003; Huang et al., 2022;
Han et al., 2022), protein dynamics from the AdK equilibrium trajectory (Seyler & Beckstein, 2017;
Richard J. Gowers et al., 2016), and the MD17 molecular dataset (Chmiela et al., 2017). Together,
these tasks evaluate the GRAMO ’s ability to capture both short- and long-range interactions.

Baselines. We compare GRAMO against a broad range of graph networks and operators, including
Linear (Satorras et al., 2021a), SE(3)-Transformer (Fuchs et al., 2020), TFN (Thomas et al., 2018),
MPNN (Gilmer et al., 2017), RF (Köhler et al., 2019), ClofNet (Du et al., 2022), EGNN (Satorras
et al., 2021a), EGNO (Xu et al., 2024), and ITO (Schreiner et al., 2023). Following Xu et al.
(2024), we also evaluate two EGNN variants: (i) EGNN-Roll, trained on short horizons and evaluated
by iterative rollout (Sanchez-Gonzalez et al., 2020); and (ii) EGNN-Sequential, which generates
trajectories frame by frame through successive EGNN layers.

Implementation Details. All models are trained using the Adam optimizer (Kingma & Ba, 2014)
along with the StepLR scheduler. Experiments are carried out on a Linux system running Ubuntu
20.04.3LTS, equipped with an Intel(R) Core(TM) i9-10900X CPU and a single NVIDIA RTX A6000
GPU with 48 GB memory. Further details are provided in the Appendix Section D.

Evaluation Metrics. We evaluate performance under two settings: state-to-state (S2S) and state-to-
trajectory (S2T). The state-to-state setting measures accuracy at the final timestep using the Final
Mean Squared Error (F-MSE), defined as F-MSE = ∥x(tP )− x†(tP )∥2, where x† is the reference
state. In contrast, the state-to-trajectory setting evaluates the entire rollout using the Average MSE
(A-MSE), given by A-MSE = 1

P

∑P
p=1 ∥x(tp)− x†(tp)∥2, which serves as the evaluation metric.

Table 2: A-MSE (×10−2) comparison across models on N-
Body simulation and MoCap datasets: Subject #35 (Walk)
and Subject #9 (Run). First and Second denotes best results.

Model N-Body #35 (Walk) #9 (Run)

EGNN-R 2.15±0.02 32.0±1.6 277.3±1.8

EGNN-S 0.45±0.01 14.3±1.2 28.5±1.3

EGNO 0.27±0.03 9.3±1.5 37.2±0.7

GRAMO 0.25±0.02 6.5±0.2 26.28 ±0.4

Gain % 7.4% 30.1% 7.8%

Results. Table 1 shows that GRAMO
performs slightly out perform existing ap-
proaches on the relatively simple N-body
system (4.61% gain), while achieving sub-
stantial gains on the more complex Mo-
tion Capture tasks (Subject #35 Walk, Sub-
ject #9 Run), with a relative improvement
of 26.28% over the second-best baseline.
Furthermore, Table 2 demonstrates that
EGNN and EGNO suffer from pronounced
error accumulation over long trajectories,
whereas GRAMO maintains accurate and
stable rollouts, preserving both fidelity and stability.

Now, we analyze the performance on the MD17 dataset (see Table 3). Here, GRAMO consistently
outperforms all baselines in the final-state prediction, achieving a relative gain of 25.2% over the
second-best method. These improvements are especially pronounced for molecules such as benzene,
aspirin, and toluene, where GRAMO yields substantially lower MSE than prior approaches. Notably,
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Table 3: Evaluation on the MD17 dataset. The upper half of the table reports F-MSE (×10−2), while
the lower half presents A-MSE (×10−2). First and Second denotes best results. Lower value denotes better
performance. Baseline results reported from Xu et al. (2024).

Model Aspirin Benzene Ethanol Malonaldehyde Naphthalene Salicylic Toluene Uracil

RF 10.94±0.01 103.72±1.29 4.64±0.01 13.93±0.03 0.50±0.01 1.23±0.01 10.93±0.04 0.64±0.01
TFN 12.37±0.18 58.48±1.98 4.81±0.04 13.62±0.08 0.49±0.01 1.03±0.02 10.89±0.01 0.84±0.02
SE(3)-Tr. 11.12±0.06 68.11±0.67 4.74±0.13 13.89±0.02 0.52±0.01 1.13±0.02 10.88±0.06 0.79±0.02
EGNN 14.41±0.15 62.40±0.53 4.64±0.01 13.64±0.01 0.47±0.02 1.02±0.02 11.78±0.07 0.64±0.01
EGNN-R 14.51±0.19 62.61±0.75 4.94±0.21 17.25±0.05 0.82±0.02 1.35±0.02 11.59±0.04 1.11±0.02
EGNN-S 9.50±0.10 66.45±0.89 4.63±0.01 12.88±0.01 0.45±0.01 1.00±0.02 10.78±0.05 0.60±0.01
ITO 20.56±0.03 57.85±0.58 8.60±0.27 28.44±0.73 1.82±0.17 2.48±0.34 12.47±0.30 1.33±0.02
EGNO 9.42±0.03 55.70±0.32 4.6±0.05 13.12±0.01 0.39±0.01 0.86±0.02 10.31±0.12 0.56±0.01
GRAMO 7.55±0.04 2.06±0.12 3.65±0.03 12.85±0.04 0.37±0.02 0.84±0.02 4.75±0.03 0.54±0.02
Gain % 19.85% 96.30% 20.65% 0.233% 5.13% 2.32% 53.93% 3.57%

EGNN-R 12.07±0.11 23.73±0.30 3.44±0.17 13.38±0.03 0.63±0.01 1.15±0.02 5.04±0.02 0.89±0.01
EGNN-S 9.49±0.12 29.99±0.65 3.29±0.01 11.21±0.01 0.43±0.01 1.36±0.02 4.85±0.04 0.68±0.01
EGNO 7.01±0.01 22.06 ±0.02 3.30±0.02 10.73±0.01 0.33±0.01 1.20±0.02 4.67±0.02 0.51±0.01
GRAMO 6.21±0.03 1.08±0.02 2.88±0.03 11.21±0.05 0.36±0.02 0.72±0.02 2.31±0.03 0.55±0.01
Gain % 11.41% 95.10% 12.46% -4.47% -9.09% 37.39% 50.53% -7.84%

GRAMO performs strongly in both S2S and S2T evaluations, highlighting the benefit of combining
temporal and spatial convolution. In contrast to EGNO, which employs a fixed kernel, GRAMO
leverages dynamic weights to parameterize the temporal kernel, enabling it to effectively capture
non-stationary signals.

Furthermore, we evaluate the performance of GRAMO on the AdK equilibrium benchmark and
compare it against the state-of-the-art EGHN (Han et al., 2022) baseline. As shown in Table 4, our
method outperforms the baseline by a relative improvement of 4.45%, demonstrating its ability to
effectively capture long-range interactions in modelling the equilibrium trajectory.

Table 4: Evaluation on the Protein dataset. F-MSE (×10−2) on the AdK equilibrium trajectory dataset. First
and Second denotes best results. Lower value denotes better performance.

Dataset MPNN RF EGNN EGHN EGNO EGHNO GRAMO Gain%

AdK 2.322 2.846 2.735 2.034 2.231 1.80 1.72 4.44%

Ablations. To assess the contributions of the temporal and spatial convolution modules in GRAMO,
we perform an ablation on the Aspirin and MoCap-Run datasets. Incorporating temporal modeling
consistently improves performance (see Table 5), whether combined with an EGNN or our SSM-based
spatial update. When comparing the spatial components, our Mamba-based convolution outperforms
EGNN on molecules, reflecting the importance of capturing long-range interactions. Conversely, the
MoCap task, which is characterized by shorter-range dynamics, benefits more from the EGNN spatial
update (Bishnoi et al., 2022).

Table 5: Ablation on Aspirin and MoCap-Run.
F-MSE (×10−2). First and Second denotes best
results. w denotes with and w/o denotes without.

Model Component Aspirin MoCap-Run

EGNN 9.55±0.02 50.9±0.02

GRAMO w/o Temporal 8.10±0.05 33.5±0.03

GRAMO w/ EGNN 8.82±0.03 28.22±0.21

GRAMO 7.55±0.04 34.12±0.43

We further validate GRAMO through additional
experiments, including temporal loss evolution,
extrapolation beyond the training horizon, data
efficiency in low-data regimes, scaling with
depth and embedding dimension, quantitative
visualization, and physics-based metrics. Com-
prehensive results are provided in Appendix E.

Temporal Loss. Figure 3 demonstrates that
GRAMO consistently attains lower temporal
MSE across timesteps compared to EGNO on
both MD17 (Aspirin) and MoCap tasks. More-

over, even when extrapolated to twice the training horizon (Appendix Figure 6), GRAMO remains
stable and continues to generalize effectively, achieving robust rollouts. In contrast, EGNO exhibits
instability, with error drift compounding severely on molecules such as Benzene, leading to error
explosion, while GRAMO maintains reliable long-horizon predictions.

Model Efficiency. To assess data-efficiency, we evaluate GRAMO in low-data regimes. As shown
in Figure 3, our model maintains strong performance and consistently surpasses EGNO on MD17
and MoCap, even when using as little as 25% of the training data. Further, we analyze the impact of
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Figure 2: Visualization of trajectories generated by GraMO with uniform discretization on (a) N-Body
Simulation, (b) Mocap (Run), and (c) Mocap (Walk). Predicted trajectories are shown with timestep progression
indicated by a Blue color gradient, while the ground truth final snapshot is marked in Green.
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Figure 3: Comparison of GRAMO and EGNO under different experimental settings. (Left.) Temporal MSE
across timesteps. (Left-Middle.) MSE as a function of the number of layers. (Right-Middle.) MSE with
varying embedding dimensions. (Right.) MSE across different training sample sizes.

model depth and embedding size (shown in Figure 3). Deeper architectures improve performance
while remaining stable; even a single layer surpasses EGNO on Toluene, and the model reliably
captures dynamics in low-dimensional embeddings.

Visual Demonstrations. Figure 2 provides qualitative trajectory visualizations on the N-Body and
MoCap datasets. The predictions closely match the ground-truth dynamics, highlighting GRAMO ’s
ability to model complex trajectories with both accuracy and fidelity.

Physics Metrics. To evaluate the realistic nature of the trajectory, we introduce velocity-based losses,
as optimizing for position alone often leads to poor conservation of momentum and kinetic energy.
This approach allows GRAMO to outperform EGNO in both positional prediction and physics-aware
metrics (Appendix Tables 9–16). Specifically, our model achieves significantly lower errors in
momentum and kinetic energy across all timesteps, resulting in more stable trajectory predictions. We
further assess structural fidelity using system-averaged radial distribution functions (RDFs) (Bihani
et al., 2024), which capture atomic density as a function of distance. Appendix Figures 11–18 show
that GRAMO accurately reproduces RDFs across molecules.

6 CONCLUSION AND FUTURE WORK

We presented GRAMO, a neural operator that integrates state-space models with graph neural net-
works for particle dynamics. The method combines bidirectional SSMs for temporal modeling with
SSM-parameterized spatial message passing, learning entire trajectories in single forward passes
rather than iterative rollouts. Experiments across molecular dynamics (MD17), human motion capture,
N-body systems, and protein dynamics show consistent improvements over baselines, with relative
gains of 26.3% on motion capture and 25.2% on MD17 final-state prediction. The approach maintains
stability during extrapolation beyond training horizons and provides theoretical guarantees.
Future work. Key directions include incorporating SE(3) equivariance for broader physical ap-
plicability, systematic evaluation on larger systems to establish computational limits, and adaptive
mechanisms for SSM state dimensions. Integration of physical conservation laws and uncertainty
quantification would enhance the method’s utility for scientific applications.
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7 REPRODUCIBILITY STATEMENT

We ensure reproducibility by providing the full anonymous implementation at
https://anonymous.4open.science/r/GraMO/, including code and training scripts.
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Jonas Köhler, Leon Klein, and Frank Noé. Equivariant flows: sampling configurations for multi-body
systems with symmetric energies. arXiv preprint arXiv:1910.00753, 2019. 7

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces with
applications to pdes. Journal of Machine Learning Research, 24(89):1–97, 2023. 2

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential equations.
arXiv preprint arXiv:2010.08895, 2020. 1, 2, 5

11

https://openreview.net/forum?id=SHbhHHfePhP
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zongyi Li, Daniel Zhengyu Huang, Burigede Liu, and Anima Anandkumar. Fourier neural operator
with learned deformations for pdes on general geometries. Journal of Machine Learning Research,
24(388):1–26, 2023. 1, 2

Xuanqing Liu, Tesi Xiao, Si Si, Qin Cao, Sanjiv Kumar, and Cho-Jui Hsieh. Neural sde: Stabilizing
neural ode networks with stochastic noise. arXiv preprint arXiv:1906.02355, 2019. 2

Xiao Luo, Jingyang Yuan, Zijie Huang, Huiyu Jiang, Yifang Qin, Wei Ju, Ming Zhang, and Yizhou
Sun. Hope: High-order graph ode for modeling interacting dynamics. In International conference
on machine learning, pp. 23124–23139. PMLR, 2023. 2

Alexander D MacKerell Jr, Nilesh Banavali, and Nicolas Foloppe. Development and current status of
the charmm force field for nucleic acids. Biopolymers: original Research on biomolecules, 56(4):
257–265, 2000. 22
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A NOTATION AND CONVENTIONS

Table 6 summarizes the mathematical notations used throughout the paper for clarity.

Table 6: Summary of Notations. This table compiles the notations used throughout the paper,
grouped into general setup, state-space models, and model-specific parameters.

NOTATION DESCRIPTION

GENERAL SETUP AND OBJECTIVES

G A GRAPH

{Gt}Tt=1 SEQUENCE OF GRAPHS FROM t = 1 TO T

Gt = (V, E ,Ht,Zt) NODE SET V , EDGE SET E , NODE FEATURES Ht , AND GEOMETRY Zt

|V| = N NUMBER OF NODES

Zt = [xt,vt] NODE POSITIONS xt ∈ RN×3 AND VELOCITIES vt ∈ RN×3

A ∈ RN×N ADJACENCY MATRIX OF THE GRAPH

Â = D− 1
2 (A+ I)D− 1

2 NORMALIZED ADJACENCY MATRIX, D IS THE DEGREE MATRIX

F† GROUND-TRUTH SOLUTION OPERATOR

Fθ NEURAL OPERATOR WITH PARAMETERS θ

pDATA EMPIRICAL DATA DISTRIBUTION

∥ · ∥ EUCLIDEAN L2 NORM

P UNIFORMLY SAMPLED TIMESTEPS

∆T TIME INTERVAL

STATE-SPACE MODELS (SSMS)
x(t) ∈ RH CONTINUOUS-TIME INPUT SEQUENCE

h(t) ∈ RN CONTINUOUS-TIME HIDDEN STATE

y(t) ∈ RM CONTINUOUS-TIME OUTPUT SEQUENCE

x[k] ∈ RH DISCRETE-TIME INPUT SEQUENCE

h[k] ∈ RN DISCRETE-TIME HIDDEN STATE

y[k] ∈ RM DISCRETE-TIME OUTPUT SEQUENCE

A ∈ RN×N STATE MATRIX (CONTINUOUS SSM)
B ∈ RN×H INPUT MATRIX (CONTINUOUS SSM)
C ∈ RM×N OUTPUT MATRIX (CONTINUOUS SSM)
D ∈ RM×H FEEDTHROUGH MATRIX (CONTINUOUS SSM)
Ā ∈ RN×N STATE MATRIX (DISCRETE SSM)
B̄ ∈ RN×H INPUT MATRIX (DISCRETE SSM)
C̄ ∈ RM×N OUTPUT MATRIX (DISCRETE SSM)
D̄ ∈ RM×H FEEDTHROUGH MATRIX (DISCRETE SSM)
∆ ∈ R+ DISCRETIZATION STEP SIZE

K STATE KERNEL (CONVOLUTIONAL SSM)
K KERNEL INTEGRAL OPERATOR

MODEL COMPONENTS

S, T , E SPATIAL AND TEMPORAL CONVOLUTION MODULES, ENCODER

σ NON-LINEAR ACTIVATION FUNCTION

fB , fC , f∆t INPUT-DEPENDENT, LEARNABLE SSM PARAMETERS

W GENERIC LEARNABLE WEIGHT MATRIX
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B THEORY AND FORMAL PROOFS

B.1 THEORETICAL INSIGHTS

Newtonian Dynamics: Further dynamics introduced problem statement are governed by Newtonian
motion, for which the incremental form reads as follows:

dZ =

[
dx

dv

]
=

[
v dt

−r dt− γ v dt

]
, (18)

where r encodes inter-particle forces and γ scales a friction term. Consequently, an exact trajectory
Z(t+∆t) exists via the solver F†, i.e., a mapping that takes G(t) to the function fG(∆t) describing
future states for ∆t ∈ [0,∆T ].

Equivalence to an SSMs: Defining the first-order state h = [x;v], the Newtonian second-order
dynamics can be written as follows:

ḣ =

[
ẋ

v̇

]
=

[
v

−r(x,v)− γv

]
(19)

This has the generic state-space structure ḣ = Ah + Bu(h), e.g. with A =

[
0 I

0 −γI

]
and

B =

[
0

−I

]
; if r is linear in h, the system reduces to an LTI model, otherwise it is a nonlinear SSM.

Hence, the Newtonian evolution admits a (possibly nonlinear) state-space representation, and the
exact solver F† corresponds to the solution operator of this SSM mapping G(t) to future trajectories.

B.2 MATHEMATICAL PROOFS

In this section, we summarize several standard results on state-space models (SSMs) in an informal
manner from the existing literature. Complete proofs can be found in the Williams et al. (2007);
Tiwari et al. (2025); here, we provide a concise overview. We begin with the closed-form solution of
linear continuous-time SSMs, followed by their discretization via the Zero-Order Hold (ZOH) method
and its connection to the forward Euler scheme. Finally, we discuss the approximation capability of
linear SSMs in capturing nonlinear dynamical systems.

We begin by analyzing the closed-form solution of the state-space model in Lemma B.1, which shows
that the solution consists of the contribution from the initial condition together with a convolution
against an exponential kernel.

Lemma B.1 (Continuous SSM Solution Williams et al. (2007)). Consider a linear time-invariant
system of the form

d

dt
h(t) = Ah(t) +Bx(t). (20)

Then the state h(t) admits the closed-form representation

h(t) = eA(t−t0)h(t0) +

∫ t

t0

eA(t−s)B x(s) ds, (21)

where h(t0) is the initial condition at time t0.

Next, we present the discretization of the SSM parameters in Proposition B.2, and establish its
equivalence to the Euler method. A complete proof is provided in Tiwari et al. (2025).

Proposition B.2 (Discretization of SSM). Using a Zero-Order Hold (ZOH) with sampling interval
∆, the discrete-time system matrices corresponding to the continuous-time model are given by

A = exp
(
∆A

)
,

B = A−1
(
exp
(
∆A

)
− I
)
B,

(22)

where I is the identity matrix, and A,B denote the continuous-time system parameters.
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Corollary B.3 (Euler Equivalence of SSM). The discretization rule introduced above reduces to the
forward Euler scheme when the matrix exponential is approximated by retaining only the first-order
term of its Taylor expansion.

Next, we establish an important result in Lemma B.4, which states that any nonlinear continuous
dynamics can be locally approximated by a linear SSM.

Lemma B.4 (Linear Approximation of Non Linear Dynamics Williams et al. (2007)). Let a
continuous, nonlinear, and differentiable dynamical system be described by

ḣ(t) = f(h(t), x(t), t). (23)

Then, its dynamics can be locally approximated by a linear state-space model (SSM) of the form

ḣ(t) ≈ Ah(t) +Bx(t) +O(h, x), (24)

where the system matrices A and B are obtained from the Jacobians

A =
∂f

∂h

(
h̃(t), x̃(t), t

)
, B =

∂f

∂x

(
h̃(t), x̃(t), t

)
, (25)

and O(h, x) denotes higher-order infinitesimal terms.

Next, we show in the following lemma that the normalized adjacency Â always has spectral radius 1,
which prevents the plain Neumann series from converging. Introducing a damping factor α ∈ (0, 1)
ensures convergence and yields the standard resolvent form.

Lemma B.5 (Spectrum and Neumann series). Let G be an undirected graph and

Â = D−1/2(A+ I)D−1/2, D = Diag(A1+ 1). (26)

Then σ(Â) ⊆ [−1, 1] and ∥Â∥2 = ρ(Â) = 1, with eigenvalue 1 having eigenvector D1/21. Hence∑∞
t=0 Â

t diverges, while for any α ∈ (0, 1),

∞∑
t=0

(αÂ)t = (I− αÂ)−1 (converges in operator norm).

Proof. Â is symmetric, so its spectrum is real and ∥Â∥2 = ρ(Â).

Define the normalized Laplacian as

L := I− Â = D−1/2
(
D− (A+ I)

)
D−1/2, (27)

which is symmetric positive semi-definite. The quadratic form identity gives

z⊤Lz = 1
2

∑
i,j

(A+ I)ij
(
yi − yj

)2
, y = D−1/2z, (28)

hence 0 ≤ µ ≤ 2 for every eigenvalue µ of L (using (a− b)2 ≤ 2(a2 + b2)). Thus every eigenvalue
λ of Â = I− L satisfies λ ∈ [−1, 1]. Moreover,

ÂD1/21 = D−1/2(A+ I)1 = D−1/2D1 = D1/21, (29)

so 1 ∈ σ(Â) with eigenvector D1/21. This implies ρ(Â) = 1 and ∥Â∥2 = 1. Hence Ât(D1/21) =

D1/21 for all t, so
∑T

t=0 Â
t diverges (unbounded on that vector).

For α ∈ (0, 1), ∥αÂ∥2 = α < 1, so the Neumann series converges and sums to

∞∑
t=0

(αÂ)t = (I− αÂ)−1.
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Then we show the following proposition, which establishes that the proposed state-space update rule
is permutation equivariant, meaning that relabeling the nodes of the input graph with any permutation
matrix Π leads to correspondingly permuted outputs. The proof relies on the fact that the graph
operator Â conjugates naturally under permutations, while the learnable parameters W,B,C act
only on feature dimensions and thus commute with node permutations. This ensures that the model’s
predictions are independent of node ordering, a fundamental property for GNNs.

Proposition B.6 (Permutation Equivariance). Let G = (V, E) be a graph with |V| = N . Consider
the update

S(t+1) = Â S(t)W + X(t) B, (30)

Y(t+1) = S(t+1) C, (31)

where S(t) ∈ RN×n, X(t) ∈ RN×dx , Y(t) ∈ RN×dy , Â ∈ RN×N , and W ∈ Rn×n, B ∈ Rdx×n,
C ∈ Rn×dy . Let Π ∈ RN×N be any permutation matrix (node relabeling), and define

ÂΠ := ΠÂΠ⊤, S
(t)
Π := ΠS(t), X

(t)
Π := ΠX(t).

Run equation 13 on the permuted triplet (ÂΠ,S
(t)
Π ,X

(t)
Π ) to obtain (S

(t+1)
Π ,Y

(t+1)
Π ). If the initializa-

tion satisfies S(0)
Π = ΠS(0), then for all t ≥ 0,

S
(t)
Π = ΠS(t) and Y

(t)
Π = ΠY(t).

Hence, the layer equation 13 is permutation equivariant.

Proof. We proceed by induction on t.

Base case. By assumption, S(0)
Π = ΠS(0).

Induction step. Assume S
(t)
Π = ΠS(t). Then using equation 13 and the definitions above,

S
(t+1)
Π = ÂΠS

(t)
Π W + X

(t)
Π B (32)

= (ΠÂΠ⊤)(ΠS(t))W + (ΠX(t))B (33)

= Π
(
ÂS(t)W +X(t)B

)
= ΠS(t+1). (34)

The third equality uses Π⊤Π = IN and the fact that right-multiplications by W,B commute with
left-multiplication by Π on the node dimension.

For the outputs,

Y
(t+1)
Π = S

(t+1)
Π C = (ΠS(t+1))C = Π(S(t+1)C) = ΠY(t+1). (35)

Thus, the claim holds for t+ 1, completing the induction.

Proposition B.7 (Information Flow in Graph Mamba). Let G = (V, E) be a graph with |V| = N

and normalized adjacency Â ∈ RN×N . Consider the Graph Mamba recurrence

S(t+1) = Â S(t)W + X(t)B. (36)

Ignoring input injection for clarity, unrolling for k steps gives

S(t+k) = Âk S(t) Wk. (37)

For any nodes i, j ∈ V , the (i, j)-entry of Âk equals(
Âk
)
ij

=
∑

(p1,...,pk−1)∈V k−1

Âip1
Âp1p2

· · · Âpk−1j , (38)

i.e., the total weight of all walks of length k from i to j, where each walk’s weight is the product of
normalized edge weights.
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Proof. By definition of matrix multiplication, (Âk+1)ij =
∑

r∈V (Â
k)irÂrj . Expanding recursively

expresses (Âk)ij as a sum over all ordered k-step walks from i to j, with weights given by products
of edge entries. Substituting into the recurrence yields S(t+k) = ÂkS(t)Wk, proves the claim.

Proposition B.7 shows that repeated applications of the Graph Mamba update propagate information
along walks of increasing length. Thus, each node’s hidden state at time t+ k aggregates influences
from nodes up to k hops away, enabling effective modeling of long-range dependencies.

Next Proposition B.8 characterizes how input perturbations propagate through space and time. The
Jacobian decomposes into a scalar walk term (Â t−s−1)ij capturing node-to-node influence via
all walks, and a channel term (BW t−s−1C) capturing feature transformations. This separation
highlights how structural diffusion and feature dynamics jointly govern spatiotemporal sensitivity.

Proposition B.8 (Spatiotemporal Jacobian). Consider the update

S(t+1) = Â S(t)W + X(t)B, (39)

Y(t+1) = S(t+1)C. (40)

with time–invariant parameters Â,W,B,C. Fix nodes i, j and times t > s. Then the Jacobians
w.r.t. the input at time s factor into a scalar walk term over nodes and a matrix channel term:

∂ S(t)(i, :)

∂X(s)(j, :)
=
(
Â t−s−1

)
ij
BW t−s−1, (41)

∂Y(t)(i, :)

∂X(s)(j, :)
=
(
Â t−s−1

)
ij
BW t−s−1C. (42)

Here (Âm)ij is the total weight of all length-m walks from j to i and acts as a scalar gain on the
node axis, while BWm (or BWmC) acts on the feature axis.

Proof. Unrolling the recurrence for m = t− s gives

S(t) = Âm S(s) Wm +

m−1∑
k=0

Â k X(t−1−k) BW k. (43)

Among the terms in the sum, only the one with t− 1− k = s (i.e., k = m− 1) depends on X(s),
yielding

∂ S(t)

∂X(s)
= Âm−1 (·)BWm−1. (44)

Extracting the (i, j) block selects the scalar factor (Âm−1)ij on the left, while the right-hand factor
is the feature map BWm−1. Finally, post-multiplication by C gives the above Equation.

Proposition B.9 (One–step Jacobian of the state update). Let the spatial SSM update be

S(t) = Â S(t−1)W + X(t−1)B, (45)

with S(t)∈RN×n, Â∈RN×N , and W∈Rn×n. Then the Jacobian of S(t) w.r.t. S(t−1) is the block
matrix

∂ S(t)

∂ S(t−1)
=
[
Jij
]N
i,j=1

, Jij = Âij W ∈ Rn×n. (46)

Equivalently, in vectorized form

∂ vec
(
S(t)

)
∂ vec

(
S(t−1)

) = W⊤⊗ Â. (47)
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Proof. For each node pair (i, j), we know,

S(t)(i, :) =

N∑
j=1

Âij S
(t−1)(j, :)W +X(t−1)(i, :)B. (48)

The term involving X(t−1) does not depend on S(t−1). Differentiating the first term gives
∂S(t)(i, :)/∂S(t−1)(j, :) = Âij W, yielding the stated block structure. Vectorization uses the
identity vec(ASW ) = (W⊤⊗A) vec(S).

Corollary B.10 (Operator norm/spectral bound). For any sub-multiplicative matrix norm ∥ · ∥,∥∥∥∥∥ ∂ vec
(
S(t)

)
∂ vec

(
S(t−1)

)∥∥∥∥∥ ≤ ∥Â∥ ∥W∥, and ρ

(
∂ vec

(
S(t)

)
∂ vec

(
S(t−1)

)) = ρ(Â) ρ(W), (49)

where ρ(·) denotes spectral radius. Hence, a sufficient condition for one–step contractivity is
∥Â∥ ∥W∥ < 1 (or ρ(Â)ρ(W) < 1 for spectral criteria).

The above corollary provides a spectral bound on the Jacobian, showing that the growth of pertur-
bations across a single update is controlled by the product of the operator norms (or spectral radii)
of Â and W. This result establishes a simple contractivity condition: if ∥Â∥∥W∥ < 1, then the
update is stable in operator norm. Building on this, Proposition B.11 extends the analysis to multiple
steps, where the Jacobian naturally factorizes into powers of Â and W, both in block form and in the
compact vectorized form (W⊤ ⊗ Â)t−s. This highlights how repeated updates amplify or dampen
signals depending on the spectral properties of Â and W and remains stable if bounded.
Proposition B.11 (Multi–step Jacobian of the state update). Let the spatial SSM update be

S(t) = Â S(t−1)W + X(t−1)B, (50)

with S(u)∈RN×n, Â∈RN×N , and W∈Rn×n. For any t > s, the Jacobian of S(t) w.r.t. S(s) is

∂ S(t)

∂ S(s)
=
[
J
(t−s)
ij

]N
i,j=1

, J
(t−s)
ij =

(
Â t−s

)
ij
W t−s ∈ Rn×n. (51)

Equivalently, in vectorized form

∂ vec
(
S(t)

)
∂ vec

(
S(s)

) =
(
W⊤ ⊗ Â

)t−s
. (52)

Proof. From the previous Proposition B.9 we know

S(u)(i, :) =

N∑
j=1

Âij S
(u−1)(j, :)W +X(u−1)(i, :)B. (53)

where u denotes the timestep, and by applying the previous result we obtain:

∂ vec(S(u))

∂ vec(S(u−1))
= W⊤ ⊗ Â. (54)

Next, for t > s using chain rule,

∂ vec(S(t))

∂ vec(S(s))
=

t∏
u=s+1

∂ vec(S(u))

∂ vec(S(u−1))
=

t∏
u=s+1

(
W⊤ ⊗ Â

)
=
(
W⊤ ⊗ Â

)t−s
, (55)

since the factor is the same at each step. It proves the vectorized formula.

To get matrix block diagonal form, unrolling the state (ignoring inputs, which do not affect the
Jacobian w.r.t. S(s)), S(t) = Â t−s S(s) W t−s. Differentiating entrywise gives, for each node
pair (i, j), ∂ S(t)(i,:)

∂ S(s)(j,:)
=
(
Â t−s

)
ij
W t−s, which yields the stated block matrix

[
J
(t−s)
ij

]N
i,j=1

with

J
(t−s)
ij =

(
Â t−s

)
ij
W t−s.
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Table 7: Summary statistics for molecular structures in the MD17 dataset. Shown are the number
of atoms, the number of modes used to obtain optimal results, position extrema (Xmin, Xmax) and
mean (Xmean) in Å, and velocity extrema (Vmin, Vmax) and mean (Vmean) in Åps−1.

Molecule Atoms Xmin Xmax Xmean Vmin Vmax Vmean

Benzene 6 -178.112 197.981 −27.737 −0.004 0.003 0.000

Aspirin 13 -3.720 3.105 0.026 −0.011 0.012 0.000

Ethanol 3 -1.398 1.417 −0.004 −0.011 0.010 0.000

Malonaldehyde 5 -2.397 2.370 0.000 −0.010 0.009 0.000

Naphthalene 10 -2.597 2.593 0.000 −0.012 0.011 0.000

Salicylic 10 -2.734 2.581 −0.051 −0.013 0.012 0.000

Toluene 7 -1.990 2.630 −0.015 −0.010 0.012 0.000

Uracil 8 -2.338 2.558 0.012 −0.012 0.011 0.000

C BENCHMARK DETAILS

This section provides comprehensive details for the benchmarks used in our evaluation, including
dataset characteristics, training, validation, and test splits, and the graph construction process.

C.1 N-BODY SIMULATION

The N-body dataset, first introduced by Kipf et al. (2018) and subsequently adapted to 3D in Satorras
et al. (2021b), contains trajectories of N charged particles evolving under pairwise Coulomb forces.
Each example supplies particle charges together with initial positions and velocities; the task is to
forecast future states of the system (for instance, positions at a target time). We adopt the experimental
setup of Satorras et al. (2021b): N = 5, time horizon ∆T = 10, and splits of 3000 / 2000 / 2000
trajectories for training/validation/test. Unless noted otherwise, we set P = 5. Node features use the
speed ∥v∥2, edge features are given by cicj for charges ci, cj , and the interaction graph is complete.

C.2 MD17

The MD17 dataset (Chmiela et al., 2017) contains molecular-dynamics trajectories for eight small
molecules. For each molecule, we partition the data at random into train/val/test sets of 500/2000/2000
state–trajectory pairs. We set the prediction horizon to ∆T , which is chosen to be 3000, we use
P = 8 and uniform discretization by default. and obtain the input velocity by finite differencing
the states across this interval. Node features comprise the atom type concatenated with the speed
∥v∥2. Following common practice, hydrogen atoms are removed, and only heavy-atom dynamics are
modeled. For the graph topology, we augment the native molecular graph by adding 2-hop edges
as in prior work (Shi et al., 2021; Xu et al., 2022); edge attributes are formed by concatenating the
hop type, the atomic types of the two endpoints, and the chemical bond type. Furthermore, Table 7
provides the complete summary statistics for each molecular structure.

C.3 CMU MOTION CAPTURE

The CMU Motion Capture dataset (CMU, 2003) provides 3D trajectories of human actions. We
evaluate on two subsets—Subject #35 (Walk) and Subject #9 (Run)—adopting the data splits and
preprocessing of Huang et al. (2022); Han et al. (2022). Subject #35 uses 200 / 600 / 600 trajectories
for train / val / test, and Subject #9 uses 200 / 240 / 240. Each sample is represented as a skeletal
graph with 31 nodes (joint locations) and edges encoding the connecting bones. As with the N-body
experiments, inputs comprise the nodes’ initial positions and velocities; we set the prediction horizon
∆T = 30, use P = 5 unless stated otherwise, and employ uniform temporal discretization by default.

C.4 PROTEIN

We utilize the preprocessed AdK equilibrium trajectories provided by Han et al. (2022), which
originate from the AdK dataset of Seyler & Beckstein (2017) and are made available via the MD-
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Analysis toolkit (Richard J. Gowers et al., 2016). The simulations employ the CHARMM27 force
field (MacKerell Jr et al., 2000) with explicit solvent and ions under NPT conditions at 300 K and
1 bar. Trajectory frames were recorded every 240 ps, yielding a total simulated time of 1.004µs.
Following Han et al. (2022), we adopt their partitioning into 2481 training, 827 validation, and 878
test sub-trajectories. and use P = 4. For model construction, we retain the protein backbone and
form graphs by connecting atoms within a 10 Å cutoff.

D IMPLEMENTATION DETAILS

This section outlines implementation details of the proposed method to ensure clarity.

D.1 TRAINING DETAILS

Encoder. From a theoretical standpoint, GRAMO directly addresses the state-to-trajectory task,
whereas our formulation employs neural operators to learn mappings between function spaces.
This requires defining an input function f(t) (i.e., a trajectory) that evolves over time; a simple
implementation is to repeat G(t), yielding a constant trajectory similar to Xu et al. (2024). From a
practical standpoint, GRAMO layers are equipped with residual connections, which demand input
and output tensors of identical shape. Consequently, G(t) is repeated to match the length of the
predicted trajectory.

Time Embedding. To incorporate temporal information, GRAMO augments the input features with
explicit encoding of the time index for each structure in the trajectory. Specifically, we construct a set
of sinusoidal functions at varying frequencies to generate fixed-time embeddings. For a timestep ∆ti,
the embedding is given as follows:

emb2j = sin

(
i

100002j/demb

)
,

emb2j+1 = cos

(
i

100002j/demb

)
,

(56)

where demb is the dimensionality of the time embedding space.

To ensure the model is aware of the timestep information required for future trajectory prediction, we
incorporate temporal embeddings. This practice is widely adopted across domains—for example,
positional encodings in large language models (Vaswani et al., 2017) and timestep embeddings in
diffusion models (Ho et al., 2020).

D.2 HYPERPARAMETER DETAILS

We provide detailed hyperparameter settings for all datasets in Table D.2. Here, batch denotes
batch size, lr is the learning rate, wd is the weight decay, layer is the number of network layers,
hidden is the hidden dimension, timestep is the number of time steps, and time emb is the
dimension of the time embedding. All models are trained using the Adam optimizer (Kingma & Ba,
2014) with a StepLR scheduler. Models are trained until convergence, with early stopping triggered
by validation loss with patience of 50 epochs, and a maximum of 2000 training epochs. For fair
comparison with baselines, we use the same number of layers as EGNO.

Table 8: Summary of hyperparameter for GRAMO on all datasets.
Batch LR Weight Decay Layer Embedding Dim Timestep Time emb

N-body 100 1e-4 1e-8 4 64 5 32
Walk/Run 12 5e-4 1e-10 6 128 5 32
MD17 100 1e-4 1e-15 6 64 8 32
Protein 4 5e-5 1e-4 4 128 4 32
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D.3 BASELINES DETAILS

The baseline results reported in the main table are taken from the EGNO paper (Xu et al., 2024).
Since EGNO represents the strongest existing operator, we further re-ran its official codebase to
ensure fairness and consistency. All results are averaged over three independent runs using the official
implementation to provide reliable and reproducible benchmark comparisons.

D.4 ALGORITHM

In this subsection, we present the complete block-level algorithm for GRAMO. Algorithm 1 describes
the temporal convolution module, which employs bidirectional Mamba (Gu & Dao, 2023; Tiwari
et al., 2025) by discretizing the SSM and applying both forward and backward updates as defined in
Equation 2. This operation is applied across the temporal dimension of nodes, producing updated
node features. Subsequently, Algorithm 2 defines the Graph Mamba update, which processes temporal
graph snapshots using the update rule from Equation 13.

Algorithm 1 GRAMO Temporal Convolution
Require: Input Node Features of Snapshots X ∈ RBN×P×D,
Ensure: Output Node Features Y ∈ RBN×P×D

1: Project input: [z, xBC, dt]← split(input projection(X))
2: Compute A← − exp(Alog)
3: Initialize states if learnable
4: Adjust ∆t: concatenate flipped halves, apply softplus
5: Convolve: xBC ← act(conv1d(xBC))
6: Split: (x,BC)← split(xBC)
7: Duplicate & flip x, split BC into (B,C)
8: Apply chunk scan: y ← mamba chunk scan(x, dt, A,B,C)
9: Rearrange y, roll by 1, reset first timestep

10: Split into forward/backward: y ← yfw + ybw + xog · linear(xog)
11: Apply gated norm: y ← norm(y, z)
12: Output: Y ← output projection(y)

Algorithm 2 GRAMO Spatial Convolution

Require: Input snapshots {Xj}P1 , adjacency Â
Ensure: Updated representations {Xj}

1: Compute residuals X res
j ← ResConni(Xj)

2: Initialize lists dts,B,C ← ∅
3: for each snapshot j do
4: Apply graph convolution [Xj , dt, Bj , Cj ]← Convi(Xj , edge index)
5: Append dt,Bj , Cj to dts,B,C
6: end for
7: Perform token mixing X ′

j ← TokenMixeri({Xj})
8: Initialize hidden state S ← 0
9: for each snapshot j do

10: Compute step size ∆t← softplus(dts[j] + δi)
11: Compute input transform BX ← einsum(Bj , X

′
j)

12: Propagate state S ← ÂnormSWi +BX

13: Update representation Xj ← Expandi(σ(einsum(S,Cj)) +X res
j )

14: end for
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E ADDITIONAL RESULTS

In this section, we present a set of complementary experiments—including temporal error analysis,
scaling studies, data efficiency evaluations, physics-informed losses, and radial distribution function
(RDF) analyses. These results provide a more comprehensive understanding of the proposed method
in comparison with baseline models, highlighting its effectiveness for particle-based simulations.

E.1 TEMPORAL LOSS ANALYSIS

In this experiment, we evaluate the temporal loss across timesteps to assess how prediction errors
accumulate across timesteps. Figure 4 compares our proposed GRAMO with EGNO across the
MD17 dataset. The results show that GRAMO consistently outperforms EGNO for all molecules,
demonstrating better stability over timesteps. In particular, GRAMO achieves significant performance
on Aspirin, Ethanol, Toluene, and Benzene, which span diverse challenges in MD17—from large
multifunctional flexibility (Aspirin), to torsional motions (Ethanol), mixed rigid–flexible structures
(Toluene), and highly symmetric aromatic systems (Benzene). These results highlight the ability of
GRAMO to better capture long-range molecular dynamics interactions.
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Figure 4: Temporal Loss on MD17. Mean squared error (MSE) (×10−2) across timesteps for all MD17
molecules, comparing EGNO and GRAMO.

Further, we evaluate the temporal loss across timesteps on the motion capture datasets. As shown in
Figure 5, our proposed GRAMO demonstrates consistently lower timestep compared to EGNO. This
indicates that GRAMO is able to maintain stable and accurate predictions over horizons, capturing
both the temporal dependencies and articulated joint dynamics more effectively. The improved
performance across timesteps highlights the robustness of GRAMO in modelling long-term human
motion trajectories.

E.2 EXTRAPOLATION ANALYSIS

In this experiment, we evaluate model performance under temporal extrapolation, extending beyond
the training horizon to assess generalization on unseen timesteps. As shown in Figure 6, GRAMO
not only achieves strong accuracy within the training horizon but also maintains stability when
extrapolated to longer rollouts. Furthermore, Table 7 highlights that benzene exhibits substantial drift
during simulation. While EGNO struggles to capture the global dynamics—leading to exploding
temporal losses under extrapolation—GRAMO remains stable and continues to deliver accurate
predictions. These results demonstrate that GRAMO more effectively captures global dynamics and
long-range interactions, yielding superior performance even beyond the training horizon.
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Figure 5: Temporal Loss on Motion Capture. MSE (×10−2) across timesteps for motion capture tasks,
comparing EGNO and GRAMO. Lower MSE indicates better performance.
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Figure 6: Temporal Loss on MD17 Extrapolation. MSE (×10−2) across timesteps for the MD17 dataset,
comparing EGNO and GRAMO. Models are trained on 8 timesteps and extrapolated to predict the subsequent 8
timesteps. Lower MSE indicates better performance.

E.3 SCALABILITY AND DATA EFFICIENCY ANALYSIS

In this experiment, we evaluate the performance of EGNO and GRAMO as a function of network
depth. As shown in Figure 7, GRAMO exhibits more favorable scaling with the number of layers,
consistently improving as depth increases. Notably, it achieves performance comparable to or better
than EGNO even with fewer layers, highlighting its superior scalability and efficiency.

Next, we evaluate the data efficiency of our approach on the MD17 dataset. As shown in Table 8,
our method outperforms EGNO even with substantially fewer training samples. This highlights
the robustness of the proposed model in data-scarce regimes, where only limited training data are
available. We further extend the data efficiency analysis to the MoCap dataset, as shown in Figure 9.
Our method achieves consistent and significant improvements over EGNO, demonstrating stronger
temporal modelling capabilities. Notably, even when trained with only 25% of the dataset, the
proposed approach outperforms the baseline, underscoring its effectiveness in low-data regimes.

Finally, we assess the effect of embedding dimension on the motion capture datasets. As shown
in Figure 10, our method significantly outperforms EGNO even at the lowest dimension (16), and
maintains better performance as the embedding dimension increases.
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Figure 7: Scaling with Layers on MD17. MSE (×10−2) for EGNO and GRAMO across different molecular
systems as a function of the number of layers. Lower MSE indicates better performance.
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Figure 8: Data Efficiency on MD17. Comparison of EGNO and GRAMO across MD17 molecular systems
under varying training sample sizes. Results are reported as MSE (×10−2). Lower MSE indicates better
performance.

E.4 PHYSICS-BASED METRICS ANALYSIS

In this experiment, we evaluate the physics loss of the operator, focusing on momentum and kinetic
energy. Prior work primarily optimized over position only, which led to poor preservation of physical
quantities across molecules for all operators. To address this, we introduce an additional velocity
loss alongside the position loss, ensuring better alignment with desired physical constraints. As
shown in Tables 9–16, GRAMO consistently outperforms EGNO not only in position loss but also in
physics-aware metrics such as momentum and kinetic energy, achieving significantly lower errors.
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Figure 9: Data Efficiency on Motion Capture. Comparison of EGNO and GRAMO under varying training
sample sizes. Results are reported as MSE (×10−2). Lower MSE indicates better performance.
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Figure 10: Embedding Dimension on Motion Capture. Comparison of EGNO and GRAMO under varying
training sample sizes. Results are reported as MSE (×10−2). Lower MSE indicates better performance.

E.5 RADIAL DISTRIBUTION FUNCTION ANALYSIS

The radial distribution function (RDF), g(r), measures the likelihood of finding a particle at distance
r from a reference particle and serves as a key descriptor of molecular structure. It reflects local
ordering, coordination shells, and medium-range correlations. Comparing predicted and ground-truth
RDFs across rollouts thus provides a stringent test of a model’s ability to preserve geometry and
capture physically meaningful interactions. Figures 11–18 show that GRAMO closely matches the
ground-truth distributions, indicating robust structural fidelity.

F QUALITATIVE VISUALIZATIONS

In this section, we present visualizations of the dynamics predicted by GRAMO. Results for particle
simulations, MOCAP-WALK, and MOCAP-RUN are shown in Figures 19–21. As illustrated, GRAMO
not only produces accurate final-state predictions but also effectively captures the underlying dynamics
by explicitly modelling both spatial and temporal correlations. Furthermore, Figure 22 provides a
qualitative visualization of the trajectories predicted by GRAMO. The figure illustrates how the model
accurately reproduces the temporal evolution of the system, closely aligning with the ground-truth
dynamics and capturing both local and global structural changes over time.

G IMPACT STATEMENT

This work presents a new graph neural framework for particle-based simulations, leveraging state-
space model (SSM) inspired message passing to capture long-range interactions. Our primary aim is
to advance machine learning methods for scientific simulation by addressing fundamental modelling
challenges in particle dynamics. The contributions are technical and scientific in nature, and we do
not foresee any direct ethical or societal risks arising from this work.
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Table 9: Physics Loss for Aspirin. Lower value shows better metrics.

Position (×10−2) Velocity (×10−5) Momentum (×10−2) Kinetic (×10−6)

P EGNO GRAMO EGNO GRAMO EGNO GRAMO EGNO GRAMO

1 4.41 ±0.23 4.43 ±0.23 63.4 ±0.74 1.85 ±0.045 11.6 ±0.13 0.33 ±0.0077 248 ±5.7 0.050 ±0.0036

2 6.18 ±0.46 5.67 ±0.45 54.4 ±0.58 1.84 ±0.028 9.89 ±0.11 0.33 ±0.0050 174 ±4.6 0.051 ±0.0037

3 6.68 ±0.56 6.16 ±0.50 48.7 ±0.45 1.84 ±0.031 8.77 ±0.088 0.33 ±0.0057 134 ±3.9 0.051 ±0.0036

4 7.33 ±0.47 6.64 ±0.44 47.7 ±0.50 1.85 ±0.033 8.46 ±0.10 0.33 ±0.0065 123 ±3.8 0.051 ±0.0038

5 8.16 ±0.68 7.41 ±0.55 48.0 ±0.56 1.84 ±0.043 8.42 ±0.11 0.33 ±0.0077 127 ±4.2 0.051 ±0.0036

6 8.41 ±0.76 7.92 ±0.66 53.5 ±0.58 1.83 ±0.037 9.42 ±0.11 0.33 ±0.0068 161 ±5.2 0.051 ±0.0041

7 8.77 ±0.80 8.33 ±0.73 63.7 ±0.73 1.83 ±0.046 11.4 ±0.13 0.33 ±0.0089 235 ±6.4 0.051 ±0.0034

8 9.51 ±0.82 8.65 ±0.66 69.0 ±0.62 1.84 ±0.041 12.5 ±0.11 0.33 ±0.0070 287 ±6.6 0.052 ±0.0044

Table 10: Physics Loss for Benzene. Lower value shows better metrics.

Position (×10−2) Velocity (×10−4) Momentum (×10−2) Kinetic (×10−6)

P EGNO GRAMO EGNO GRAMO EGNO GRAMO EGNO GRAMO

1 2.21 ±0.050 0.35 ±0.022 20.0 ±0.54 0.54 ±0.017 28.9 ±0.78 0.78 ±0.024 1710 ±97 1.61 ±0.20

2 6.06 ±0.17 0.43 ±0.033 20.2 ±0.55 0.56 ±0.030 29.2 ±0.80 0.81 ±0.043 1730 ±97 1.79 ±0.24

3 11.5 ±0.36 0.55 ±0.051 14.9 ±0.46 0.42 ±0.019 21.5 ±0.67 0.60 ±0.027 989 ±62 0.96 ±0.11

4 19.0 ±0.52 0.72 ±0.061 9.12 ±0.32 0.62 ±0.021 13.2 ±0.47 0.89 ±0.031 409 ±30 2.60 ±0.20

5 28.4 ±0.80 0.86 ±0.080 6.41 ±0.26 0.71 ±0.048 9.25 ±0.37 1.03 ±0.069 216 ±17 3.66 ±0.48

6 39.4 ±1.1 1.06 ±0.10 6.38 ±0.25 0.91 ±0.044 9.21 ±0.37 1.31 ±0.064 213 ±17 5.93 ±0.77

7 51.6 ±1.5 1.31 ±0.12 9.03 ±0.33 1.12 ±0.051 13.0 ±0.47 1.62 ±0.074 395 ±29 8.11 ±0.92

8 64.0 ±1.9 1.69 ±0.15 14.7 ±0.45 1.37 ±0.071 21.2 ±0.65 1.97 ±0.10 956 ±61 12.4 ±1.8

H USE OF LARGE LANGUAGE MODELS (LLMS)

We employed a Large Language Model (LLM) as a supporting tool to refine the manuscript text and
to automatically generate LATEX code for figures and plots. This integration streamlined the creation
of consistent, high-quality visualizations and improved the overall readability of the presentation.
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Table 11: Physics Loss for Ethanol. Lower value shows better metrics.

Position (×10−2) Velocity (×10−5) Momentum (×10−3) Kinetic (×10−8)

P EGNO GRAMO EGNO GRAMO EGNO GRAMO EGNO GRAMO

1 0.88 ±0.13 1.29 ±0.15 1.17 ±0.069 1.14 ±0.065 1.92 ±0.12 1.88 ±0.095 2.19 ±0.28 2.09 ±0.34

2 2.05 ±0.35 2.25 ±0.33 1.28 ±0.072 1.12 ±0.055 2.13 ±0.12 1.85 ±0.086 2.25 ±0.26 2.00 ±0.36

3 3.00 ±0.46 2.90 ±0.49 1.23 ±0.066 1.16 ±0.060 2.05 ±0.11 1.92 ±0.096 2.22 ±0.32 2.01 ±0.36

4 3.54 ±0.48 3.26 ±0.50 1.19 ±0.073 1.15 ±0.039 1.98 ±0.11 1.90 ±0.055 2.07 ±0.33 2.00 ±0.34

5 3.91 ±0.51 3.54 ±0.49 1.18 ±0.052 1.16 ±0.043 1.97 ±0.083 1.91 ±0.068 2.04 ±0.22 2.00 ±0.30

6 4.12 ±0.49 3.77 ±0.52 1.18 ±0.057 1.15 ±0.058 1.96 ±0.099 1.90 ±0.090 1.96 ±0.29 2.12 ±0.37

7 4.34 ±0.50 3.92 ±0.57 1.18 ±0.072 1.15 ±0.072 1.96 ±0.12 1.91 ±0.11 1.99 ±0.28 2.15 ±0.40

8 4.66 ±0.54 4.18 ±0.63 1.20 ±0.078 1.18 ±0.052 1.99 ±0.12 1.95 ±0.083 2.15 ±0.34 2.25 ±0.49

Table 12: Physics Loss for Malonaldehyde. Lower value shows better metrics.

Position (×10−1) Velocity (×10−5) Momentum (×10−3) Kinetic (×10−8)

P EGNO GRAMO EGNO GRAMO EGNO GRAMO EGNO GRAMO

1 0.52 ±0.032 0.70 ±0.038 9.09 ±0.31 1.78 ±0.067 18.1 ±0.60 3.16 ±0.12 53.3 ±4.7 4.11 ±0.48

2 0.90 ±0.056 1.04 ±0.061 11.4 ±0.29 1.84 ±0.069 24.3 ±0.56 3.29 ±0.12 90.3 ±5.6 4.39 ±0.58

3 1.07 ±0.055 1.15 ±0.061 14.6 ±0.59 1.80 ±0.064 33.0 ±1.4 3.19 ±0.11 226 ±18 3.95 ±0.54

4 1.16 ±0.045 1.22 ±0.056 16.8 ±0.67 1.80 ±0.072 38.4 ±1.7 3.19 ±0.12 346 ±29 4.01 ±0.51

5 1.18 ±0.047 1.22 ±0.066 13.7 ±0.55 1.79 ±0.064 31.2 ±1.3 3.17 ±0.11 226 ±20 3.98 ±0.51

6 1.23 ±0.058 1.27 ±0.060 7.78 ±0.31 1.80 ±0.048 16.9 ±0.70 3.20 ±0.086 59.0 ±6.0 4.01 ±0.51

7 1.25 ±0.043 1.29 ±0.043 5.39 ±0.18 1.80 ±0.061 10.4 ±0.35 3.18 ±0.10 13.9 ±1.5 3.90 ±0.53

8 1.28 ±0.050 1.32 ±0.057 7.18 ±0.25 1.82 ±0.059 13.7 ±0.53 3.21 ±0.11 28.3 ±2.8 4.05 ±0.57

Table 13: Physics Loss for Naphthalene. Lower value shows better metrics.

Position (×10−3) Velocity (×10−5) Momentum (×10−3) Kinetic (×10−7)

P EGNO GRAMO EGNO GRAMO EGNO GRAMO EGNO GRAMO

1 2.91 ±0.11 3.10 ±0.14 7.92 ±0.10 3.26 ±0.076 11.4 ±0.15 4.70 ±0.11 17.0 ±0.45 2.30 ±0.18

2 3.64 ±0.13 4.23 ±0.19 6.96 ±0.13 3.00 ±0.093 10.0 ±0.19 4.33 ±0.13 11.9 ±0.36 2.14 ±0.14

3 3.78 ±0.13 3.81 ±0.11 5.75 ±0.12 2.13 ±0.055 8.29 ±0.17 3.07 ±0.079 7.24 ±0.25 0.75 ±0.056

4 3.04 ±0.082 2.86 ±0.062 5.10 ±0.085 2.55 ±0.077 7.36 ±0.12 3.68 ±0.11 5.13 ±0.18 1.25 ±0.14

5 3.40 ±0.16 3.24 ±0.19 5.09 ±0.074 2.64 ±0.076 7.34 ±0.11 3.80 ±0.11 5.19 ±0.17 1.34 ±0.18

6 4.42 ±0.14 4.29 ±0.18 6.01 ±0.070 2.35 ±0.057 8.67 ±0.10 3.38 ±0.082 7.86 ±0.20 0.74 ±0.036

7 4.65 ±0.17 4.39 ±0.16 7.32 ±0.097 2.34 ±0.068 10.6 ±0.14 3.38 ±0.097 13.5 ±0.35 0.73 ±0.052

8 4.24 ±0.16 4.07 ±0.16 8.15 ±0.12 2.71 ±0.076 11.8 ±0.18 3.91 ±0.11 18.0 ±0.43 1.26 ±0.10
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Table 14: Physics Loss for Salicylic. Lower value shows better metrics.

Position (×10−3) Velocity (×10−5) Momentum (×10−3) Kinetic (×10−6)

P EGNO GRAMO EGNO GRAMO EGNO GRAMO EGNO GRAMO

1 17.7 ±2.0 6.32 ±0.36 9.51 ±0.11 4.68 ±0.26 20.0 ±0.23 8.78 ±0.57 12.2 ±0.13 1.93 ±0.44

2 6.68 ±0.44 4.91 ±0.30 8.74 ±0.11 4.45 ±0.13 18.0 ±0.23 7.89 ±0.28 9.00 ±0.098 1.11 ±0.20

3 16.2 ±1.6 7.24 ±0.47 7.69 ±0.088 3.51 ±0.21 15.3 ±0.18 6.83 ±0.47 5.75 ±0.065 1.20 ±1.6

4 7.53 ±0.85 6.44 ±0.51 7.69 ±0.10 3.58 ±0.16 14.6 ±0.22 6.66 ±0.36 4.27 ±0.053 1.11 ±0.80

5 15.5 ±0.95 7.93 ±0.48 8.16 ±0.088 3.19 ±0.10 15.4 ±0.17 6.11 ±0.24 4.43 ±0.051 0.71 ±0.26

6 10.4 ±1.0 7.77 ±0.46 8.43 ±0.090 3.88 ±0.14 16.3 ±0.18 7.41 ±0.35 6.07 ±0.065 1.35 ±1.1

7 14.2 ±0.79 8.27 ±0.34 8.92 ±0.090 3.28 ±0.10 18.0 ±0.19 6.23 ±0.24 9.28 ±0.11 0.62 ±0.24

8 10.7 ±0.93 8.49 ±0.54 9.62 ±0.091 3.82 ±0.16 20.0 ±0.19 7.04 ±0.40 12.3 ±0.12 1.43 ±1.1

Table 15: Physics Loss for Toluene. Lower value shows better metrics.

Position (×10−2) Velocity (×10−5) Momentum (×10−3) Kinetic (×10−8)

P EGNO GRAMO EGNO GRAMO EGNO GRAMO EGNO GRAMO

1 0.46 ±0.027 0.72 ±0.034 6.97 ±0.20 1.98 ±0.049 10.1 ±0.29 2.86 ±0.071 159 ±7.6 4.62 ±0.35

2 1.15 ±0.094 1.13 ±0.092 7.11 ±0.18 2.01 ±0.045 10.3 ±0.26 2.90 ±0.064 164 ±7.7 4.91 ±0.35

3 2.16 ±0.21 1.78 ±0.17 6.21 ±0.12 1.98 ±0.052 8.96 ±0.18 2.86 ±0.074 110 ±5.4 4.76 ±0.32

4 3.47 ±0.33 2.60 ±0.26 4.85 ±0.10 1.98 ±0.049 7.00 ±0.15 2.85 ±0.071 60.0 ±3.2 4.68 ±0.39

5 5.08 ±0.46 3.61 ±0.36 4.12 ±0.087 1.97 ±0.049 5.95 ±0.13 2.85 ±0.071 40.7 ±2.3 4.67 ±0.35

6 6.84 ±0.55 4.74 ±0.44 4.02 ±0.092 1.98 ±0.046 5.80 ±0.13 2.85 ±0.067 41.7 ±2.7 4.51 ±0.31

7 8.80 ±0.65 6.05 ±0.57 4.62 ±0.10 1.95 ±0.060 6.67 ±0.15 2.81 ±0.086 59.1 ±3.9 4.49 ±0.32

8 10.9 ±0.76 7.51 ±0.73 5.77 ±0.13 1.94 ±0.044 8.33 ±0.18 2.79 ±0.064 103 ±5.5 4.44 ±0.32

Table 16: Physics Loss for Uracil. Lower value shows better metrics.

Position (×10−3) Velocity (×10−5) Momentum (×10−3) Kinetic (×10−7)

P EGNO GRAMO EGNO GRAMO EGNO GRAMO EGNO GRAMO

1 4.41 ±0.32 5.52 ±0.41 8.44 ±0.54 2.95 ±0.13 16.7 ±1.1 5.67 ±0.28 140 ±30 4.50 ±0.93

2 4.28 ±0.41 4.20 ±0.40 7.44 ±0.34 2.50 ±0.10 14.2 ±0.66 4.82 ±0.20 97.1 ±17 2.25 ±0.29

3 5.08 ±0.24 5.47 ±0.26 6.88 ±0.35 2.20 ±0.080 12.6 ±0.64 4.13 ±0.17 55.7 ±7.3 1.69 ±0.40

4 5.25 ±0.56 4.66 ±0.48 7.46 ±0.35 2.48 ±0.070 13.5 ±0.64 4.81 ±0.14 43.1 ±5.7 2.23 ±0.31

5 6.07 ±0.48 5.82 ±0.38 7.81 ±0.28 2.34 ±0.065 14.3 ±0.50 4.47 ±0.14 43.0 ±5.9 1.78 ±0.29

6 5.70 ±0.41 5.28 ±0.33 7.61 ±0.25 2.42 ±0.090 14.3 ±0.53 4.45 ±0.17 55.9 ±14 1.36 ±0.12

7 6.30 ±0.44 6.10 ±0.49 7.26 ±0.48 2.72 ±0.047 14.2 ±1.0 4.79 ±0.098 94.0 ±27 1.70 ±0.18

8 6.18 ±0.61 5.66 ±0.51 7.42 ±0.48 2.23 ±0.057 14.7 ±1.0 4.10 ±0.12 137 ±36 1.08 ±0.13
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Figure 11: Radial distribution function (RDF) for Aspirin. We compare the ground-truth (solid)
and model-predicted (dashed) RDFs g(r) across P = 1 . . . 8 timesteps.
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Figure 12: Radial distribution function (RDF) for Benzene. We compare the ground-truth (solid)
and model-predicted (dashed) RDFs g(r) across P = 1 . . . 8 timesteps.
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Figure 13: Radial distribution function (RDF) for Ethanol. We compare the ground-truth (solid)
and model-predicted (dashed) RDFs g(r) across P = 1 . . . 8 timesteps.
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Figure 14: Radial distribution function (RDF) for Malonaldehyde. We compare the ground-truth
(solid) and model-predicted (dashed) RDFs g(r) across P = 1 . . . 8 timesteps.
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Figure 15: Radial distribution function (RDF) for Naphthalene. We compare the ground-truth
(solid) and model-predicted (dashed) RDFs g(r) across P = 1 . . . 8 timesteps.

0.0

0.2

0.4

0.6

g(
r)

P = 1 P = 2 P = 3 P = 4

0 2 4
r (Å)

0.0

0.2

0.4

0.6

g(
r)

P = 5

0 2 4
r (Å)

P = 6

0 2 4
r (Å)

P = 7

0 2 4
r (Å)

P = 8

Ground Truth Prediction

Figure 16: Radial distribution function (RDF) for Salicylic. We compare the ground-truth (solid)
and model-predicted (dashed) RDFs g(r) across P = 1 . . . 8 timesteps.
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Figure 17: Radial distribution function (RDF) for Toluene. We compare the ground-truth (solid)
and model-predicted (dashed) RDFs g(r) across P = 1 . . . 8 timesteps.
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Figure 18: Radial distribution function (RDF) for Uracil. We compare the ground-truth (solid)
and model-predicted (dashed) RDFs g(r) across P = 1 . . . 8 timesteps.
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Figure 19: Visualization of trajectories generated by GraMO with uniform discretization on the
N-Body dataset. Predicted trajectories are shown with timestep progression indicated by a Blue color
gradient, while the ground truth final snapshot is marked in Green.
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Figure 20: Visualization of trajectories generated by GraMO with uniform discretization on Mocap
(Walk) dataset. Predicted trajectories are shown with timestep progression indicated by a Blue color
gradient, while the ground truth final snapshot is marked in Green.

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

X

0 25 50 75100125150

Y
4

2
0

2
4

6
8

Z

0
5
10
15
20

25

X

0 25 50 75100125150

Y
5

10
15

20

Z

0
5
10
15
20
25

30

X

0 25 50 75100125150

Y
5

10
15

20

Z

0
5
10
15
20
25

30

X

0 25 50 75100125150

Y
20

15
10

5

Z

5
10
15
20
25

30

X

0 25 50 75100125150

Y
20

15
10

5

Z

0
5
10
15
20
25
30

X

0 25 50 75100125150

Y

12.5
10.0

7.5
5.0

2.5
0.0

2.5
5.0

Z

0
5
10
15
20

25

0

1

2

3

4

Ti
m

es
te

p

0

1

2

3

4

Ti
m

es
te

p

Figure 21: Visualization of trajectories generated by GraMO with uniform discretization on Mocap
(Run) dataset. Predicted trajectories are shown with timestep progression indicated by a Blue color
gradient, while the ground truth final snapshot is marked in Green.

Figure 22: Visualization of trajectories generated by GraMO with uniform discretization on AdK
equilibrium trajectory dataset. Predicted trajectories are shown with timestep progression indicated
by the colorbar shown above, while the ground truth final snapshot is marked in Green.
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