
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GRAPH MAMBA OPERATOR FOR LEARNING THE DY-
NAMICS OF PARTICLE-BASED SYSTEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Modelling complex 3D dynamics—from molecular conformations to particle in-
teractions and human motion—requires capturing dependencies spanning long
temporal horizons and non-local spatial interactions. Graph neural networks
(GNNs) have shown promise in spatio-temporal settings but often suffer from
instability and degraded accuracy in long-range forecasting. We propose the Graph
Mamba Operator (GRAMO), a neural operator that integrates state-space models
(SSMs) with geometric learning to capture spatio-temporal correlations jointly.
To jointly model complex dynamics, GRAMO integrates a stable, SSM-based
temporal backbone with an SSM-parameterized graph update to capture long-
range spatial dependencies. Unlike stepwise predictors that accumulate errors over
time, GRAMO learns entire trajectories in a single forward pass. Across diverse
benchmarks ranging from molecular dynamics to human motion capture, GRAMO
shows notable improvements in trajectory fidelity, stability, and robustness over
strong baselines with relative improvements of over 26.3% on motion capture
benchmarks and 25.2% on MD17 final-state prediction. Ablation studies reveal
that temporal SSM components consistently improve performance, while spatial
SSM updates show task-dependent benefits—helping with long-range interactions
in large molecules but potentially hindering performance on systems with primarily
local dependencies. Altogether, these results suggest that selective integration
of SSM components with graph neural networks can improve performance on
particle-based systems, with applications in molecular simulations, articulated rigid
body dynamics, and particle systems.

1 INTRODUCTION

Particle-based systems are fundamental to understanding natural phenomena across diverse domains
ranging from physics to biology to engineering. Molecular dynamics (MD) simulations capture how
atoms interact to drive chemical reactions and protein folding Frenkel & Smit (2023); Hollingsworth
& Dror (2018). Gravitational N-body problems describe celestial mechanics that shape galactic
structures. These systems, while operating at vastly different scales, share a common mathematical
foundation: collections of interacting entities whose collective behavior emerges from local interaction
rules governed by ordinary differential equations. Accurately modeling and predicting the evolution
of such systems is essential for scientific discovery and technological advancement. Traditional
numerical methods solve these equations using symplectic integrators such as Verlet or velocity
Verlet schemes (Donnelly & Rogers, 2005; Bou-Rabee, 2013). However, these approaches become
computationally prohibitive for complex systems with many particles or long temporal horizons
(Hollingsworth & Dror, 2018; Bou-Rabee, 2013), motivating alternative data-driven methods.

Graph neural networks have emerged as a promising approach for learning particle dynamics by
naturally representing entities as nodes and their interactions as edges (Kipf et al., 2018; Martinkus
et al., 2021; Sanchez-Gonzalez et al., 2020; Pfaff et al., 2020; Bihani et al., 2024; Bishnoi et al., 2023).
This representation enables physically informed models that can generalize across different system
configurations (Xu et al., 2024; Bishnoi et al., 2022). Neural operators provide a robust framework for
modeling dynamical systems by learning mappings between infinite-dimensional functional spaces
and serving as universal approximators for complex dynamics. Among these, the Fourier Neural
Operator (Li et al., 2020; 2023; Bonev et al., 2023) has achieved state-of-the-art results on partial
differential equations by leveraging Fourier-domain representations. However, current graph-based

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

approaches face fundamental limitations when modeling long-term dynamics. Their reliance on
local message passing restricts information flow to immediate neighbors at each step, leading to
over-squashing of long-range dependencies and error accumulation over time (Dwivedi et al., 2022;
Di Giovanni et al., 2023; Arroyo et al., 2025; Topping et al., 2021). These methods also suffer from
vanishing gradients and degraded performance on long horizons (Liu et al., 2019).

State-space models (SSMs) offer a complementary perspective by treating discrete observations as
samples from underlying continuous-time processes (Gu & Dao, 2023). SSMs maintain compact
latent representations and update them through linear dynamics, enabling efficient modeling of
long-range temporal dependencies while avoiding the vanishing gradient problems that plague
recurrent approaches (Mehta et al., 2022). Recent work has demonstrated that SSMs can be effective
in modelling partial differential equations and have shown competitive performance compared to
traditional neural operators on various benchmarks (Tiwari et al., 2025). Additionally, selective SSMs
have achieved remarkable success in sequence modeling tasks across multiple domains (Dao & Gu,
2024). However, extending SSMs to graph-structured data remains challenging because it requires
reconciling sequential temporal updates with complex spatial topologies (Wang et al., 2024).

We propose the Graph Mamba Operator (GRAMO), which integrates state-space modeling with graph
neural networks to capture both long-range spatial and temporal dependencies in particle dynamics.
GRAMO employs bidirectional SSMs for temporal modeling and introduces a SSM-parameterized
message passing scheme that enables non-local spatial interactions while maintaining computational
efficiency. The key insight is that spatial message passing can itself be formulated as a state-space
process, where node states evolve according to graph-aware dynamics. Unlike stepwise predictors
that accumulate errors over time, GRAMO learns to predict entire trajectories in a single forward
pass. Our main contributions are:

1. GRAMO. We present GRAMO, unifying SSM-based temporal modeling with graph mes-
sage passing to jointly capture spatial and temporal dependencies in particle systems.

2. Theoretical Analysis. We analyze the stability properties of our SSM-based spatial updates
and show how they extend local graph interactions to capture long-range dependencies.

3. Empirical Validation. Across benchmarks spanning molecular dynamics, human motion,
and N-body systems, GRAMO achieves consistent improvements over strong baselines,
with mean relative gains of 26.3% on motion capture and 25.2% on MD17.

2 RELATED WORK

Neural Operators. Neural operators learn mappings between infinite-dimensional function spaces,
providing data-driven alternatives to classical numerical solvers (Kovachki et al., 2023). Specifically,
Fourier Neural Operator (FNO) (Li et al., 2020; 2023), a seminal work in the field, parameterizes
integral operators in Fourier space, achieving state-of-the-art performance on fluid dynamics and
atmospheric modeling (Li et al., 2020; 2023; Bonev et al., 2023). Recent operator frameworks
leverage state-space models to capture long-range temporal dependencies (Gu & Dao, 2023; Tiwari
et al., 2025), showing competitive performance on PDE benchmarks. However, these approaches
treat spatial and temporal dynamics independently, limiting effectiveness for coupled particle systems
where spatial interactions evolve over time.

Graph Neural Networks. Message-passing networks (Kipf & Welling, 2017a; Hamilton et al.,
2017; Veličković et al., 2018) naturally represent particle systems by treating entities as nodes and
interactions as edges (Kipf & Welling, 2017b). Despite conceptual appeal, they face fundamental
limitations: over-squashing prevents long-range information flow (Arroyo et al., 2025), while iterative
prediction leads to error accumulation. Graph Transformers address some issues through global
attention but incur quadratic computational costs. Continuous-time formulations like Graph ODEs
(Fang et al., 2021; Luo et al., 2023) avoid discretization errors but suffer from expensive solvers and
numerical instability. Most relevant to our work, EGNOs (Xu et al., 2024) predict entire trajectories
in single passes, reducing error accumulation, but struggle with long-range temporal dependencies
and non-stationary dynamics due to their reliance on fixed Fourier parameterizations.

State Space Models on Graphs. Structured SSMs have demonstrated remarkable success in sequence
modeling (Gu & Dao, 2023; Dao & Gu, 2024) and recently shown promise for PDE solving (Tiwari
et al., 2025). Extensions to graphs have explored various approaches: survey work (Qu et al., 2024)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

categorizes SSM applications across domains, including vision (Zhu et al., 2024) and graphs (Wang
et al., 2024). However, current graph SSM methods impose artificial sequential orderings through
degree-based sorting (Wang et al., 2024) or random walks (Behrouz & Hashemi, 2024), breaking
permutation equivariance or losing structural information. Recent spatio-temporal approaches (Sahili
& Awad, 2023; Cini et al., 2023) address temporal modeling but do not fully exploit SSMs’ long-
range capabilities for spatial interactions. To the best of our knowledge, no prior work successfully
integrates SSM temporal operators with principled graph message passing for particle dynamics.

3 BACKGROUND AND PROBLEM SETTING

State-Space Models (SSMs). A continuous-time linear state-space model (also known as a Linear
Time-Invariant, LTI system) characterizes the evolution of a hidden state under the influence of
external inputs. Let the input be x(t) ∈ Rdx , the hidden state be h(t) ∈ Rdh , and the output be
y(t) ∈ Rdy . The system dynamics are described by the continuous-time state-space as follows:

ḣ(t) = Ah(t) +Bx(t), y(t) = Ch(t), (1)

where A ∈ Rdh×dh is the state transition matrix, B ∈ Rdh×dx is the input projection, and C ∈
Rdy×dh is the output mapping and the model learnable parameters.

Discretization. For integration of continuous-time SSMs into neural network architectures, it is
necessary to derive a discrete-time formulation. Let ∆ ∈ R+ denote the sampling interval, and
assume a zero-order hold (ZOH) scheme for discretization. The continuous dynamics in equation 2
takes the following discrete representation form:

h[k] = Ā h[k − 1] + B̄ x[k], y[k] = Ch[k]. (2)

where Ā and B̄ are the discretized system matrices (derivation in Appendix B), defined as follows:

Ā = exp(∆A), B̄ = A−1(exp(∆A)− I)B. (3)

with I denoting the identity matrix. For sufficiently small ∆, one may approximate B̄ ≈ ∆B.

An equivalent view of the discrete-time SSM is obtained by unfolding the recurrence into a convolu-
tional operator (Gu & Dao, 2023). Specifically, the output sequence y can be expressed as:

y = x ∗K, K =
[
CB, CAB, . . . , CAL−1B

]
, (4)

where K ∈ RL is the convolutional kernel the system’s impulse response.

Selective State-Space Models (S6). The Selective SSM framework, introduced in Mamba (Gu &
Dao, 2023), extends classical SSMs by allowing certain parameters to depend on the input signal. In
particular, the input-dependent parameterization of B, C, and the discretization step ∆ enhances both
expressivity and efficiency, bringing the performance of SSMs closer to transformer-based sequence
models. Under this formulation, the convolutional kernel in Equation 4 is generalized to following:

K =
{
CLBL, CLAL−1BL−1, . . . , CL

(L−1∏
i=1

Ai

)
B1

}
, (5)

where the matrices {Ai,Bi,Ci} are selectively modulated by the input at each step. This adaptive
construction yields a richer class of convolutional operators.

Newtonian–SSM Connection. Consider Newtonian dynamics for a particle system governed by
ẋ = v and mv̇ = −F(x,v, t)− γv, where F(x,v) represents forces, m represent the masses, and
γ is a damping coefficient. By defining the state vector h = [x;v], the second-order system can be
written in first-order state-space form:

ḣ = Ah+Bu(h), (6)

where A =

[
0 I
0 −γI

]
, B =

[
0
−I

]
, and u(h) = F(x,v).

When forces are linear in the state variables, this reduces to a linear time-invariant (LTI) system. For
nonlinear forces, the system becomes a nonlinear state-space model. The explicit form is:

Ż =

[
ẋ
mv̇

]
=

[
v

−F(x,v)− γv

]
=

[
0 I
0 −γI

] [
x
v

]
+

[
0
−I

]
F(x,v) (7)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

This formulation provides a natural connection between particle dynamics and state-space representa-
tions, motivating the use of SSM-based approaches for trajectory prediction. Note that this equation
is analogous to Hamiltonian dynamics with x and mv corresponding to the canonical coordinates q
and p representing positions and momenta of the particles, respectively.

Problem Setting. We study the temporal evolution of interacting particle systems represented as a
sequence of graphs {Gt}Tt=1. Each graph Gt = (V, E ,Ht,Zt) shares a fixed node set with |V| = N
nodes, defining a mapping f : t 7→ Gt.
The graph structure captures both static and dynamic particle properties. Node features Ht ∈ RN×d

encode time-invariant attributes such as atom type or charge. Time-varying geometric descriptors
Zt ∈ RN×m×3 represent evolving particle states, commonly instantiated as Zt = [xt,vt] where
xt ∈ RN×3 denotes positions and vt ∈ RN×3 denotes velocities, giving m = 2.

In our formulation, structural features remain constant over time (Ht = H) while system dynamics
evolve through the geometric tensors Zt. The graph connectivity is defined by an adjacency matrix
A ∈ RN×N , constructed from either domain-specific interactions (e.g., chemical bonds in molecular
systems) or distance-based neighborhoods.

Problem Statement (Trajectory Prediction). Let T be a set of spatio-temporal trajectories of
interacting particle systems sampled from data distribution pdata. Each trajectory consists of a
sequence of graphs {G(t+∆t) : ∆t ∈ [0,∆T]} representing particle states over time. Let U : D →
RN×m×3 denote the target trajectory space. Our goal is to learn a neural operator that predicts
complete trajectories from initial conditions. Towards that end, we want to learn:

1. A neural operator Fθ : G(t) 7→ {G(t+∆t) : ∆t ∈ [0,∆T]} that approximates the true
solution operator F† and maps initial graph states to complete future trajectories in a single
forward pass, unlike prior approaches (Thomas et al., 2018; Wang & Chodera, 2023).

2. The operator must capture both long-range spatial dependencies through graph structure and
long-range temporal dependencies across the prediction horizon.

3. The learned operator should maintain permutation equivariance with respect to particle
ordering and exhibit stable predictions over extended time horizons.

The training objective minimizes the expected trajectory discrepancy:

min
θ

EG(t)∼pdata

[
L
(
Fθ(G(t)),F†(G(t))

)]
, (8)

where L measures trajectory discrepancy using the L2 norm.

Once learned, this neural operator can predict trajectories of unseen particle systems across domains,
including molecular dynamics, human motion, and N-body systems.

In practice, we approximate the continuous objective through empirical risk minimization (ERM)
over P uniformly sampled time points {τp}Pp=1 ⊂ [0,∆T]:

min
θ

EG(t)∼pdata

1

P

P∑
p=1

∥∥∥Fθ(G(t))(τp)−F†(G(t))(τp)
∥∥∥
2
. (9)

We focus on modeling geometric evolution: the time-varying descriptors Zt capture system dynamics
while structural node features H remain time-invariant.

4 GRAPH MAMBA OPERATOR

We propose GRAMO, a neural operator that predicts entire future trajectories in a single step.
Inspired by Mamba (Gu & Dao, 2023), which employs dynamic weights (input dependent) for SSM,
we employ a temporal SSM that learns frequency-dependent temporal dynamics, coupled with an
SSM-based spatial update that preserves graph topology while capturing long-range interactions.

4.1 PROPOSED METHOD

Overview. The proposed method, illustrated in Figure 1, can be summarized as follows:

Fθ = (S ◦ T)l ◦ (S ◦ T)l−1 ◦ · · · ◦ (S ◦ T)2 ◦ (S ◦ T)1 ◦ E , (10)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Predicted states

N
ode

Em
beddings

Temporal Convolution

LayerN
orm

Linear
Linear

Linear

Forw
ard

 SSM
Backw

ard
 SSM

Linear

1

Edge Indices

G
raph

 C
onvolution

Spatial Convolution
fdt

fB

fx

fC

dt

B

Bt

Xt

St+1

Wt

Ct

Temporal Convolution

Spatial Convolution

x1
x3x2

Encoder

Current state

x1

x3
x2

x1
x3

x1

x3
x2

1

2

Temporal Convolution

Spatial Convolution

2

x2

Learnable
Parameter

TM

Input
Dependent

Fixed
across time

Token
Mixer

State
Variables

Multiplication

Addition

Einsum

St

Figure 1: Overview. The framework encodes the input graph G(t), processes it through L stacked GRAMO
blocks, and decodes future trajectories. (Left.) Overall architecture. (Right Top.) Temporal block: bidirectional
Mamba capturing long-range temporal dependencies. (Right Bottom.) Spatial block: SSM-inspired message
passing enabling non-local interactions (in Appendix Algorithm 1-2). The horizon ∆T is discretized into P

steps {∆tp}Pp=1, and the decoder outputs trajectories {G(t+∆tp)}Pp=1 in parallel as predicted dynamics fG(t).

where ◦ denotes composition. Specifically, the encoder E maps the initial graph state G(0) to the
trajectory sequence {G(t)}. Each S represents a spatial convolution block, while T corresponds to a
temporal convolution block. The parameter l denotes the total number of stacked GRAMO layers.
Finally, it generates the complete trajectory, producing the final output representation.

Encoder (E). The encoder E maps the initial graph G(0) into a predicted trajectory {G(t)}Pt=1.
Following (Xu et al., 2024), we replicate G(0) into P copies {G(0)}Pp=1 and augment each with
a learnable time embedding e(∆tp), enabling the model to incorporate timestep information for
trajectory prediction (Ho et al., 2020). The sequence is then processed by interleaved temporal blocks
(T) and spatial blocks (S), allowing stacked GRAMO layers to evolve the full trajectory.

GRAMO Blocks. GRAMO is structured as a hierarchical stack of temporal convolution blocks
(T) and spatial convolution blocks (S). The temporal blocks capture long-range dynamics across
nodes, while the spatial blocks operate on the graph topology to model inter-node dependencies.
By interleaving and stacking these components, GRAMO jointly encodes temporal and spatial
correlations, yielding a rich representation for learning the dynamics of graph-structured systems.

Temporal Convolution (T). Let f : D → G denote the input trajectory function with f(t) =
[fh; fZ(t)]

⊤, where fh is time-invariant and fZ(t) is time-varying. 1 The temporal convolution layer
T applies a residual update which can be described as follows:

(T f)(t) = f(t) + σ
(
(Kf)(t)

)
, (11)

where σ denotes a pointwise nonlinearity, and K represents the integral operator (Li et al., 2020)
defined as Kf(t) =

∫
T
K(t, τ) f(τ) dτ . We parameterize K using a bidirectional state-space model

(SSM) applied across nodes to capture temporal dynamics. As shown in (Tiwari et al., 2025), SSMs
approximate integral kernels, which allows K to represent both causal and anti-causal responses. As
shown in Equation 2 we can represent the Kf in discretized form as follows:

Kf = SSMforward(A, B̄, C̄)f + SSMbackward(A, B̄, C̄)f (12)
where SSMforward and SSMbackward denote the forward and backward state-space models applied along
the temporal dimension of the nodes. The forward model is parameterized as SSM(A, B̄, C̄), and
the backward model as SSM(A, B̄, C̄). Unlike EGNO, where the kernel parameters remain fixed,
our formulation employs dynamic parameters that adapt to the temporal evolution of the system.

Spatial Convolution (S). We design a Mamba-inspired message passing layer that extends state-
space updates to graph-structured data. Let {G(t)} denote a temporal sequence of graphs with fixed

1For simplicity, In this paper f denotes fG .

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

topology (V, E) and node features {X(t)}, obtained by concatenating the intrinsic node features H(t)

with the geometric features Z(t), where Z(t) encodes the positions and velocities of the nodes. Each
graph is associated with a hidden state S(t), which evolves through the following structured update:

S(t+1) = Â S(t) W +X(t) B, Y(t+1) = S(t+1) C. (13)

Here, S(t) ∈ RN×n denotes the hidden state at step t, X(t) ∈ RN×dx the input node features, and
Y(t) ∈ RN×dy the output node features. The operators are given by Â ∈ RN×N ,W ∈ Rn×n,B ∈
Rdx×n,C ∈ Rn×dy . The matrix Â denotes the normalized adjacency Â = D− 1

2 (A + I)D− 1
2 ,

where A is the adjacency matrix, I adds self-loops, and D is the corresponding degree matrix. The
matrices W,B,C are model learnable parameters.
Remark 4.1. If we set B = C = 0 and initialize S(t) = X(t), then after applying a nonlinearity σ(·),
the update reduces to Y = σ

(
ÂXW

)
, which recovers the standard GCN message-passing rule.

Selectivity and Interpretability. Spatial convolution design is inspired by the notion of selectivity
in sequence models, where dynamics are adaptively weighted by input content. To achieve this,
the parameters B and C are made input-dependent, dynamically generated from X(t) via graph
convolution (e.g., GCN, GraphSAGE) at each step. This provides finer control over information flow:
Â governs state propagation through normalized adjacency (as in message passing neural networks),
while B and C regulate how new inputs update the hidden state S(t) and how the state contributes to
the output Y(t). Such selectivity enables the model to filter irrelevant signals, compress long contexts
into compact states, and balance content-driven input modulation with context-driven state dynamics.

4.2 THEORETICAL INSIGHTS

We now provide a theoretical analysis of the proposed components, with complete proofs in Ap-
pendix B. Lemma 4.2 establishes the stability of Equation 13 by showing that the normalized
adjacency Â has spectral radius equal to unity. Moreover, unrolling the recurrence introduces powers
of Â, and Appendix Proposition B.7 demonstrates that Ât encodes all walks of length t. Conse-
quently, after t steps, each node aggregates information from all nodes within t hops, thereby enabling
the model to effectively capture long-range information across nodes in the graph.

Lemma 4.2 (Spectrum and Neumann Series). Let G be an undirected graph and Â = D− 1
2 (A+

I)D− 1
2 . Then σ(Â) ⊆ [−1, 1] and ∥Â∥2 = ρ(Â) = 1, with max eigenvalue 1 and eigenvector

proportional to D1/21. Consequently, the Neumann series
∑∞

t=0 Â
t diverges. However, for any

α ∈ (0, 1) the damped series
∑∞

t=0(αÂ)t converges to (I− αÂ)−1.

Next, in Proposition 4.3, we establish the permutation equivariance of Equation 13: permuting the
node ordering results in the output being permuted in the same way, a desired property for GNNs.
Proposition 4.3 (Permutation Equivariance). Let Π ∈ {0, 1}N×N be any permutation matrix and
define Â′ = ΠÂΠ⊤, S

′(t) = ΠS(t), X
′(t) = ΠX(t). Then the update:

S(t+1) = ÂS(t)W +X(t)B, Y(t+1) = S(t+1)C (14)
is permutation equivariant:

S
′(t+1) = Â′S

′(t)W +X
′(t)B = ΠS(t+1), Y

′(t+1) = S
′(t+1)C = ΠY(t+1). (15)

Finally, Proposition 4.4 establishes that repeated updates can either amplify or attenuate signals
depending on the spectral properties of Â and W. The dynamics remain stable provided the spectral
radii are bounded: as shown in Lemma 4.2, Â has spectral radius 1, and by ensuring that ρ(W) is
bounded, the update equation maintains stable dynamics throughout rollouts.
Proposition 4.4 (Multi–Step Jacobian). For the spatial SSM update

S(t) = Â S(t−1)W +X(t−1)B, (16)

with S(t)∈RN×n, Â∈RN×N , and W∈Rn×n, the Jacobian of S(t) with respect to S(s) for t > s is

∂ S(t)

∂ S(s)
=
[
(Â t−s)ij W

t−s
]N
i,j=1

and
∂ vec(S(t))

∂ vec(S(s))
=
(
W⊤ ⊗ Â

)t−s
. (17)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Evaluation of the N-Body and Mocap Capture. F-MSE (×10−2) on the N-Body simulation and
Motion Capture datasets (Subject #35 Walk, Subject #9 Run). The ”Gain %” quantifies the relative reduction
achieved by our model compared to the second-best performer on each benchmark. First and Second denotes
best results. Lower value denotes better performance. Baseline results reported from Xu et al. (2024).

Dataset SE(3)-Tr. TFN MPNN RF ClofNet EGNN EGNO GRAMO Gain %

N-body 2.44±0.03 1.55±0.02 1.07 ±0.03 1.04 ±0.03 0.65±0.02 0.71±0.02 0.65 ±0.01 0.62±0.02 4.61%
#35 (Walk) 31.5 ±2.1 32.0 ±1.8 36.1 ±1.5 188.0 ±1.9 – 28.7 ±1.6 9.61 ±1.6 6.9 ±0.21 28.19%
#9 (Run) 61.2 ±2.3 56.6 ±1.7 66.4 ±2.2 521.3 ±2.3 – 50.9 ±0.9 37.18 ±0.7 28.12±0.43 24.37%

5 NUMERICAL EXPERIMENTS

We systematically evaluate GRAMO across diverse trajectory prediction tasks, comparing against
established baselines and performing detailed component analyses to validate our design choices.

5.1 IMPLEMENTATION DETAILS

Benchmark Details. We evaluate GRAMO on diverse trajectory-prediction tasks spanning physical,
biological, and human-motion domains. Benchmarks include the 3D N-body suite (Satorras et al.,
2021a), human motion from CMU Mocap (Walk #35 and Run #9) (CMU, 2003; Huang et al., 2022;
Han et al., 2022), protein dynamics from the AdK equilibrium trajectory (Seyler & Beckstein, 2017;
Richard J. Gowers et al., 2016), and the MD17 molecular dataset (Chmiela et al., 2017). Together,
these tasks evaluate the GRAMO ’s ability to capture both short- and long-range interactions.

Baselines. We compare GRAMO against a broad range of graph networks and operators, including
Linear (Satorras et al., 2021a), SE(3)-Transformer (Fuchs et al., 2020), TFN (Thomas et al., 2018),
MPNN (Gilmer et al., 2017), RF (Köhler et al., 2019), ClofNet (Du et al., 2022), EGNN (Satorras
et al., 2021a), EGNO (Xu et al., 2024), and ITO (Schreiner et al., 2023). Following Xu et al.
(2024), we also evaluate two EGNN variants: (i) EGNN-Roll, trained on short horizons and evaluated
by iterative rollout (Sanchez-Gonzalez et al., 2020); and (ii) EGNN-Sequential, which generates
trajectories frame by frame through successive EGNN layers.

Implementation Details. All models are trained using the Adam optimizer (Kingma & Ba, 2014)
along with the StepLR scheduler. Experiments are carried out on a Linux system running Ubuntu
20.04.3LTS, equipped with an Intel(R) Core(TM) i9-10900X CPU and a single NVIDIA RTX A6000
GPU with 48 GB memory. Further details are provided in the Appendix Section D.

Evaluation Metrics. We evaluate performance under two settings: state-to-state (S2S) and state-to-
trajectory (S2T). The state-to-state setting measures accuracy at the final timestep using the Final
Mean Squared Error (F-MSE), defined as F-MSE = ∥x(tP)− x†(tP)∥2, where x† is the reference
state. In contrast, the state-to-trajectory setting evaluates the entire rollout using the Average MSE
(A-MSE), given by A-MSE = 1

P

∑P
p=1 ∥x(tp)− x†(tp)∥2, which serves as the evaluation metric.

Table 2: A-MSE (×10−2) comparison across models on N-
Body simulation and MoCap datasets: Subject #35 (Walk)
and Subject #9 (Run). First and Second denotes best results.

Model N-Body #35 (Walk) #9 (Run)

EGNN-R 2.15±0.02 32.0±1.6 277.3±1.8

EGNN-S 0.45±0.01 14.3±1.2 28.5±1.3

EGNO 0.27±0.03 9.3±1.5 37.2±0.7

GRAMO 0.25±0.02 6.5±0.2 26.28 ±0.4

Gain % 7.4% 30.1% 7.8%

Results. Table 1 shows that GRAMO
performs slightly out perform existing ap-
proaches on the relatively simple N-body
system (4.61% gain), while achieving sub-
stantial gains on the more complex Mo-
tion Capture tasks (Subject #35 Walk, Sub-
ject #9 Run), with a relative improvement
of 26.28% over the second-best baseline.
Furthermore, Table 2 demonstrates that
EGNN and EGNO suffer from pronounced
error accumulation over long trajectories,
whereas GRAMO maintains accurate and
stable rollouts, preserving both fidelity and stability.

Now, we analyze the performance on the MD17 dataset (see Table 3). Here, GRAMO consistently
outperforms all baselines in the final-state prediction, achieving a relative gain of 25.2% over the
second-best method. These improvements are especially pronounced for molecules such as benzene,
aspirin, and toluene, where GRAMO yields substantially lower MSE than prior approaches. Notably,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Evaluation on the MD17 dataset. The upper half of the table reports F-MSE (×10−2), while
the lower half presents A-MSE (×10−2). First and Second denotes best results. Lower value denotes better
performance. Baseline results reported from Xu et al. (2024).

Model Aspirin Benzene Ethanol Malonaldehyde Naphthalene Salicylic Toluene Uracil

RF 10.94±0.01 103.72±1.29 4.64±0.01 13.93±0.03 0.50±0.01 1.23±0.01 10.93±0.04 0.64±0.01
TFN 12.37±0.18 58.48±1.98 4.81±0.04 13.62±0.08 0.49±0.01 1.03±0.02 10.89±0.01 0.84±0.02
SE(3)-Tr. 11.12±0.06 68.11±0.67 4.74±0.13 13.89±0.02 0.52±0.01 1.13±0.02 10.88±0.06 0.79±0.02
EGNN 14.41±0.15 62.40±0.53 4.64±0.01 13.64±0.01 0.47±0.02 1.02±0.02 11.78±0.07 0.64±0.01
EGNN-R 14.51±0.19 62.61±0.75 4.94±0.21 17.25±0.05 0.82±0.02 1.35±0.02 11.59±0.04 1.11±0.02
EGNN-S 9.50±0.10 66.45±0.89 4.63±0.01 12.88±0.01 0.45±0.01 1.00±0.02 10.78±0.05 0.60±0.01
ITO 20.56±0.03 57.85±0.58 8.60±0.27 28.44±0.73 1.82±0.17 2.48±0.34 12.47±0.30 1.33±0.02
EGNO 9.42±0.03 55.70±0.32 4.6±0.05 13.12±0.01 0.39±0.01 0.86±0.02 10.31±0.12 0.56±0.01
GRAMO 7.55±0.04 2.06±0.12 3.65±0.03 12.85±0.04 0.37±0.02 0.84±0.02 4.75±0.03 0.54±0.02
Gain % 19.85% 96.30% 20.65% 0.233% 5.13% 2.32% 53.93% 3.57%

EGNN-R 12.07±0.11 23.73±0.30 3.44±0.17 13.38±0.03 0.63±0.01 1.15±0.02 5.04±0.02 0.89±0.01
EGNN-S 9.49±0.12 29.99±0.65 3.29±0.01 11.21±0.01 0.43±0.01 1.36±0.02 4.85±0.04 0.68±0.01
EGNO 7.01±0.01 22.06 ±0.02 3.30±0.02 10.73±0.01 0.33±0.01 1.20±0.02 4.67±0.02 0.51±0.01
GRAMO 6.21±0.03 1.08±0.02 2.88±0.03 11.21±0.05 0.36±0.02 0.72±0.02 2.31±0.03 0.55±0.01
Gain % 11.41% 95.10% 12.46% -4.47% -9.09% 37.39% 50.53% -7.84%

GRAMO performs strongly in both S2S and S2T evaluations, highlighting the benefit of combining
temporal and spatial convolution. In contrast to EGNO, which employs a fixed kernel, GRAMO
leverages dynamic weights to parameterize the temporal kernel, enabling it to effectively capture
non-stationary signals.

Furthermore, we evaluate the performance of GRAMO on the AdK equilibrium benchmark and
compare it against the state-of-the-art EGHN (Han et al., 2022) baseline. As shown in Table 4, our
method outperforms the baseline by a relative improvement of 4.45%, demonstrating its ability to
effectively capture long-range interactions in modelling the equilibrium trajectory.

Table 4: Evaluation on the Protein dataset. F-MSE (×10−2) on the AdK equilibrium trajectory dataset. First
and Second denotes best results. Lower value denotes better performance.

Dataset MPNN RF EGNN EGHN EGNO EGHNO GRAMO Gain%

AdK 2.322 2.846 2.735 2.034 2.231 1.80 1.72 4.44%

Ablations. To assess the contributions of the temporal and spatial convolution modules in GRAMO,
we perform an ablation on the Aspirin and MoCap-Run datasets. Incorporating temporal modeling
consistently improves performance (see Table 5), whether combined with an EGNN or our SSM-based
spatial update. When comparing the spatial components, our Mamba-based convolution outperforms
EGNN on molecules, reflecting the importance of capturing long-range interactions. Conversely, the
MoCap task, which is characterized by shorter-range dynamics, benefits more from the EGNN spatial
update (Bishnoi et al., 2022).

Table 5: Ablation on Aspirin and MoCap-Run.
F-MSE (×10−2). First and Second denotes best
results. w denotes with and w/o denotes without.

Model Component Aspirin MoCap-Run

EGNN 9.55±0.02 50.9±0.02

GRAMO w/o Temporal 8.10±0.05 33.5±0.03

GRAMO w/ EGNN 8.82±0.03 28.22±0.21

GRAMO 7.55±0.04 34.12±0.43

We further validate GRAMO through additional
experiments, including temporal loss evolution,
extrapolation beyond the training horizon, data
efficiency in low-data regimes, scaling with
depth and embedding dimension, quantitative
visualization, and physics-based metrics. Com-
prehensive results are provided in Appendix E.

Temporal Loss. Figure 3 demonstrates that
GRAMO consistently attains lower temporal
MSE across timesteps compared to EGNO on
both MD17 (Aspirin) and MoCap tasks. More-

over, even when extrapolated to twice the training horizon (Appendix Figure 6), GRAMO remains
stable and continues to generalize effectively, achieving robust rollouts. In contrast, EGNO exhibits
instability, with error drift compounding severely on molecules such as Benzene, leading to error
explosion, while GRAMO maintains reliable long-horizon predictions.

Model Efficiency. To assess data-efficiency, we evaluate GRAMO in low-data regimes. As shown
in Figure 3, our model maintains strong performance and consistently surpasses EGNO on MD17
and MoCap, even when using as little as 25% of the training data. Further, we analyze the impact of

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

X

2 0 2 4
Y

3
2

1
0

1
2

Z

2

0

2

(a)
X

0
50

100
150

Y
20

15
10

5
0

Z

0

10

20

30

(b)
X

0 50 100
150

Y10
15

20

Z

0

10

20

30

1

2

3

4

5

Tim
es

te
p

(c)
Figure 2: Visualization of trajectories generated by GraMO with uniform discretization on (a) N-Body
Simulation, (b) Mocap (Run), and (c) Mocap (Walk). Predicted trajectories are shown with timestep progression
indicated by a Blue color gradient, while the ground truth final snapshot is marked in Green.

1 2 3 4 5 6 7 8
3

5

7

9

11

Timestep

M
SE

(×
1
0
−
2
)

Aspirin

1 2 3 4 5
4

6

8

10

12

Layers

Toluene

16 32 64
0

10

20

30

Embedding Dim

MoCap Walk

50 100 200
0

50

100

150

200

Training Samples

MoCap Run

EGNO GRAMO
Figure 3: Comparison of GRAMO and EGNO under different experimental settings. (Left.) Temporal MSE
across timesteps. (Left-Middle.) MSE as a function of the number of layers. (Right-Middle.) MSE with
varying embedding dimensions. (Right.) MSE across different training sample sizes.

model depth and embedding size (shown in Figure 3). Deeper architectures improve performance
while remaining stable; even a single layer surpasses EGNO on Toluene, and the model reliably
captures dynamics in low-dimensional embeddings.

Visual Demonstrations. Figure 2 provides qualitative trajectory visualizations on the N-Body and
MoCap datasets. The predictions closely match the ground-truth dynamics, highlighting GRAMO ’s
ability to model complex trajectories with both accuracy and fidelity.

Physics Metrics. To evaluate the realistic nature of the trajectory, we introduce velocity-based losses,
as optimizing for position alone often leads to poor conservation of momentum and kinetic energy.
This approach allows GRAMO to outperform EGNO in both positional prediction and physics-aware
metrics (Appendix Tables 9–16). Specifically, our model achieves significantly lower errors in
momentum and kinetic energy across all timesteps, resulting in more stable trajectory predictions. We
further assess structural fidelity using system-averaged radial distribution functions (RDFs) (Bihani
et al., 2024), which capture atomic density as a function of distance. Appendix Figures 11–18 show
that GRAMO accurately reproduces RDFs across molecules.

6 CONCLUSION AND FUTURE WORK

We presented GRAMO, a neural operator that integrates state-space models with graph neural net-
works for particle dynamics. The method combines bidirectional SSMs for temporal modeling with
SSM-parameterized spatial message passing, learning entire trajectories in single forward passes
rather than iterative rollouts. Experiments across molecular dynamics (MD17), human motion capture,
N-body systems, and protein dynamics show consistent improvements over baselines, with relative
gains of 26.3% on motion capture and 25.2% on MD17 final-state prediction. The approach maintains
stability during extrapolation beyond training horizons and provides theoretical guarantees.
Future work. Key directions include incorporating SE(3) equivariance for broader physical ap-
plicability, systematic evaluation on larger systems to establish computational limits, and adaptive
mechanisms for SSM state dimensions. Integration of physical conservation laws and uncertainty
quantification would enhance the method’s utility for scientific applications.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 REPRODUCIBILITY STATEMENT

We ensure reproducibility by providing the full anonymous implementation at
https://anonymous.4open.science/r/GraMO/, including code and training scripts.

REFERENCES

Álvaro Arroyo, Alessio Gravina, Benjamin Gutteridge, Federico Barbero, Claudio Gallicchio,
Xiaowen Dong, Michael Bronstein, and Pierre Vandergheynst. On vanishing gradients, over-
smoothing, and over-squashing in gnns: Bridging recurrent and graph learning. arXiv preprint
arXiv:2502.10818, 2025. 2

Ali Behrouz and Farnoosh Hashemi. Graph mamba: Towards learning on graphs with state space
models. In Proceedings of the 30th ACM SIGKDD conference on knowledge discovery and data
mining, pp. 119–130, 2024. 3

Vaibhav Bihani, Sajid Mannan, Utkarsh Pratiush, Tao Du, Zhimin Chen, Santiago Miret, Matthieu
Micoulaut, Morten M Smedskjaer, Sayan Ranu, and NM Anoop Krishnan. Egraffbench: evaluation
of equivariant graph neural network force fields for atomistic simulations. Digital Discovery, 3(4):
759–768, 2024. 1, 9

Suresh Bishnoi, Ravinder Bhattoo, Sayan Ranu, and NM Krishnan. Enhancing the inductive biases
of graph neural ode for modeling dynamical systems. arXiv preprint arXiv:2209.10740, 2022. 1, 8

Suresh Bishnoi, Ravinder Bhattoo, Jayadeva Jayadeva, Sayan Ranu, and NM Anoop Krishnan.
Learning the Dynamics of Physical Systems with Hamiltonian Graph Neural Networks. In ICLR
2023 Workshop on Physics for Machine Learning, 2023. 1

Boris Bonev, Thorsten Kurth, Christian Hundt, Jaideep Pathak, Maximilian Baust, Karthik Kashinath,
and Anima Anandkumar. Spherical fourier neural operators: Learning stable dynamics on the
sphere. In International conference on machine learning, pp. 2806–2823. PMLR, 2023. 1, 2

Nawaf Bou-Rabee. Time integrators for molecular dynamics. Entropy, 16(1):138–162, 2013. 1

Stefan Chmiela, Alexandre Tkatchenko, Huziel E Sauceda, Igor Poltavsky, Kristof T Schütt, and
Klaus-Robert Müller. Machine learning of accurate energy-conserving molecular force fields.
Science advances, 3(5):e1603015, 2017. 7, 21

Andrea Cini, Ivan Marisca, Filippo Maria Bianchi, and Cesare Alippi. Scalable spatiotemporal graph
neural networks. In Proceedings of the AAAI conference on artificial intelligence, volume 37, pp.
7218–7226, 2023. 3

CMU. Carnegie-mellon motion capture database. 2003. URL http://mocap.cs.cmu.edu. 7,
21

Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
structured state space duality. arXiv preprint arXiv:2405.21060, 2024. 2

Francesco Di Giovanni, Lorenzo Giusti, Federico Barbero, Giulia Luise, Pietro Lio, and Michael M
Bronstein. On over-squashing in message passing neural networks: The impact of width, depth,
and topology. In International conference on machine learning, pp. 7865–7885. PMLR, 2023. 2

Denis Donnelly and Edwin Rogers. Symplectic integrators: An introduction. American Journal of
Physics, 73(10):938–945, 2005. 1

Weitao Du, He Zhang, Yuanqi Du, Qi Meng, Wei Chen, Nanning Zheng, Bin Shao, and Tie-Yan Liu.
SE(3) equivariant graph neural networks with complete local frames. In Kamalika Chaudhuri,
Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of
the 39th International Conference on Machine Learning, volume 162 of Proceedings of Machine
Learning Research, pp. 5583–5608. PMLR, 17–23 Jul 2022. URL https://proceedings.
mlr.press/v162/du22e.html. 7

10

https://anonymous.4open.science/r/GraMO/
http://mocap.cs.cmu.edu
https://proceedings.mlr.press/v162/du22e.html
https://proceedings.mlr.press/v162/du22e.html

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Vijay Prakash Dwivedi, Ladislav Rampášek, Michael Galkin, Ali Parviz, Guy Wolf, Anh Tuan Luu,
and Dominique Beaini. Long range graph benchmark. Advances in Neural Information Processing
Systems, 35:22326–22340, 2022. 2

Zheng Fang, Qingqing Long, Guojie Song, and Kunqing Xie. Spatial-temporal graph ode networks
for traffic flow forecasting. In Proceedings of the 27th ACM SIGKDD conference on knowledge
discovery & data mining, pp. 364–373, 2021. 2

Daan Frenkel and Berend Smit. Understanding molecular simulation: from algorithms to applications.
Elsevier, 2023. 1

Fabian B Fuchs, Daniel E Worrall, Volker Fischer, and Max Welling. Se (3)-transformers: 3d
roto-translation equivariant attention networks. arXiv preprint arXiv:2006.10503, 2020. 7

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. PMLR, 2017. 7

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023. 2, 3, 4, 23

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Advances in Neural Information Processing Systems (NeurIPS), 2017. 2

Jiaqi Han, Wenbing Huang, Tingyang Xu, and Yu Rong. Equivariant graph hierarchy-based neural
networks. Advances in Neural Information Processing Systems, 35:9176–9187, 2022. 7, 8, 21, 22

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020. 5, 22

Scott A Hollingsworth and Ron O Dror. Molecular dynamics simulation for all. Neuron, 99(6):
1129–1143, 2018. 1

Wenbing Huang, Jiaqi Han, Yu Rong, Tingyang Xu, Fuchun Sun, and Junzhou Huang. Equiv-
ariant graph mechanics networks with constraints. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=SHbhHHfePhP. 7,
21

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014. 7, 22

Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel. Neural relational
inference for interacting systems. In International conference on machine learning, pp. 2688–2697.
Pmlr, 2018. 1, 21

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In Proceedings of the International Conference on Learning Representations (ICLR), 2017a. 2

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations, 2017b. URL https:
//openreview.net/forum?id=SJU4ayYgl. 2

Jonas Köhler, Leon Klein, and Frank Noé. Equivariant flows: sampling configurations for multi-body
systems with symmetric energies. arXiv preprint arXiv:1910.00753, 2019. 7

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces with
applications to pdes. Journal of Machine Learning Research, 24(89):1–97, 2023. 2

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential equations.
arXiv preprint arXiv:2010.08895, 2020. 1, 2, 5

11

https://openreview.net/forum?id=SHbhHHfePhP
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zongyi Li, Daniel Zhengyu Huang, Burigede Liu, and Anima Anandkumar. Fourier neural operator
with learned deformations for pdes on general geometries. Journal of Machine Learning Research,
24(388):1–26, 2023. 1, 2

Xuanqing Liu, Tesi Xiao, Si Si, Qin Cao, Sanjiv Kumar, and Cho-Jui Hsieh. Neural sde: Stabilizing
neural ode networks with stochastic noise. arXiv preprint arXiv:1906.02355, 2019. 2

Xiao Luo, Jingyang Yuan, Zijie Huang, Huiyu Jiang, Yifang Qin, Wei Ju, Ming Zhang, and Yizhou
Sun. Hope: High-order graph ode for modeling interacting dynamics. In International conference
on machine learning, pp. 23124–23139. PMLR, 2023. 2

Alexander D MacKerell Jr, Nilesh Banavali, and Nicolas Foloppe. Development and current status of
the charmm force field for nucleic acids. Biopolymers: original Research on biomolecules, 56(4):
257–265, 2000. 22

Karolis Martinkus, Aurelien Lucchi, and Nathanaël Perraudin. Scalable graph networks for particle
simulations. AAAI, 2021. 1

Harsh Mehta, Ankit Gupta, Ashok Cutkosky, and Behnam Neyshabur. Long range language modeling
via gated state spaces. arXiv preprint arXiv:2206.13947, 2022. 2

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W Battaglia. Learning mesh-
based simulation with graph networks. arXiv preprint arXiv:2010.03409, 2020. 1

Haohao Qu, Liangbo Ning, Rui An, Wenqi Fan, Tyler Derr, Hui Liu, Xin Xu, and Qing Li. A survey
of mamba. arXiv preprint arXiv:2408.01129, 2024. 2

Richard J. Gowers, Max Linke, Jonathan Barnoud, Tyler J. E. Reddy, Manuel N. Melo, Sean
L. Seyler, Jan Domański, David L. Dotson, Sébastien Buchoux, Ian M. Kenney, and Oliver
Beckstein. MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dynamics
Simulations. In Sebastian Benthall and Scott Rostrup (eds.), Proceedings of the 15th Python in
Science Conference, pp. 98 – 105, 2016. doi: 10.25080/Majora-629e541a-00e. 7, 22

Zahraa Al Sahili and Mariette Awad. Spatio-temporal graph neural networks: A survey. arXiv
preprint arXiv:2301.10569, 2023. 3

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter
Battaglia. Learning to simulate complex physics with graph networks. In International Conference
on Machine Learning, pp. 8459–8468. PMLR, 2020. 1, 7

Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E(n) equivariant graph neural networks.
arXiv preprint arXiv:2102.09844, 2021a. 7

Vıctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E (n) equivariant graph neural networks.
In International conference on machine learning, pp. 9323–9332. PMLR, 2021b. 21

Mathias Schreiner, Ole Winther, and Simon Olsson. Implicit transfer operator learning: Multiple
time-resolution surrogates for molecular dynamics. arXiv preprint arXiv:2305.18046, 2023. 7

Sean Seyler and Oliver Beckstein. Molecular dynamics trajectory for benchmark-
ing mdanalysis. URL: https://figshare. com/articles/Molecular dynamics trajec-
tory for benchmarking MDAnalysis/5108170, doi, 10:m9, 2017. 7, 21

Chence Shi, Shitong Luo, Minkai Xu, and Jian Tang. Learning gradient fields for molecular
conformation generation. arXiv preprint arXiv:2105.03902, 2021. 21

Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick Riley.
Tensor field networks: Rotation-and translation-equivariant neural networks for 3d point clouds.
arXiv preprint arXiv:1802.08219, 2018. 4, 7

Karn Tiwari, Niladri Dutta, NM Krishnan, et al. Latent mamba operator for partial differential
equations. arXiv preprint arXiv:2505.19105, 2025. 2, 5, 16, 23

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M
Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. arXiv preprint
arXiv:2111.14522, 2021. 2

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017. 22

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In Proceedings of the International Conference on Learning
Representations (ICLR), 2018. 2

Chloe Wang, Oleksii Tsepa, Jun Ma, and Bo Wang. Graph-mamba: Towards long-range graph
sequence modeling with selective state spaces. arXiv preprint arXiv:2402.00789, 2024. 2, 3

Yuanqing Wang and John Chodera. Spatial attention kinetic networks with e(n)-equivariance.
In The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=3DIpIf3wQMC. 4

Robert L Williams, Douglas A Lawrence, et al. Linear state-space control systems. John Wiley &
Sons, 2007. 16, 17

Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, and Jian Tang. Geodiff: A geometric
diffusion model for molecular conformation generation. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=PzcvxEMzvQC. 21

Minkai Xu, Jiaqi Han, Aaron Lou, Jean Kossaifi, Arvind Ramanathan, Kamyar Azizzadenesheli,
Jure Leskovec, Stefano Ermon, and Anima Anandkumar. Equivariant graph neural operator for
modeling 3d dynamics. arXiv preprint arXiv:2401.11037, 2024. 1, 2, 5, 7, 8, 22, 23

Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, and Xinggang Wang. Vision
mamba: Efficient visual representation learning with bidirectional state space model. arXiv preprint
arXiv:2401.09417, 2024. 3

13

https://openreview.net/forum?id=3DIpIf3wQMC
https://openreview.net/forum?id=3DIpIf3wQMC
https://openreview.net/forum?id=PzcvxEMzvQC

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

APPENDIX TABLE OF CONTENTS

CONTENTS

A Notation and Conventions 15

B Theory and Formal Proofs 16

B.1 Theoretical Insights . 16

B.2 Mathematical Proofs . 16

C Benchmark Details 21

C.1 N-body Simulation . 21

C.2 MD17 . 21

C.3 CMU Motion Capture . 21

C.4 Protein . 21

D Implementation Details 22

D.1 Training Details . 22

D.2 Hyperparameter Details . 22

D.3 Baselines Details . 23

D.4 Algorithm . 23

E Additional Results 24

E.1 Temporal Loss Analysis . 24

E.2 Extrapolation Analysis . 24

E.3 Scalability and Data Efficiency Analysis . 25

E.4 Physics-based Metrics Analysis . 26

E.5 Radial Distribution Function Analysis . 27

F Qualitative Visualizations 27

G Impact Statement 27

H Use of Large Language Models (LLMs) 28

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A NOTATION AND CONVENTIONS

Table 6 summarizes the mathematical notations used throughout the paper for clarity.

Table 6: Summary of Notations. This table compiles the notations used throughout the paper,
grouped into general setup, state-space models, and model-specific parameters.

NOTATION DESCRIPTION

GENERAL SETUP AND OBJECTIVES

G A GRAPH

{Gt}Tt=1 SEQUENCE OF GRAPHS FROM t = 1 TO T

Gt = (V, E ,Ht,Zt) NODE SET V , EDGE SET E , NODE FEATURES Ht , AND GEOMETRY Zt

|V| = N NUMBER OF NODES

Zt = [xt,vt] NODE POSITIONS xt ∈ RN×3 AND VELOCITIES vt ∈ RN×3

A ∈ RN×N ADJACENCY MATRIX OF THE GRAPH

Â = D− 1
2 (A+ I)D− 1

2 NORMALIZED ADJACENCY MATRIX, D IS THE DEGREE MATRIX

F† GROUND-TRUTH SOLUTION OPERATOR

Fθ NEURAL OPERATOR WITH PARAMETERS θ

pDATA EMPIRICAL DATA DISTRIBUTION

∥ · ∥ EUCLIDEAN L2 NORM

P UNIFORMLY SAMPLED TIMESTEPS

∆T TIME INTERVAL

STATE-SPACE MODELS (SSMS)
x(t) ∈ RH CONTINUOUS-TIME INPUT SEQUENCE

h(t) ∈ RN CONTINUOUS-TIME HIDDEN STATE

y(t) ∈ RM CONTINUOUS-TIME OUTPUT SEQUENCE

x[k] ∈ RH DISCRETE-TIME INPUT SEQUENCE

h[k] ∈ RN DISCRETE-TIME HIDDEN STATE

y[k] ∈ RM DISCRETE-TIME OUTPUT SEQUENCE

A ∈ RN×N STATE MATRIX (CONTINUOUS SSM)
B ∈ RN×H INPUT MATRIX (CONTINUOUS SSM)
C ∈ RM×N OUTPUT MATRIX (CONTINUOUS SSM)
D ∈ RM×H FEEDTHROUGH MATRIX (CONTINUOUS SSM)
Ā ∈ RN×N STATE MATRIX (DISCRETE SSM)
B̄ ∈ RN×H INPUT MATRIX (DISCRETE SSM)
C̄ ∈ RM×N OUTPUT MATRIX (DISCRETE SSM)
D̄ ∈ RM×H FEEDTHROUGH MATRIX (DISCRETE SSM)
∆ ∈ R+ DISCRETIZATION STEP SIZE

K STATE KERNEL (CONVOLUTIONAL SSM)
K KERNEL INTEGRAL OPERATOR

MODEL COMPONENTS

S, T , E SPATIAL AND TEMPORAL CONVOLUTION MODULES, ENCODER

σ NON-LINEAR ACTIVATION FUNCTION

fB , fC , f∆t INPUT-DEPENDENT, LEARNABLE SSM PARAMETERS

W GENERIC LEARNABLE WEIGHT MATRIX

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B THEORY AND FORMAL PROOFS

B.1 THEORETICAL INSIGHTS

Newtonian Dynamics: Further dynamics introduced problem statement are governed by Newtonian
motion, for which the incremental form reads as follows:

dZ =

[
dx

dv

]
=

[
v dt

−r dt− γ v dt

]
, (18)

where r encodes inter-particle forces and γ scales a friction term. Consequently, an exact trajectory
Z(t+∆t) exists via the solver F†, i.e., a mapping that takes G(t) to the function fG(∆t) describing
future states for ∆t ∈ [0,∆T].

Equivalence to an SSMs: Defining the first-order state h = [x;v], the Newtonian second-order
dynamics can be written as follows:

ḣ =

[
ẋ

v̇

]
=

[
v

−r(x,v)− γv

]
(19)

This has the generic state-space structure ḣ = Ah + Bu(h), e.g. with A =

[
0 I

0 −γI

]
and

B =

[
0

−I

]
; if r is linear in h, the system reduces to an LTI model, otherwise it is a nonlinear SSM.

Hence, the Newtonian evolution admits a (possibly nonlinear) state-space representation, and the
exact solver F† corresponds to the solution operator of this SSM mapping G(t) to future trajectories.

B.2 MATHEMATICAL PROOFS

In this section, we summarize several standard results on state-space models (SSMs) in an informal
manner from the existing literature. Complete proofs can be found in the Williams et al. (2007);
Tiwari et al. (2025); here, we provide a concise overview. We begin with the closed-form solution of
linear continuous-time SSMs, followed by their discretization via the Zero-Order Hold (ZOH) method
and its connection to the forward Euler scheme. Finally, we discuss the approximation capability of
linear SSMs in capturing nonlinear dynamical systems.

We begin by analyzing the closed-form solution of the state-space model in Lemma B.1, which shows
that the solution consists of the contribution from the initial condition together with a convolution
against an exponential kernel.

Lemma B.1 (Continuous SSM Solution Williams et al. (2007)). Consider a linear time-invariant
system of the form

d

dt
h(t) = Ah(t) +Bx(t). (20)

Then the state h(t) admits the closed-form representation

h(t) = eA(t−t0)h(t0) +

∫ t

t0

eA(t−s)B x(s) ds, (21)

where h(t0) is the initial condition at time t0.

Next, we present the discretization of the SSM parameters in Proposition B.2, and establish its
equivalence to the Euler method. A complete proof is provided in Tiwari et al. (2025).

Proposition B.2 (Discretization of SSM). Using a Zero-Order Hold (ZOH) with sampling interval
∆, the discrete-time system matrices corresponding to the continuous-time model are given by

A = exp
(
∆A

)
,

B = A−1
(
exp
(
∆A

)
− I
)
B,

(22)

where I is the identity matrix, and A,B denote the continuous-time system parameters.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Corollary B.3 (Euler Equivalence of SSM). The discretization rule introduced above reduces to the
forward Euler scheme when the matrix exponential is approximated by retaining only the first-order
term of its Taylor expansion.

Next, we establish an important result in Lemma B.4, which states that any nonlinear continuous
dynamics can be locally approximated by a linear SSM.

Lemma B.4 (Linear Approximation of Non Linear Dynamics Williams et al. (2007)). Let a
continuous, nonlinear, and differentiable dynamical system be described by

ḣ(t) = f(h(t), x(t), t). (23)

Then, its dynamics can be locally approximated by a linear state-space model (SSM) of the form

ḣ(t) ≈ Ah(t) +Bx(t) +O(h, x), (24)

where the system matrices A and B are obtained from the Jacobians

A =
∂f

∂h

(
h̃(t), x̃(t), t

)
, B =

∂f

∂x

(
h̃(t), x̃(t), t

)
, (25)

and O(h, x) denotes higher-order infinitesimal terms.

Next, we show in the following lemma that the normalized adjacency Â always has spectral radius 1,
which prevents the plain Neumann series from converging. Introducing a damping factor α ∈ (0, 1)
ensures convergence and yields the standard resolvent form.

Lemma B.5 (Spectrum and Neumann series). Let G be an undirected graph and

Â = D−1/2(A+ I)D−1/2, D = Diag(A1+ 1). (26)

Then σ(Â) ⊆ [−1, 1] and ∥Â∥2 = ρ(Â) = 1, with eigenvalue 1 having eigenvector D1/21. Hence∑∞
t=0 Â

t diverges, while for any α ∈ (0, 1),

∞∑
t=0

(αÂ)t = (I− αÂ)−1 (converges in operator norm).

Proof. Â is symmetric, so its spectrum is real and ∥Â∥2 = ρ(Â).

Define the normalized Laplacian as

L := I− Â = D−1/2
(
D− (A+ I)

)
D−1/2, (27)

which is symmetric positive semi-definite. The quadratic form identity gives

z⊤Lz = 1
2

∑
i,j

(A+ I)ij
(
yi − yj

)2
, y = D−1/2z, (28)

hence 0 ≤ µ ≤ 2 for every eigenvalue µ of L (using (a− b)2 ≤ 2(a2 + b2)). Thus every eigenvalue
λ of Â = I− L satisfies λ ∈ [−1, 1]. Moreover,

ÂD1/21 = D−1/2(A+ I)1 = D−1/2D1 = D1/21, (29)

so 1 ∈ σ(Â) with eigenvector D1/21. This implies ρ(Â) = 1 and ∥Â∥2 = 1. Hence Ât(D1/21) =

D1/21 for all t, so
∑T

t=0 Â
t diverges (unbounded on that vector).

For α ∈ (0, 1), ∥αÂ∥2 = α < 1, so the Neumann series converges and sums to

∞∑
t=0

(αÂ)t = (I− αÂ)−1.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Then we show the following proposition, which establishes that the proposed state-space update rule
is permutation equivariant, meaning that relabeling the nodes of the input graph with any permutation
matrix Π leads to correspondingly permuted outputs. The proof relies on the fact that the graph
operator Â conjugates naturally under permutations, while the learnable parameters W,B,C act
only on feature dimensions and thus commute with node permutations. This ensures that the model’s
predictions are independent of node ordering, a fundamental property for GNNs.

Proposition B.6 (Permutation Equivariance). Let G = (V, E) be a graph with |V| = N . Consider
the update

S(t+1) = Â S(t)W + X(t) B, (30)

Y(t+1) = S(t+1) C, (31)

where S(t) ∈ RN×n, X(t) ∈ RN×dx , Y(t) ∈ RN×dy , Â ∈ RN×N , and W ∈ Rn×n, B ∈ Rdx×n,
C ∈ Rn×dy . Let Π ∈ RN×N be any permutation matrix (node relabeling), and define

ÂΠ := ΠÂΠ⊤, S
(t)
Π := ΠS(t), X

(t)
Π := ΠX(t).

Run equation 13 on the permuted triplet (ÂΠ,S
(t)
Π ,X

(t)
Π) to obtain (S

(t+1)
Π ,Y

(t+1)
Π). If the initializa-

tion satisfies S(0)
Π = ΠS(0), then for all t ≥ 0,

S
(t)
Π = ΠS(t) and Y

(t)
Π = ΠY(t).

Hence, the layer equation 13 is permutation equivariant.

Proof. We proceed by induction on t.

Base case. By assumption, S(0)
Π = ΠS(0).

Induction step. Assume S
(t)
Π = ΠS(t). Then using equation 13 and the definitions above,

S
(t+1)
Π = ÂΠS

(t)
Π W + X

(t)
Π B (32)

= (ΠÂΠ⊤)(ΠS(t))W + (ΠX(t))B (33)

= Π
(
ÂS(t)W +X(t)B

)
= ΠS(t+1). (34)

The third equality uses Π⊤Π = IN and the fact that right-multiplications by W,B commute with
left-multiplication by Π on the node dimension.

For the outputs,

Y
(t+1)
Π = S

(t+1)
Π C = (ΠS(t+1))C = Π(S(t+1)C) = ΠY(t+1). (35)

Thus, the claim holds for t+ 1, completing the induction.

Proposition B.7 (Information Flow in Graph Mamba). Let G = (V, E) be a graph with |V| = N

and normalized adjacency Â ∈ RN×N . Consider the Graph Mamba recurrence

S(t+1) = Â S(t)W + X(t)B. (36)

Ignoring input injection for clarity, unrolling for k steps gives

S(t+k) = Âk S(t) Wk. (37)

For any nodes i, j ∈ V , the (i, j)-entry of Âk equals(
Âk
)
ij

=
∑

(p1,...,pk−1)∈V k−1

Âip1
Âp1p2

· · · Âpk−1j , (38)

i.e., the total weight of all walks of length k from i to j, where each walk’s weight is the product of
normalized edge weights.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Proof. By definition of matrix multiplication, (Âk+1)ij =
∑

r∈V (Â
k)irÂrj . Expanding recursively

expresses (Âk)ij as a sum over all ordered k-step walks from i to j, with weights given by products
of edge entries. Substituting into the recurrence yields S(t+k) = ÂkS(t)Wk, proves the claim.

Proposition B.7 shows that repeated applications of the Graph Mamba update propagate information
along walks of increasing length. Thus, each node’s hidden state at time t+ k aggregates influences
from nodes up to k hops away, enabling effective modeling of long-range dependencies.

Next Proposition B.8 characterizes how input perturbations propagate through space and time. The
Jacobian decomposes into a scalar walk term (Â t−s−1)ij capturing node-to-node influence via
all walks, and a channel term (BW t−s−1C) capturing feature transformations. This separation
highlights how structural diffusion and feature dynamics jointly govern spatiotemporal sensitivity.

Proposition B.8 (Spatiotemporal Jacobian). Consider the update

S(t+1) = Â S(t)W + X(t)B, (39)

Y(t+1) = S(t+1)C. (40)

with time–invariant parameters Â,W,B,C. Fix nodes i, j and times t > s. Then the Jacobians
w.r.t. the input at time s factor into a scalar walk term over nodes and a matrix channel term:

∂ S(t)(i, :)

∂X(s)(j, :)
=
(
Â t−s−1

)
ij
BW t−s−1, (41)

∂Y(t)(i, :)

∂X(s)(j, :)
=
(
Â t−s−1

)
ij
BW t−s−1C. (42)

Here (Âm)ij is the total weight of all length-m walks from j to i and acts as a scalar gain on the
node axis, while BWm (or BWmC) acts on the feature axis.

Proof. Unrolling the recurrence for m = t− s gives

S(t) = Âm S(s) Wm +

m−1∑
k=0

Â k X(t−1−k) BW k. (43)

Among the terms in the sum, only the one with t− 1− k = s (i.e., k = m− 1) depends on X(s),
yielding

∂ S(t)

∂X(s)
= Âm−1 (·)BWm−1. (44)

Extracting the (i, j) block selects the scalar factor (Âm−1)ij on the left, while the right-hand factor
is the feature map BWm−1. Finally, post-multiplication by C gives the above Equation.

Proposition B.9 (One–step Jacobian of the state update). Let the spatial SSM update be

S(t) = Â S(t−1)W + X(t−1)B, (45)

with S(t)∈RN×n, Â∈RN×N , and W∈Rn×n. Then the Jacobian of S(t) w.r.t. S(t−1) is the block
matrix

∂ S(t)

∂ S(t−1)
=
[
Jij
]N
i,j=1

, Jij = Âij W ∈ Rn×n. (46)

Equivalently, in vectorized form

∂ vec
(
S(t)

)
∂ vec

(
S(t−1)

) = W⊤⊗ Â. (47)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Proof. For each node pair (i, j), we know,

S(t)(i, :) =

N∑
j=1

Âij S
(t−1)(j, :)W +X(t−1)(i, :)B. (48)

The term involving X(t−1) does not depend on S(t−1). Differentiating the first term gives
∂S(t)(i, :)/∂S(t−1)(j, :) = Âij W, yielding the stated block structure. Vectorization uses the
identity vec(ASW) = (W⊤⊗A) vec(S).

Corollary B.10 (Operator norm/spectral bound). For any sub-multiplicative matrix norm ∥ · ∥,∥∥∥∥∥ ∂ vec
(
S(t)

)
∂ vec

(
S(t−1)

)∥∥∥∥∥ ≤ ∥Â∥ ∥W∥, and ρ

(
∂ vec

(
S(t)

)
∂ vec

(
S(t−1)

)) = ρ(Â) ρ(W), (49)

where ρ(·) denotes spectral radius. Hence, a sufficient condition for one–step contractivity is
∥Â∥ ∥W∥ < 1 (or ρ(Â)ρ(W) < 1 for spectral criteria).

The above corollary provides a spectral bound on the Jacobian, showing that the growth of pertur-
bations across a single update is controlled by the product of the operator norms (or spectral radii)
of Â and W. This result establishes a simple contractivity condition: if ∥Â∥∥W∥ < 1, then the
update is stable in operator norm. Building on this, Proposition B.11 extends the analysis to multiple
steps, where the Jacobian naturally factorizes into powers of Â and W, both in block form and in the
compact vectorized form (W⊤ ⊗ Â)t−s. This highlights how repeated updates amplify or dampen
signals depending on the spectral properties of Â and W and remains stable if bounded.
Proposition B.11 (Multi–step Jacobian of the state update). Let the spatial SSM update be

S(t) = Â S(t−1)W + X(t−1)B, (50)

with S(u)∈RN×n, Â∈RN×N , and W∈Rn×n. For any t > s, the Jacobian of S(t) w.r.t. S(s) is

∂ S(t)

∂ S(s)
=
[
J
(t−s)
ij

]N
i,j=1

, J
(t−s)
ij =

(
Â t−s

)
ij
W t−s ∈ Rn×n. (51)

Equivalently, in vectorized form

∂ vec
(
S(t)

)
∂ vec

(
S(s)

) =
(
W⊤ ⊗ Â

)t−s
. (52)

Proof. From the previous Proposition B.9 we know

S(u)(i, :) =

N∑
j=1

Âij S
(u−1)(j, :)W +X(u−1)(i, :)B. (53)

where u denotes the timestep, and by applying the previous result we obtain:

∂ vec(S(u))

∂ vec(S(u−1))
= W⊤ ⊗ Â. (54)

Next, for t > s using chain rule,

∂ vec(S(t))

∂ vec(S(s))
=

t∏
u=s+1

∂ vec(S(u))

∂ vec(S(u−1))
=

t∏
u=s+1

(
W⊤ ⊗ Â

)
=
(
W⊤ ⊗ Â

)t−s
, (55)

since the factor is the same at each step. It proves the vectorized formula.

To get matrix block diagonal form, unrolling the state (ignoring inputs, which do not affect the
Jacobian w.r.t. S(s)), S(t) = Â t−s S(s) W t−s. Differentiating entrywise gives, for each node
pair (i, j), ∂ S(t)(i,:)

∂ S(s)(j,:)
=
(
Â t−s

)
ij
W t−s, which yields the stated block matrix

[
J
(t−s)
ij

]N
i,j=1

with

J
(t−s)
ij =

(
Â t−s

)
ij
W t−s.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 7: Summary statistics for molecular structures in the MD17 dataset. Shown are the number
of atoms, the number of modes used to obtain optimal results, position extrema (Xmin, Xmax) and
mean (Xmean) in Å, and velocity extrema (Vmin, Vmax) and mean (Vmean) in Åps−1.

Molecule Atoms Xmin Xmax Xmean Vmin Vmax Vmean

Benzene 6 -178.112 197.981 −27.737 −0.004 0.003 0.000

Aspirin 13 -3.720 3.105 0.026 −0.011 0.012 0.000

Ethanol 3 -1.398 1.417 −0.004 −0.011 0.010 0.000

Malonaldehyde 5 -2.397 2.370 0.000 −0.010 0.009 0.000

Naphthalene 10 -2.597 2.593 0.000 −0.012 0.011 0.000

Salicylic 10 -2.734 2.581 −0.051 −0.013 0.012 0.000

Toluene 7 -1.990 2.630 −0.015 −0.010 0.012 0.000

Uracil 8 -2.338 2.558 0.012 −0.012 0.011 0.000

C BENCHMARK DETAILS

This section provides comprehensive details for the benchmarks used in our evaluation, including
dataset characteristics, training, validation, and test splits, and the graph construction process.

C.1 N-BODY SIMULATION

The N-body dataset, first introduced by Kipf et al. (2018) and subsequently adapted to 3D in Satorras
et al. (2021b), contains trajectories of N charged particles evolving under pairwise Coulomb forces.
Each example supplies particle charges together with initial positions and velocities; the task is to
forecast future states of the system (for instance, positions at a target time). We adopt the experimental
setup of Satorras et al. (2021b): N = 5, time horizon ∆T = 10, and splits of 3000 / 2000 / 2000
trajectories for training/validation/test. Unless noted otherwise, we set P = 5. Node features use the
speed ∥v∥2, edge features are given by cicj for charges ci, cj , and the interaction graph is complete.

C.2 MD17

The MD17 dataset (Chmiela et al., 2017) contains molecular-dynamics trajectories for eight small
molecules. For each molecule, we partition the data at random into train/val/test sets of 500/2000/2000
state–trajectory pairs. We set the prediction horizon to ∆T , which is chosen to be 3000, we use
P = 8 and uniform discretization by default. and obtain the input velocity by finite differencing
the states across this interval. Node features comprise the atom type concatenated with the speed
∥v∥2. Following common practice, hydrogen atoms are removed, and only heavy-atom dynamics are
modeled. For the graph topology, we augment the native molecular graph by adding 2-hop edges
as in prior work (Shi et al., 2021; Xu et al., 2022); edge attributes are formed by concatenating the
hop type, the atomic types of the two endpoints, and the chemical bond type. Furthermore, Table 7
provides the complete summary statistics for each molecular structure.

C.3 CMU MOTION CAPTURE

The CMU Motion Capture dataset (CMU, 2003) provides 3D trajectories of human actions. We
evaluate on two subsets—Subject #35 (Walk) and Subject #9 (Run)—adopting the data splits and
preprocessing of Huang et al. (2022); Han et al. (2022). Subject #35 uses 200 / 600 / 600 trajectories
for train / val / test, and Subject #9 uses 200 / 240 / 240. Each sample is represented as a skeletal
graph with 31 nodes (joint locations) and edges encoding the connecting bones. As with the N-body
experiments, inputs comprise the nodes’ initial positions and velocities; we set the prediction horizon
∆T = 30, use P = 5 unless stated otherwise, and employ uniform temporal discretization by default.

C.4 PROTEIN

We utilize the preprocessed AdK equilibrium trajectories provided by Han et al. (2022), which
originate from the AdK dataset of Seyler & Beckstein (2017) and are made available via the MD-

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Analysis toolkit (Richard J. Gowers et al., 2016). The simulations employ the CHARMM27 force
field (MacKerell Jr et al., 2000) with explicit solvent and ions under NPT conditions at 300 K and
1 bar. Trajectory frames were recorded every 240 ps, yielding a total simulated time of 1.004µs.
Following Han et al. (2022), we adopt their partitioning into 2481 training, 827 validation, and 878
test sub-trajectories. and use P = 4. For model construction, we retain the protein backbone and
form graphs by connecting atoms within a 10 Å cutoff.

D IMPLEMENTATION DETAILS

This section outlines implementation details of the proposed method to ensure clarity.

D.1 TRAINING DETAILS

Encoder. From a theoretical standpoint, GRAMO directly addresses the state-to-trajectory task,
whereas our formulation employs neural operators to learn mappings between function spaces.
This requires defining an input function f(t) (i.e., a trajectory) that evolves over time; a simple
implementation is to repeat G(t), yielding a constant trajectory similar to Xu et al. (2024). From a
practical standpoint, GRAMO layers are equipped with residual connections, which demand input
and output tensors of identical shape. Consequently, G(t) is repeated to match the length of the
predicted trajectory.

Time Embedding. To incorporate temporal information, GRAMO augments the input features with
explicit encoding of the time index for each structure in the trajectory. Specifically, we construct a set
of sinusoidal functions at varying frequencies to generate fixed-time embeddings. For a timestep ∆ti,
the embedding is given as follows:

emb2j = sin

(
i

100002j/demb

)
,

emb2j+1 = cos

(
i

100002j/demb

)
,

(56)

where demb is the dimensionality of the time embedding space.

To ensure the model is aware of the timestep information required for future trajectory prediction, we
incorporate temporal embeddings. This practice is widely adopted across domains—for example,
positional encodings in large language models (Vaswani et al., 2017) and timestep embeddings in
diffusion models (Ho et al., 2020).

D.2 HYPERPARAMETER DETAILS

We provide detailed hyperparameter settings for all datasets in Table D.2. Here, batch denotes
batch size, lr is the learning rate, wd is the weight decay, layer is the number of network layers,
hidden is the hidden dimension, timestep is the number of time steps, and time emb is the
dimension of the time embedding. All models are trained using the Adam optimizer (Kingma & Ba,
2014) with a StepLR scheduler. Models are trained until convergence, with early stopping triggered
by validation loss with patience of 50 epochs, and a maximum of 2000 training epochs. For fair
comparison with baselines, we use the same number of layers as EGNO.

Table 8: Summary of hyperparameter for GRAMO on all datasets.
Batch LR Weight Decay Layer Embedding Dim Timestep Time emb

N-body 100 1e-4 1e-8 4 64 5 32
Walk/Run 12 5e-4 1e-10 6 128 5 32
MD17 100 1e-4 1e-15 6 64 8 32
Protein 4 5e-5 1e-4 4 128 4 32

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

D.3 BASELINES DETAILS

The baseline results reported in the main table are taken from the EGNO paper (Xu et al., 2024).
Since EGNO represents the strongest existing operator, we further re-ran its official codebase to
ensure fairness and consistency. All results are averaged over three independent runs using the official
implementation to provide reliable and reproducible benchmark comparisons.

D.4 ALGORITHM

In this subsection, we present the complete block-level algorithm for GRAMO. Algorithm 1 describes
the temporal convolution module, which employs bidirectional Mamba (Gu & Dao, 2023; Tiwari
et al., 2025) by discretizing the SSM and applying both forward and backward updates as defined in
Equation 2. This operation is applied across the temporal dimension of nodes, producing updated
node features. Subsequently, Algorithm 2 defines the Graph Mamba update, which processes temporal
graph snapshots using the update rule from Equation 13.

Algorithm 1 GRAMO Temporal Convolution
Require: Input Node Features of Snapshots X ∈ RBN×P×D,
Ensure: Output Node Features Y ∈ RBN×P×D

1: Project input: [z, xBC, dt]← split(input projection(X))
2: Compute A← − exp(Alog)
3: Initialize states if learnable
4: Adjust ∆t: concatenate flipped halves, apply softplus
5: Convolve: xBC ← act(conv1d(xBC))
6: Split: (x,BC)← split(xBC)
7: Duplicate & flip x, split BC into (B,C)
8: Apply chunk scan: y ← mamba chunk scan(x, dt, A,B,C)
9: Rearrange y, roll by 1, reset first timestep

10: Split into forward/backward: y ← yfw + ybw + xog · linear(xog)
11: Apply gated norm: y ← norm(y, z)
12: Output: Y ← output projection(y)

Algorithm 2 GRAMO Spatial Convolution

Require: Input snapshots {Xj}P1 , adjacency Â
Ensure: Updated representations {Xj}

1: Compute residuals X res
j ← ResConni(Xj)

2: Initialize lists dts,B,C ← ∅
3: for each snapshot j do
4: Apply graph convolution [Xj , dt, Bj , Cj]← Convi(Xj , edge index)
5: Append dt,Bj , Cj to dts,B,C
6: end for
7: Perform token mixing X ′

j ← TokenMixeri({Xj})
8: Initialize hidden state S ← 0
9: for each snapshot j do

10: Compute step size ∆t← softplus(dts[j] + δi)
11: Compute input transform BX ← einsum(Bj , X

′
j)

12: Propagate state S ← ÂnormSWi +BX

13: Update representation Xj ← Expandi(σ(einsum(S,Cj)) +X res
j)

14: end for

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

E ADDITIONAL RESULTS

In this section, we present a set of complementary experiments—including temporal error analysis,
scaling studies, data efficiency evaluations, physics-informed losses, and radial distribution function
(RDF) analyses. These results provide a more comprehensive understanding of the proposed method
in comparison with baseline models, highlighting its effectiveness for particle-based simulations.

E.1 TEMPORAL LOSS ANALYSIS

In this experiment, we evaluate the temporal loss across timesteps to assess how prediction errors
accumulate across timesteps. Figure 4 compares our proposed GRAMO with EGNO across the
MD17 dataset. The results show that GRAMO consistently outperforms EGNO for all molecules,
demonstrating better stability over timesteps. In particular, GRAMO achieves significant performance
on Aspirin, Ethanol, Toluene, and Benzene, which span diverse challenges in MD17—from large
multifunctional flexibility (Aspirin), to torsional motions (Ethanol), mixed rigid–flexible structures
(Toluene), and highly symmetric aromatic systems (Benzene). These results highlight the ability of
GRAMO to better capture long-range molecular dynamics interactions.

1 2 3 4 5 6 7 8
3

5

7

9

11

Timestep

M
SE

(×
1
0
−
2
)

Aspirin

1 2 3 4 5 6 7 8
0

15

30

45

60

Timestep

Benzene

1 2 3 4 5 6 7 8
0

1

2

3

4

5

Timestep

Ethanol

1 2 3 4 5 6 7 8
4

6

8

10

12

14

Timestep

Malonaldehyde

1 2 3 4 5 6 7 8
0.2

0.3

0.4

0.5

0.6

Timestep

M
SE

(×
1
0
−
2
)

Naphthalene

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

Timestep

Salicylic

1 2 3 4 5 6 7 8
0

3

6

9

12

Timestep

Toluene

1 2 3 4 5 6 7 8
0.2

0.3

0.4

0.5

0.6

Timestep

Uracil

EGNO GRAMO

Figure 4: Temporal Loss on MD17. Mean squared error (MSE) (×10−2) across timesteps for all MD17
molecules, comparing EGNO and GRAMO.

Further, we evaluate the temporal loss across timesteps on the motion capture datasets. As shown in
Figure 5, our proposed GRAMO demonstrates consistently lower timestep compared to EGNO. This
indicates that GRAMO is able to maintain stable and accurate predictions over horizons, capturing
both the temporal dependencies and articulated joint dynamics more effectively. The improved
performance across timesteps highlights the robustness of GRAMO in modelling long-term human
motion trajectories.

E.2 EXTRAPOLATION ANALYSIS

In this experiment, we evaluate model performance under temporal extrapolation, extending beyond
the training horizon to assess generalization on unseen timesteps. As shown in Figure 6, GRAMO
not only achieves strong accuracy within the training horizon but also maintains stability when
extrapolated to longer rollouts. Furthermore, Table 7 highlights that benzene exhibits substantial drift
during simulation. While EGNO struggles to capture the global dynamics—leading to exploding
temporal losses under extrapolation—GRAMO remains stable and continues to deliver accurate
predictions. These results demonstrate that GRAMO more effectively captures global dynamics and
long-range interactions, yielding superior performance even beyond the training horizon.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

1 2 3 4 5
4

6

8

10

Timestep

M
SE

(×
1
0
−
2
)

Motion Capture Walk

1 2 3 4 5

20

30

40

Timestep

Motion Capture Run

EGNO GRAMO

Figure 5: Temporal Loss on Motion Capture. MSE (×10−2) across timesteps for motion capture tasks,
comparing EGNO and GRAMO. Lower MSE indicates better performance.

1 4 8 12 16
3

6

9

12

15

Timestep

M
SE

(×
1
0
−
2
)

Aspirin

1 4 8 12 16
0

30

60

90

120

Timestep

Benzene

1 4 8 12 16
0

2

4

6

Timestep

Ethanol

1 4 8 12 16
4

7

10

13

16

Timestep

Malonaldehyde

1 4 8 12 16
0.2

0.3

0.4

0.5

0.6

Timestep

M
SE

(×
1
0
−
2
)

Naphthalene

1 4 8 12 16
0

0.5

1

1.5

2

Timestep

Salicylic

1 4 8 12 16
0

10

20

30

Timestep

Toluene

1 4 8 12 16
0.2

0.4

0.6

0.8

Timestep

Uracil

EGNO GRAMO

Figure 6: Temporal Loss on MD17 Extrapolation. MSE (×10−2) across timesteps for the MD17 dataset,
comparing EGNO and GRAMO. Models are trained on 8 timesteps and extrapolated to predict the subsequent 8
timesteps. Lower MSE indicates better performance.

E.3 SCALABILITY AND DATA EFFICIENCY ANALYSIS

In this experiment, we evaluate the performance of EGNO and GRAMO as a function of network
depth. As shown in Figure 7, GRAMO exhibits more favorable scaling with the number of layers,
consistently improving as depth increases. Notably, it achieves performance comparable to or better
than EGNO even with fewer layers, highlighting its superior scalability and efficiency.

Next, we evaluate the data efficiency of our approach on the MD17 dataset. As shown in Table 8,
our method outperforms EGNO even with substantially fewer training samples. This highlights
the robustness of the proposed model in data-scarce regimes, where only limited training data are
available. We further extend the data efficiency analysis to the MoCap dataset, as shown in Figure 9.
Our method achieves consistent and significant improvements over EGNO, demonstrating stronger
temporal modelling capabilities. Notably, even when trained with only 25% of the dataset, the
proposed approach outperforms the baseline, underscoring its effectiveness in low-data regimes.

Finally, we assess the effect of embedding dimension on the motion capture datasets. As shown
in Figure 10, our method significantly outperforms EGNO even at the lowest dimension (16), and
maintains better performance as the embedding dimension increases.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

1 2 3 4 5
7

8

9

10

11

12

Layers

M
SE

(×
1
0
−
2
)

Aspirin

1 2 3 4 5
0

30

60

90

120

Layers

Benzene

1 2 3 4 5
3.5

4

4.5

5

Layers

Ethanol

1 2 3 4 5
12.5

13

13.5

14

14.5

15

Layers

Malonaldehyde

1 2 3 4 5
0.3

0.4

0.5

0.6

Layers

M
SE

(×
1
0
−
2
)

Naphthalene

1 2 3 4 5
0.8
0.9
1

1.1
1.2
1.3
1.4

Layers

Salicylic

1 2 3 4 5
4

6

8

10

12

Layers

Toluene

1 2 3 4 5
0.5

0.6

0.7

0.8

0.9

Layers

Uracil

EGNO GRAMO

Figure 7: Scaling with Layers on MD17. MSE (×10−2) for EGNO and GRAMO across different molecular
systems as a function of the number of layers. Lower MSE indicates better performance.

100 300 500
0

5

10

Samples

M
SE

(×
1
0
−
2
)

Aspirin

100 300 500
0

20

40

60

Samples

Benzene

100 300 500
0

2

4

6

Samples

Ethanol

100 300 500
0

5

10

15

Samples

Malonaldehyde

100 300 500
0

0.2

0.4

0.6

Samples

M
SE

(×
1
0
−
2
)

Naphthalene

100 300 500
0

0.5

1

Samples

Salicylic

100 300 500
0

5

10

Samples

Toluene

100 300 500
0

0.2

0.4

0.6

Samples

Uracil

EGNO GRAMO

Figure 8: Data Efficiency on MD17. Comparison of EGNO and GRAMO across MD17 molecular systems
under varying training sample sizes. Results are reported as MSE (×10−2). Lower MSE indicates better
performance.

E.4 PHYSICS-BASED METRICS ANALYSIS

In this experiment, we evaluate the physics loss of the operator, focusing on momentum and kinetic
energy. Prior work primarily optimized over position only, which led to poor preservation of physical
quantities across molecules for all operators. To address this, we introduce an additional velocity
loss alongside the position loss, ensuring better alignment with desired physical constraints. As
shown in Tables 9–16, GRAMO consistently outperforms EGNO not only in position loss but also in
physics-aware metrics such as momentum and kinetic energy, achieving significantly lower errors.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

50 100 200
0

20

40

Training Samples

M
SE

(×
1
0
−
2
)

Motion Capture Walk

50 100 200
0

50

100

150

200

Training Samples

Motion Capture Run

EGNO GRAMO

Figure 9: Data Efficiency on Motion Capture. Comparison of EGNO and GRAMO under varying training
sample sizes. Results are reported as MSE (×10−2). Lower MSE indicates better performance.

16 32 64
0

10

20

30

Embedding Dimension

M
SE

(×
1
0
−
2
)

Motion Capture Walk

16 32 64
0

50

100

Embedding Dimension

Motion Capture Run

EGNO GRAMO

Figure 10: Embedding Dimension on Motion Capture. Comparison of EGNO and GRAMO under varying
training sample sizes. Results are reported as MSE (×10−2). Lower MSE indicates better performance.

E.5 RADIAL DISTRIBUTION FUNCTION ANALYSIS

The radial distribution function (RDF), g(r), measures the likelihood of finding a particle at distance
r from a reference particle and serves as a key descriptor of molecular structure. It reflects local
ordering, coordination shells, and medium-range correlations. Comparing predicted and ground-truth
RDFs across rollouts thus provides a stringent test of a model’s ability to preserve geometry and
capture physically meaningful interactions. Figures 11–18 show that GRAMO closely matches the
ground-truth distributions, indicating robust structural fidelity.

F QUALITATIVE VISUALIZATIONS

In this section, we present visualizations of the dynamics predicted by GRAMO. Results for particle
simulations, MOCAP-WALK, and MOCAP-RUN are shown in Figures 19–21. As illustrated, GRAMO
not only produces accurate final-state predictions but also effectively captures the underlying dynamics
by explicitly modelling both spatial and temporal correlations. Furthermore, Figure 22 provides a
qualitative visualization of the trajectories predicted by GRAMO. The figure illustrates how the model
accurately reproduces the temporal evolution of the system, closely aligning with the ground-truth
dynamics and capturing both local and global structural changes over time.

G IMPACT STATEMENT

This work presents a new graph neural framework for particle-based simulations, leveraging state-
space model (SSM) inspired message passing to capture long-range interactions. Our primary aim is
to advance machine learning methods for scientific simulation by addressing fundamental modelling
challenges in particle dynamics. The contributions are technical and scientific in nature, and we do
not foresee any direct ethical or societal risks arising from this work.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 9: Physics Loss for Aspirin. Lower value shows better metrics.

Position (×10−2) Velocity (×10−5) Momentum (×10−2) Kinetic (×10−6)

P EGNO GRAMO EGNO GRAMO EGNO GRAMO EGNO GRAMO

1 4.41 ±0.23 4.43 ±0.23 63.4 ±0.74 1.85 ±0.045 11.6 ±0.13 0.33 ±0.0077 248 ±5.7 0.050 ±0.0036

2 6.18 ±0.46 5.67 ±0.45 54.4 ±0.58 1.84 ±0.028 9.89 ±0.11 0.33 ±0.0050 174 ±4.6 0.051 ±0.0037

3 6.68 ±0.56 6.16 ±0.50 48.7 ±0.45 1.84 ±0.031 8.77 ±0.088 0.33 ±0.0057 134 ±3.9 0.051 ±0.0036

4 7.33 ±0.47 6.64 ±0.44 47.7 ±0.50 1.85 ±0.033 8.46 ±0.10 0.33 ±0.0065 123 ±3.8 0.051 ±0.0038

5 8.16 ±0.68 7.41 ±0.55 48.0 ±0.56 1.84 ±0.043 8.42 ±0.11 0.33 ±0.0077 127 ±4.2 0.051 ±0.0036

6 8.41 ±0.76 7.92 ±0.66 53.5 ±0.58 1.83 ±0.037 9.42 ±0.11 0.33 ±0.0068 161 ±5.2 0.051 ±0.0041

7 8.77 ±0.80 8.33 ±0.73 63.7 ±0.73 1.83 ±0.046 11.4 ±0.13 0.33 ±0.0089 235 ±6.4 0.051 ±0.0034

8 9.51 ±0.82 8.65 ±0.66 69.0 ±0.62 1.84 ±0.041 12.5 ±0.11 0.33 ±0.0070 287 ±6.6 0.052 ±0.0044

Table 10: Physics Loss for Benzene. Lower value shows better metrics.

Position (×10−2) Velocity (×10−4) Momentum (×10−2) Kinetic (×10−6)

P EGNO GRAMO EGNO GRAMO EGNO GRAMO EGNO GRAMO

1 2.21 ±0.050 0.35 ±0.022 20.0 ±0.54 0.54 ±0.017 28.9 ±0.78 0.78 ±0.024 1710 ±97 1.61 ±0.20

2 6.06 ±0.17 0.43 ±0.033 20.2 ±0.55 0.56 ±0.030 29.2 ±0.80 0.81 ±0.043 1730 ±97 1.79 ±0.24

3 11.5 ±0.36 0.55 ±0.051 14.9 ±0.46 0.42 ±0.019 21.5 ±0.67 0.60 ±0.027 989 ±62 0.96 ±0.11

4 19.0 ±0.52 0.72 ±0.061 9.12 ±0.32 0.62 ±0.021 13.2 ±0.47 0.89 ±0.031 409 ±30 2.60 ±0.20

5 28.4 ±0.80 0.86 ±0.080 6.41 ±0.26 0.71 ±0.048 9.25 ±0.37 1.03 ±0.069 216 ±17 3.66 ±0.48

6 39.4 ±1.1 1.06 ±0.10 6.38 ±0.25 0.91 ±0.044 9.21 ±0.37 1.31 ±0.064 213 ±17 5.93 ±0.77

7 51.6 ±1.5 1.31 ±0.12 9.03 ±0.33 1.12 ±0.051 13.0 ±0.47 1.62 ±0.074 395 ±29 8.11 ±0.92

8 64.0 ±1.9 1.69 ±0.15 14.7 ±0.45 1.37 ±0.071 21.2 ±0.65 1.97 ±0.10 956 ±61 12.4 ±1.8

H USE OF LARGE LANGUAGE MODELS (LLMS)

We employed a Large Language Model (LLM) as a supporting tool to refine the manuscript text and
to automatically generate LATEX code for figures and plots. This integration streamlined the creation
of consistent, high-quality visualizations and improved the overall readability of the presentation.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table 11: Physics Loss for Ethanol. Lower value shows better metrics.

Position (×10−2) Velocity (×10−5) Momentum (×10−3) Kinetic (×10−8)

P EGNO GRAMO EGNO GRAMO EGNO GRAMO EGNO GRAMO

1 0.88 ±0.13 1.29 ±0.15 1.17 ±0.069 1.14 ±0.065 1.92 ±0.12 1.88 ±0.095 2.19 ±0.28 2.09 ±0.34

2 2.05 ±0.35 2.25 ±0.33 1.28 ±0.072 1.12 ±0.055 2.13 ±0.12 1.85 ±0.086 2.25 ±0.26 2.00 ±0.36

3 3.00 ±0.46 2.90 ±0.49 1.23 ±0.066 1.16 ±0.060 2.05 ±0.11 1.92 ±0.096 2.22 ±0.32 2.01 ±0.36

4 3.54 ±0.48 3.26 ±0.50 1.19 ±0.073 1.15 ±0.039 1.98 ±0.11 1.90 ±0.055 2.07 ±0.33 2.00 ±0.34

5 3.91 ±0.51 3.54 ±0.49 1.18 ±0.052 1.16 ±0.043 1.97 ±0.083 1.91 ±0.068 2.04 ±0.22 2.00 ±0.30

6 4.12 ±0.49 3.77 ±0.52 1.18 ±0.057 1.15 ±0.058 1.96 ±0.099 1.90 ±0.090 1.96 ±0.29 2.12 ±0.37

7 4.34 ±0.50 3.92 ±0.57 1.18 ±0.072 1.15 ±0.072 1.96 ±0.12 1.91 ±0.11 1.99 ±0.28 2.15 ±0.40

8 4.66 ±0.54 4.18 ±0.63 1.20 ±0.078 1.18 ±0.052 1.99 ±0.12 1.95 ±0.083 2.15 ±0.34 2.25 ±0.49

Table 12: Physics Loss for Malonaldehyde. Lower value shows better metrics.

Position (×10−1) Velocity (×10−5) Momentum (×10−3) Kinetic (×10−8)

P EGNO GRAMO EGNO GRAMO EGNO GRAMO EGNO GRAMO

1 0.52 ±0.032 0.70 ±0.038 9.09 ±0.31 1.78 ±0.067 18.1 ±0.60 3.16 ±0.12 53.3 ±4.7 4.11 ±0.48

2 0.90 ±0.056 1.04 ±0.061 11.4 ±0.29 1.84 ±0.069 24.3 ±0.56 3.29 ±0.12 90.3 ±5.6 4.39 ±0.58

3 1.07 ±0.055 1.15 ±0.061 14.6 ±0.59 1.80 ±0.064 33.0 ±1.4 3.19 ±0.11 226 ±18 3.95 ±0.54

4 1.16 ±0.045 1.22 ±0.056 16.8 ±0.67 1.80 ±0.072 38.4 ±1.7 3.19 ±0.12 346 ±29 4.01 ±0.51

5 1.18 ±0.047 1.22 ±0.066 13.7 ±0.55 1.79 ±0.064 31.2 ±1.3 3.17 ±0.11 226 ±20 3.98 ±0.51

6 1.23 ±0.058 1.27 ±0.060 7.78 ±0.31 1.80 ±0.048 16.9 ±0.70 3.20 ±0.086 59.0 ±6.0 4.01 ±0.51

7 1.25 ±0.043 1.29 ±0.043 5.39 ±0.18 1.80 ±0.061 10.4 ±0.35 3.18 ±0.10 13.9 ±1.5 3.90 ±0.53

8 1.28 ±0.050 1.32 ±0.057 7.18 ±0.25 1.82 ±0.059 13.7 ±0.53 3.21 ±0.11 28.3 ±2.8 4.05 ±0.57

Table 13: Physics Loss for Naphthalene. Lower value shows better metrics.

Position (×10−3) Velocity (×10−5) Momentum (×10−3) Kinetic (×10−7)

P EGNO GRAMO EGNO GRAMO EGNO GRAMO EGNO GRAMO

1 2.91 ±0.11 3.10 ±0.14 7.92 ±0.10 3.26 ±0.076 11.4 ±0.15 4.70 ±0.11 17.0 ±0.45 2.30 ±0.18

2 3.64 ±0.13 4.23 ±0.19 6.96 ±0.13 3.00 ±0.093 10.0 ±0.19 4.33 ±0.13 11.9 ±0.36 2.14 ±0.14

3 3.78 ±0.13 3.81 ±0.11 5.75 ±0.12 2.13 ±0.055 8.29 ±0.17 3.07 ±0.079 7.24 ±0.25 0.75 ±0.056

4 3.04 ±0.082 2.86 ±0.062 5.10 ±0.085 2.55 ±0.077 7.36 ±0.12 3.68 ±0.11 5.13 ±0.18 1.25 ±0.14

5 3.40 ±0.16 3.24 ±0.19 5.09 ±0.074 2.64 ±0.076 7.34 ±0.11 3.80 ±0.11 5.19 ±0.17 1.34 ±0.18

6 4.42 ±0.14 4.29 ±0.18 6.01 ±0.070 2.35 ±0.057 8.67 ±0.10 3.38 ±0.082 7.86 ±0.20 0.74 ±0.036

7 4.65 ±0.17 4.39 ±0.16 7.32 ±0.097 2.34 ±0.068 10.6 ±0.14 3.38 ±0.097 13.5 ±0.35 0.73 ±0.052

8 4.24 ±0.16 4.07 ±0.16 8.15 ±0.12 2.71 ±0.076 11.8 ±0.18 3.91 ±0.11 18.0 ±0.43 1.26 ±0.10

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Table 14: Physics Loss for Salicylic. Lower value shows better metrics.

Position (×10−3) Velocity (×10−5) Momentum (×10−3) Kinetic (×10−6)

P EGNO GRAMO EGNO GRAMO EGNO GRAMO EGNO GRAMO

1 17.7 ±2.0 6.32 ±0.36 9.51 ±0.11 4.68 ±0.26 20.0 ±0.23 8.78 ±0.57 12.2 ±0.13 1.93 ±0.44

2 6.68 ±0.44 4.91 ±0.30 8.74 ±0.11 4.45 ±0.13 18.0 ±0.23 7.89 ±0.28 9.00 ±0.098 1.11 ±0.20

3 16.2 ±1.6 7.24 ±0.47 7.69 ±0.088 3.51 ±0.21 15.3 ±0.18 6.83 ±0.47 5.75 ±0.065 1.20 ±1.6

4 7.53 ±0.85 6.44 ±0.51 7.69 ±0.10 3.58 ±0.16 14.6 ±0.22 6.66 ±0.36 4.27 ±0.053 1.11 ±0.80

5 15.5 ±0.95 7.93 ±0.48 8.16 ±0.088 3.19 ±0.10 15.4 ±0.17 6.11 ±0.24 4.43 ±0.051 0.71 ±0.26

6 10.4 ±1.0 7.77 ±0.46 8.43 ±0.090 3.88 ±0.14 16.3 ±0.18 7.41 ±0.35 6.07 ±0.065 1.35 ±1.1

7 14.2 ±0.79 8.27 ±0.34 8.92 ±0.090 3.28 ±0.10 18.0 ±0.19 6.23 ±0.24 9.28 ±0.11 0.62 ±0.24

8 10.7 ±0.93 8.49 ±0.54 9.62 ±0.091 3.82 ±0.16 20.0 ±0.19 7.04 ±0.40 12.3 ±0.12 1.43 ±1.1

Table 15: Physics Loss for Toluene. Lower value shows better metrics.

Position (×10−2) Velocity (×10−5) Momentum (×10−3) Kinetic (×10−8)

P EGNO GRAMO EGNO GRAMO EGNO GRAMO EGNO GRAMO

1 0.46 ±0.027 0.72 ±0.034 6.97 ±0.20 1.98 ±0.049 10.1 ±0.29 2.86 ±0.071 159 ±7.6 4.62 ±0.35

2 1.15 ±0.094 1.13 ±0.092 7.11 ±0.18 2.01 ±0.045 10.3 ±0.26 2.90 ±0.064 164 ±7.7 4.91 ±0.35

3 2.16 ±0.21 1.78 ±0.17 6.21 ±0.12 1.98 ±0.052 8.96 ±0.18 2.86 ±0.074 110 ±5.4 4.76 ±0.32

4 3.47 ±0.33 2.60 ±0.26 4.85 ±0.10 1.98 ±0.049 7.00 ±0.15 2.85 ±0.071 60.0 ±3.2 4.68 ±0.39

5 5.08 ±0.46 3.61 ±0.36 4.12 ±0.087 1.97 ±0.049 5.95 ±0.13 2.85 ±0.071 40.7 ±2.3 4.67 ±0.35

6 6.84 ±0.55 4.74 ±0.44 4.02 ±0.092 1.98 ±0.046 5.80 ±0.13 2.85 ±0.067 41.7 ±2.7 4.51 ±0.31

7 8.80 ±0.65 6.05 ±0.57 4.62 ±0.10 1.95 ±0.060 6.67 ±0.15 2.81 ±0.086 59.1 ±3.9 4.49 ±0.32

8 10.9 ±0.76 7.51 ±0.73 5.77 ±0.13 1.94 ±0.044 8.33 ±0.18 2.79 ±0.064 103 ±5.5 4.44 ±0.32

Table 16: Physics Loss for Uracil. Lower value shows better metrics.

Position (×10−3) Velocity (×10−5) Momentum (×10−3) Kinetic (×10−7)

P EGNO GRAMO EGNO GRAMO EGNO GRAMO EGNO GRAMO

1 4.41 ±0.32 5.52 ±0.41 8.44 ±0.54 2.95 ±0.13 16.7 ±1.1 5.67 ±0.28 140 ±30 4.50 ±0.93

2 4.28 ±0.41 4.20 ±0.40 7.44 ±0.34 2.50 ±0.10 14.2 ±0.66 4.82 ±0.20 97.1 ±17 2.25 ±0.29

3 5.08 ±0.24 5.47 ±0.26 6.88 ±0.35 2.20 ±0.080 12.6 ±0.64 4.13 ±0.17 55.7 ±7.3 1.69 ±0.40

4 5.25 ±0.56 4.66 ±0.48 7.46 ±0.35 2.48 ±0.070 13.5 ±0.64 4.81 ±0.14 43.1 ±5.7 2.23 ±0.31

5 6.07 ±0.48 5.82 ±0.38 7.81 ±0.28 2.34 ±0.065 14.3 ±0.50 4.47 ±0.14 43.0 ±5.9 1.78 ±0.29

6 5.70 ±0.41 5.28 ±0.33 7.61 ±0.25 2.42 ±0.090 14.3 ±0.53 4.45 ±0.17 55.9 ±14 1.36 ±0.12

7 6.30 ±0.44 6.10 ±0.49 7.26 ±0.48 2.72 ±0.047 14.2 ±1.0 4.79 ±0.098 94.0 ±27 1.70 ±0.18

8 6.18 ±0.61 5.66 ±0.51 7.42 ±0.48 2.23 ±0.057 14.7 ±1.0 4.10 ±0.12 137 ±36 1.08 ±0.13

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

0.0

0.5

1.0

1.5

2.0

g(
r)

P = 1 P = 2 P = 3 P = 4

0 2 4 6
r (Å)

0.0

0.5

1.0

1.5

2.0

g(
r)

P = 5

0 2 4 6
r (Å)

P = 6

0 2 4 6
r (Å)

P = 7

0 2 4 6
r (Å)

P = 8

Ground Truth Prediction

Figure 11: Radial distribution function (RDF) for Aspirin. We compare the ground-truth (solid)
and model-predicted (dashed) RDFs g(r) across P = 1 . . . 8 timesteps.

0.0

0.2

0.4

0.6

0.8

1.0

g(
r)

P = 1 P = 2 P = 3 P = 4

0 1 2 3
r (Å)

0.0

0.2

0.4

0.6

0.8

1.0

g(
r)

P = 5

0 1 2 3
r (Å)

P = 6

0 1 2 3
r (Å)

P = 7

0 1 2 3
r (Å)

P = 8

Ground Truth Prediction

Figure 12: Radial distribution function (RDF) for Benzene. We compare the ground-truth (solid)
and model-predicted (dashed) RDFs g(r) across P = 1 . . . 8 timesteps.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

0.00

0.05

0.10

0.15

g(
r)

P = 1 P = 2 P = 3 P = 4

0 1 2
r (Å)

0.00

0.05

0.10

0.15

g(
r)

P = 5

0 1 2
r (Å)

P = 6

0 1 2
r (Å)

P = 7

0 1 2
r (Å)

P = 8

Ground Truth Prediction

Figure 13: Radial distribution function (RDF) for Ethanol. We compare the ground-truth (solid)
and model-predicted (dashed) RDFs g(r) across P = 1 . . . 8 timesteps.

0.0

0.2

0.4

0.6

0.8

1.0

g(
r)

P = 1 P = 2 P = 3 P = 4

0 1 2 3 4
r (Å)

0.0

0.2

0.4

0.6

0.8

1.0

g(
r)

P = 5

0 1 2 3 4
r (Å)

P = 6

0 1 2 3 4
r (Å)

P = 7

0 1 2 3 4
r (Å)

P = 8

Ground Truth Prediction

Figure 14: Radial distribution function (RDF) for Malonaldehyde. We compare the ground-truth
(solid) and model-predicted (dashed) RDFs g(r) across P = 1 . . . 8 timesteps.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

0.0

0.2

0.4

g(
r)

P = 1 P = 2 P = 3 P = 4

0 2 4
r (Å)

0.0

0.2

0.4

g(
r)

P = 5

0 2 4
r (Å)

P = 6

0 2 4
r (Å)

P = 7

0 2 4
r (Å)

P = 8

Ground Truth Prediction

Figure 15: Radial distribution function (RDF) for Naphthalene. We compare the ground-truth
(solid) and model-predicted (dashed) RDFs g(r) across P = 1 . . . 8 timesteps.

0.0

0.2

0.4

0.6

g(
r)

P = 1 P = 2 P = 3 P = 4

0 2 4
r (Å)

0.0

0.2

0.4

0.6

g(
r)

P = 5

0 2 4
r (Å)

P = 6

0 2 4
r (Å)

P = 7

0 2 4
r (Å)

P = 8

Ground Truth Prediction

Figure 16: Radial distribution function (RDF) for Salicylic. We compare the ground-truth (solid)
and model-predicted (dashed) RDFs g(r) across P = 1 . . . 8 timesteps.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

0.0

0.2

0.4

0.6

g(
r)

P = 1 P = 2 P = 3 P = 4

0 2 4
r (Å)

0.0

0.2

0.4

0.6

g(
r)

P = 5

0 2 4
r (Å)

P = 6

0 2 4
r (Å)

P = 7

0 2 4
r (Å)

P = 8

Ground Truth Prediction

Figure 17: Radial distribution function (RDF) for Toluene. We compare the ground-truth (solid)
and model-predicted (dashed) RDFs g(r) across P = 1 . . . 8 timesteps.

0.0

0.1

0.2

0.3

0.4

g(
r)

P = 1 P = 2 P = 3 P = 4

0 2 4
r (Å)

0.0

0.1

0.2

0.3

0.4

g(
r)

P = 5

0 2 4
r (Å)

P = 6

0 2 4
r (Å)

P = 7

0 2 4
r (Å)

P = 8

Ground Truth Prediction

Figure 18: Radial distribution function (RDF) for Uracil. We compare the ground-truth (solid)
and model-predicted (dashed) RDFs g(r) across P = 1 . . . 8 timesteps.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

X

3 2 1 0 1 2

Y
6

4
2

0
2

4

Z

6

4

2

0

2

X

4 3 2 1 0 1 2

Y
2.0

1.5
1.0

0.5
0.0

0.5
1.0

Z

5
4
3
2
1

0
1

X

3.02.52.01.51.00.50.0 0.5

Y

2.5
2.0

1.5
1.0

0.5
0.0

0.5
1.0

Z

2
1

0
1
2
3

X

5 4 3 2 1 0 1 2

Y
6

4
2

0
2

Z

2
1

0
1
2
3
4

X

2
1

0
1

2

Y
3

2
1

0
1

Z

1
0

1

2

3

4

X

2 1 0 1 2 3

Y0
1

2
3

Z

3

2

1

0

1

0

1

2

3

4

Ti
m

es
te

p

0

1

2

3

4

Ti
m

es
te

p

Figure 19: Visualization of trajectories generated by GraMO with uniform discretization on the
N-Body dataset. Predicted trajectories are shown with timestep progression indicated by a Blue color
gradient, while the ground truth final snapshot is marked in Green.

X

0 25 50 75100125150

Y
14

12
10

8
6

4

Z

0
5
10
15
20
25
30

X

0 25 50 75100125150175

Y
8

6
4

2

Z

0
5
10
15
20
25
30

X

0 25 50 75100125150

Y

18
20

22
24

26
28

30

Z

0
5
10
15
20
25
30

X

0 25 50 75100125150

Y
5.0

2.5
0.0

2.5
5.0

7.5
10.0

Z

0
5
10
15
20
25
30

X

0 25 50 75100125150

Y
32

34
36

38
40

42
44

Z

0
5
10
15
20
25
30

X

0 25 50 75100125150

Y
5.0

2.5
0.0

2.5
5.0

7.5

Z

0
5
10
15
20
25
30

0

1

2

3

4

Ti
m

es
te

p

0

1

2

3

4

Ti
m

es
te

p

Figure 20: Visualization of trajectories generated by GraMO with uniform discretization on Mocap
(Walk) dataset. Predicted trajectories are shown with timestep progression indicated by a Blue color
gradient, while the ground truth final snapshot is marked in Green.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

X

0 25 50 75100125150

Y
4

2
0

2
4

6
8

Z

0
5
10
15
20

25

X

0 25 50 75100125150

Y
5

10
15

20

Z

0
5
10
15
20
25

30

X

0 25 50 75100125150

Y
5

10
15

20

Z

0
5
10
15
20
25

30

X

0 25 50 75100125150

Y
20

15
10

5

Z

5
10
15
20
25

30

X

0 25 50 75100125150

Y
20

15
10

5

Z

0
5
10
15
20
25
30

X

0 25 50 75100125150

Y

12.5
10.0

7.5
5.0

2.5
0.0

2.5
5.0

Z

0
5
10
15
20

25

0

1

2

3

4

Ti
m

es
te

p

0

1

2

3

4

Ti
m

es
te

p

Figure 21: Visualization of trajectories generated by GraMO with uniform discretization on Mocap
(Run) dataset. Predicted trajectories are shown with timestep progression indicated by a Blue color
gradient, while the ground truth final snapshot is marked in Green.

Figure 22: Visualization of trajectories generated by GraMO with uniform discretization on AdK
equilibrium trajectory dataset. Predicted trajectories are shown with timestep progression indicated
by the colorbar shown above, while the ground truth final snapshot is marked in Green.

36

