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Abstract

The behavior of a GP regression depends on the
choice of covariance function. Stationary covari-
ance functions are preferred in machine learning
applications. However, (non-periodic) stationary
covariance functions are always mean reverting
and can therefore exhibit pathological behavior
when applied to data that does not relax to a fixed
global mean value. In this paper we show that it
is possible to use improper GP priors with infinite
variance to define processes that are stationary
but not mean reverting. To this aim, we use of
non-positive kernels that can only be defined in
this limit regime. The resulting posterior distribu-
tions can be computed analytically and it involves
a simple correction of the usual formulas. The
main contribution of the paper is the introduction
of a large family of smooth non-reverting covari-
ance functions that closely resemble the kernels
commonly used in the GP literature (e.g. squared
exponential and Matérn class). By analyzing both
synthetic and real data, we demonstrate that these
non-positive kernels solve some known patholo-
gies of mean reverting GP regression while retain-
ing most of the favorable properties of ordinary
smooth stationary kernels.

1. Introduction

Gaussian processes (GPs) are infinite-dimensional gen-
eralizations of Gaussian distributions that have gained
widespread adoption in machine learning (Williams and
Rasmussen, 2006), spatial statistics (Stein, 1999; Gelfand
and Schliep, 2016) and statistical signal processing (To-
bar et al., 2015; Lazaro-Gredilla et al., 2010; Ambrogioni
and Maris, 2019; 2018; Tobar et al., 2023). In machine
learning, GPs offer a mathematically tractable way to study
neural networks at the limit of infinitely many hidden units
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(Neal and Neal, 1996) and provide robust non-parametric
models for low-dimensional regression and classification
problems (Williams and Rasmussen, 2006). In statistical
signal processing, GPs are used to specify structured prior
distributions on the underlying signals, which can be used
to specify dynamic properties such as temporal smoothness
and oscillatory frequency (Tobar et al., 2015). The proper-
ties of a GP depend on its covariance function, also known
as a kernel. Depending on its covariance function, samples
from a GP can exhibit a wide range of behaviors, such as
polynomial growth, quasi-periodic oscillations, fractality
or smoothness. In machine learning, the most commonly
used covariance functions are stationary and isotropic. As
we shall see in the paper, stationary covariance functions
usually induce mean-reversion, meaning that perturbations
tend to ‘relax’ towards a fixed average value. In this paper,
we show that it is possible to use kernels that are both sta-
tionary and not mean-reverting as long as we use improper
GP priors. Roughly speaking, an improper GP has infinite
variance everywhere and its distribution of values at any
point is given by an (improper) flat distribution. We intro-
duce the use of a large family of non-positive kernels that
do not correspond to proper covariance functions.

2. Preliminaries

The use of improper priors is well-established in Bayesian
statistics and machine learning. Loosely speaking, an im-
proper prior is a non-normalizable density that nevertheless
provides a proper normalizable posterior. Improper priors
are often used as uninformative prior models. For exam-
ple, consider a univariate Gaussian inference with prior
N (x;0,1?) and likelihood A (y; 2, 0%). Given a data-point
1, the resulting posterior distribution over x is

o | = s

In this case, the posterior provides a biased estimator of the
mean since the data y is "shrunk" towards the origin (i.e.
the prior mean). In order to remove the bias, we can take
the limit 2 — oo, which corresponds to an uninformative
improper prior with infinite variance. However, while the
prior does not exist as a proper probability distribution, the
posterior has a well-defined (normalized) limit

Poc(@ | y) = N (239,07) | 2)

o2

— vy, (v? +a—2)—1) (D

v 240



Stationarity Without Mean Reversion in Improper Gaussian Processes

which provides an unbiased estimator of the mean.

2.1. Gaussian process regression

Consider a dataset comprised of N  pairs
{(x1,91)s-- -, (®Tk,Yx),--- (®N,yN)}, where xj is a
D-dimensional vector of predictors and yj is a scalar
dependent variable. In a non-parametric regression problem,
we assume the output variable yj to be sampled from an
underlying unknown function f : R” — R and corrupted
with Gaussian white noise ¢, with variance o2

yr = f(xr) + € - 3)

The resulting non-parametric regression problem can be
solved in closed-form if we assign a GP prior to the func-
tional space:

f(:])) ~GP (m(m)v k(m/a CC//)) ) 4

where the prior process is defined by the mean function
m(x) and by the covariance function k(z’,2"). For the
prior to be well-posed, the covariance function needs to be
positive definite, meaning that all possible M -dimensional
matrices obtained from it by evaluating it on a list of pre-
dictors are symmetric and positive-definite. In fact, if we
restrict our attention on the set of predictors {x1,..., TN},
this functional prior reduces to a conventional multivariate
Gaussian:

f~N(m,K), &)

with fi = f(xx), mr = m(xg) and K, = k(x;, zk).
In the following, we will assume the mean function to be
identically equal to zero. All results can be easily adapted to
the case of a non-zero mean function. Given the dataset and
an arbitrary set of K queries {x7], ...,z }, we can write
down the posterior probability of the values of the function
at the query points:

@y, (@n,yn)} (6)
NN(mpostprost) )

with
Moy = K*(K + %)y (7)

and

Kpost = K — K*(K 4 o*I) ' K*" . ®)

In these expressions, the matrix K7 = k(x},xy) is the
(auto-)covariance matrix for the query set and the matrix
K%, = k(x},xy) is the cross-covariance matrix between
the training set and the query set.

3. Stationarity and mean-reversion

In the following sections we will restrict our attention to
1-dimensional signals and we will denote the dependent

2)

Figure 1. Samples and 95% probability intervals of a) bilateral
Brownian motion starting at —1 and b) superposition of two bi-
lateral Brownian motions starting at —1 and 1 respectively. Note
the ’stationary’ interval with constant variance in between the two
points.

variable as t. We will generalize most of the results to
higher dimensional spaces in Sec. 9.

A covariance function k£ : R x R — R is said to be station-
ary if it solely depends on the difference between the two
input values:

k(t,t') = k(r) ©)

where 7 = ¢ —tand k : R — R. Stationary covariance
functions are extremely common in the machine learning
literature since they do not require ad hoc assumptions re-
garding the location-dependent statistical properties of the
data. A well-known example of a stationary covariance
function is the (misleadingly named) Squared Exponential:

L2

ke (T) = €72 (10)
where [ is a length-scale parameter that regulates how fast
the correlation between two points declines as a function
of their distance. We say that a stationary covariance func-
tion is regular if ]Af(’i') is absolutely integrable, meaning that
I k(7)|dT < oo. If the covariance function is regular,

lim, oo ]AC(T) = 0, since otherwise the integral would not
converge. Stationary covariance functions are fully deter-
mined by their associated spectral density:

~ +m ~
k(w) = / k(r)e ™Tdr (11)
— 00
which is a real-valued function since the kernel is symmet-
ric. The constraint of positive-definiteness implies that the
spectral density is positive-valued.

A covariance function is said to be mean-reverting if, for
any t, the resulting stochastic process respects the following

property
lm E[f(0) | f(t—7)] =E[f®0)],  (12)

T—00

In other words, in a mean-reverting process, the conditional
expectation always converges to the unconditional expec-
tation far away from the conditioning set. From the point
of view of machine learning, this implies that the informa-
tion provided by each data-point is local, since distant data
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points have negligible impact on the posterior distribution
of a query point. While this assumption may seem reason-
able, it does violate a basic principle of prediction: in the
absence of further information, the most likely value of a
variable in the future is its value in the present. For exam-
ple, if our goal is to predict the performance of a student
during college, given the fact that she has very high grades
in primary school, it is safer to assume that the performance
will on average stay high instead of assuming that it will
revert to the population average. The assumption of mean
reversion is also violated by many well-known and high-
performance machine learning techniques. For example, in
k-nearest neighbors regression and classification, the near-
est training point is used to make a non-trivial prediction
regardless of its distance from the query point (Taunk et al.,
2019). Similarly, methods such as binary trees, random
forests and adaptive boosting exhibit a similar non-mean-
reverting behavior (Sutton, 2005; Fawagreh et al., 2014).
Finally, parametric regression models such as linear models,
polynomial regression models and neural networks all tend
to extrapolate their prediction away from the training data
in a non-mean-reverting manner (Maulud and Abdulazeez,
2020). Given this, it is perhaps surprising that almost all
applications of GP regression and classification to machine
learning use mean-reverting covariance functions such as
the Squared Exponential and the Matérn class. As we dis-
cussed above, the most likely reason for this choice is that
stationary covariance functions tend to be less arbitrary and
less dependent on domain knowledge. However, it is possi-
ble to show that all regular stationary covariance functions
are mean-reverting (see supplementary section A for an
informal proof).
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Figure 2. Posterior expectation and 95% intervals and samples of
a GP conditioned on two data-points with A) improper Smooth
‘Walk prior (top figure) and B) proper Squared Exponential prior.
The length scale was 0.2 for both models. The black line show the
ground-truth signal sign(t).

4. An intuitive introduction to stationary
improper Gaussian processes

Consider a (bilateral) Brownian motion process z(t) that
crosses the y-axis at ¢y. This process is characterized by the

following covariance function:
1
ko (t,1) = 5(\t—1f0\+|t’—to| — "=t . 13)

This process is not stationary since the covariance cannot
be expressed as a function of the time difference ¢’ — ¢. The
lack of stationarity comes from the fact that the process
is forced to cross the y-axis at ¢y, which implies that the
variance of the process is not translationally invariant. In
fact, the variance of the process increases without bounds
for |t — to| — oo (see Fig. 1 a).

We can now consider the average of two bilateral Brownian
processes with starting points equal to ¢ and —c respectively,
where c is a free parameter. This leads to a new process
characterized by the following covariance function:

ko (t,t) = % (ke(t, t)) + k_o(t, 1)) . (14)

As shown in Fig. 2 b, the standard deviation of the process
is constantly equal to ¢ for |{| < ¢ while it increases (de-
creases) for |t| > c. In particular, for ¢, € (—c,c), the
covariance is given by ¢ — |t — t|. Therefore, the process
is stationary when ¢ and ¢’ are restricted to be within this
interval. We can now obtain a globally stationary limiting
process by taking the limit ¢ — oo, using a suggestive but
improper notation, we can write the resulting covariance
function as

koo(t,t') = 0o — |t —t], (15)

where the infinity symbol reminds us that the variance of the
process is infinite everywhere. Intuitively, this covariance
describes a Brownian motion without a starting point. In the
following section, we will formalize this intuitive reasoning
in the context of improper GP regression.

S. Improper Gaussian process regression

In this section, we will derive the formula for the posterior
of an improper Gaussian process regression, where the vari-
ance of the prior process is infinite everywhere. We start by
writing the covariance function of the process as follows:

k(t,t") =s(t,t') +c (16)

where c is an arbitrary number that will tend to infinity in
the derivation. We denote the function s(¢,t') as the non-
positive kernel of the process. In order to give rise to a
well-posed improper GP prior, the function s(¢,t’) needs to
satisfy the following definition (see (Ong et al., 2004)):

Definition 5.1 (conditionally positive definite kernel). A
s(t,t") : R x R — R is a conditionally positive definite
kernel when, for all m x m finite sub-matrices with S;; =
s(t;,t;), we have that S is symmetric and u” Su > 0 when
u Ll 1,,, where1l,, = (1,...,1) € R™ is the constant one
vector in the appropriate space.
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Figure 3. Posterior expectation and 95% interval of a GP regression with ground-truth signal sin(6t) + 0.4¢ — 5 tanh(¢) with noise level
o = 0.05. The length scale was selected by optimizing the marginal likelihood conditioned on one data point (see rightmost panel).

In the definition, u L 1,, means that 37", u; = 0. Note
that this property is less restrictive than the positive (semi-
)definiteness.

From Def. 5.1, we can show that every m-dimensional co-
variance matrix obtained from Eq. 16 is positive definite as
far as the number c is large enough. In fact, the covariance
matrix can be decomposed as follows

K=8+cl,17 (17)

where 1,, is again a vector with constant elements all equal
to 1. Using the definition, we obtain

u"Ku=u"Su+ (u"1)%.

Given a fixed vector u, this quantity can be made positive for
large enough values of ¢ since u” Su is finite and (u?'1)?
is always positive for non-zero vectors u.

Let us now assume to have a m-dimensional vector y of
observations of the dependent variable corresponding to
the m input points {t1,...,t,}. Assuming uncorrelated
observation noise with variance o2 and that the value of
c has been chosen to make the covariance matrix positive-
definite, the posterior expectation of the corresponding GP
regression evaluated at the n query points {¢,...t5} is
given by the formula

fpost = (S* 4+ c1,10) (2 +c1,,15) "y, (18)

where S;; = s(tf,t;) and ¥ = S + o*I. We can now
obtain the expectation formula for the improper regression
by taking the limit ¢ — oco. Assuming ¥ to be invertible,
this can be done by first applying the Sherman—Morrison
formula to the matrix inverse:

»11,1E %t
C—— e .
141l ¥-11,,
We can now plug Eq. 19 in Eq. 18 and take the limit, leading

to the formula:

(B+el, b))yt =x"1 — (19)

»-11,,17%-1 1,,17 -1
_ogxyvy—1 * m-m m=m
Hpost = STETY = 5T —a 17511,
(20

where the first term is identical to the posterior expectation
formula of a regular GP regression except for the fact that
> is not necessarily positive-definite. Similarly, by taking
the limit we can obtain a finite expression for the posterior
covariance. To simplify the expression of the formula, we
denote the matrix obtained by evaluating the conditionally
positive definite kernel at the query points as S} = s(t7, )
and define the uncorrected covariance matrix as f(post =
S** — §*%-16*T We can now write the correct posterior
covariance as the uncorrected covariance plus a correction
term:

Kpost = [(post =+ FFT/(]_%Z_l]_m) 21

where F =1,, — K*¥7'1,,

6. Stationary conditionally positive definite
kernels

Since any positive kernel automatically fulfils the condition-
ally positive definite kernel property, the formulas given
in the previous section can be used together with ordinary
covariance functions. In that case, like in the case of an
ordinary improper Gaussian prior, the mean posterior expec-
tation provides an unbiased (unregularized) estimate of the
mean of the true signal. However, the biggest potential ad-
vantage of the approach comes from new conditionally pos-
itive definite kernels that are not positive definite and have
properties that cannot be obtained with positive-definite
kernels. In Section 4 we saw that, up to an infinite addi-
tive constant, the negative absolute difference —|t' — ¢| can
be seen as the (improper) kernel of a stationary Browning
motion without starting points:

Som(t, ) = Spm(7) = —|7| (22)

In words, the improper stationary kernel is simply the (nega-
tive) distance between the points. In Supp. D, we prove that
22 respects definition 5.1. The proof relies on the theory of
tempered distributions, which is used to obtain the spectral
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Figure 4. Posterior expectation of a two-dimensional GP regression with ground-truth signal (test function) tanh(—z* — y* + 5). The
posterior expectation with the Squared Exponential prior reverses to the prior mean while the bivariate Smooth Walk expectation stays

close to the nearest data-point.

density

- 2 1

Spm(w) = s (23)
which can be interpreted as the distributional Fourier trans-
form of the negative absolute value function (Strichartz,
2003) (see Supp. A). However, it is important to keep in
mind that 1/w? is not a true density since it is not defined,
and more importantly not integrable, at w = 0. This issue
can be circumvented using a technique called Hadamard
regularization (see Supp. B), which can be used to assign
a value to the divergent integral. However, this can lead
to some rather counterintuitive behavior. For example, if
we integrate Eq. 23 against a positive-valued test function
on an interval including w = 0 we can obtain a negative
result! This strange behavior is the reason why the ker-
nel is not positive-definite and plays a central role in the
proof. Samples from this kernel inherit the familiar prop-
erties of Brownian motions. As an example, since §(7) is
continuous but not differentiable at the origin, the process
is mean-squared continuous but not mean-squared differ-
entiable. Importantly, like ordinary Brownian motions, the
process is not mean-reverting.

More generally, we can show that the expectation does not
revert to the mean for all kernels k(7) that are asymptotic
to 7 fro 7 — oo. Consider a case with two data-points
y— and y4 corresponding to the coordinate values —« and
. We evaluate the expected value at a query point * =
a £ A, where A is a finite number. We assume the improper
kernel k(7) to be asymptotically proportional to —|7| for
T — 00, which is true for all kernels introduced in our
paper. To obtain a simple asymptotic formula, we start from
Eq. 20 and we take the limit & — co. In this limit, the two
additive terms on the right hand side of Eq. 20 individually
converge to —(y_ + y4+)/2 and (y— + y4)/2 respectively,
cancelling each other out at the limit. On the other hand,
the term S*Y~1y converges to ¥, when z* = a + A while
it converges to y_ when z* = a — A. Therefore, we have
that

Jim Ppost (T £ A) = y+

Importantly, this expression does not depend on the (finite)
value of A, which implies that the expectation is not mean-
reverting as the posterior mean stays constantly equal to the
value of the closest data-point.

7. The Smooth Walk kernel

In many applications it is beneficial to use smooth covari-
ance functions capable of extrapolating linear and higher
order trends in the data. In this section we will therefore
introduce an infinitely smooth conditionally positive definite
kernel that does not induce mean reversion. The idea is then
to find a relaxation of the absolute value that is infinitely
differentiable at the origin. The identity |x| = xsignx sug-
gests that we can do this by replacing the sign function with
a hyperbolic tangent. This leads to the following kernel:

sew(t,t';1) = —(¢' —t)tanh (¢’ —t) /1) (24)

where [ is a length scale parameter. We named it Smooth
Walk (improper) kernel since, as we shall see, it behaves
like a smooth random walk. In Supp. D, we prove that
this is indeed an conditionally positive definite kernel for
all positive values of [. The proof is analogous to the one
discussed in the previous section and it relies on the fact
that the distributional Fourier transform of x tanh x can be
expressed using the density:

73/2 12 coth(l wr /2)
2v/2 sinh(lww/2) ’

Sswlw;l) = (25)

which, like 1/w?, is not defined and not locally integrable
at w = 0. In fact, we have that 3y, (w;1) ~ w™2/(2V/2)
for limw — 0. From this, it follows that sg(x, z’;1) is
not a positive-definite kernel, since the singularity in the
density results in a (usually large) negative eigenvalue in the
Gram matrices. Since x tanh z is infinitely differentiable at
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| SW(@H) MWI12G) GW(@) | SE(p) MI12(p) M32(p)
NNL | 10.34 5.89 390 | 76.02 7423 74.78
SEM | 2.09 0.79 007 | 2135  21.58 21.19

Table 1. Quantitative results of the stock prices forecasting experiment. SW (i): Smooth Walk (improper), MW 1/2 (i): Matérn Walk 1/2,
GW (i): Gaussian Walk, SE (p): Squared Exponential (proper), M 1/2: Matérn 1/2 (proper), M 3/2: Matérn 3/2 (proper).

t = 0, the resulting process is infinitely mean-squared dif-
ferentiable and exhibits very smooth samples. In this sense,
the Smooth Walk conditionally positive definite kernel is
similar the the Squared Exponential covariance function.
However, like the Brownian motion kernel, the Smooth
Walk kernel does not exhibit mean reversion, as can be seen
in Fig. 2, which show the posterior expectation and intervals
of a Smooth Walk and a Square Exponential process (with
identical length scale) given two datapoints.

8. Convolution kernels and the improper
Matérn class

In this section we will introduce a more general technique
to construct conditionally positive definite kernels that repli-
cate the behavior of existing stationary covariance functions.
The main idea is to smooth out —|¢| by convolving it with a
another (proper) kernel k(7):

+o00o R

5.(r) = —/ oo — w)duw (26)
— 0o

Due to the convolution theorem, we know that the spectral

density associated to this convoluted kernel is

. 2 k(w)

Sp(w) = RO (27)
where k(w) denotes the Fourier transform of % (7), which is
again singular at 0 (at least if k(w) = 0) and well-defined
and non-negative valued everywhere else. This implies that
Eq. 27 gives us a valid (improper) kernel.

We can now use this formula to construct conditionally
positive definite kernels with different levels of smoothness.
In general, if l%(T) is j — 1-times differentiable at 0, we
have that 3; () is p-times differentiable at the origin. This
implies that the resulting process is j-times mean-squared
differentiable.

We can now introduce the following Matérn Walk family of
conditionally positive definite kernels:

+o0o R
5(r) = —/ |wIM;_q/2((T — w)/l)dw (28)

where [ is a length scale hyper-parameter and M, (7) is the
Matérn class kernel, which is defined in terms of modified

Bessel functions (Stein, 1999). While the general expression
involves special functions, this kernel greatly simplifies for
v = p + 1/2 with p being an integer. In this case, the
kernel can be expressed as a product of an exponential
and a polynomial of order p. Importantly, for this class
of functions we can compute the convolution in closed-
form. For example 1721 /o(7/s) = e~I71/%, which leads to
the conditionally positive definite kernel:

Gi(r) = —2 (|T| 1l e*‘fl/S) , (29)

which as expected is once differentiable at the origin. An-
other interesting special case is given by the limit j — oo.
In this case, the Matérn converges to a Squared Exponential
and the resulting conditionally positive definite kernel is

8oo(T) = —\/ze—z*; — (v/1) erf(r/(v/20)),  (30)

which is an improper version of the infinitely differentiable
Squared Exponential kernel. As will refer to this kernel as
Gaussian Walk (GW) and to other members of the class as
Matérn Walk (MW).

9. Improper isotropic kernels in
high-dimensional spaces

In this section, we will denote a d-dimensional vector as & €
R?. Under some regularity conditions, the conditionally
positive definite kernels introduced in this paper can be
generalized to higher dimensional spaces. A natural choice
is to use an isotropic extension of the kernels. A kernel
kE:RP x RP — R is said to be isotropic if the covariance
of the process at two points can be expressed as a function
of the Euclidean distance that separates them:

k(a!,z) = kio([2" — zl,) . GD

where l%iSOR — R. Under some conditions, it is possible to
’lift’” a 1-dimensional stationary kernel to a d-dimensional
isotropic kernel. For example, we can define the isotropic
version of the Brownian motion conditionally positive defi-
nite kernel as follows:

(d)

Spm (€, ') = Som (||l — z]|,) . (32)

Unfortunately, the resulting spectral density depends on
the dimensionality and cannot easily be obtained from the
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0 3droad autompg bike concreteslump energy

GP SE (proper) 96.02 + 3.78 19.96 £3.61  3.51 £2.36 1643.39 £216.09  37.55 £ 3.57
GP M 1/2 (proper) 94.77+3.27  22.74+2.09  2.154+0.39 1726.44 + 316.93  34.57 £ 3.66
GP M 3/2 (proper) 92.92+245  31.57+11.16 5.03+1.51 1683.64 = 82.48  40.83 £2.34
GP M 5/2 (proper) 88.27+£2356 17.96+1.72 4.06+1.81 1540.55 +441.29  43.25 £8.53
Intrinsic Kriging (o = 1) 17.06 £1.18  2.23+£0.23 1.45+£0.06 40.76 £3.11 2.75+0.24
Intrinsic Kriging (¢ = 0.5) 21.18 £0.74  2.94+£0.53 1.40+£0.03  39.04 £2.87 5.124+0.84
GP SW (improper) 17.724+0.98  2.351+0.28 5.16+0.86  38.48 £3.66 3.00+0.17
GP MW 1/2 (improper) 14.37£0.69  1.79+0.04 4.85+0.3 35.28+1.61 2.41+0.14
GP GW (improper) 4.01 £0.16 2.32+0.06 12.03+£3.62 9.37+0.66 2.47+0.07

Table 2. Performance quantified as median negative log-likelihood on UCI regression datasets. To probe the low dimensional regime
where stationary methods are the most appropriate, only the first 6 predictive features of each dataset were used. Error bars are SE of the

median (bootstrap).

univariate spectral density. This is potentially problematic
since the resulting multivariate function is not guaranteed
to be positive-definite or, in our case, a valid conditionally
positive definite kernel. However, this can indeed be proven
for improper stationary Brownian motion kernels. In fact,

as proven in (Stein and Weiss, 1971), the spectral density of
(d)

Sbm

is given by the following distribution:

Ir'((d+1)/2 _

S (@) = 2‘f”l(é(_+1/)2/))||w|2 33
which is again positive-valued up to a singularity at w that
needs to be regularized. The Smooth Walk and Matérn Walk
kernels can also be generalized into an isotropic kernel. Un-
fortunately, we were not able to obtain the spectral density
analytically and we therefore cannot rigorously prove that
this is indeed a valid conditionally positive definite kernel.
However, we ran a comprehensive numerical analysis up to
d = 150 and we found no violation of (improper) positive-
definiteness (see supplementary section F).

10. Related work

There is a substantial body of literature on how to avoid
mean reversion in GP regression and Kriging by consider-
ing non-stationary models. For example, Majumdar and
Gelfand proposed the use of non-stationary covariance
matrices obtained using convolution operators (Majumdar
and Gelfand, 2007). Based on the theory of integrated
white noise (Lindstrgm, 1989), Zhang and collaborators
constructed a non-mean-reverting non-stationary kernel ob-
tained by integrating a smooth function of the Brownian
motion kernel against white-noise from an arbitrary start-
ing point (Zhang, 2015). The result was recently extended
in (Zhang and Apley, 2016) where the white-noise was re-
placed by a smooth GP, which leads to smoother covariance
structures. As opposed to our current paper, these works
adopt explicitly non-stationary kernels that assign different
levels of prior variance to different locations. Similarly,
several authors considered the use of explicit models of the

trend that break the non-stationarity of the covariance ma-
trix (Blight and Ott, 1975; Journel and Rossi, 1989). The
approach was refined in (Raich and Zhou, 2004) where the
effect of the covariance matrix is constructed to be orthogo-
nal to the trend model in order to increase interpretability.

The formulas for the corrected posterior given in Eq.20 and
Eq.21 are formally analogous to those used in the vague ba-
sis function approach as introduced in (Blight and Ott, 1975)
and further developed in (O’Hagan, 1978). In these works, a
conventional GP kernel is used to fit the residuals of a least
square polynomial regression. In this case, instead of taking
the limit of the constant shift in the covariance matrix, the
formulas are obtained by taking to limit of an improper prior
for the coefficients of the basis functions. Nevertheless, in
this work the kernel was taken to be positive-definite and
only the prior on the basis functions was assumed to be
improper. Our work is closely related to the theory of spline
smoothing (Gu and Qiu, 1993). In fact, fitting a polynomial
spline can be interpreted as a functional optimization prob-
lem in regularization theory (Kimeldorf and Wahba, 1971),
which can be reformulated as the MAP estimate of a GP
regression with an improper prior on an infinite set of basis
functions (Szeliski, 1987). The use of these improper priors
induces a non-regularized functional subspace, which is de-
fined as the null-space of the regularization operator. In our
case, the non-regularized subspace is simply the space of
constant functions. Differently from our conditionally posi-
tive definite kernels, the kernels implicitly defined by spline
models are often non-stationary and therefore cannot be ex-
tended to high-dimensional spaces by isotropy. Furthermore,
the functional operators used in spline theory are given by
linear combination of a finite number of p-th derivatives
and therefore cannot be used to define infinitely smooth ker-
nels such as the Smooth Walk conditionally positive definite
kernel introduced in this paper.

The theory of conditionally positive definite kernels have
been studied in the spatial statistics, applied mathematics
and signal processing literature (Matheron, 1973; Omre,
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1987; Handcock and Stein, 1993; Ong et al., 2004; Steinke
and Scholkopf, 2008). Specifically, the improper Gaussian
processes framework used in this work can be fully formal-
ized using the theory of intrinsic random function (IRF)
(Matheron, 1973; Cressie, 2015). From this perspective,
our conditionally positive definite kernels can be seen as
a special case of generalized covariance functions (Math-
eron, 1973). The theory of intrinsic random functions has
already found use in the kriging literature, based on the
connection between intrinsic kriging and spline regression
(Matheron, 1973; Vazquez et al., 2005). The intrinsic krig-
ing approach assumes the differences f(x) — f(y) of an
underlying stochastic function to be stationary, even when
the function itself follows a non-stationary process (e.g. a
Brownian motion). This leads to the use of non-positive
definite generalized covariance functions defined as linear
combinations of powers of || — y||,. The resulting pos-
terior is equivalent to the posterior of our improper GP
regression with a mixture of power-law conditionally pos-
itive definite kernels. However, these methods were not
extended to more general smooth covariance structures such
as the smooth walk and Matérn walk kernels introduced in
this paper.

Finally, similarly to our current paper, the limit kriging ap-
proach removes the effect of the prior mean using a limiting
procedure (Joseph, 2006). The paper analyzes the effect of
this limit on stationary covariance functions and compares
the results with intrinsic kriging. Note that removing the
prior mean from an ordinary covariance function does not
remove mean reversion, as the mean of the process will still
revert to the mean of the data. Note that this is different
from what is known as the flat limit, which refers to the di-
vergence of the length scale of the kernel (Barthelmé et al.,
2023).

11. Experiments

We start by showing the difference of behavior of GP re-
gressions with proper and conditionally positive definite
kernels on two appropriately chosen test functions in 1d
and 2d (with isotropic kernels). Fig. 3 shows the result
for the one-dimensional test function sin(6¢) — 6 tanh(4t).
The values of ¢ of the 25 data points were sampled from a
centered normal distribution with standard deviation equal
to 2.5. The noise standard deviation was 0.05. As is clear
from the figure, the GP regression with Squared Exponential
covariance function fails to recover the correct length scale
since, for low scales, the process erroneously reverts to the
mean in between data points. Fig. 4 shows the result for
the two-dimensional test function tanh(—z2 — 32 + 5). As
we can see, the Smooth Walk kernel properly extrapolates
the values to the whole plain outside the disk. On the other
hand, the Squared Exponential extrapolation reverts to the

global mean of 0. Probabilistic forecasting of stock prices.
We can now move on to the analysis of real world data. We
consider a probabilistic forecasting problem where the aim
is to predict the probability of future movements in a stock
price given its past. Note that, due to market efficiency, it
is extremely difficult to predict the expectation with any
accuracy. The aim is then to have properly calibrated proba-
bilistic intervals. 40 timeseries of daily closing stock prices
of SP-500 companies were selected at random. The data was
log-transformed and then smoothed using a moving average
filter with a time window of 35 days. The first 100 days were
used as observation and the prediction was made over the fol-
lowing 300 days. We performed the analysis using Squared
Exponential (proper), Matérn class (proper), Smooth Walk,
Matérn Walk and Gaussian Walk kernels. Since the actual
marginal likelihood is divergent in improper models, the hy-
perparameters were optimized by minimizing the marginal
likelihood conditional to one randomly selected observation.
Table 6 shows the mean and median predictive negative
log-likelihood of all models. As clear from the table, the
conditionally positive definite kernel greatly outperforms
the Squared Exponential kernel. This is not surprising since
stock prices are not thought to exhibit mean reversion. More
details are given in Supp. E. Multivariate regression.. The
previous experiments have been chosen to highlight the po-
tential shortcomings of mean reversion. In fact, stock prices
offer a famous example of non-mean reverting timeseries.
In this section, we compare the performance of GP repres-
sion with proper and conditionally positive definite kernels
in a general multivariate regression benchmark, where it is
unclear whether the assumption of mean reversion applies.
Specifically, we test on regression problems from the UCI
database (Leisch and Dimitriadou, 2021; D.J. et al., 1998).
To probe the low dimensional regime, where stationary and
isotropic methods are the most appropriate, only the first 6
predictive features of each dataset were used. Furthermore,
we considered the small data regime by sub-sampling (with
replacement) 100 datapoints from each training set. In all
datasets, the training and test features were independently
z-scored. We use isotropic extensions of the proper Matérn
class and Squared Exponential kernels and the isotropic ex-
tensions of our improper Smooth Walk, Matérn Walk and
Gaussian Walk kernels (see supplementary F for a numer-
ical test of their validity). We also included a comparison
with two intrinsic kriging baseline models with power low
kernels k(z,y) = —|z — y||5 (Matheron, 1973), which
were implemented using the spline fitting formulas given
in (Williams and Rasmussen, 2006) (Eq. 6.29, Chapter 6).
These kriging models can also be seen as special cases of
our approach, since power law kernels are conditionally
positive definite kernels as we defined them in this paper.
Like in the previous experiment, for all kernels, the length
scale and noise level hyperparameters were optimized by
maximizing the marginal log-likelihood conditional to one
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datapoint. Performance on the test set was quantified us-
ing the (univariate) negative log-likelihood. The results are
given in table 8. Conditionally positive definite kernels ex-
hibit higher performance in all but one datasets. Table 8
shows the median negative log-probabilities calculated from
10 bootstrap resamples of each training and test set. The
error bars denote the standard error of the median com-
puted using bootstrap resampling. The table shows that our
improper method outperforms both the proper GP and the
intrinsic Kriging baselines in all but one datasets. Table 12
in Supp.H reports the aggregated results on a larger set of
36 UCI regression datasets, which broadly confirms the re-
sults in table 8. The supplementary material also includes
the result of the aggregated results in the high-dimensional
case, where we use the full number of features of each UCI
regression dataset. As reported in Table.B, this analysis
shows a larger performance gap between our conditionally
positive definite kernels and the proper and intrinsic kriging
baselines. In general, the Matérn Walk and Gaussian Walk
kernels achieve higher performance than the Smooth Walk
kernel. The power law kernels of the intrinsic kriging meth-
ods are often competitive, together with the less smooth
Matérn 1/2 proper kernel.

12. Conclusions

Our analyses show that improper GP regression with smooth
conditionally positive definite kernel can be effectively used
in many scenarios and it offers a competitive choice in tabu-
lar multivariate regression problems. Nevertheless, further
theoretical work needs to be done to prove the kernel to
be well-defined in higher dimensions, either by explicitly
computing the spectral density or by proving that it respects
the conditionally positive definite kernel property. Further
work also needs to be done in order to construct and charac-
terize larger families of kernels that satisfy the conditionally
positive definite kernel property.

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Stationarity and mean reversion

It is easy to show that all regular stationary covariance func-
tions are mean-reverting. Let us assume for simplicity that
the mean function is identically equal to zero. In this case,
the posterior mean function of a stationary GP regression
(or classification) can always be written as follows

m

tpost(t) = Y w;k(t —tn) (34)
j=1

where the x,, is a training point and w,, is a real-valued
weight. Since the covariance function is regular, we know
that lim,_, oo 12:(7') = 0. This implies that fip0s (t) converges
to the mean function (which we assumed to be identically
equal to zero) as the distance between ¢ and the closest train-
ing point increases. This reasoning can be easily generalized
to the case with a non-zero mean function. Note that this
property does not necessarily hold for non-regular stationary
covariance functions. In the machine learning literature, the
most common examples of non-regular stationary covari-
ance functions are the cosine and the periodic, which are
both periodic with a spectral density defined as a mixture
of delta distributions. In this case, the posterior expectation
is itself periodic and it does not converge to any fixed value
for 7 — oo, but instead it oscillates around the prior mean
(or around a biased estimate of the data mean in the case of
the periodic covariance functions).

B. An informal introduction to the theory of
tempered distributions

Here, we will present an informal outline of the theory of
tempered distributions. For a proper formal treatment, see
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SE(py M12(p) M32(@p M52(@p) SW@GE MW1/2)G@ GW(@G IKI1 IKI2
% Top score  0.057 0.257 0.029 0.029  0.057 0.086  0.286 0.086 0.200
Mean error ~ 0.584 0.406 0.490 0.554  0.234 0169 0413 0314 0357
SEM 49.092  49.157  49.066  49.064  1.341 1251 0755 1360 1416

Table 3. Aggregated results of on the UCI regression datasets using a maximum of six features (low dimensional regime). The error is

quantified using the marginal negative log-likelihood on the test set.

N =200

(Log) minimal variance
(Log) minimal variance

(Log) minimal variance

Figure 5. Numerical test of (improper) positive-definiteness of smooth conditionally positive definite kernels.

(Gel’fand and Shilov, 2016).

Tempered distributions are a kind of ’generalized functions’.
The main idea is to define these new functions as something
that “acts’ on smooth test functions.

A the test functions ¢ : R? — R belonging to a space S[R¢]
of rapidly decreasing functions defined on R¢. Loosely
speaking, a function ¢(x) is rapidly decreasing if it, together
with all its partial derivatives of any order, tends to zero
faster than any inverse power function for x for |||, — oc.
The rigorous definition of this Schwartz space is give, for
example, in (Gel’fand and Shilov, 2016).

A tempered distribution 7" is a functional 7' : S — R that is
both linear and continuous under an appropriate topology.
Any locally integrable function (in the L1 sense) can be
mapped into a distribution as follows:

7,6l = [ a(@)o(e)da G9)

where the integral is interpreted in the Lebesgue sense. In
this context, we refer to g(x) as the density of the distri-
bution. However, not all tempered distributions can be
represented in this way. In this sense, tempered distributions
generalize ordinary functions. A well-known example of
a distribution that cannot be represented as an integral is
the Dirac delta distribution, which simply evaluates the test
function at a point:

(36)

The delta distribution is often written in the following sloppy
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but suggestive way

(37)

where the ’density’ §(x) is called Dirac delta function. Note
however that this is just a notationally convenient shorthand
for Eq. 36.

The Fourier transform F[T] of a distribution T is another
tempered distribution defined by the following identity:

FITlo@)) = TIFo@)), voes, @8
where
Fo@y) = 7= | o= vam @)

is the ordinary (d-dimensional) Fourier transform of the test
function ¢(x). The basic idea behind this definition is to
“transfer’ the definition of the Fourier transform from the
test functions, where we can use the standard definition, to
distributions, which are defined by their action on the test
functions. Note that the definition agrees with the usual def-
inition when the distribution comes from a regular function.
In fact, for a distribution 7}, defined by a test function g(x),
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we have

(40)

where we could charge the order of integration due to the
smoothness of both functions.

As we explained before, many tempered distributions cannot
be represented as integrals weighted by a density function
(Eq. 35). However, several important distributions that
cannot be represented in this form can nevertheless be ex-
pressed as divergent integrals, together with a procedure for
regularizing the infinite divergent term into a finite number.
For example, consider the (one-dimensional) distribution:

nfow) =7 [ e @

where P denotes the Cauchy principal value of the diver-
gent integral (see Supp. C). This allows us to work with
the singular density 1/z, instead of dealing directly with
the distribution. This allows us to easily generalize some
familiar properties of the Fourier transform to this class
of distributions. For our purposes, the most important is
the convolution theorem. For example, assume that f(x)
is a regular smooth and absolutely integrable function and
that g(x) is a function such that F[g(z)](w) = 1/w + h(w),
where h(w) is again a smooth and absolutely integrable func-
tion. Then we can use the invoke the classical convolution
theorem between functions:

Flf @)« g@))@) = f@) (1w + b)) . @)

where f(w) is the Fourier transform of f(x). However,
we need to keep in mind that the result will in general
be another singular density and that we therefore need to
properly regularize any integral involving F[g(z)]F[g(z)]
by taking the Cauchy principal value.

The (partial) derivative of a tempered distribution is another
tempered distribution, defined as follows

or
ij

(43)

o] = -1 | 292

Oxj

This definition generalizes the usual integration-by-parts
formula. In fact, consider T, to be the distribution associated

12

dr

o)

44)
g()
g()

to the non-singular density g(«) defined on R, we have:
>~ d
L _ L(Zl(;) ¢(x)dx
- do(x)
o
— ——=d
)o@~ [ o) G s
= do() do(x)
/, o dr 0 90 dz |’
where the boundary term vanishes since the test function
is rapidly decreasing. This property, which is just a conse-
quence of integration by parts, can then be generalized to
define the derivative for distributions that cannot be written
as integrals.

For example, the derivative of f(x)
test function as follows

1sign(z) acts on a

o) = -1, [dﬁf)} 45)
= %/jo sign(m)dﬁf) dx

do — [ 000 dﬁf)

([
=¢(0),

o)

where we used the fundamental theorem of calculus and
the fact that test functions are rapidly decreasing. From the
result, it is clear that the derivative of T%sign(:c) is just the
Dirac delta distribution:

AT’ Gon(a
— 1, (46)
x
which (using sloppy notation) can be expressed as:
d .
—sign(z) = 26(x) . 47

dx

Similarly, from the definition is clear that the derivative
of the delta distribution extracts the derivative of the test
function at 0:

dTs

@) = —9'(0). @3)

which is often sloppily expressed by the density ¢’ (). Note
that this is just convenient notation, it is impossible to define
this distribution ¢’(x) by its values since, if the values were
defined, they would be zero everywhere. In fact, for any
interval a, b, we have

/abé’(x)dx _ /ab 5 ()

dl

lde =——=0. 49
x iz (49)
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SE(py M12(p) M32(@p M52(@p) SW@GE MW1/2)G@ GW(@G IKI1 IKI2
% Top score  0.029 0.200 0.029 0.086  0.086 0229  0.257 0.029 0.057
Mean error ~ 0.397 0.430 0.354 0.358  0.143 0.062 0.183 0.501 0.499
SEM 49.162  49.182 49236 49262 1336 1224 1.194 1252 1.335

Table 4. Aggregated results of on the UCI regression datasets with the full number of features (high dimensionality). The error is quantified

using the marginal negative log-likelihood on the test set.

C. Regularization of divergent integrals

Here, we will discuss some techniques used to regularize
divergent integrals. By ’regularize’, we mean to extract
a finite value from a divergent expression that normally
returns an infinite value.

Consider a function f(x)/(x — x¢), where f(x) is an abso-
lutely integrable function. If lim,, o f(x) # 0, improper
integrals on an interval including zero do not converge. How-
ever, the Cauchy principal value of the integral is defined as
follows

bogl
P/ ACIP (50)
a T — X0

xTo—€ b
~ lim / MdH/ @) )
e—0 o xr — Xo zod+e T — Lo
For example, it is easy to see that

|
’P/ —dx =0, (51
1z

since the negative and positive divergences cancel each
other out. As clear from the definition, the Cauchy prin-
cipal value can only be used to regularize the integral of
functions that diverge to a different sign of infinity around
the singular point. Nevertheless, it is possible to regu-
larize a larger family of divergent integrals using a tech-
nique known as Hadamard finite part. Consider a function
f(x)/(x — x0)?, where f(z) is an absolutely integrable
function. The Hadamard finite part of the resulting integral
can be obtained as follows
a=xq

" fla) _d b f)
’H/(l 7@_%)2@6— Ta P j f_adx
(52)

Note that the resulting finite part has some counterintuitive
properties. For example, the result can be negative even if
f(x)/(z — x0)? is positive everywhere. For example, it is
easy to show by direct calculation that

1
H/ —Zdz:—2. (53)
,11‘

This strange result is central in understanding the properties
of the conditionally positive definite kernels analyzed in this
paper. In fact, these kernels ’fail” to be positive-definite due
to this singular behavior of their associated spectral density.

D. Spectral densities of —|z| and —z tanh(z)

We start by deriving the Fourier transform of —|z|. First of
all, we write the function as

|| = & sign(z) , (54)

where sign(x) is 1 when « > 0, —1 when 2 < 0 and zero
otherwise.

Since the derivative of the distribution sign(z) is 26(t) (see
Supp. B) and P fjoos sign(z)dz = 0, we have that

—iwF[0(x)](w) = 2F[0(2)](w) = v2/7m, (55

where 6(z) is the Heaviside step function, which gives

Flsign(x)](w) = \/z; . (56)
Now, since Flz f(z)](w) = %f[f(x)](ﬁ)’gzw, we obtain:
Fl—|z|] = —F[asign(z)] = %é . (57)

The Fourier transform of —x tanh(z) can be obtained in a
similar way. The first step is to obtain the Fourier transform
of tanh x as a distribution. This can be done by noticing
that % = sech? (), which is an absolutely integrable
function whose Fourier transform can be obtained using

usual techniques. In fact, it is possible to show that

! /+00 sech?(z)e™*“dx = | z csch(nw/2)
— z)e T=4/-w Tw/2) .
V2T J oo 2

(58)
From this, since P fj;o tanh(z)dz = 0, we have that

Fltanh(x)](w) = iM = z\/§ csch(nw/2) .

w
(59)

Fl—|z|] = —Flz tanh(z)] = Z\/Z dif csch(m.u/Z)L_

(60)
3/2

= gﬁcoth(ﬁwﬂ)csch(ﬁwﬂ)
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E. Proof that —|7| and —7 tanh(7) are
conditionally positive definite kernels

In order to prove the statement, we need to introduce some
concepts from the theory of tempered distribution (Gel’fand
and Shilov, 2016). This theory allow to generalize the con-
cept of functions and Fourier transforms, which will allow
us to characterize the spectral density of the conditionally
positive definite kernel. An informal review of the needed
concepts is provided in Supp. B.

We start by considering $ym(7) = —|7|. The symmetric
property is trivially respected by all matrices. Therefore, we
need to prove that for all m € IN, and all m x m matrices
with S, = — i, we have that uT Swu > 0 if Vu such
that } -, u; = 0.

For a given m-dimensional vector u, we start by defining
an associated smooth and rapidly decreasing function:

—1/2 ZU e

We can now write the finite matrix product as a limit of the
following double integral:
(") dtdt!

+o0 /+oo
(62)

Since the kernel is a function of ¢’ — ¢, we can re-express
the integral as a (functional) inner product:

o0

/—oo

where § x v¥(t) denotes the convolution between the kernel
and the function v¥(¢). We can now invoke Plancherel

theorem and the convolution theorem (See Supp. B) to re-
write the inner product in the Fourier domain:

(t—t)2
202

v¥(t) = (2m0?) (61)

u? Su = lim
o—0

)8(t — )oY

v2(t) §x v2(t)dt, (63)

ul'Su = hm 7—[/ (w)|?8(w)dw (64)

where v¥(w) is the ordinary Fourier transform of v*(t) and
‘H denotes the fact that the singular part of the divergent
integral needs to be regularized by taking the Hadamard
finite part. Note that the divergence of the ordinary integral
comes from the fact that the Fourier transform of —|7| can
only be expressed as a tempered distribution.

For $pm (7), we have that the spectral density is proportional
to 1 /wQ. On the other hand, it is easy to check that, if
o ug =0, v (w)]? ~ aw?*for w — 0, with o being a
factor depending on o. This implies that |v¥(w)|? has a
finite limit at w = 0 and, consequently, that the integral in
Eq. 64 does not have divergences that require Hadamard
regularization. This proves the statement, since an integral
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of a smooth positive-valued function is always non-negative-
valued and a limit of a non-negative-valued series is always
non-negative. Note that the spectral density can be negative
when Z;ﬂ u; # 0 since the resulting regularization of the
divergence at w 0 can result in negative values (see
Supp. C). The result straightforwardly apply to —7 tanh(7)
as well since its spectral density is asymptotically equivalent
to 1/w? for w — 0 and it is smooth everywhere else.

F. Numerical analysis of conjectured isotropic
kernels

In this paper, we conjecture that the Smooth Walk, Gaus-
sian Walk and Matérn Walk kernels introduced in section
9 are valid improper covariance functions for any dimen-
sionality, meaning that they respect Def. 5.1. Unfortunately,
we were not able to prove this conjecture using analytic
methods since we could not express the spectral density
distribution associated to these isotropic kernels (for d >
1) in closed-form. To corroborate our conjecture, we run
a series of numerical experiments that could to falsify our
hypothesis. Specifically, for any dimensionality from d = 2
to d = 100 we constructed a 200 x 200 covariance matrix by
randomly sampling 200 query points from independent uni-
form distributions in (—1, 1). We then randomly sampled a
10000 x 200 matrix of random vectors sampled a standard
normal distribution. These vectors were then numerically
z-scored in order to fulfil the zero mean condition required
by Def. 5.1. Using these normalized vectors, we evaluated
10000 inner products using the formula

v=w!Kw. (65)

In all the considered kernels, we did not find any violation
of the positivity condition of the inner products up to double
numerical tolerance. The minimum of the inner products
as function of the dimensionality is visualized in Fig. 12.
As you can see, the estimated minimum seems to increase
monotonically as function of the dimensionality. We re-
peated the same experiments for matrix sizes of 10, 20 and
100 without finding any violation in any of the kernels.

G. Details of the time series experiment

Time series of stock prices (daily closing time) were ex-
tracted using the yfinance (yahoo finance) python package.
The stocks were selected from the list of S&P 500 compa-
nies as it was on June 2023. We extracted time series from
the perios danging from 2010-01-10 to 2021-03-03. The
closing prices were log transformed and then filtered using
a causal moving average of 35 days. For each timeseries,
we trained the model on the first 100 time points and we
evaluated the probabilistic prediction on the following 1000
time points. This split allowed us to evaluate the proba-
bilistic calibration of long term forecasting. The noise level
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and length scale of both proper and conditionally positive
definite kernels was optimized by maximizing the marginal
log-likelihood conditional on a random time point. Perfor-
mance was quantified by evaluating the predictive marginal
negative log likelihood of each model.

H. Details of the multivariate regression
experiments

GP regression were performed using the exact formulas.
For scalability reason, if the n in a dataset was larger than
100 datapoints. We used a sub-training set sampled without
replacement from the original dataset. This also allowed us
to train on several re-samplings of the same dataset so as to
evaluate error bars. Since we mostly cared about the low-
dimensional regime, which is more appropriate for isotropic
methods, we only used the first 6 features of each dataset
(assuming that they had more than 6 features. However,
we also included results analyzed using all the features of
each datasets. All kernels were parameterized by a length
scale and a noise std parameter, which were optimized by
maximizing the log-marginal likelihood conditional to one,
randomly chosen, datapoint. The intrinsic kriging baselines
were implemented using the equivalent spline fitting for-
mula, which is also a special case of our posterior formula.

We tested the different kernels a a selection of UCI
datasets suitable for regression. We used the following
datasets: 3droad (n = 434874, d = 3); autompg (n=392,
d=7); bike (n=17379, d=17); concreteslump (n=103, d=7);
energy (n=768; d=8); forest (n=517, d=12); houseelec-
tric(n=2049280, d=11); keggdirected (n=48827, d=20);
kin40k(n=40000, d=8); parkinsons (n=5875, d=20); pol
(n = 15000, d=26); pumadyn32nm (n=8192; d=32); slice
(n=53500, d=385); solar (n=1066, d=10); stock (n=536;
d=11); yacht (n=308, d=6); airfoil (n=1503, d=5); au-
tos (n=159, d=25); breastcancer (n=194, d=33); buzz
(n=583250, d=77); concrete (n=1030, d=8); elevators
(n=16599, d=18); fertility (n=100, d=9); gas (n=2565,
d=128); housing (n=506, d=13); keggundirected (n=63608,
d=27); machine (n=209,d=7); pendulum (n=630, d=9); pro-
tein (n=45730, d=9); servo (n=167, d=4); skillcraft (n=3338,
d=19); sml (n=4137, d=26); song (n=515345, d=90); tami-
electric (n=45781, d=3); wine (n=1599, d=11).

The aggregated results in the low dimensional case are given
in table 12, while the results in high dimension are given in
table B.
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