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Abstract

Deep reinforcement learning agents often suffer from plasticity loss, in which their
neural networks gradually lose the ability to incorporate new information during
extended training. To understand how to mitigate this issue, we compare the impact
of data interventions, auxiliary losses, and normalization layers—forming input,
output, and architecture perspectives, respectively). We conduct a case study using
Proximal Policy Optimization (PPO) on the Atari Learning Environment (ALE),
a widely used on-policy algorithm and benchmark suite for vision-based discrete
control tasks. Although many interventions have been proposed to address the
inability a deep networks to continue learning due to plasticity loss, no single
solution has emerged. We find that neither unpreprocessed input information nor
reduced gradient noise from larger batch sizes prevents collapse. Additionally, we
categorize auxiliary loss interventions based on the component being regularized
and the target of the regularization. Thanks to this taxonomy, we identify unex-
plored solutions in the current literature and, as an illustration, derive an unstudied
intervention: CHAIN-SP. We find that the best performance and training stability
among the loss interventions that require tuning is achieved with churn-reduction
auxiliary losses. Finally, we find that LayerNorm is best at mitigating plasticity
loss among the normalization layers.

1 Introduction

Non-stationary objectives appear in various contexts, such as continual learning, where the target dis-
tribution shifts over time, but also in reinforcement learning, where the policy of the agent constantly
evolves. Thus, one of the major challenges in the practical application of deep reinforcement learning
algorithms is the adaptation of the underlying neural networks to non-stationary targets resulting
from changes in states and rewards during learning. When a network can keep adapting to these
shifts, we say it retains plasticity. We use plasticity loss to denote the regime in which adaptation
stalls, observed as a drop in episodic return in RL or a rise in task loss in continual learning (Lyle
et al., 2023; Dohare et al., 2024). Although recent case studies link plasticity loss to abrupt collapses
in feature rank (Moalla et al., 2024; Juliani & Ash, 2024), capacity loss (Lyle et al., 2022), increase in
weight norm and rank (Chung et al., 2024), and dead neurons (Sokar et al., 2023), the community has
not identified any single metric to predict the collapse (Lyle et al., 2023; Lewandowski et al., 2023).

Different interventions have been proposed to mitigate plasticity loss. Data interventions modify
the training signals—either by modifying the observations fed to the network or by transforming the
reward—e.g., batch size, frame resolution (RGB vs. down-sampled grayscale), or reward clipping
(Mayor et al., 2025). Auxiliary-losses use regularization losses in addition to the PPO surrogate loss,
such as PFO, penalizing feature drift (Moalla et al., 2024), Parseval, maintaining weight orthogonality,
(Chung et al., 2024), and CHAIN, penalizing large output churn (Tang & Berseth, 2024). These
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Table 1: Auxiliary loss functions addressing plasticity can be organized by (1) what component they apply
the auxiliary loss on, and (2) the target to which this component is regularized. This taxonomy is illustrative

rather than exhaustive: it organizes the losses already explored in previous work and reveals a large region

of unexplored losses . A novel intervention , which we call CHAIN-SP, is derived as a modification of
CHAIN (Tang & Berseth, 2024) thanks to this taxonomy. We encourage future work to investigate the remaining

opportunities.
Loss on .
m Weights Features Outputs
Null vector (0) ~ Weight Decay (AdamW)
Initial model distribution (14g,) Parseval
Initial model (6) L2 init InFeR
Model used in rollout (01‘:) PFO CHAIN-SP
Model after the grad step (6}) CHAIN

extra losses aim to constrain updates so that weights, features, or outputs neither collapse nor grow
unbounded. Normalizing interventions insert layers like LayerNorm, BatchNorm (Lyle et al., 2022),
or Unit-Ball Normalization (UBN) to stabilize activations or weight distributions.

Each work, however, has its own setup: environment, deep RL algorithm, metrics, and a set of
interventions used for comparison. Thus, it is difficult for a practitioner to get a clear overview of
which metrics correlate with the loss of plasticity, which interventions provide significant benefits,
and how they compare when they are all tested in the same setting. Previous plasticity studies have
largely ignored diverse vision-based environments; for example, all of the vision-based environments
considered by Juliani & Ash (2024) were sparse and their analysis mostly focused on plasticity
under training distribution shifts. In contrast, we evaluate interventions across Atari environments
with varying levels of reward sparsity and unchanging environments, allowing for a broader and
more representative understanding of plasticity loss in vision-based RL. We use Proximal Policy
Optimization (PPO) (Schulman et al., 2017), one of the most popular policy gradient methods used
by a lot of practitioners, which re-uses each rollout for mini-batch updates over several epochs.
This reuse of stale data makes it a particularly suitable candidate when analyzing plasticity loss.
Hence, we aim to fill the gap by conducting a comprehensive study of interventions under a fixed
training protocol with PPO, addressing how all these methods and metrics compare against each other
and track plasticity loss. With this setup, we empirically investigate the following questions about
plasticity:

* Do common plasticity-loss metrics reliably capture plasticity loss across different interven-
tions?

* Which intervention type—architecture level (normalization), output level (auxiliary-loss), or
input level (data)—best preserve plasticity?

* Do these findings hold across environments with varying reward sparsity?

Our contributions

1. Taxonomy and novel intervention. We classify 18 candidate methods into data (input),
auxiliary losses (output), normalization layers (architecture), combinations of those, and
rigorously tune and evaluate each within a single PPO framework on the ALE benchmark.
Our auxiliary loss taxonomy allows us to identify gaps and introduce CHAIN-SP, a variant
of CHAIN based on the model used in the rollout (Tang & Berseth, 2024).

2. Empirical insights on data interventions. We show that neither unpreprocessed inputs (full-
resolution RGB) nor reduced gradient noise with larger batches prevent loss of plasticity.

3. Evaluation of auxiliary losses and normalization. We find that among the tuned auxiliary
losses, churn losses result in the best performance and training stability, and that among
normalization layers, LayerNorm provides the best stability without any adjustment.

4. Assessment of combination methods. We demonstrate how pairing LayerNorm with
various auxiliary losses (e.g., L2 Init, PFO, CHAIN-SP) affects plasticity, revealing that
certain combinations outperform their standalone counterparts.



5. Feature-representation finding. We show that a low PCA policy rank, near the number of
discrete actions, does not hinder learning a strong policy, challenging the idea that preserving
high PCA feature-rank alone is sufficient.

6. Reproducibility. We open-source our codebase, training logs, and hyperparameter sweeps
to facilitate full reproducibility.

2 Background

Reinforcement Learning We work with a finite-horizon Markov decision process (MDP)
(8,A,r, P,H), where H is the horizon. At eachtimet =0, ..., H — 1, the agent observes S; € 8,
selects A; € A, then transitions to Sy 1, via P, and receives reward r (S, A¢, S¢11). The return is

Gy = Zi61 7(St, Ag, St+1). We seek a policy that maximizes E[G).

On-policy Actor—Critic. In each iteration, the policy network 7y collects IN-step rollouts
{(S¢, A, Ri+1)} by sampling actions from the current policy 7y and storing the resulting tran-
sitions. The actor 7y and the critic V,, are then updated concurrently via gradient descent on that
same batch of data. The critic minimizes the squared error between its prediction V,,(s;) and a return

target Gy, where G, is the \-return computed using the Generalized Advantage Estimator (Schulman
et al., 2015). The actor is trained with Proximal Policy Optimization (PPO) (Schulman et al., 2017).

Non-stationarity in deep RL and PPO. Each gradient step in policy gradient methods updates the
policy, which in turn shifts the state-visitation distribution (occupancy measure) (Kang et al., 2018),
alters the reward landscape, and changes the critic targets, introducing non-stationarity throughout
training. Proximal Policy Optimization (PPO) limits how far each update can move away from the
policy that generated the data by clipping the likelihood ratio between new and old policies to avoid
large parameter jumps (Schulman et al., 2017). In practice, PPO collects a batch of transitions under
the old policy and then performs multiple epochs of minibatch optimization on that same batch.
Thus, PPO amplifies the impact of this non-stationarity by reusing the same rollout for multiple
optimization epochs. (Nikishin et al., 2022) This repeated training on stale data increases the risk of
overfitting to outdated trajectories and accentuates the distribution shift between the policy used for
data collection and the one being updated. As a result, higher epoch counts can increase the effects of
non-stationarity and contribute to plasticity loss, a central focus of this study.

Plasticity Loss Plasticity loss occurs when the capacity of a network to learn new data deteriorates
despite ongoing training, often indicated by sharp decreases in feature representation metrics (e.g.,
feature-rank collapse (Moalla et al., 2024; Lyle et al., 2022), exploding capacity loss (Lyle et al., 2022;
Nikishin et al., 2023) and by signs such as increased weight norms or increasing number of inactive
(“dead”) neurons (Gulcehre et al., 2022). This representation collapse is reflected in degrading
performance, such as a decline in episodic return, even though optimization continues. In PPO, one
can regard a consistent drop in episodic return across random seeds as evidence of plasticity loss.
Tracking metrics such as capacity loss (error in fitting random targets), feature rank, weight/gradient
norms, and dead neurons offers early warnings of incoming collapse. Understanding these indicators
is important for judging how different interventions, such as adjusting inputs, adding auxiliary losses,
or using normalization, keep representation capacity and avoid performance degradation.

3 Study design and methods

Experimental setup We train PPO on Phoenix, NameThisGame, and Gravitar from ALE. We chose
these to cover both dense and sparse rewards and because together they achieve a high predictive
correlation (Aitchison et al., 2023). We use 25% sticky actions. To study non-stationarity, we run
each setting with F € {4, 6, 8} epochs; more epochs usually lower returns but make collapse happen
sooner. Actor and critic use separate trunks (Cobbe et al., 2021). We use three seeds for each
hyperparameter configuration. More details are in Appendix D.1.

3.1 Interventions

We organize interventions according to the three categories (1) data (input), (2) auxiliary losses
(output), and (3) normalization layers (architecture), and include a fourth category for combinations
of normalization layers with auxiliary losses. By developing the auxiliary-loss taxonomy in Table 1,
we reveal a large region of unstudied loss functions and introduce a new CHAIN-based intervention,



Table 2: Catalogue of interventions, grouped by how they modify (1) input or data (baseline & data-devel),
(2) loss function (loss-level), (3) architecture via normalization (normalization layers), or (4) combinations
(combinations). For all interventions, we keep the tofal number of environment interactions fixed (100 million
steps). Within each epoch, we also hold the number of gradient-update steps constant across interventions.

Category Intervention Main idea / target
BASELINE PPO with default hyper-parameters (sign reward,
. 84 x84 grayscale, minibatch = 256 samples).
Baseline & data-level BATCHX 8 8% more parallel envs, 8x bigger mini-batch; same
number of environment steps.
RGB-RAW Full-resolution RGB frames; no grayscaling.
NoCLIp Raw rewards instead of sign(r).
L2-INIT Initial weights regularization (Kumar et al., 2023).
ADAMW Adam w. decoupled weight decay (Loshchilov, 2017).
Loss-level PARSEVAL Parseval weight orthogonality (Chung et al., 2024).
CHAIN Churn Reduction (Tang & Berseth, 2024).

CHAIN-SP (Ours)

Sampling-Policy variant (ours). Towards the model
used in rollout instead of the model after the grad. step.

PFO Proximal Feature Optimization (regularizes feature
drift from sampling policy) (Moalla et al., 2024).

INFER Initial-Feature Regularisation (auxiliary-head drift
penalty) (Lyle et al., 2022).

LN LayerNorm with learnable (v, 5) (Ba et al., 2016).

LN-NS LayerNorm, y=1, S=0.

Normalization Layers BN BatchNorm with affine parameters.

BN-NS BatchNorm, y=1, 8=0.

UBN Unit-Ball Normalisation (Hussing et al., 2024).

LN+PFO LayerNorm + PFO.

LN+BN-NS LayerNorm + BatchNorm (no scale).

Combinations LN+CHAIN-SP LayerNorm + CHAIN-SP.

CHAIN-SP. We provide a comprehensive experimental design and the complete set of individual
result plots in Appendix F, G. Table 2 presents a summary of the methods we test, with detailed
experimental descriptions available in Appendix F. Figure 1 presents the summary boxplots, showing
the effect of each intervention on episode return, feature rank (PCA), capacity loss, and the number
of dead neurons in the policy. The full catalogue and the hyperparameter tuning protocol for the
auxiliary loss intervention are in Appendix F and D.3.

3.2 Performance metrics

To analyze plasticity loss, we evaluate several metrics proposed in the literature, including the feature
rank of the policy and value networks, the number of dead neurons, capacity loss, the penultimate
layer pre-activation norm, and the norm of the policy weights; full definitions and details can be
found in Appendix E.

* Feature rank (policy/value). PCA-based rank of the last hidden features. Lower rank
means features collapse and plasticity collapsed.

* Dead neurons (policy/value). Count of ReLLU units that are zero on the whole minibatch
(Gulcehre et al., 2022). More dead neurons means less usable capacity.

» Capacity loss. After training, we briefly fine-tune a checkpoint to match actions/values
from a fresh rollout and measure the remaining error. Lower is better (more plasticity kept);
see Appendix for the loss terms and setup (Appendix E).

4 Experiment Results

4.1 Modifying the input data or rewards does not mitigate plasticity loss

Bigger batches boost returns but do not prevent collapse in the long run Increasing the
minibatch size leads to improved performance across all environments and epoch counts. We
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Figure 1: Summary of all the studied interventions’ effects on performance and plasticity in ALE/Phoenix
Most of the interventions improve on the baseline in plasticity loss metrics. We organize interventions into
data-level, auxiliary-loss (weights, features and outputs), and normalization categories (plus their combinations),
introduce CHAIN-SP as a novel loss-based method, and demonstrate that churn-reduction losses and LayerNorm
most effectively prevent plasticity collapse. Auxiliary-loss approaches (especially churn-based) have few dead
neurons and strong representations, while LayerNorm (alone or paired with losses) stabilizes training. By
contrast, weight-based (e.g., AdamW) and data-based (e.g., reward-clipping removal) methods, although they
can drastically improve absolute performance, fail to mitigate plasticity loss. A boxplot includes 9 runs with
different epochs. More details in Appendix G.1

suspect this larger batch size is not commonly used because its benefits only become apparent after
approximately 10 million training steps, which is already the typical total timestep limit for Atari
(Huang et al., 2022; Schulman et al., 2017). This batch size and sample budget are more commonly
observed in distributed settings (Huang et al., 2024). However, extended runs up to 200 million steps
show that the trend of performance degradation persists, and the actor still collapses, similar to what
occurs with a smaller batch size: despite the improved performance, the agent collapses after 8 epochs
(Fig. 50). This suggests that the reduced gradient noise from the larger batch only delays the collapse,
rather than preventing it. Even when the agent reaches a reward level of 6000 on Phoenix, a level that
is not achieved on other collapsing runs, it still eventually fails. This provides evidence that there is
no specific reward threshold (i.e., an Atari map stage) beyond which an agent becomes immune to
collapse. Instead, some form of network regularization is necessary to prevent it. Quite interestingly,
if we consider 4 epochs of training, increased batch size doesn’t lead to collapse, but has typical
values of plasticity-associated metrics. So, for short runs, a bigger batch can improve performance
without hurting the network’s ability to keep learning, just as Smith et al. (2017) observed when they
scaled batch size in supervised tasks.

Enhancing the richness of the environment signal doesn’t prevent the collapse, instead, it
can speed it up When we train PPO on unscaled RGB frames, policy feature rank and episodic
return collapse faster than the baseline, and the norm of policy preactivations increases rapidly.
Unpreprocessed inputs, like full-resolution RGB frames or unclipped rewards, increase the number
of available features and targets, which in turn gives the network more opportunities to overfit.
Instead of preserving plasticity, this added complexity accelerates its collapse. By contrast, Ma
et al. (2023) show that data augmentation (another technique to increase input variability) is critical
in visual RL: introducing controlled perturbations prevents overfitting and helps maintain good
feature representation metrics. Consequently, it makes sense that simply feeding unpreprocessed
signals causes the network to overfit more quickly. Hence, we show that increasing input and reward
complexity amplifies plasticity loss, underscoring the importance of resorting to visual preprocessing
such as gray-scaling or reward clipping or using techniques like data augmentation.

4.2 Loss-level interventions impact different plasticity metrics differently

Weight based: AdamW, L2init and Parseval Each of the three weight-based regularization
interventions displays different dynamics that illustrate how penalizing weights influences plasticity
in deep RL. AdamW loses plasticity when the number of epochs is increased. When this happens,
unlike with Adam, the weights of the network decrease significantly because of the weight decay.
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Figure 2: Data-Level interventions on Phoenix (4 vs. 8 epochs) Larger batches improve performance up to
100 M steps and delay collapse—maintaining high pre-activation norms and delaying rank loss—as shown by an
8-epoch feature-rank decline or a late-training capacity-loss rise. Giving raw full-RGB inputs leads to faster
representation collapse, suggesting stronger overfitting between distribution shifts.
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Figure 3: Weight-level auxiliary loss interventions on Phoenix for 4 and 8 epochs. Parseval shows the
tightest control over weight norms, maintains nearly zero dead neurons, and keeps the actor’s gradient norm
stable—effectively preventing any plasticity collapse. L2Init also avoids collapse: it keeps high weight norms
in both the actor and critic, while keeping the actor’s gradient norm steady. In contrast, AdamW acts like the
baseline under high-epoch training: the actor’s weight norm drops and the number of dead neurons rises sharply.

Interestingly, even though the weights decrease continuously until only unregularized biases are
left, the network is not able to find useful parameters during this decrease and return to non-trivial
gradients and recover from the collapsed state. In fact, we can describe the dynamics of weight
magnitude when training with AdamW precisely. We know that all of the neurons are dead, so the
gradient in all layers before the classification layer will be 0. As a result, parameter updates come
only from Adam’s exponential moving average and the L2 weight penalty. After many gradient
iterations with 0 gradient, the exponential moving average will be close to 0 and the only change will
be from the L2 penalty. See Figure 3, actor and critic weight plots. In contrast, L2init pulls weights
toward their initial nonzero values, and Parseval uses orthogonal initialization, starting with a higher
initial weight norm, and is considered a good plasticity-preserving regularization, looking at plasticity
indicators such as high and stable policy feature rank (Moalla et al., 2024), low weight norm (Kumar
et al., 2023), and low number of dead neurons (Juliani & Ash, 2024). However, these metrics alone
don’t always give decisive conclusions (Lyle et al., 2023). We observe good metric results when
using adapted Parseval regularization to convolutional layers, even though it was originally designed
for linear layers (Chung et al., 2024); in the case of convolutions, we cannot claim that the function is
being regularized toward Lipschitzness as we can do with linear layers (Chung et al., 2024).

Feature based: PFO and InFeR In this study, we apply PFO (Moalla et al., 2024) to both the
actor and critic networks—unlike Moalla et al. (2024), who only regularize actor. While their results



suggest that targeting the policy alone can help with plasticity loss, we intentionally extend PFO to
the critic to match our study design. We observe more plasticity loss and an eventual collapse in
one environment (Fig. 29) by applying PFO on both actor and critic networks than just applying
it to the actor. We hypothesize that over-constraining the critic might actually be disadvantageous,
which echoes with the work of Liu et al. (2019). InFeR (Lyle et al., 2022) was originally designed
for value-based methods, but here we apply it to both actor and critic. Even when used outside its
original setting, InFeR reduces plasticity loss, showing that keeping features close to the initial model
can also help the actor.

Output-based methods: CHAIN and CHAIN-SP The main goal of CHAIN is to reduce output
churn—the undesired change in a model’s outputs on data outside of the training set which emerges
after the parameter update.

To mitigate the churn of the models, Chung et al. (2024) introduce an auxiliary loss that penalizes
changes in the model’s predictions on a held-out batch B; not used for training. Specifically, the
CHAIN loss is defined as the average distance between the outputs of the reference models ((Vw;—l (s),

Tgi-1 (s)) for CHAIN or (V,,, (s), 7, (s)) for CHAIN-SP) and current ((V,(s), mg(s))) models.

Both CHAIN and CHAIN-SP show systematically lower Bgimplc at early epochs and higher values
later, in contrast to the baseline, whose Bgimple drops right around collapse (Fig. ??).

CHAIN Reference models in the original CHAIN (Tang & Berseth, 2024) are the last minibatch
update models, giving the loss

. 1 1
Leuan = @ Z KL(WO(S)H%;*(S)), L(‘Z/HAIN = @ Z (Vwifl(s) - Vw(S))Q
(s,a)€EB; (s,a)EB;

In Chung et al. (2024), CHAIN regularization in PPO experiments was only applied to actor and the
loss scaling was in most cases dynamic to keep approximately the same ratio to the PPO loss during
training. In our setup, we regularize both actor and critic and fix the loss scaling coefficient to have a
fair comparison with other interventions.

CHAIN-SP Building on this work, we introduce CHAIN-SP (CHAIN Sampling Policy), whom
reference models are the sampling policy models, yielding the loss:

x 1 1
Léuan-sp = @ Z KL(7g(s)||mo, (s)), LEZ/HAIN—SP = @ Z (Vi (s) — Vw(s))Q
(s,a)€B; (s,a)€By

CHAIN-SP regularizes more strongly than CHAIN, as it regularizes towards an older version of the
network. This likely explains its better plasticity metrics across environments.

On NameThisGame, however, we observe that CHAIN-SP collapses. We note that it happens in
a very specific case. The collapse in CHAIN-SP is likely due to the strong regularization of critic
towards the sampling parameters. To prove that, we separately ablate critic regularization and change
the objective of regularization. When using CHAIN — which regularizes towards the previous
minibatch’s model outputs — and keeping critic regularization, no collapse occurs. Similarly, the
collapse doesn’t happen when disabling the critic’s auxiliary loss by setting its weight to zero in
CHAIN-SP. The collapse of PFO on NameThisGame, which also regularizes critic features towards
the sampling policy, supports our hypothesis.

A closer analysis shows that the distinct reward structure of NameThisGame leads to different training
dynamics. The value loss is an order of magnitude higher and the PCA rank of value features is an
order of magnitude lower than in Phoenix during training (Fig 39). This suggests that CHAIN-SP’s
strong regularization has irreversibly damaged the already weak value function representations.

We also note that within the 100M environment steps range, CHAIN-SP only collapses on low epochs.
This type of collapse is different from the baseline collapse which happens only on high epochs and
it can’t be associated with overfitting (Nikishin et al., 2022).

A collapse occurring with the use of universal hyperparameters, which could have been avoided by
setting the critic’s loss coefficient to zero or by thoroughly tuning specifically for NameThisGame,
highlights the importance of careful hyperparameter tuning for auxiliary-loss interventions.
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Figure 4: Auxiliary loss interventions on Phoenix, 4 and 8 epochs Compared to the baseline, CHAIN-SP,
CHAIN, and Parseval all lead to improved representations and prevent performance collapse when we increase
the number of epochs to 8. InFeR prevents collapse while having a relatively low policy feature rank and a
high capacity loss policy. L2init and PFO on actor and critic produce stronger representations, though without
performance improvement.

4.3 Normalization layers

LayerNorm, a simple but effective intervention LayerNorm (Ba et al., 2016) standardizes each
layer’s pre-activations before the nonlinearity and applies learnable scale -y and bias 5. LayerNorm (i)
reduces gradient covariance and prevents large gradient norms (Lyle et al., 2023), (ii) mitigates “unit
linearization™ by stabilizing the pre-activation distribution (Lyle et al., 2024b), and (iii) reactivates
dead ReLU units by guaranteeing nonzero normalized gradients even when pre-activations would
be negative (Lyle et al., 2024a). Klein et al. (2024) provide a short summary of these results. In our
experiments, LN maintains feature rank and prevents representational collapse, even as the norm of
the pre-activation features of policy grow over time (Fig.15). Removing the learnable scale (LN-NS)
still enforces zero-mean, unit-variance but doesn’t necessarily preserve rank and has a lower capacity
loss than LN with learnable scale. Without the scale parameter, LayerNorm outputs are normalised to
mean 0 and standard deviation 1. There isn’t a learned multiplier to make some features bigger or
smaller. This can reduce differences across features (so rank isn’t preserved), but it makes gradient
magnitudes more consistent (i.e., more stable), but it also makes the model easier to fit to random
targets than with LN-S — hence lower capacity loss. Overall, inserting LN before each activation
gives a robust, high-rank representation throughout deep RL training.

Other normalization layers BatchNorm helps training at first but it hurts model’s plasticity over
time. Studies show that normalizing across each mini-batch smooths the loss surface and makes
gradients smaller, which keeps weights from changing enough to fit new data (Santurkar et al., 2018).
Previous work have shown that in continual learning, models with BatchNorm lose accuracy on later
tasks faster than models without it or with LayerNorm (Dohare et al., 2023a). In our PPO-Atari tasks,
policies using BatchNorm always show higher capacity loss and have larger preactivation norms than
both baseline and LayerNorm policies, even when returns stay stable on NameThisGame. Overall,
BatchNorm stabilizes training early but reduces long-term plasticity, and methods like LayerNorm
work better when the network needs to keep adapting over time.

LayerNorm with auxiliary interventions: combining different strengths Combining LN with
additional loss-level or regularization techniques can further enhance plasticity, though not all pairings
succeed. Since the precise mechanisms behind plasticity loss remain uncertain and likely involve
multiple factors (Lyle et al., 2024b), it makes sense to combine methods that each address particular
aspects of this degradation. Accordingly, various interventions, like Normalize-and-Project (Lyle
et al., 2024a)—couple pre-activation normalization with a projection step that rescales each weight
matrix to unit Frobenius norm. Klein et al. (2024, Section 6.9) provides an exhaustive list of combined
methods. We note that many of these approaches use LN as a foundation because of its benefits, and
we follow the same strategy. When integrating LN with CHAIN-SP, we get higher returns, more
stable feature rank, and lower capacity loss than LN alone. We hypothesize that this is due to different
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Figure 5: Reward and SVD statistic for Phoenix on 6 epochs. Using InFeR, only a small subspace remains
that keeps almost all of the PCA information about the policy feature matrix. We suspect that the policy PCA
rank is hovering above 10 because 10 is the dimension in which we try to keep the output features in InFeR. See
Appendix G.3 for the plots on other environments.

ways these modifications affect training: LayerNorm smoothes out the loss function and PFO and
CHAIN-SP don’t allow actor and critic drift too much during training.

4.4 Dynamics over magnitudes

We observe that an increase in the policy network’s pre-activation norm with a decrease in its feature
rank correlates with future reward collapse, indicating that it seems to be the dynamics of these
metrics during training, not their values that matter. Different papers use different rank definitions
(e.g., singular-value—based stable-rank vs. PCA-based rank; see Moalla et al., 2024, App. D), and
this choice strongly affects how one interprets collapse. For example, using InFeR we aim to preserve
a low-dimensional subspace from the initialization, yet training never collapses, showing that high
PCA feature-rank is not necessary for stability (Fig. 5). We suspect that the PCA rank hovers around
10 because InFeR regularizes policy features towards a 10-dimensional subspace (10 auxiliary heads).
At the same time, the normalized SVD-based rank (which highlights that most singular values are
relatively small but separated from zero; see Lyle et al., 2022) seems more appropriate to monitor the
collapse (Fig. 5). In a similar way, LN-NS has a low policy PCA feature rank for several settings (Fig.
14, 15, 20, 21) without any reward collapse or capacity-loss increase. LayerNorm, too, has a steadily
increasing norm preactivation policy without collapse as shown by Lyle et al. (2024a). In short, it
seems to be more about iow which rank and norm evolve across epochs (rapid rise or fall rather than
plateaus or slow changes) that seems to correlate with plasticity loss, rather than their static values.
We can draw this conclusion thanks to our comprehensive list of interventions and plasticity metrics.

5 Related Work

Large batch sizes with distributed training High-throughput agents such as IMPALA (Espeholt
et al., 2018) and SEED RL (Espeholt et al., 2019) collect millions of frames per second using
hundreds to thousands of actors, and large-scale projects like OpenAl Five and AlphaStar trained for
months using massive batches across distributed workers (Berner et al., 2019; Vinyals et al., 2019).
These systems show that large batches can support sustained learning in practice without apparent
loss of plasticity. However, since none of them report plasticity-related metrics, such as feature rank
or dead neurons, it remains unclear whether such training avoids plasticity loss. Building on the idea
that higher throughput might prevent plasticity collapse, Mayor et al. (2025) show that, with a budget
of 100 million steps, collecting 2048 transitions per update (16 environments x 128 steps) and using
minibatches of 512 samples preserves feature rank and prevents weight-norm spikes. In our setting,
with a doubled budget of 200 million environment steps, collecting 8192 transitions per update (64
envs x 128 steps) and using minibatches of 2048 samples, we still observe feature-rank collapse
when we increase data reuse by raising the number of epochs (see Fig 50). Hence, increasing the
batch size seems to only help up to some limits by delaying the collapse.

Normalization-centric architectures and impacts across observation and action spaces Recent
works suggest that architectural choices, especially normalization layers, impact training stability
in various domains, which can be related to preserving plasticity. In continuous control with vector
state representations, Nauman et al. (2024b) show that adding LayerNorm after every dense layer
plus lightweight decay lets SAC critics grow to 26M parameters without gradient spikes or value
overestimation, and Nauman et al. (2024a) also that applying LayerNorm boosts performance
without introducing value overestimation, making pessimistic Q-learning unnecessary. Without such
intervention, Dohare et al. (2023b); Moalla et al. (2024) report performance collapse due to plasticity
loss when training PPO agents on MuJoCo. Lyle et al. (2024b) sheds light on the connection between



stability and plasticity, showing that training instabilities such as abrupt weight updates create dead
neurons and lead to plasticity loss. Hence, keeping those updates stable prevents the increase in
dead neurons and thus preserves plasticity. Neither of these works studying normalization, however,
evaluate pixel-based or discrete-action environments, leaving it unclear whether normalization offers
the same stability and plasticity benefits in those environments. In this work, we apply the same
LayerNorm recipe to pixel-based, discrete-action agents and find that it prevents the loss of plasticity
in those environments. Our pixel—only results complement these vector-state findings and provide
baselines for future cross-domain studies.

Reset-style interventions Several approaches have been proposed to recover representation capacity
once neurons become inactive. They fit in a different family than the three families of interventions we
study in this work and are termed reset methods (Farias & Jozefiak, 2024). Continual Backpropagation
(CBP) (Dohare et al., 2021, 2024) computes a running utility score—a moving average of how often
a neuron fires times the strength of its forward connections—for every neuron and, at every training
step, resets the few neurons with the lowest scores to fresh random weights;, without changing the
network’s size. ReDo (Sokar et al., 2023) periodically scans the network; at each pass it identifies
any neuron whose current normalized mean activation on the mini-batch falls below a threshold 7 as
T-dormant, then simultaneously re-initializes the incoming weights (and zeroes the outgoing ones)
of all such neurons. Capacity is therefore restored only after dormancy is observed, not in advance.
Self-Normalised Resets (Farias & Jozefiak, 2024) monitor neuron firing rates (fraction of recent inputs
for which that ReLU’s output is positives) and reset a neuron’s weights when that activity drops to
zero, preventing plasticity loss in continual learning tasks. Neuroplastic Expansion (Liu et al., 2024)
adds new neurons instead of resetting old ones, and the authors show it helps in MuJoCo. Although
these interventions are popular in the literature and provide effective mitigation strategies, we do not
investigate them in the scope of this work which is focused on studying continuous stable changes
during training to keep neurons active rather than ad hoc resets. We believe continuous interventions
are closer to biological neural networks which rely on gradual processes such as homeostatic plasticity,
a slow feedback that scales synapses to keep firing rates near a target rate - average firing level a
neuron tries to stay at, (Tononi & Cirelli, 2003; Surget & Belzung, 2022; Turrigiano, 2008).

6 Conclusion

We empirically evaluate eighteen data-level, auxiliary-loss, and normalization interventions on
plasticity loss for PPO in ALE, including our new CHAIN-SP loss, and introduce a framework for
classifying auxiliary losses. We find that simple churn-reduction losses and LayerNorm yield the
strongest performance and show that standard plasticity metrics—dead-neuron number and policy
PCA rank—become misleading. Based on these results, we recommend LayerNorm, a carefully
tuned churn-based loss, and larger batches to improve stability and preserve plasticity. Finally, our
classification framework lays the groundwork for future methods.

Limitations We show that applying considered interventions—LayerNorm, churn-based loss, and
larger batch size—consistently improves PPO performance on the pixel-based ALE benchmark.
But whether these gains carry over to value-based algorithms such as DQN, off-policy actor-critic
methods like SAC, continuous-control domains, or non-vision tasks remains an open question.
Furthermore, we establish a baseline by selecting all hyperparameters from results on the Phoenix
game (see Appendix D.3), but per-game or joint tuning across multiple environments could uncover
configurations that further enhance sensitive methods such as PFO or CHAIN-SP. We apply all
interventions to the actor and critic jointly, however testing them on only one component could
change their effects and clarify how each intervention separately influences policy learning and
value estimation. We investigate data strategies, auxiliary losses, and normalization techniques; yet
evaluating alternative architectures, off-policy data, broader algorithm and task suites, additional
metrics, and other intervention types is still required to generalize our conclusions beyond our case
study.
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A The role of the reward structure in plasticity collapse

Baseline: dense vs. sparse. We study how plasticity-related metrics relate to reward structure using
a baseline PPO agent, grouping tasks as dense (Phoenix, NameThisGame) and sparse (Gravitar).

Scope note. Our dense/sparse split uses two dense games (Phoenix, NameThisGame) and one sparse
game (Gravitar); conclusions for sparse rewards are therefore illustrative and may vary with other
sparse environments.

What we see (baseline). Across epochs, dense and sparse behave differently (Fig. 6):

1. Policy feature rank (PCA) drops much faster in dense. In Gravitar it decays more slowly
even at high epoch.

2. Policy preactivation norm grows quickly in dense but only slowly in sparse and thus also
across all epochs.

3. Dead policy neurons rise faster in dense than in sparse across all epochs.

Other monitored metrics do not show a consistent baseline pattern.

Why this pattern is expected. Dense tasks provide frequent, informative rewards. Under PPO this
means more (and larger) updates per epoch, so representations move faster: feature rank collapses
sooner, activations grow, and more units go inactive. Increasing the epoch budget compounds these
effects in dense tasks, hence the visibly faster collapse. In sparse tasks, useful updates are rarer and
noisier, so the same increase in epochs leads to fewer effective updates; metrics still drift in the same
direction but with a much smaller slope.

Main takeaways (beyond baseline). Within each reward regime (Tab. 3), higher policy PCA
rank and policy variance track higher reward, while dead neurons and large pre-activation norms
track lower reward; the pattern is clear in dense and weaker (sometimes flipped for dead neurons)
in sparse. By environment (Tab. 4), Phoenix shows faster drift toward collapse as the number of
epochs FE increases, Gravitar trends the other way, and NameThisGame is mixed. Interventions
that stabilize features and scales (larger batches, normalization, CHAIN-SP) help more in dense, and
they shift plasticity in the desired direction (higher policy rank, fewer dead neurons), producing larger
dense—sparse gaps (Tabs. 5, 6). Why does reward structure matter here? Beyond update frequency
(baseline), the key is credit assignment strength: dense rewards give consistent, fine-grained signals
that select which features stay active and useful. Runs that keep many distinct policy features (high
rank) and maintain action diversity get reinforced and earn higher reward; collapse (dead neurons,
blown-up pre-activations) is penalized. In sparse rewards, feedback is rare and noisy, so many updates
carry too little information to point to the helpful features; links to rank and variance are weak, and
the number of dead neurons can still go up even though we never prune: some ReLU units just stop
firing because their inputs stay non-positive. Methods that clean up gradients or stabilize scales raise
the effective signal-to-noise of credit assignment, so they yield bigger gains where feedback is already
informative—dense.

Summary. Dense tasks collapse faster as epochs increase. Rank gap and policy PCA rank track
reward in both regimes (stronger in dense). Dead units are regime-dependent. Interventions that
stabilize features (larger batch size, normalization layers, CHAIN-SP) improve reward and reduce
collapse markers, with larger effects in dense.

— Gravitar (4 epochs) - Gravitar (6 epochs) - Gravitar (8 epochs) — NameThisGame (4 epochs) - NameThisGame (6 epochs) - NameThisGame (8 epochs) — Phoenix (4 epochs) = Phoenix (6 epochs) -:- Phoenix (8 epochs)
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Figure 6: The 3 environments without any interventions with 4, 6 and 8 epochs.
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Note on comparability. Absolute PCA ranks are not directly comparable across environments
because input statistics and action spaces differ. We therefore report within-environment changes
(deltas vs. that env’s baseline).

Metrics Dense Sparse
Rank Gap 0.583#%*  (0.299%%*
PCA Rank (Policy) 0.515%%*  (.328%*%*
PCA Rank (Value) -0.051 0.033
Policy Variance 0.423***  0.146
Dead Neurons (Policy) -0.398%**  (.257%#%*
Norm Preac. Policy -0.176%*  -0.238%%*

Table 3: Spearman correlation between metric and normalized reward within dense/sparse groups. Stars:
Pp<.01%%, p<.001%*%,

Env PCA Rank (Policy) Policy Variance Dead Neurons (Policy) Norm Preac. Policy Rank Gap
Gravitar 21.824 -0.001 -2.85 -186.757 22.68
NameThisGame 11.684 -0.002 5.102 672.438 12.414
Phoenix -4.916 -0.005 22.576 390.948 -4.144

Table 4: Slope per epoch by environment (positive means the metric increases with more epochs).

Group  Rank @4 epochs @6 epochs @8 epochs
Dense 1 Larger Batch Size (+1.228) Larger Batch Size (+1.069) CHAIN-SP (+0.655)
2 CHAIN-SP (+0.497) LayerNorm+CHAIN-SP (+0.764)  LayerNorm+CHAIN-SP (+0.562)
3 LayerNorm (+0.497) LayerNorm No Scaling (+0.631) Larger Batch Size (+0.529)
Sparse 1 Larger Batch Size (+0.153) Larger Batch Size (+0.165) CHAIN-SP (+0.123)
2 PFO (+0.109) LayerNorm (+0.128) Larger Batch Size (+0.096)
3 No reward clipping (+0.007) CHAIN-SP (+0.116) LayerNorm+CHAIN-SP (+0.090)

Table 5: Top-3 interventions by A normalized reward within each reward structure (median vs. baseline).

Intervention @4 epochs @6 epochs @8 epochs
Larger Batch Size +1.075 +0.905 +0.433
LayerNorm +0.653 +0.492 +0.420
CHAIN-SP +0.562 +0.454 +0.531
RGB+No Resize —0.156 +0.004 +0.001

Table 6: Dense — Sparse gap in A normalized reward (median vs. baseline). Positive = helps dense more.

B Which studied metric best captures plasticity?

Setup. We fit two generalized linear models (GLMs) over all environments (Phoenix, Name-
ThisGame, Gravitar), epochs (4/6/8), and interventions. The first predicts final human-normalized
reward; the second follows the “Juliani-style” target (Juliani & Ash, 2024), i.e., change from
round 1 to end of training. We define round 1 as the subset of each run with global_step <
0.10 max(global_step), and we report its score as the mean episodic return over the final 5% of
that subset. For each run we aggregate metric values over the last 5% of steps, standardize predictors
within-environment, and include environment/epoch controls for the final-reward model (dropped for
the Juliani target).

We report HC3 heteroskedasticity-consistent standard errors, which are recommended when residual
variance can differ across runs and leverage may vary (Long & Ervin, 2000).2

We aggregate to one observation per run (env x seed X intervention), so within-run dependence is removed.
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To address multiple comparisons across metric coefficients, we control the false discovery rate
using the Benjamini—-Hochberg (BH) procedure at g=0.05, which provides powerful inference while
bounding the expected proportion of false discoveries (Benjamini & Hochberg, 1995; Fan, 2016).

What we report. Below we explain each column shown for the GLM table so it’s clear how to
read the results.

* Bsta — Standardized GLM coefficient (features are z-scored, i.e. © — (x — pz)/0, SO
each predictor has mean 0 and standard deviation 1). Bigger |Sq| means a stronger effect.
Positive means higher metric = higher normalized reward (all else equal).

* ¢ — FDR-adjusted p-value (Benjamini—-Hochberg). Smaller is better. We treat ¢ < 0.05 as
statistically significant.

. ARidj — Drop in adjusted R? if we remove this metric from the model:
ARaZdj = Rfdj(full) - Rfdj(minus this metric).
Larger values mean the metric adds more unique explanatory power.

* Rank — Importance rank (lower is better), combining |Sq| and ARfdj; ties are broken by
smaller q.

Main findings Across both targets, higher policy PCA rank and non-trivial policy variance are
the strongest signals: they have the largest standardized coefficients in our GLMs. Signals about
spectrum shape line up too—lower top eigenvalue (\y) helps, and stronger second eigenvalue
(A2) is modestly good—while simple scale terms (e.g., critic weight norm) only add a little once
rank and variance are in. Capacity/instability markers like capacity loss and dead units hurt or add
little after the main signals. Why? The visuals suggest a simple mechanism: higher policy rank ~
richer features; higher action variance ~ healthier exploration; together they lift reward. Large Ay
and capacity loss look like instability or collapse that the GLM learns to down-weight. In practice,
if you can only track a few things, log policy PCA rank, policy variance, and a simple stability
proxy (A\a/An or capacity loss); the rest contribute marginal gains once these are present.

Table 7: Final-reward GLM.: top predictors (standardized design). Lower g and higher ARfdj indicate stronger
signal.

Metric (short) Bstd q ARfdj
Policy PCA rank 0.183 1.0 x 107 0.0465
Critic weight norm 0.084 1.9 x 107 0.0201
Policy variance 0077 1.7x107° 0.0178
A2 (policy) 0.083 1.2x107* 0.0151
AN (policy) —0.065 1.4 x 1077 0.0145
Capacity loss (policy) —0.061 6.0 x 1072 0.0139
Value PCA rank —0.062 3.2x107° 0.0138

Table 8: Juliani-style GLM (final — round 1): top predictors. Coefficient scales differ from the final-reward
model; compare ARfdj.

Metric (short) Bt qg A Rfdj
Policy PCA rank 942.19 2.0 x 107%  0.0374
Policy variance 596.30 7.0 x 1075 0.0328
Critic weight norm 506.04 2.3x107%  0.0221
AN (policy) -441.17 5.5 x 1074 0.0190
A2 (policy) 406.52  1.42 x 1072 0.0095

Capacity loss (policy) ~ -317.59  1.00 x 1072 0.0109
Dead neurons (policy) -330.44  5.95 X 1072 0.0056

C Breaking Down Batch Size Improvements

Bigger batches can help for two main reasons: more parallel environments (#Envs) give more diverse
data per update, and larger minibatches (MB) reduce gradient noise. Longer rollouts (R) and extra
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epochs (E) can also change the outcome. To separate these factors, we run the matched settings in
Table 9. The Baseline uses 8 envs, MB=256, R=128 with E € {4, 6, 8}. Larger Batch Size scales
both diversity and averaging (64 envs, MB=2048, same R); Larger Batch Size, 4 is the half step (32
envs, MB=1024). To isolate the minibatch effect at fixed diversity, Larger Batch Size, MB4 keeps 8
envs and R=128 but sets MB=1024; MB4, R4 lengthens the rollout to R=512; and MB8, R8 pushes
MB and R further (MB=2048, R=1024) with 8 envs. We compare both reward and plasticity metrics
across these matched runs, holding the overall training budget (env steps) fixed, to see whether gains
track MB (noise reduction), #Envs/R (data diversity), or E (data reuse).

Experiment Epochs Envs Minibatch Rollout per Gradient
(E) (MB) Env (R) Steps
Baseline 4,6, 8 8 256 128 4
Larger Batch Size 4,6,8 64 2048 128 4
Larger Batch Size, 4 4,6,8 32 1024 128 4
Larger Batch Size, MB4 4,6,8 8 1024 128 1
Larger Batch Size, MB4, E4 16, 24, 32 8 1024 128 1
Larger Batch Size, MB4, R4 4,6,8 8 1024 512 4
Larger Batch Size, MBS, R8 4,6, 8 8 2048 1024 4

Table 9: Batch-
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Figure 9: Plasticity metrics tracked for the ablation on bigger batch size, Phoenix, 8 and 32 epochs.

What changes with each factor?

1. Minibatch size positively affects training. Increasing the minibatch size to 1024 from the
default value of 256 leads to better perfomance in low epoch runs and slower collapse in
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higher epoch ones (Figures 7 and 9). The same trend holds when comparing runs with
mini-batch size 1024 and 2048.

2. The way batch size is increased doesn’t matter Batch size can be either increased by
adding new environments or extending the rollout lengths. To test the way each of these
increasing methods works, we can consider pairs (Larger Batch Size, 4; Larger Batch Size,
MB4, R) and (Larger Batch Size; Larger Batch Size, MBS, R8) (see Table 9). In each of
them, the runs have the same minibatch size and number of gradient steps per batch, but
they differ in the way the batch size is increased. From our results, we see that no matter the
increasing method, the performance and collapse trends are similar (Figures 7, 8 and 9).

Higher data-reuse setting (E=8). At the same 10® env steps but with more reuse per update
(E=8), the differences sharpen. MB4 remains stable when looking at plasticity metrics, whereas
both MB4, R4 and the half Larger Batch Size collapse. Even the full larger batch and MB8, R8
partially degrade at the end of the curve and when looking at the feature rank policy (PCA). These
effects of high epochs are even sharper when looking at the MB4-E4 curves when none of them
really converge and where the collapse happens at the really beginning of the training. This points
to a simple story: longer rollouts and heavier reuse can hurt plasticity under the same interaction
budget, and the most reliable stabiliser is the larger minibatch (better gradient averaging), not just
more diverse or longer trajectories.

Takeaway. Bigger batches improve plasticity mainly because the minibatch is larger (better
gradient averaging). In our matched-budget runs, MB-only (#Envs fixed) reproduces most of the
gains seen with the full larger-batch setting and stays robust at the end of training.

D Study and methods details

D.1 Experimental setup

We follow the experimental protocol in Moalla et al. (2024) and train PPO on Phoenix, NameThis-
Game and Gravitar from the Arcade Learning Environment (ALE). Following Aitchison et al. (2023),
we selected NameThisGame (Atari-1) and Phoenix (the next one to form Atari-3) because together
they achieve a high predictive correlation to the full 57-game suite, and include Gravitar to form
the third environment, as a sparse-reward environment which among sparse ALE games has the
highest correlation with full-suite performance, making it a representative sparse task. Furthermore,
we want to see if the claims of Moalla et al. (2024) regarding the critic collapsing before the actor
in this environment hold for our interventions, which we apply to both the actor and the critic, in
contrast to Moalla et al. (2024), who only apply the interventions to the actor. In this protocol, we
add stochasticity to transitions, in an otherwise deterministic ALE, by repeating the previous action
independently of the action that the agent played with probability 25% (sticky actions). We use three
seeds for each hyperparameter configuration and show the average result with a shaded area bounded
by the minimum and maximum values. Actor and critic have separate trunks, because shared trunks
lead to interference between policy and value objectives, which can hurt performance (Cobbe et al.,
2021). Moreover, we observe that the baseline converges in all environments, so our training budget
is sufficient to train two trunks. The default number of epochs for the ALE benchmark is 4 (Huang
et al., 2022), and to amplify the effect of non-stationarity, we run each experiment with 4, 6, and
8 epochs. Runs with 6 and 8 epochs tend to have a worse performance, but the collapse in them
happens faster, allowing us to analyze the degradation of metrics within our sampling budget. A more
rapid collapse with the increased number of epochs can be explained by overfitting, so we expect
to see similar dynamics as in the works that studied training in an overfitting regime (Moalla et al.,
2024; Nikishin et al., 2022).

D.2 Interventions

We organize interventions according to the three categories (1) data (input), (2) auxiliary losses
(output), and (3) normalization layers (architecture), and include a fourth category for combinations
of normalization layers with auxiliary losses. Each intervention is evaluated against our plasticity
metrics under a unified PPO framework. In contrast to Moalla et al. (2024), we apply the interventions
to both the actor and the critic, which have separate networks. By developing the auxiliary-loss
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taxonomy in Figure 1, we reveal a large region of unstudied loss functions and introduce a new
CHAIN-based intervention, CHAIN-SP. We provide a comprehensive experimental design and the
complete set of individual result plots in Appendix F, G. Table 2 presents a summary of the methods
we test, with detailed experimental descriptions available in Appendix F. Figure 1 presents the
summary boxplots, showing the effect of each intervention on episode return, feature rank (PCA),
capacity loss, and the number of dead neurons in the policy.

D.3 Hyperparameter Tuning

We use a rigorous, multi-step protocol to tune the actor and critic networks’ hyperparameters for
each auxiliary-loss intervention (Table 2). First, we optimize the actor hyperparameters over a
logarithmically spaced range (810 values) on the Phoenix environment for 6 epochs (3 x 107 steps),
while keeping the critic hyperparameters fixed. After identifying the optimal actor hyperparameters
and verifying its stability over an extended training period (1 x 108 steps), we tune the critic
hyperparameters using a similar approach. To ensure generality, we refine the actor settings by
testing values right above and below the optimum across three distinct environments, and confirmed
robustness using multiple random seeds. Full details of the tuning procedure are provided below:

D.3.1 Hyperparameter tuning protocol

In order to robustly tune the hyperparameters of each auxiliary-loss interventions, we followed
a multi-step protocol. First, we tuned the actor network hyperparameters while keeping the critic
hyperparameters fixed. Then, we performed a complementary tuning of the critic hyperparameters
using the optimal actor settings. The detailed protocol is as follows:

1. Initial Actor Hyperparameter Selection. We selected a broad range of possible values for
the actor network hyperparameters. They are 8-10 consecutive powers of 10. In this initial
phase, the critic hyperparameter was fixed to 0.

2. Actor Hyperparameter Tuning on Phoenix. The actor hyperparameters were evaluated on
the Phoenix environment over 6 epochs, corresponding to approximately 3 x 107 steps. The
best-performing actor hyperparameter was identified based on our performance metric. To
ensure that the optimal value was not an artifact of the chosen range, if the optimum was
observed at the boundary of the range, the range was extended and the new values were also
evaluated and thus up until finding an optimal value not on the boundary of the range.

3. Extended Stability Verification. Using the best actor hyperparameter identified in Step
2, we run a longer training for 1 x 10% steps with a single seed. This is to ensure that the
performance did not collapse over longer training horizons.

4. Critic Hyperparameter Tuning. With the actor hyperparameter fixed to the optimal value
from Step 2, we then selected a broad range of candidate values for the critic hyperparameter,
again on a logarithmic scale. Similar to Step 2, experiments were run on the Phoenix
environment for 6 epochs (up to 3 x 107 steps), and the best critic hyperparameter was
determined based on the performance metric. As before, if the optimum was located at the
range boundary, we then extended the range and tested the new values.

5. Multi-Environment Evaluation. In order to really optimize the actor hyperparameter, we
consider 1-2 values immediately below and above the optimal value identified in Step 2
(again in logarithmic scale). The new actor hyperparameters were tested with the optimal
critic hyperparameter (from Step 4) across 3 distinct environments. In each environment,
training was conducted for 6 epochs (up to 3 x 107 steps) to test generality.

6. Final Hyperparameter Selection. The hyperparameter configuration that consistently gave
superior performance across all 3 environments was selected. In the ideal case, a single
hyperparameter value is optimal for all environments.

7. Robustness and Generalization Test via Multiple Seeds. Finally, complete runs were
conducted using multiple random seeds to evaluate the reproducibility, robustness and
generalization of the selected hyperparameter configuration.
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D.4 Additional details on our experimental setup

We use the hyperparameters detailed in Table 10 when training the baseline PPO agent in ALE.

E Metrics details

E.1 Dead neurons

We call a neuron dead if it does not activate any sample from the batch. Because in all our modifi-
cations we use ReLU activations, that is equivalent to all of the pre-activations of the neuron in the
batch being non-positive, as proposed by Gulcehre et al. (2022).

E.2 Feature rank

In deep reinforcement learning, the activations of the penultimate layer are treated as the network’s
features, which on a batch of N states form a matrix ¢ € RNV*P with D < N Kumar et al. (2021);
Lyle et al. (2022); Gulcehre et al. (2022); Andriushchenko et al. (2023). Various feature rank metrics
quantify the “quality” of ® by examining its singular values {o;(®)}2 ,, including both relative
measures (e.g., approximate rank via PCA) and absolute measures (e.g., counting singular values
above a threshold) Lyle et al. (2022). The approximate rank (PCA) is defined as

k D
rankpca (®) = mink{ k- Zai(fb)Q > (1-19) ZO’j(‘I))Q},

with § = 0.01 to retain 99% of the variance Andriushchenko et al. (2023); Yang et al. (2020). An
example of an absolute rank metric is the Feature Rank of Lyle et al. (2022), defined as

!{2 :04(®)/VN > 5}|,

while the PyTorch rank counts indices i for which o;(®)/(c1(®)VN) > € (e.g.,e = 1.19 x 1077
Lyle et al. (2022). Absolute and relative rank measures, while yielding different numerical values,
exhibit highly correlated temporal trajectories that fall into two distinct clusters, as demonstrated by
Moalla et al. (2024) in Appendix E.

Furthermore, in the same study, Moalla et al. (2024) reveals that PPO agents also experience
feature rank deterioration—a decline in rankpca () over time—driven by non-stationarity in policy
optimization Moalla et al. (2024). They show that as rankpca (P) decreases, PPO’s heuristic trust
region degrades, ultimately causing performance collapse even when the critic remains strong Moalla
et al. (2024).

E.3 Capacity loss

Capacity loss—often called target-fitting capacity (see Lyle et al. (2022))—is evaluated on interme-
diate checkpoints of a network during training to track how its ability to match a fixed, externally
defined target changes over time. In other words, it provides a concrete measure of the model’s
plasticity. Concretely, given a pre-specified target distribution (over inputs and outputs) and a fixed
number of optimization steps, the capacity loss at a particular checkpoint is simply the loss incurred
when that checkpoint is trained (within the allotted budget) to reproduce the target.

In deep RL, one typically measures an agent’s capacity by asking it to fit the outputs of another
model whose parameters were sampled from the same initialization distribution as the agent, using
data collected from a rollout generated by this "random" model ((Lyle et al., 2022); (Nikishin et al.,
2023)). We adopt this approach here, so that the data used for fitting comes—on average—from the
same distribution as the agent’s initial checkpoint. When performing the fit, the critic is trained by
minimizing an L? (mean-squared) loss between its outputs and the target’s outputs, whereas the actor
is trained by minimizing the forward Kullback—Leibler divergence between the target policy and the
checkpoint’s policy.
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Table 10: Hyperparameters used when training the baseline for ALE.

Environment

Repeat action probability (Sticky actions) 0.25
3

Frameskip

Max environment steps per episode

Noop reset steps

108,000
0

Observation transforms

Grayscale True
Resize width (‘resize_w*) 84
Resize height (‘resize_h°) 84
Frame stack 4
Normalize observations False
Reward transforms
Sign True
Collector
Total environment steps 100,000,000
Num envs in parallel 8
Num envs in parallel capacity 1

Agent steps per batch

Total agent steps capacity
Models (actor and critic)

1.024 (128 per env)
36,000 (at least one full episode)

Activation ReLU

Convolutional Layers

Filters [32, 64, 64]

Kernel sizes [8, 4, 3]

Strides 4,2, 1]

Linear Layers

Number of layers 1

Layer size 512
Optimization

Advantage estimator

Advantage estimator GAE

Gamma 0.99

Lambda 0.95

Value loss

Value loss coefficient 0.5

Loss type L2

Policy loss
Normalize advantages

minibatch normalization

Clipping epsilon 0.1
Entropy coefficient 0.01
Optimizer (actor and critic)

Optimizer Adam
Learning rate 0.00025
Betas (0.9, 0,999)
Max grad norm 0.5
Annealing linearly False
Number of epochs 4,6,8
Number of epochs capacity fit 1
Minibatch size 256

Logging (% of the total number of batches)

Training
Capacity

every 0.1% (~100,000 env steps)
every 2.5% (41 times in total)
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LCP = Lgcp + L¢)cp

Capacity loss for the checkpoint cp, L°P, is optimized the same way as PPO using minibatches. For
each rollout we do 1 epoch of optmization.

Smaller values of L., indicate that the checkpoint cp has preserved more plasticity.

E.4 Discussion about other possible metrics.

Fisher Information Matrix (FIM) A useful extra metric is the Fisher Information Matrix (FIM),
which measures how sensitive the network is to parameter changes through the covariance of
the score (the gradient of the log-likelihood). Prior work reports a simple signal in the trace of
the empirical FIM during training: an early sharp rise (“memorization”) followed by a decline
(“reorganization’). The switch between the two can be picked up by looking at a smoothed time-
derivative of the trace. (Falzari & Sabatelli, 2025) We did not track FIM here, but adding it is practical:
an EKFAC-style approximation makes it cheap enough to log per layer or globally. In PPO, we would
compute the policy FIM as the on-policy empirical Fisher, i.e., the batch average of Vg logmy(a |
s) Vglogmg(a | s)T ; compute the critic FIM by modeling V;(s) as the mean of a Gaussian with
fixed variance o and using its Gauss—Newton/Fisher E[072V ,V;(s)VVs(s) "] (or the empirical
form ((y — V(5))/02)? VVs(s) VVi(s)T), averaged over the batch. This would complement
our current rank, dead neurons and norm metrics by adding a curvature view. Practically, the expected
overhead is about 10-20% of training time, and prior results suggest consistent actor—critic differences
(critic traces often about an order of magnitude larger) and sensitivity to the amount of data reuse
(replay/epoch ratio). (Falzari & Sabatelli, 2025).

Different types of rank. We track several rank metrics (PCA rank, torch algebraic rank, stable/s-
rank, feature rank, and effective/Vetterli rank), following Moalla et al. (2024); see their Appendix E
for definitions and details. They often differ because each summarises the singular-value spectrum
differently. For example, the stable rank srank(A) = || A||%/||A||3 is steady under tiny singular
values and changes smoothly as the spectrum decrease, so it works well as a noise-robust size measure.
By contrast, the algebraic rank can jump when one singular value passes a threshold. The effective
rank erank(A) = exp(H (p)) with p; = 0;/ 3, 0; tells how evenly the singular values are spread;
it usually lies between 1 and the algebraic rank (Roy & Vetterli, 2007). Our case study already covers
a broad set of rank metrics. As optional additions—useful if one wants extra nuance—it could help
to log two simple stable-rank variants that complement (not replace) what we have:

1. A normalised stable rank, srank(A)/ min{m,n}, to put layers of different sizes on the
same scale. (Sanyal et al., 2019)

2. A p-stable rank, sr,(A4) = Z(O’i /Omax)?. Here p=2 is the usual stable rank; p=1 is more
sensitive to the tail. (Ipsen & Saibaba, 2024)

Normalising stable rank would put layers on a common scale for clearer cross-layer and cross-run
plots; logging both sr_1 (tail-sensitive) and srank (p=2, more top-eigenvalue-oriented) would help
separate “spike growth” from “tail filling,” and both are cheap to add since they only require |A| x F’
and op,ax (Via a short power iteration). We do not include them by default because our current set
already captures the spectrum trends we study; these variants add finer detail but bring diminishing
returns, so we list them as optional complements for future ablations.

F Interventions

In this section, we provide some details on the interventions tested. We apply all modifications to
both the actor and the critic.
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F.1 Data-level modifications

Larger batch size We examine the impact of batch size on training dynamics. We increase it by
a factor of 8, but keep the number of gradient updates the same by increasing the minibatch size
by 8 as well. The only change for BATCH X 8 is that we collect eight times more transitions before
each optimization round by using eight times as many parallel environments and keep the number of
gradient steps constant by correspondingly using an eight-times larger minibatch, while maintaining
the same learning rate. The result is therefore more data per policy update round, the same number
of gradient updates per update round, but a lower number of policy update rounds overall. We
hypothesize that the noise in gradient updates would decrease, and thus the training will be more
stable.

RGB inputs unscaled To further investigate the richness of feature representations, we use colored
pixels inputs without image resizing compared to the baseline. Other image preprocessing parameters
are left the same.

No reward clipping. By default, we replace the reward by its sign. In this regularization, however,
we use the raw reward for training. We do that to test how an unpreprocessed signal affects training.

F.2 Loss function modifications

Regenerative Regularization We experiment with regenerative regularization (L2 Init) as proposed
in Kumar et al. (2023). We test regenerative regularization alone to evaluate its baseline effectiveness.
PFO. Proximal Feature Optimization (PFO) (Moalla et al., 2024) is a regularization technique for
stabilizing representation learning in PPO by constraining pre-activation drift during the policy
optimizations stage of the training. This approach mitigates plasticity loss, reduces the number of
dead neurons, and enhances feature diversity, effectively addressing performance degradation during
training.

InFeR. Initial Feature Regularization (InFeR) (Lyle et al., 2022) mitigates capacity loss by penal-
izing the distance between auxiliary outputs of current weights and initial weights. This stabilizes
feature dynamics, preserving plasticity and improving performance, particularly in sparse-reward
environments.

AdamW. AdamW (Loshchilov, 2017) is tested as a regularization technique analogous to regenerative
regularization, but instead, it encourages weights to remain close to zero.

F.3 Network architecture modifications

LayerNorm. LayerNorm, introduced by (Ba et al., 2016), is a widely used regularization technique
in deep learning. As shown by Lyle et al. (2022) and Juliani & Ash (2024), LayerNorm is effective in
mitigating plasticity loss during training for both off- and on-policy reinforcement learning. We also
test Layer Normalization without scaling (v fixed to 1, 3 fixed to 0).

BatchNorm. BatchNorm (Ioffe, 2015) is tested to assess its comparative performance against
LayerNorm. BatchNorm normalizes each layer’s pre-activations across the minibatch, reducing
internal covariate shift and smoothing the loss landscape. To evaluate its regularizing effect in
PPO, we insert BatchNorm layers immediately after each linear transform in both actor and critic
networks, keeping the learnable scale () and shift (5) parameters active so that the model can
re-adapt normalized activations as needed during training. We also test a variant of BatchNorm with
its affine parameters frozen (y = 1, 5 = 0) to isolate the pure normalization effect—this "no-scale"
BatchNorm lets us quantify how much of its benefit comes from variance stabilization alone versus
the added flexibility of learnable rescaling.

Unit Ball Normalization. Unit Ball Normalization (UBN) (Hussing et al., 2024) is proposed as a
method to mitigate Q-value divergence, providing stable gradients and enhancing performance in
high UTD scenarios. To evaluate its effectiveness, we implement UBN for actor models in PPO to
investigate its potential in preventing plasticity loss caused by large gradients.

Parseval. Parseval regularization is proposed as a method to mitigate plasticity loss, trainability
degradation, and primacy bias by enforcing orthogonality constraints on weight matrices—thereby
preserving useful optimization properties and stabilizing training dynamics in continual reinforcement
learning settings (Chung et al., 2024). Parseval regularization was initially proposed for linear layer
regularization. We extend it to convolutional layers by flattening each convolutional kernel into a
matrix. As in the original paper, we do not apply regularization to the last layer of the network.

25



F.4 Churn based modifications

CHAIN Churn Approximated ReductloN (CHAIN) is proposed as a method to mitigate the chain
effect of value and policy churn, providing more stable predictions and enhancing learning perfor-
mance across online and offline, value-based and policy-based RL settings (Tang & Berseth, 2024).
To evaluate its effectiveness, we implement CHAIN within the actor and critic network of PPO to
investigate its potential in preventing plasticity loss caused by large churn-induced parameter updates.

CHAIN-SP (Sampling-Policy) extends CHAIN by applying the churn-approximated reduction not
to the post-gradient-update model, but to the policy used during rollouts. In practice, rather than
stabilizing the actor network after each gradient step, CHAIN-SP constrains the sampling model—i.e.,
the policy that interacts with the environment—to minimize output churn relative to its previous
rollout version. By enforcing this stability at the rollout stage, CHAIN-SP aims to reduce large shifts
in action distributions that can accelerate plasticity loss. This modification is incorporated into the
PPO framework by maintaining a separate "rollout" copy of the actor network, applying the CHAIN
objective to penalize deviations between the new rollout policy and its immediate predecessor, and
using this stabilized policy for environment interactions.

F.5 Combinations of modifications

Recent results show that LayerNorm helps models retain its plasticity. Moreover, combining Lay-
erNorm with other regularizations results in an increase in model effectiveness and mitigation in
plasticity loss. For example, in Juliani & Ash (2024), LayerNorm with Regenerative Regularization
or Shrink+Perturb were the most successful interventions, retaining plasticity and having good
generalization ability Ash & Adams (2020).

We continue this direction of study, by combining LayerNorm with three types of regularizations:
LayerNorm + PFO, LayerNorm + BatchNorm No Scale, LayerNorm + CHAIN-SP.

F.6 Where do reset-style methods fit in our taxonomy?

Our taxonomy in Table 1 is only for auxiliary losses (component-on-which-the-loss-is-applied x
target). Reset-style methods like CBP (Dohare et al., 2021) and ReDo (Sokar et al., 2023) are
not auxiliary losses: they re-initialise parameters during training. Therefore they sit outside this
taxonomy. They are orthogonal to our three families (data, losses, normalisation): you can combine
a reset schedule with any loss-based method in the grid, but resets act via discontinuous parameter
changes rather than a loss term. We do not benchmark resets here; our focus is on continuous changes
that keep units active.

G Main paper figures on all environments.

G.1 Figure 1 on all environments

Figures 10, 11 and 12 aggregate every run: (1 baseline + 18 interventions) x 3 games x 3 seeds x 3
epochs, in a single set of boxplots.

We present all the modifications together. We follow the details of Moalla et al. (2024), Appendix
B.3 to compute the boxplots.

Each box summarises 9 independent runs (3 epoch budgetsx3 random seeds). The box spans the
inter-quartile range (Q1-Q3); the centre black tick marks the median and the red tick marks the mean.
Whiskers extend to the largest (smallest) value within Q3+1.5IQR (Q1-1.5IQR) (which is the default
Matplotlib rule). Points beyond the whiskers are plotted as outliers.
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Figure 11: Figure 1 on NameThisGame. We observe that LayerNorm and LayerNorm combined with loss
based methods mitigate the performance collapse and results in a good policy representation as in Phoenix.
Weight based methods perform better than on Phoenix.
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Figure 12: Figure 1 on Gravitar. On a sparse environment, we observe that the combinations don’t perform
(in terms of feature representation metrics) as well as on Phoenix and NameThisGame. Furthermore, CHAIN
and CHAIN-SP inverts themselves compared to NTG. PFO has a high variance in terms of episodic return and

policy PCA feature rank for sparser environment.

G.2 Figure 2 and 4 with other interventions and number of epochs

G.2.1 Architecture interventions
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Figure 13: Figure 2, 4 with architecture interventions on Phoenix, 4 epochs
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Figure 14: Figure 2, 4 with architecture interventions on Phoenix, 6 epochs
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Figure 15: Figure 2, 4 with architecture interventions on Phoenix, 8 epochs
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Figure 16: Figure 2, 4 with architecture interventions on Gravitar, 4 epochs
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Figure 17: Figure 2, 4 with architecture interventions on Gravitar, 6 epochs
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Figure 18: Figure 2, 4 with architecture interventions on Gravitar, 8 epochs
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Figure 19: Figure 2, 4 with architecture interventions on Name This Game, 4 epochs
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Figure 21: Figure 2, 4 with architecture interventions on Name This Game, 8 epochs
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G.2.2 Combination interventions
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Figure 22: Figure 2, 4 with combination interventions on Phoenix, 4 epochs
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Figure 23: Figure 2, 4 with combination interventions on Phoenix, 6 epochs
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Figure 24: Figure 2, 4 with combination interventions on Phoenix, 8 epochs
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Figure 25: Figure 2, 4 with combination interventions on Gravitar, 4 epochs
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Figure 26: Figure 2, 4 with combination interventions on Gravitar, 6 epochs
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Figure 27: Figure 2, 4 with combination interventions on Gravitar, 8 epochs
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Figure 29: Figure 2, 4 with combination interventions on Name This Game, 6 epochs
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Figure 30: Figure 2, 4 with combination interventions on Name This Game, 8 epochs

G.2.3 Auxiliary-loss interventions
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Figure 31: Figure 2, reffig:3-auxiliary with auxiliary loss interventions on Phoenix, 4 epochs
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Figure 32: Figure 2, 4 with auxiliary loss interventions on Phoenix, 6 epochs
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Figure 33: Figure 2, 4 with auxiliary loss interventions on Phoenix, 8 epochs
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Figure 34: Figure 2, 4 with auxiliary loss interventions on Gravitar, 4 epochs
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Figure 35: Figure 2, 4 with auxiliary loss interventions on Gravitar, 6 epochs
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Figure 36: Figure 2, 4 with auxiliary loss interventions on Gravitar, 8 epochs
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Figure 38: Figure 2, 4 with auxiliary loss interventions on Name This Game, 6 epochs
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Figure 39:

G.2.4 Data-Level

Figure 2, 4 with auxiliary loss interventions on Name This Game, 8 epochs
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Figure 40: Figure 2, 4 with data-level interventions on Phoenix, 4 epochs
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Figure 41: Figure 2, 4 with data-level interventions on Phoenix, 6 epochs
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Figure 42: Figure 2, 4 with data-level interventions on Phoenix, 8 epochs
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Figure 43: Figure 2, 4 with data-level interventions on Gravitar, 4 epochs
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Figure 44: Figure 2, 4 with data-level interventions on Gravitar, 6 epochs
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Figure 45: Figure 2, 4 with data-level interventions on Gravitar, 8 epochs
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Figure 46: Figure 2, 4 with data-level interventions on Name This Game, 4 epochs
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Figure 47: Figure 2, 4 with data-level interventions on Name This Game, 6 epochs

34



G.3 Figure 5 on other environments
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Figure 48: Figure 2, 5 with data-level interventions on Name This Game, 6 epochs
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Figure 49: Figure 2, 5 with data-level interventions on Gravitar, 6 epochs
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Figure 50: With an 8-epoch training budget and 200m steps, the agent’s performance peaks early but then
collapses, showing the delayed collapse observed with smaller batch sizes.

H.2 Plasticity figures
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