Data, Auxiliary Losses, or Normalization Layers for
Plasticity? A case study with PPO on Atari

Daniil Pyatko* Andrea Miele* Skander Moalla® Caglar Gulcehre'
CLAIRE, EPFL CLAIRE, EPFL CLAIRE, EPFL CLAIRE, EPFL
Abstract

Deep reinforcement learning agents often suffer from plasticity loss, in which their
neural networks gradually lose the ability to incorporate new information during
extended training. To understand how to mitigate this issue, we compare the impact
of data interventions, auxiliary losses, and normalization layers—forming input,
output, and architecture perspectives, respectively). We conduct a case study using
Proximal Policy Optimization (PPO) on the Atari Learning Environment (ALE),
a widely used on-policy algorithm and benchmark suite for vision-based discrete
control tasks. Although many interventions have been proposed to address the
inability a deep networks to continue learning due to plasticity loss, no single
solution has emerged. We find that neither unpreprocessed input information nor
reduced gradient noise from larger batch sizes prevents collapse. Additionally, we
categorize auxiliary loss interventions based on the component being regularized
and the target of the regularization. Thanks to this taxonomy, we identify unex-
plored solutions in the current literature and, as an illustration, derive an unstudied
intervention: CHAIN-SP. We find that the best performance and training stability
among the loss interventions that require tuning is achieved with churn-reduction
auxiliary losses. Finally, we find that LayerNorm is best at mitigating plasticity
loss among the normalization layers.

1 Introduction

Non-stationary objectives appear in various contexts, such as continual learning, where the target dis-
tribution shifts over time, but also in reinforcement learning, where the policy of the agent constantly
evolves. Thus, one of the major challenges in the practical application of deep reinforcement learning
algorithms is the adaptation of the underlying neural networks to non-stationary targets resulting
from changes in states and rewards during learning. When a network can keep adapting to these
shifts, we say it retains plasticity. We use plasticity loss to denote the regime in which adaptation
stalls, observed as a drop in episodic return in RL or a rise in task loss in continual learning (Lyle
et al., 2023; Dohare et al., 2024). Although recent case studies link plasticity loss to abrupt collapses
in feature rank (Moalla et al., 2024; Juliani & Ash, 2024), capacity loss (Lyle et al., 2022), increase in
weight norm and rank (Chung et al., 2024), and dead neurons (Sokar et al., 2023), the community has
not identified any single metric to predict the collapse (Lyle et al., 2023; Lewandowski et al., 2023).

Different interventions have been proposed to mitigate plasticity loss. Data interventions modify
the training signals—either by modifying the observations fed to the network or by transforming the
reward—e.g., batch size, frame resolution (RGB vs. down-sampled grayscale), or reward clipping
(Mayor et al., 2025). Auxiliary-losses use regularization losses in addition to the PPO surrogate loss,
such as PFO, penalizing feature drift (Moalla et al., 2024), Parseval, maintaining weight orthogonality,
(Chung et al., 2024), and CHAIN, penalizing large output churn (Tang & Berseth, 2024). These

*Shared first authorship. Joint supervision. Correspondence to daniil.pyatko@epfl.ch.

Preprint. Under review.

Table 1: Auxiliary loss functions addressing plasticity can be organized by (1) what component they apply
the auxiliary loss on, and (2) the target to which this component is regularized. This taxonomy is illustrative

rather than exhaustive: it organizes the losses already explored in previous work and reveals a large region

of unexplored losses . A novel intervention , which we call CHAIN-SP, is derived as a modification of
CHAIN (Tang & Berseth, 2024) thanks to this taxonomy. We encourage future work to investigate the remaining

opportunities.
Loss on .
m Weights Features Outputs
Null vector (0) ~ Weight Decay (AdamW)
Initial model distribution (14g,) Parseval
Initial model (6) L2 init InFeR
Model used in rollout (01‘:) PFO CHAIN-SP
Model after the grad step (6}) CHAIN

extra losses aim to constrain updates so that weights, features, or outputs neither collapse nor grow
unbounded. Normalizing interventions insert layers like LayerNorm, BatchNorm (Lyle et al., 2022),
or Unit-Ball Normalization (UBN) to stabilize activations or weight distributions.

Each work, however, has its own setup: environment, deep RL algorithm, metrics, and a set of
interventions used for comparison. Thus, it is difficult for a practitioner to get a clear overview of
which metrics correlate with the loss of plasticity, which interventions provide significant benefits,
and how they compare when they are all tested in the same setting. Previous plasticity studies have
largely ignored diverse vision-based environments; for example, all of the vision-based environments
considered by Juliani & Ash (2024) were sparse and their analysis mostly focused on plasticity
under training distribution shifts. In contrast, we evaluate interventions across Atari environments
with varying levels of reward sparsity and unchanging environments, allowing for a broader and
more representative understanding of plasticity loss in vision-based RL. We use Proximal Policy
Optimization (PPO) (Schulman et al., 2017), one of the most popular policy gradient methods used
by a lot of practitioners, which re-uses each rollout for mini-batch updates over several epochs.
This reuse of stale data makes it a particularly suitable candidate when analyzing plasticity loss.
Hence, we aim to fill the gap by conducting a comprehensive study of interventions under a fixed
training protocol with PPO, addressing how all these methods and metrics compare against each other
and track plasticity loss. With this setup, we empirically investigate the following questions about
plasticity:

* Do common plasticity-loss metrics reliably capture plasticity loss across different interven-
tions?

* Which intervention type—architecture level (normalization), output level (auxiliary-loss), or
input level (data)—best preserve plasticity?

* Do these findings hold across environments with varying reward sparsity?

Our contributions

1. Taxonomy and novel intervention. We classify 18 candidate methods into data (input),
auxiliary losses (output), normalization layers (architecture), combinations of those, and
rigorously tune and evaluate each within a single PPO framework on the ALE benchmark.
Our auxiliary loss taxonomy allows us to identify gaps and introduce CHAIN-SP, a variant
of CHAIN based on the model used in the rollout (Tang & Berseth, 2024).

2. Empirical insights on data interventions. We show that neither unpreprocessed inputs (full-
resolution RGB) nor reduced gradient noise with larger batches prevent loss of plasticity.

3. Evaluation of auxiliary losses and normalization. We find that among the tuned auxiliary
losses, churn losses result in the best performance and training stability, and that among
normalization layers, LayerNorm provides the best stability without any adjustment.

4. Assessment of combination methods. We demonstrate how pairing LayerNorm with
various auxiliary losses (e.g., L2 Init, PFO, CHAIN-SP) affects plasticity, revealing that
certain combinations outperform their standalone counterparts.

5. Feature-representation finding. We show that a low PCA policy rank, near the number of
discrete actions, does not hinder learning a strong policy, challenging the idea that preserving
high PCA feature-rank alone is sufficient.

6. Reproducibility. We open-source our codebase, training logs, and hyperparameter sweeps
to facilitate full reproducibility.

2 Background

Reinforcement Learning We work with a finite-horizon Markov decision process (MDP)
(8,A,r, P,H), where H is the horizon. At eachtimet =0, ..., H — 1, the agent observes S; € 8,
selects A; € A, then transitions to Sy 1, via P, and receives reward r (S, A¢, S¢11). The return is

Gy = Zi61 7(St, Ag, St+1). We seek a policy that maximizes E[G).

On-policy Actor—Critic. In each iteration, the policy network 7y collects IN-step rollouts
{(S¢, A, Ri+1)} by sampling actions from the current policy 7y and storing the resulting tran-
sitions. The actor 7y and the critic V,, are then updated concurrently via gradient descent on that
same batch of data. The critic minimizes the squared error between its prediction V,,(s;) and a return

target Gy, where G, is the \-return computed using the Generalized Advantage Estimator (Schulman
et al., 2015). The actor is trained with Proximal Policy Optimization (PPO) (Schulman et al., 2017).

Non-stationarity in deep RL and PPO. Each gradient step in policy gradient methods updates the
policy, which in turn shifts the state-visitation distribution (occupancy measure) (Kang et al., 2018),
alters the reward landscape, and changes the critic targets, introducing non-stationarity throughout
training. Proximal Policy Optimization (PPO) limits how far each update can move away from the
policy that generated the data by clipping the likelihood ratio between new and old policies to avoid
large parameter jumps (Schulman et al., 2017). In practice, PPO collects a batch of transitions under
the old policy and then performs multiple epochs of minibatch optimization on that same batch.
Thus, PPO amplifies the impact of this non-stationarity by reusing the same rollout for multiple
optimization epochs. (Nikishin et al., 2022) This repeated training on stale data increases the risk of
overfitting to outdated trajectories and accentuates the distribution shift between the policy used for
data collection and the one being updated. As a result, higher epoch counts can increase the effects of
non-stationarity and contribute to plasticity loss, a central focus of this study.

Plasticity Loss Plasticity loss occurs when the capacity of a network to learn new data deteriorates
despite ongoing training, often indicated by sharp decreases in feature representation metrics (e.g.,
feature-rank collapse (Moalla et al., 2024; Lyle et al., 2022), exploding capacity loss (Lyle et al., 2022;
Nikishin et al., 2023) and by signs such as increased weight norms or increasing number of inactive
(“dead”) neurons (Gulcehre et al., 2022). This representation collapse is reflected in degrading
performance, such as a decline in episodic return, even though optimization continues. In PPO, one
can regard a consistent drop in episodic return across random seeds as evidence of plasticity loss.
Tracking metrics such as capacity loss (error in fitting random targets), feature rank, weight/gradient
norms, and dead neurons offers early warnings of incoming collapse. Understanding these indicators
is important for judging how different interventions, such as adjusting inputs, adding auxiliary losses,
or using normalization, keep representation capacity and avoid performance degradation.

3 Study design and methods

Experimental setup We train PPO on Phoenix, NameThisGame, and Gravitar from ALE. We chose
these to cover both dense and sparse rewards and because together they achieve a high predictive
correlation (Aitchison et al., 2023). We use 25% sticky actions. To study non-stationarity, we run
each setting with F € {4, 6, 8} epochs; more epochs usually lower returns but make collapse happen
sooner. Actor and critic use separate trunks (Cobbe et al., 2021). We use three seeds for each
hyperparameter configuration. More details are in Appendix D.1.

3.1 Interventions

We organize interventions according to the three categories (1) data (input), (2) auxiliary losses
(output), and (3) normalization layers (architecture), and include a fourth category for combinations
of normalization layers with auxiliary losses. By developing the auxiliary-loss taxonomy in Table 1,
we reveal a large region of unstudied loss functions and introduce a new CHAIN-based intervention,

Table 2: Catalogue of interventions, grouped by how they modify (1) input or data (baseline & data-devel),
(2) loss function (loss-level), (3) architecture via normalization (normalization layers), or (4) combinations
(combinations). For all interventions, we keep the tofal number of environment interactions fixed (100 million
steps). Within each epoch, we also hold the number of gradient-update steps constant across interventions.

Category Intervention Main idea / target
BASELINE PPO with default hyper-parameters (sign reward,
. 84 x84 grayscale, minibatch = 256 samples).
Baseline & data-level BATCHX 8 8% more parallel envs, 8x bigger mini-batch; same
number of environment steps.
RGB-RAW Full-resolution RGB frames; no grayscaling.
NoCLIp Raw rewards instead of sign(r).
L2-INIT Initial weights regularization (Kumar et al., 2023).
ADAMW Adam w. decoupled weight decay (Loshchilov, 2017).
Loss-level PARSEVAL Parseval weight orthogonality (Chung et al., 2024).
CHAIN Churn Reduction (Tang & Berseth, 2024).

CHAIN-SP (Ours)

Sampling-Policy variant (ours). Towards the model
used in rollout instead of the model after the grad. step.

PFO Proximal Feature Optimization (regularizes feature
drift from sampling policy) (Moalla et al., 2024).

INFER Initial-Feature Regularisation (auxiliary-head drift
penalty) (Lyle et al., 2022).

LN LayerNorm with learnable (v, 5) (Ba et al., 2016).

LN-NS LayerNorm, y=1, S=0.

Normalization Layers BN BatchNorm with affine parameters.

BN-NS BatchNorm, y=1, 8=0.

UBN Unit-Ball Normalisation (Hussing et al., 2024).

LN+PFO LayerNorm + PFO.

LN+BN-NS LayerNorm + BatchNorm (no scale).

Combinations LN+CHAIN-SP LayerNorm + CHAIN-SP.

CHAIN-SP. We provide a comprehensive experimental design and the complete set of individual
result plots in Appendix F, G. Table 2 presents a summary of the methods we test, with detailed
experimental descriptions available in Appendix F. Figure 1 presents the summary boxplots, showing
the effect of each intervention on episode return, feature rank (PCA), capacity loss, and the number
of dead neurons in the policy. The full catalogue and the hyperparameter tuning protocol for the
auxiliary loss intervention are in Appendix F and D.3.

3.2 Performance metrics

To analyze plasticity loss, we evaluate several metrics proposed in the literature, including the feature
rank of the policy and value networks, the number of dead neurons, capacity loss, the penultimate
layer pre-activation norm, and the norm of the policy weights; full definitions and details can be
found in Appendix E.

* Feature rank (policy/value). PCA-based rank of the last hidden features. Lower rank
means features collapse and plasticity collapsed.

* Dead neurons (policy/value). Count of ReLLU units that are zero on the whole minibatch
(Gulcehre et al., 2022). More dead neurons means less usable capacity.

» Capacity loss. After training, we briefly fine-tune a checkpoint to match actions/values
from a fresh rollout and measure the remaining error. Lower is better (more plasticity kept);
see Appendix for the loss terms and setup (Appendix E).

4 Experiment Results

4.1 Modifying the input data or rewards does not mitigate plasticity loss

Bigger batches boost returns but do not prevent collapse in the long run Increasing the
minibatch size leads to improved performance across all environments and epoch counts. We

Baseline mmm Auxiliary loss: features mmmmm Normalization layers
Data-level Auxiliary loss: outputs Combinations = Mean == Median O Outlier
mmm Auxiliary loss: weights

Episode return Feature rank policy (PCA) Capacity loss policy Dead neurons policy

Baseline { [. 1] —
No reward clipping { {EIEH e] —— 0
RGB+No Resize | & |] |
Larger Batch Size i [E——] b I ——
Adamw { (- g L] —
L2init{ HENIH I 1 .-
Parseval Lz L] 1 L4
InFeR{ HIH io [— -
pFO I — - i
CHAIN Original HICH o M ¢ HIk o
CHAIN-SP O HD |]
LayerNorm Hl— ob (] o 1]
LayerNorm No Scaling HIl— m 1]
BatchNorm{ HH) — - ®
BatchNorm No Scaling o+ - T 1
UnitBallNorm Hib - 1)
LayerNorm+BatchNorm No Scaling { o-lH — 8 | — 1
LayerNorm+PFO HI—
LayerNorm+CHAIN-SP (3 1] HE% : =
00 05 10 15 20 0 1 2 3 0 2 2

K 4 3 2
x10* x102 x107t x10?

Figure 1: Summary of all the studied interventions’ effects on performance and plasticity in ALE/Phoenix
Most of the interventions improve on the baseline in plasticity loss metrics. We organize interventions into
data-level, auxiliary-loss (weights, features and outputs), and normalization categories (plus their combinations),
introduce CHAIN-SP as a novel loss-based method, and demonstrate that churn-reduction losses and LayerNorm
most effectively prevent plasticity collapse. Auxiliary-loss approaches (especially churn-based) have few dead
neurons and strong representations, while LayerNorm (alone or paired with losses) stabilizes training. By
contrast, weight-based (e.g., AdamW) and data-based (e.g., reward-clipping removal) methods, although they
can drastically improve absolute performance, fail to mitigate plasticity loss. A boxplot includes 9 runs with
different epochs. More details in Appendix G.1

suspect this larger batch size is not commonly used because its benefits only become apparent after
approximately 10 million training steps, which is already the typical total timestep limit for Atari
(Huang et al., 2022; Schulman et al., 2017). This batch size and sample budget are more commonly
observed in distributed settings (Huang et al., 2024). However, extended runs up to 200 million steps
show that the trend of performance degradation persists, and the actor still collapses, similar to what
occurs with a smaller batch size: despite the improved performance, the agent collapses after 8 epochs
(Fig. 50). This suggests that the reduced gradient noise from the larger batch only delays the collapse,
rather than preventing it. Even when the agent reaches a reward level of 6000 on Phoenix, a level that
is not achieved on other collapsing runs, it still eventually fails. This provides evidence that there is
no specific reward threshold (i.e., an Atari map stage) beyond which an agent becomes immune to
collapse. Instead, some form of network regularization is necessary to prevent it. Quite interestingly,
if we consider 4 epochs of training, increased batch size doesn’t lead to collapse, but has typical
values of plasticity-associated metrics. So, for short runs, a bigger batch can improve performance
without hurting the network’s ability to keep learning, just as Smith et al. (2017) observed when they
scaled batch size in supervised tasks.

Enhancing the richness of the environment signal doesn’t prevent the collapse, instead, it
can speed it up When we train PPO on unscaled RGB frames, policy feature rank and episodic
return collapse faster than the baseline, and the norm of policy preactivations increases rapidly.
Unpreprocessed inputs, like full-resolution RGB frames or unclipped rewards, increase the number
of available features and targets, which in turn gives the network more opportunities to overfit.
Instead of preserving plasticity, this added complexity accelerates its collapse. By contrast, Ma
et al. (2023) show that data augmentation (another technique to increase input variability) is critical
in visual RL: introducing controlled perturbations prevents overfitting and helps maintain good
feature representation metrics. Consequently, it makes sense that simply feeding unpreprocessed
signals causes the network to overfit more quickly. Hence, we show that increasing input and reward
complexity amplifies plasticity loss, underscoring the importance of resorting to visual preprocessing
such as gray-scaling or reward clipping or using techniques like data augmentation.

4.2 Loss-level interventions impact different plasticity metrics differently

Weight based: AdamW, L2init and Parseval Each of the three weight-based regularization
interventions displays different dynamics that illustrate how penalizing weights influences plasticity
in deep RL. AdamW loses plasticity when the number of epochs is increased. When this happens,
unlike with Adam, the weights of the network decrease significantly because of the weight decay.

Baseline — Larger Batch Size — RGB+No Resize ~ No reward clipping

x10° X102 x10%

ALE/Phosnixvs _ 10¢ 102
2.0 gt z 1072 <
g S > S o
< 8103 g = £ 100
£ >3 c 51073 = 2 10
515 9 s g £, 5
5 35 , = Sl I T a
o 2, 107 o= gt S 8102
1.0 X 5 > <, P | >
b [S10) £107° o ke
s ° & { @ o g107
8o g1 5 ‘ 210-6 ER 2
s £10° © O ol f
/ 3 S 10-7 e |/ 107% |
0.0{7 0 o !
0.0 05 1 0 05 1 0 05 1.0 0 05 1. 0 05 1 0 5 1.0
Environment steps10® Environment stepx10® Environment steps10® Environment steps10® Environment stepx 10° Environment steps10®
Baseline — Larger Batch Size — RGB+No Resize — No reward clipping
%102 x10"
ALE/Phosnixvs _a 10
6 B 2 4| 1072 F3
s 210° g €6 g 10°
c =10-3 3 =
€5 >3 c 5 10 S 2
5 9 s g8 g S
04 s B102 (’ 2104 g 3102
o S > | o <4 L
83 < kit >10-5 < B
2 g 810 210 & z .
2 o ° 810
&2 21 a S10-6 g2 -4
2 E1q0 s 2 S|
1 © £1 I -6
f 29 2 1077 ol 1o
o
0 05 1 05 1 ; 05 1 0 05 1 0 05 1 0 05 1
Environment steps<10® Environment steps<10® Environment stepsc10® Environment steps10® Environment steps10® Environment steps<10®

Figure 2: Data-Level interventions on Phoenix (4 vs. 8 epochs) Larger batches improve performance up to
100 M steps and delay collapse—maintaining high pre-activation norms and delaying rank loss—as shown by an
8-epoch feature-rank decline or a late-training capacity-loss rise. Giving raw full-RGB inputs leads to faster
representation collapse, suggesting stronger overfitting between distribution shifts.

Baseline — AdamW — Parseval — L2init

x10° 55 X102 x102 x10-2 x102
ALE/Phoenix-v5 - 5
8 - 4
N 3.0 g >
c g20 £, £ g
56] 522 56 33
% EL5 £2.0 = 4
v s s 5 [P}
g4 g 15 54]
2 £10 £ o 2
hip 2 g10 32 81
0.5 05 2 a
g
[<0 0
00 025 050 075 10 00 035 050 075 100 *%00 025 050 075 L0 00 025 050 075 1.0 00 025 050 075 1.0
Environment steps x10° Environment steps x10° Environment steps X10° Environment steps X10° Environment steps X10°
Baseline AdamW — Parseval — L2init
x102 x102 x1072 x102

ALE/Phoenix-v5

>
[0

@

w
S
>

[)
Noow
N W

Episode return

N
iy
-
Dead neurons policy
=

-
o
o

Weight norm critic
N
Applied gradient norm actor

0.0 0.5 1.0 0.0 0.5 1.0 0.0 .0 0.5 1

. . . . 1.0 . 1.0 . .0
Environment steps X108 Environment steps X108 Environment steps X108 Environment steps ~ x10% Environment steps ~ x10®

o

o
o

Figure 3: Weight-level auxiliary loss interventions on Phoenix for 4 and 8 epochs. Parseval shows the
tightest control over weight norms, maintains nearly zero dead neurons, and keeps the actor’s gradient norm
stable—effectively preventing any plasticity collapse. L2Init also avoids collapse: it keeps high weight norms
in both the actor and critic, while keeping the actor’s gradient norm steady. In contrast, AdamW acts like the
baseline under high-epoch training: the actor’s weight norm drops and the number of dead neurons rises sharply.

Interestingly, even though the weights decrease continuously until only unregularized biases are
left, the network is not able to find useful parameters during this decrease and return to non-trivial
gradients and recover from the collapsed state. In fact, we can describe the dynamics of weight
magnitude when training with AdamW precisely. We know that all of the neurons are dead, so the
gradient in all layers before the classification layer will be 0. As a result, parameter updates come
only from Adam’s exponential moving average and the L2 weight penalty. After many gradient
iterations with 0 gradient, the exponential moving average will be close to 0 and the only change will
be from the L2 penalty. See Figure 3, actor and critic weight plots. In contrast, L2init pulls weights
toward their initial nonzero values, and Parseval uses orthogonal initialization, starting with a higher
initial weight norm, and is considered a good plasticity-preserving regularization, looking at plasticity
indicators such as high and stable policy feature rank (Moalla et al., 2024), low weight norm (Kumar
et al., 2023), and low number of dead neurons (Juliani & Ash, 2024). However, these metrics alone
don’t always give decisive conclusions (Lyle et al., 2023). We observe good metric results when
using adapted Parseval regularization to convolutional layers, even though it was originally designed
for linear layers (Chung et al., 2024); in the case of convolutions, we cannot claim that the function is
being regularized toward Lipschitzness as we can do with linear layers (Chung et al., 2024).

Feature based: PFO and InFeR In this study, we apply PFO (Moalla et al., 2024) to both the
actor and critic networks—unlike Moalla et al. (2024), who only regularize actor. While their results

suggest that targeting the policy alone can help with plasticity loss, we intentionally extend PFO to
the critic to match our study design. We observe more plasticity loss and an eventual collapse in
one environment (Fig. 29) by applying PFO on both actor and critic networks than just applying
it to the actor. We hypothesize that over-constraining the critic might actually be disadvantageous,
which echoes with the work of Liu et al. (2019). InFeR (Lyle et al., 2022) was originally designed
for value-based methods, but here we apply it to both actor and critic. Even when used outside its
original setting, InFeR reduces plasticity loss, showing that keeping features close to the initial model
can also help the actor.

Output-based methods: CHAIN and CHAIN-SP The main goal of CHAIN is to reduce output
churn—the undesired change in a model’s outputs on data outside of the training set which emerges
after the parameter update.

To mitigate the churn of the models, Chung et al. (2024) introduce an auxiliary loss that penalizes
changes in the model’s predictions on a held-out batch B; not used for training. Specifically, the
CHAIN loss is defined as the average distance between the outputs of the reference models ((Vw;—l (s),

Tgi-1 (s)) for CHAIN or (V,,, (s), 7, (s)) for CHAIN-SP) and current ((V,(s), mg(s))) models.

Both CHAIN and CHAIN-SP show systematically lower Bgimplc at early epochs and higher values
later, in contrast to the baseline, whose Bgimple drops right around collapse (Fig. ??).

CHAIN Reference models in the original CHAIN (Tang & Berseth, 2024) are the last minibatch
update models, giving the loss

. 1 1
Leuan = @ Z KL(WO(S)H%;*(S)), L(‘Z/HAIN = @ Z (Vwifl(s) - Vw(S))Q
(s,a)€EB; (s,a)EB;

In Chung et al. (2024), CHAIN regularization in PPO experiments was only applied to actor and the
loss scaling was in most cases dynamic to keep approximately the same ratio to the PPO loss during
training. In our setup, we regularize both actor and critic and fix the loss scaling coefficient to have a
fair comparison with other interventions.

CHAIN-SP Building on this work, we introduce CHAIN-SP (CHAIN Sampling Policy), whom
reference models are the sampling policy models, yielding the loss:

x 1 1
Léuan-sp = @ Z KL(7g(s)||mo, (s)), LEZ/HAIN—SP = @ Z (Vi (s) — Vw(s))Q
(s,a)€B; (s,a)€By

CHAIN-SP regularizes more strongly than CHAIN, as it regularizes towards an older version of the
network. This likely explains its better plasticity metrics across environments.

On NameThisGame, however, we observe that CHAIN-SP collapses. We note that it happens in
a very specific case. The collapse in CHAIN-SP is likely due to the strong regularization of critic
towards the sampling parameters. To prove that, we separately ablate critic regularization and change
the objective of regularization. When using CHAIN — which regularizes towards the previous
minibatch’s model outputs — and keeping critic regularization, no collapse occurs. Similarly, the
collapse doesn’t happen when disabling the critic’s auxiliary loss by setting its weight to zero in
CHAIN-SP. The collapse of PFO on NameThisGame, which also regularizes critic features towards
the sampling policy, supports our hypothesis.

A closer analysis shows that the distinct reward structure of NameThisGame leads to different training
dynamics. The value loss is an order of magnitude higher and the PCA rank of value features is an
order of magnitude lower than in Phoenix during training (Fig 39). This suggests that CHAIN-SP’s
strong regularization has irreversibly damaged the already weak value function representations.

We also note that within the 100M environment steps range, CHAIN-SP only collapses on low epochs.
This type of collapse is different from the baseline collapse which happens only on high epochs and
it can’t be associated with overfitting (Nikishin et al., 2022).

A collapse occurring with the use of universal hyperparameters, which could have been avoided by
setting the critic’s loss coefficient to zero or by thoroughly tuning specifically for NameThisGame,
highlights the importance of careful hyperparameter tuning for auxiliary-loss interventions.

Baseline — CHAIN-SP — CHAIN Original ~ InFeR — AdamW — Parseval — PFO — L2init
X102

x10°
ALE/Phoenix-v5

1.50

—
5)
i

%10
3 z
125 £, 2102 g £10 203
£ > c S 104 o 510
2 9 S 210 L 5
21.00 = 2 o £08 @
h 22 S 8o Zos o)
go7s ¥ £10 310 20 >
20.50 £ g S 0.4 g0
8 g1 & 107 @ 8
2 €100 ° | 2 S10-6
0.25 = E10 S | 502 S10
4 () o -7
w 2 1077} &
0.00 0 0.0 10-7
; 05 1 0 05 1 0.0 05 1 0 05 1 0 05 1 0.0)
Environment stepx 10°® Environment stepx 10° Environment steps 108 Environment stepx 10® Environment stepx 10° Environment stepx 10°
Baseline CHAIN-SP — CHAIN Original InFeR AdamW — Parseval PFO — L2init
104 10° 10:
LOTatEPhoenins af 10 W 10-2

w
o
e
lic

Capacity loss critic
[
2 9

Episode return

| 202 S

k] <

H
2

Feature rank policy (PCA)
= N
Norm preactivation policy
[
2 2
apacity los:
Boe e
g8 g
o T ——,
o
n
-

o

. 0.5 1. . 0.5 1. . 0.5 1. 0.5 1 0.5 1.
Environment stepx10® Environment stepx10° Environment stepx 10 Environment stepx10® Environment stepx 10° Environment stepx10®

Figure 4: Auxiliary loss interventions on Phoenix, 4 and 8 epochs Compared to the baseline, CHAIN-SP,
CHAIN, and Parseval all lead to improved representations and prevent performance collapse when we increase
the number of epochs to 8. InFeR prevents collapse while having a relatively low policy feature rank and a
high capacity loss policy. L2init and PFO on actor and critic produce stronger representations, though without
performance improvement.

4.3 Normalization layers

LayerNorm, a simple but effective intervention LayerNorm (Ba et al., 2016) standardizes each
layer’s pre-activations before the nonlinearity and applies learnable scale -y and bias 5. LayerNorm (i)
reduces gradient covariance and prevents large gradient norms (Lyle et al., 2023), (ii) mitigates “unit
linearization™ by stabilizing the pre-activation distribution (Lyle et al., 2024b), and (iii) reactivates
dead ReLU units by guaranteeing nonzero normalized gradients even when pre-activations would
be negative (Lyle et al., 2024a). Klein et al. (2024) provide a short summary of these results. In our
experiments, LN maintains feature rank and prevents representational collapse, even as the norm of
the pre-activation features of policy grow over time (Fig.15). Removing the learnable scale (LN-NS)
still enforces zero-mean, unit-variance but doesn’t necessarily preserve rank and has a lower capacity
loss than LN with learnable scale. Without the scale parameter, LayerNorm outputs are normalised to
mean 0 and standard deviation 1. There isn’t a learned multiplier to make some features bigger or
smaller. This can reduce differences across features (so rank isn’t preserved), but it makes gradient
magnitudes more consistent (i.e., more stable), but it also makes the model easier to fit to random
targets than with LN-S — hence lower capacity loss. Overall, inserting LN before each activation
gives a robust, high-rank representation throughout deep RL training.

Other normalization layers BatchNorm helps training at first but it hurts model’s plasticity over
time. Studies show that normalizing across each mini-batch smooths the loss surface and makes
gradients smaller, which keeps weights from changing enough to fit new data (Santurkar et al., 2018).
Previous work have shown that in continual learning, models with BatchNorm lose accuracy on later
tasks faster than models without it or with LayerNorm (Dohare et al., 2023a). In our PPO-Atari tasks,
policies using BatchNorm always show higher capacity loss and have larger preactivation norms than
both baseline and LayerNorm policies, even when returns stay stable on NameThisGame. Overall,
BatchNorm stabilizes training early but reduces long-term plasticity, and methods like LayerNorm
work better when the network needs to keep adapting over time.

LayerNorm with auxiliary interventions: combining different strengths Combining LN with
additional loss-level or regularization techniques can further enhance plasticity, though not all pairings
succeed. Since the precise mechanisms behind plasticity loss remain uncertain and likely involve
multiple factors (Lyle et al., 2024b), it makes sense to combine methods that each address particular
aspects of this degradation. Accordingly, various interventions, like Normalize-and-Project (Lyle
et al., 2024a)—couple pre-activation normalization with a projection step that rescales each weight
matrix to unit Frobenius norm. Klein et al. (2024, Section 6.9) provides an exhaustive list of combined
methods. We note that many of these approaches use LN as a foundation because of its benefits, and
we follow the same strategy. When integrating LN with CHAIN-SP, we get higher returns, more
stable feature rank, and lower capacity loss than LN alone. We hypothesize that this is due to different

Baseline — InFeR

X102 X102 102 %102

x10°
ALE/Phoenix-v5

NN
o
IS
-
)
5

107t

=
o

W
IS

107

w
e
o
ngular value
o
T 9

108

Episode return
d singular value

N

N

10-11

H
N

Dead neurons policy
w

E 10710
2

eco

To-13

-
Feature rank policy (PCA)

o o
o

Feature rank policy (Lyle)
~N

0 10-14
1

=)

0.0 0.0 0.0 0.0 0.0

.5 1.0 .5 1.0 0.5 1. . 0.5 1.0 0.5 1.0 0.5 1.0
Environment steps 10® Environment steps 10° Environment stepx 10° Environment steps 10° Environment steps 10° Environment stepx 10®

Figure 5: Reward and SVD statistic for Phoenix on 6 epochs. Using InFeR, only a small subspace remains
that keeps almost all of the PCA information about the policy feature matrix. We suspect that the policy PCA
rank is hovering above 10 because 10 is the dimension in which we try to keep the output features in InFeR. See
Appendix G.3 for the plots on other environments.

ways these modifications affect training: LayerNorm smoothes out the loss function and PFO and
CHAIN-SP don’t allow actor and critic drift too much during training.

4.4 Dynamics over magnitudes

We observe that an increase in the policy network’s pre-activation norm with a decrease in its feature
rank correlates with future reward collapse, indicating that it seems to be the dynamics of these
metrics during training, not their values that matter. Different papers use different rank definitions
(e.g., singular-value—based stable-rank vs. PCA-based rank; see Moalla et al., 2024, App. D), and
this choice strongly affects how one interprets collapse. For example, using InFeR we aim to preserve
a low-dimensional subspace from the initialization, yet training never collapses, showing that high
PCA feature-rank is not necessary for stability (Fig. 5). We suspect that the PCA rank hovers around
10 because InFeR regularizes policy features towards a 10-dimensional subspace (10 auxiliary heads).
At the same time, the normalized SVD-based rank (which highlights that most singular values are
relatively small but separated from zero; see Lyle et al., 2022) seems more appropriate to monitor the
collapse (Fig. 5). In a similar way, LN-NS has a low policy PCA feature rank for several settings (Fig.
14, 15, 20, 21) without any reward collapse or capacity-loss increase. LayerNorm, too, has a steadily
increasing norm preactivation policy without collapse as shown by Lyle et al. (2024a). In short, it
seems to be more about iow which rank and norm evolve across epochs (rapid rise or fall rather than
plateaus or slow changes) that seems to correlate with plasticity loss, rather than their static values.
We can draw this conclusion thanks to our comprehensive list of interventions and plasticity metrics.

5 Related Work

Large batch sizes with distributed training High-throughput agents such as IMPALA (Espeholt
et al., 2018) and SEED RL (Espeholt et al., 2019) collect millions of frames per second using
hundreds to thousands of actors, and large-scale projects like OpenAl Five and AlphaStar trained for
months using massive batches across distributed workers (Berner et al., 2019; Vinyals et al., 2019).
These systems show that large batches can support sustained learning in practice without apparent
loss of plasticity. However, since none of them report plasticity-related metrics, such as feature rank
or dead neurons, it remains unclear whether such training avoids plasticity loss. Building on the idea
that higher throughput might prevent plasticity collapse, Mayor et al. (2025) show that, with a budget
of 100 million steps, collecting 2048 transitions per update (16 environments x 128 steps) and using
minibatches of 512 samples preserves feature rank and prevents weight-norm spikes. In our setting,
with a doubled budget of 200 million environment steps, collecting 8192 transitions per update (64
envs x 128 steps) and using minibatches of 2048 samples, we still observe feature-rank collapse
when we increase data reuse by raising the number of epochs (see Fig 50). Hence, increasing the
batch size seems to only help up to some limits by delaying the collapse.

Normalization-centric architectures and impacts across observation and action spaces Recent
works suggest that architectural choices, especially normalization layers, impact training stability
in various domains, which can be related to preserving plasticity. In continuous control with vector
state representations, Nauman et al. (2024b) show that adding LayerNorm after every dense layer
plus lightweight decay lets SAC critics grow to 26M parameters without gradient spikes or value
overestimation, and Nauman et al. (2024a) also that applying LayerNorm boosts performance
without introducing value overestimation, making pessimistic Q-learning unnecessary. Without such
intervention, Dohare et al. (2023b); Moalla et al. (2024) report performance collapse due to plasticity
loss when training PPO agents on MuJoCo. Lyle et al. (2024b) sheds light on the connection between

stability and plasticity, showing that training instabilities such as abrupt weight updates create dead
neurons and lead to plasticity loss. Hence, keeping those updates stable prevents the increase in
dead neurons and thus preserves plasticity. Neither of these works studying normalization, however,
evaluate pixel-based or discrete-action environments, leaving it unclear whether normalization offers
the same stability and plasticity benefits in those environments. In this work, we apply the same
LayerNorm recipe to pixel-based, discrete-action agents and find that it prevents the loss of plasticity
in those environments. Our pixel—only results complement these vector-state findings and provide
baselines for future cross-domain studies.

Reset-style interventions Several approaches have been proposed to recover representation capacity
once neurons become inactive. They fit in a different family than the three families of interventions we
study in this work and are termed reset methods (Farias & Jozefiak, 2024). Continual Backpropagation
(CBP) (Dohare et al., 2021, 2024) computes a running utility score—a moving average of how often
a neuron fires times the strength of its forward connections—for every neuron and, at every training
step, resets the few neurons with the lowest scores to fresh random weights;, without changing the
network’s size. ReDo (Sokar et al., 2023) periodically scans the network; at each pass it identifies
any neuron whose current normalized mean activation on the mini-batch falls below a threshold 7 as
T-dormant, then simultaneously re-initializes the incoming weights (and zeroes the outgoing ones)
of all such neurons. Capacity is therefore restored only after dormancy is observed, not in advance.
Self-Normalised Resets (Farias & Jozefiak, 2024) monitor neuron firing rates (fraction of recent inputs
for which that ReLU’s output is positives) and reset a neuron’s weights when that activity drops to
zero, preventing plasticity loss in continual learning tasks. Neuroplastic Expansion (Liu et al., 2024)
adds new neurons instead of resetting old ones, and the authors show it helps in MuJoCo. Although
these interventions are popular in the literature and provide effective mitigation strategies, we do not
investigate them in the scope of this work which is focused on studying continuous stable changes
during training to keep neurons active rather than ad hoc resets. We believe continuous interventions
are closer to biological neural networks which rely on gradual processes such as homeostatic plasticity,
a slow feedback that scales synapses to keep firing rates near a target rate - average firing level a
neuron tries to stay at, (Tononi & Cirelli, 2003; Surget & Belzung, 2022; Turrigiano, 2008).

6 Conclusion

We empirically evaluate eighteen data-level, auxiliary-loss, and normalization interventions on
plasticity loss for PPO in ALE, including our new CHAIN-SP loss, and introduce a framework for
classifying auxiliary losses. We find that simple churn-reduction losses and LayerNorm yield the
strongest performance and show that standard plasticity metrics—dead-neuron number and policy
PCA rank—become misleading. Based on these results, we recommend LayerNorm, a carefully
tuned churn-based loss, and larger batches to improve stability and preserve plasticity. Finally, our
classification framework lays the groundwork for future methods.

Limitations We show that applying considered interventions—LayerNorm, churn-based loss, and
larger batch size—consistently improves PPO performance on the pixel-based ALE benchmark.
But whether these gains carry over to value-based algorithms such as DQN, off-policy actor-critic
methods like SAC, continuous-control domains, or non-vision tasks remains an open question.
Furthermore, we establish a baseline by selecting all hyperparameters from results on the Phoenix
game (see Appendix D.3), but per-game or joint tuning across multiple environments could uncover
configurations that further enhance sensitive methods such as PFO or CHAIN-SP. We apply all
interventions to the actor and critic jointly, however testing them on only one component could
change their effects and clarify how each intervention separately influences policy learning and
value estimation. We investigate data strategies, auxiliary losses, and normalization techniques; yet
evaluating alternative architectures, off-policy data, broader algorithm and task suites, additional
metrics, and other intervention types is still required to generalize our conclusions beyond our case
study.

Acknowledgments

We thank the reviewers for their valuable insights, which greatly improved the clarity and rigour of
this work. We thank the EPFL SCITAS team for the access to the beta testing phase of their new
cluster. We also thank Karin Gétaz for the administrative support provided within EPFL.

10

References

Matthew Aitchison, Penny Sweetser, and Marcus Hutter. Atari-5: Distilling the arcade learn-
ing environment down to five games. In Andreas Krause, Emma Brunskill, Kyunghyun Cho,
Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th Inter-
national Conference on Machine Learning, volume 202 of Proceedings of Machine Learning
Research, pp. 421-438. PMLR, 23-29 Jul 2023. URL https://proceedings.mlr.press/
v202/aitchison23a.html. 3, 20

Maksym Andriushchenko, Dara Bahri, Hossein Mobahi, and Nicolas Flammarion.
Sharpness-aware minimization leads to low-rank features. In A. Oh, T. Neumann,
A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural In-
formation Processing Systems, volume 36, pp. 47032—47051. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/
92dd1adab39£362046£99dfe3c39d90f -Paper-Conference.pdf. 22

Jordan Ash and Ryan P Adams. On warm-starting neural network training. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in
Neural Information Processing Systems, volume 33, pp. 3884-3894. Curran Associates,
Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/
288cd2567953f06e460a33951f55daaf -Paper. pdf. 26

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016. 4, 8,25

Yoav Benjamini and Yosef Hochberg. Controlling the false discovery rate: A practical and powerful
approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological),
57(1):289-300, 1995. doi: https://doi.org/10.1111/j.2517-6161.1995.tb02031.x. URL https://
rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x. 18

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, PrzemysAaw De¢biak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large scale
deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019. 9

Wesley Chung, Lynn Cherif, Doina Precup, and David Meger. Parseval regularization for continual
reinforcement learning. Advances in Neural Information Processing Systems, 37:127937-127967,
2024. 1,4,6,7,25

Karl W Cobbe, Jacob Hilton, Oleg Klimov, and John Schulman. Phasic policy gradient. In Marina
Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine
Learning, volume 139 of Proceedings of Machine Learning Research, pp. 2020-2027. PMLR,
18-24 Jul 2021. URL https://proceedings.mlr.press/v139/cobbe2la.html. 3, 20

Shibhansh Dohare, Richard S Sutton, and A Rupam Mahmood. Continual backprop: Stochastic
gradient descent with persistent randomness. arXiv preprint arXiv:2108.06325, 2021. 10, 26

Shibhansh Dohare, J Fernando Hernandez-Garcia, Parash Rahman, A Rupam Mahmood, and
Richard S Sutton. Maintaining plasticity in deep continual learning. arXiv preprint
arXiv:2306.13812, 2023a. 8

Shibhansh Dohare, Qingfeng Lan, and A. Rupam Mahmood. Overcoming policy collapse in deep
reinforcement learning. In Sixteenth European Workshop on Reinforcement Learning, 2023b. URL
https://openreview.net/forum?id=m9Jfdz4ym0. 9

Shibhansh Dohare, J. Fernando Hernandez-Garcia, Qingfeng Lan, Parash Rahman, A. Rupam
Mahmood, and Richard S. Sutton. Loss of plasticity in deep continual learning. Nature, 632
(8026):768-774, August 2024. ISSN 1476-4687. doi: 10.1038/s41586-024-07711-7. URL
https://www.nature.com/articles/s41586-024-07711-7. Publisher: Nature Publishing
Group. 1, 10

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with
importance weighted actor-learner architectures. In International conference on machine learning,
pp. 1407-1416. PMLR, 2018. 9

11

https://proceedings.mlr.press/v202/aitchison23a.html
https://proceedings.mlr.press/v202/aitchison23a.html
https://proceedings.neurips.cc/paper_files/paper/2023/file/92dd1adab39f362046f99dfe3c39d90f-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/92dd1adab39f362046f99dfe3c39d90f-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/288cd2567953f06e460a33951f55daaf-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/288cd2567953f06e460a33951f55daaf-Paper.pdf
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x
https://proceedings.mlr.press/v139/cobbe21a.html
https://openreview.net/forum?id=m9Jfdz4ymO
https://www.nature.com/articles/s41586-024-07711-7

Lasse Espeholt, Raphaél Marinier, Piotr Stanczyk, Ke Wang, and Marcin Michalski. Seed rl: Scalable
and efficient deep-rl with accelerated central inference. arXiv preprint arXiv:1910.06591, 2019. 9

Massimiliano Falzari and Matthia Sabatelli. Fisher-guided selective forgetting: Mitigating the
primacy bias in deep reinforcement learning. arXiv preprint arXiv:2502.00802, 2025. 24

Zho Fan, 2016. URL https://web.stanford.edu/class/archive/stats/stats200/
stats200.1172/Lecturell.pdf. 18

Vivek F Farias and Adam D Jozefiak. Self-normalized resets for plasticity in continual learning.
arXiv preprint arXiv:2410.20098, 2024. 10

Caglar Gulcehre, Srivatsan Srinivasan, Jakub Sygnowski, Georg Ostrovski, Mehrdad Farajtabar,
Matthew Hoffman, Razvan Pascanu, and Arnaud Doucet. An empirical study of implicit regular-
ization in deep offline RL. Transactions on Machine Learning Research, 2022. ISSN 2835-8856.
URL https://openreview.net/forum?id=HFfJWx60IT. 3, 4, 22

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Kinal
Mehta, and Jodo G.M. Aratdjo. Cleanrl: High-quality single-file implementations of deep rein-
forcement learning algorithms. Journal of Machine Learning Research, 23(274):1-18, 2022. URL
http://jmlr.org/papers/v23/21-1342.html. 5, 20

Shengyi Huang, Jiayi Weng, Rujikorn Charakorn, Min Lin, Zhongwen Xu, and Santiago Ontanon.
Cleanba: A reproducible and efficient distributed reinforcement learning platform. In The Twelfth
International Conference on Learning Representations, 2024. 5

Marcel Hussing, Claas Voelcker, Igor Gilitschenski, Amir-massoud Farahmand, and Eric Eaton.
Dissecting deep rl with high update ratios: Combatting value overestimation and divergence. arXiv
preprint arXiv:2403.05996, 2024. 4, 25

Sergey loffe. Batch normalization: Accelerating deep network training by reducing internal covariate
shift. arXiv preprint arXiv:1502.03167, 2015. 25

Ilse CF Ipsen and Arvind K Saibaba. Stable rank and intrinsic dimension of real and complex
matrices. arXiv preprint arXiv:2407.21594, 2024. 24

Arthur Juliani and Jordan Ash. A study of plasticity loss in on-policy deep reinforcement learning.
Advances in Neural Information Processing Systems, 37:113884-113910, 2024. 1, 2, 6, 17, 25, 26

Bingyi Kang, Zequn Jie, and Jiashi Feng. Policy optimization with demonstrations. In Jennifer
Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning Research, pp. 2469-2478. PMLR,
10-15 Jul 2018. URL https://proceedings.mlr.press/v80/kangl8a.html. 3

Timo Klein, Lukas Miklautz, Kevin Sidak, Claudia Plant, and Sebastian Tschiatschek. Plasticity loss
in deep reinforcement learning: A survey. arXiv preprint arXiv:2411.04832, 2024. 8

Aviral Kumar, Rishabh Agarwal, Dibya Ghosh, and Sergey Levine. Implicit under-parameterization
inhibits data-efficient deep reinforcement learning. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=09bnihsFfXU. 22

Saurabh Kumar, Henrik Marklund, and Benjamin Van Roy. Maintaining plasticity in continual
learning via regenerative regularization, 2023. 4, 6, 25

Alex Lewandowski, Haruto Tanaka, Dale Schuurmans, and Marlos C Machado. Directions of
curvature as an explanation for loss of plasticity. arXiv preprint arXiv:2312.00246, 2023. 1

Jiashun Liu, Johan Obando-Ceron, Aaron Courville, and Ling Pan. Neuroplastic expansion in deep
reinforcement learning. arXiv preprint arXiv:2410.07994, 2024. 10

Zhuang Liu, Xuanlin Li, Bingyi Kang, and Trevor Darrell. Regularization matters in policy optimiza-
tion. arXiv preprint arXiv:1910.09191, 2019. 7

12

https://web.stanford.edu/class/archive/stats/stats200/stats200.1172/Lecture11.pdf
https://web.stanford.edu/class/archive/stats/stats200/stats200.1172/Lecture11.pdf
https://openreview.net/forum?id=HFfJWx60IT
http://jmlr.org/papers/v23/21-1342.html
https://proceedings.mlr.press/v80/kang18a.html
https://openreview.net/forum?id=O9bnihsFfXU

J. Scott Long and Laurie H. Ervin. Using heteroscedasticity consistent standard errors in the linear
regression model. The American Statistician, 54(3):217-224, 2000. ISSN 00031305, 15372731.
URL http://wuw. jstor.org/stable/2685594. 17

I Loshchilov. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017. 4, 25

Clare Lyle, Mark Rowland, and Will Dabney. Understanding and preventing capacity loss in
reinforcement learning. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=ZkC8wKoLbQ7. 1,2,3,4,7,9, 22,25

Clare Lyle, Zeyu Zheng, Evgenii Nikishin, Bernardo Avila Pires, Razvan Pascanu, and Will Dabney.
Understanding plasticity in neural networks. In Andreas Krause, Emma Brunskill, Kyunghyun
Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th
International Conference on Machine Learning, volume 202 of Proceedings of Machine Learning
Research, pp.23190-23211. PMLR, 23-29 Jul 2023. URL https://proceedings.mlr.press/
v202/1yle23b.html. 1,6, 8

Clare Lyle, Zeyu Zheng, Khimya Khetarpal, James Martens, Hado P van Hasselt, Razvan Pascanu,
and Will Dabney. Normalization and effective learning rates in reinforcement learning. Advances
in Neural Information Processing Systems, 37:106440-106473, 2024a. 8, 9

Clare Lyle, Zeyu Zheng, Khimya Khetarpal, Hado van Hasselt, Razvan Pascanu, James Martens,
and Will Dabney. Disentangling the causes of plasticity loss in neural networks. arXiv preprint
arXiv:2402.18762, 2024b. 8, 9

Guozheng Ma, Lu Li, Sen Zhang, Zixuan Liu, Zhen Wang, Yixin Chen, Li Shen, Xuegian Wang, and
Dacheng Tao. Revisiting plasticity in visual reinforcement learning: Data, modules and training
stages. arXiv preprint arXiv:2310.07418, 2023. 5

Walter Mayor, Johan Obando-Ceron, Aaron Courville, and Pablo Samuel Castro. The impact of
on-policy parallelized data collection on deep reinforcement learning networks. arXiv preprint
arXiv:2506.03404,2025. 1,9

Skander Moalla, Andrea Miele, Razvan Pascanu, and Caglar Gulcehre. No representation, no trust:
Connecting representation, collapse, and trust issues in ppo. arXiv preprint arXiv:2405.00662,
2024. 1,3,4,6,9, 20, 22, 24, 25, 26

Michal Nauman, Micha\ Bortkiewicz, Piotr Mi\oS, Tomasz Trzciniski, Mateusz Ostaszewski, and
Marek Cygan. Overestimation, overfitting, and plasticity in actor-critic: the bitter lesson of
reinforcement learning. arXiv preprint arXiv:2403.00514, 2024a. 9

Michal Nauman, Mateusz Ostaszewski, Krzysztof Jankowski, Piotr MiAo$, and Marek Cygan. Bigger,
regularized, optimistic: scaling for compute and sample-efficient continuous control. arXiv preprint
arXiv:2405.16158, 2024b. 9

Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville. The
primacy bias in deep reinforcement learning. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International
Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research,
pp. 16828-16847. PMLR, 17-23 Jul 2022. URL https://proceedings.mlr.press/v162/
nikishin22a.html. 3, 7, 20

Evgenii Nikishin, Junhyuk Oh, Georg Ostrovski, Clare Lyle, Razvan Pascanu, Will Dabney,
and Andre Barreto. Deep reinforcement learning with plasticity injection. In A. Oh,
T. Neumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in
Neural Information Processing Systems, volume 36, pp. 37142-37159. Curran Associates,
Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/
75101364dc3aa7772d27528ea504472b-Paper-Conference.pdf. 3, 22

Olivier Roy and Martin Vetterli. The effective rank: A measure of effective dimensionality. In 2007
15th European Signal Processing Conference, pp. 606-610, 2007. 24

13

http://www.jstor.org/stable/2685594
https://openreview.net/forum?id=ZkC8wKoLbQ7
https://proceedings.mlr.press/v202/lyle23b.html
https://proceedings.mlr.press/v202/lyle23b.html
https://proceedings.mlr.press/v162/nikishin22a.html
https://proceedings.mlr.press/v162/nikishin22a.html
https://proceedings.neurips.cc/paper_files/paper/2023/file/75101364dc3aa7772d27528ea504472b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/75101364dc3aa7772d27528ea504472b-Paper-Conference.pdf

Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does batch nor-
malization help optimization? Advances in neural information processing systems, 31, 2018.

8

Amartya Sanyal, Philip HS Torr, and Puneet K Dokania. Stable rank normalization for improved
generalization in neural networks and gans. arXiv preprint arXiv:1906.04659, 2019. 24

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation. arXiv preprint arXiv:1506.02438,
2015. 3

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347,2017. 2, 3,5

Samuel L Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V Le. Don’t decay the learning rate,
increase the batch size. arXiv preprint arXiv:1711.00489, 2017. 5

Ghada Sokar, Rishabh Agarwal, Pablo Samuel Castro, and Utku Evci. The dormant neuron phe-
nomenon in deep reinforcement learning. In International Conference on Machine Learning, pp.
32145-32168. PMLR, 2023. 1, 10, 26

A Surget and C Belzung. Adult hippocampal neurogenesis shapes adaptation and improves stress
response: a mechanistic and integrative perspective. Mol. Psychiatry, 27(1):403—-421, January
2022. 10

Hongyao Tang and Glen Berseth. Improving deep reinforcement learning by reducing the chain effect
of value and policy churn. Advances in Neural Information Processing Systems, 37:15320-15355,
2024. 1,2,4,7,26

Giulio Tononi and Chiara Cirelli. Sleep and synaptic homeostasis: a hypothesis. Brain Res. Bull., 62
(2):143-150, December 2003. 10

Gina G Turrigiano. The self-tuning neuron: synaptic scaling of excitatory synapses. Cell, 135(3):
422-435, October 2008. 10

Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaél Mathieu, Andrew Dudzik, Jun-
young Chung, David Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh, Dan
Horgan, Manuel Kroiss, Ivo Danihelka, Aja Huang, L. Sifre, Trevor Cai, John P. Agapiou, Max
Jaderberg, Alexander Sasha Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard, David
Budden, Yury Sulsky, James Molloy, Tom Le Paine, Caglar Gulcehre, Ziyun Wang, Tobias Pfaff,
Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wiinsch, Katrina McKinney, Oliver Smith, Tom
Schaul, Timothy P. Lillicrap, Koray Kavukcuoglu, Demis Hassabis, Chris Apps, and David Silver.
Grandmaster level in starcraft ii using multi-agent reinforcement learning. Nature, 575:350 — 354,
2019. URL https://api.semanticscholar.org/CorpusID:204972004. 9

Yuzhe Yang, Guo Zhang, Zhi Xu, and Dina Katabi. Harnessing structures for value-based planning
and reinforcement learning. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=rk1HqRVKvH. 22

14

https://api.semanticscholar.org/CorpusID:204972004
https://openreview.net/forum?id=rklHqRVKvH

Appendix contents

A The role of the reward structure in plasticity collapse

B Which studied metric best captures plasticity?

C Breaking Down Batch Size Improvements

D Study and methods details

D.1
D.2
D.3
D.4

Experimentalsetup
Interventions
Hyperparameter Tuning

Additional details on our experimental setup

E Metrics details

E.1
E2
E3
E4

Deadneurons
Featurerank
Capacityloss

Discussion about other possible metrics.

F Interventions

F.1
F2
F3
F4
F5
F.6

Data-level modifications
Loss function modifications
Network architecture modifications
Churn based modifications

Combinations of modifications

Where do reset-style methods fit in our taxonomy?

G Main paper figures on all environments.

G.1

Figure 1 on all environments

G.2 Figure 2 and 4 with other interventions and number of epochs

G3

Figure 5 on other environments

H Extra figures.

H.1
H.2

Extended trainingruns

Plasticity figures

15

16

17

18

20
20
20
21
22

22
22
22
22
24

24
25
25
25
26
26
26

26
26
28
35

A The role of the reward structure in plasticity collapse

Baseline: dense vs. sparse. We study how plasticity-related metrics relate to reward structure using
a baseline PPO agent, grouping tasks as dense (Phoenix, NameThisGame) and sparse (Gravitar).

Scope note. Our dense/sparse split uses two dense games (Phoenix, NameThisGame) and one sparse
game (Gravitar); conclusions for sparse rewards are therefore illustrative and may vary with other
sparse environments.

What we see (baseline). Across epochs, dense and sparse behave differently (Fig. 6):

1. Policy feature rank (PCA) drops much faster in dense. In Gravitar it decays more slowly
even at high epoch.

2. Policy preactivation norm grows quickly in dense but only slowly in sparse and thus also
across all epochs.

3. Dead policy neurons rise faster in dense than in sparse across all epochs.

Other monitored metrics do not show a consistent baseline pattern.

Why this pattern is expected. Dense tasks provide frequent, informative rewards. Under PPO this
means more (and larger) updates per epoch, so representations move faster: feature rank collapses
sooner, activations grow, and more units go inactive. Increasing the epoch budget compounds these
effects in dense tasks, hence the visibly faster collapse. In sparse tasks, useful updates are rarer and
noisier, so the same increase in epochs leads to fewer effective updates; metrics still drift in the same
direction but with a much smaller slope.

Main takeaways (beyond baseline). Within each reward regime (Tab. 3), higher policy PCA
rank and policy variance track higher reward, while dead neurons and large pre-activation norms
track lower reward; the pattern is clear in dense and weaker (sometimes flipped for dead neurons)
in sparse. By environment (Tab. 4), Phoenix shows faster drift toward collapse as the number of
epochs FE increases, Gravitar trends the other way, and NameThisGame is mixed. Interventions
that stabilize features and scales (larger batches, normalization, CHAIN-SP) help more in dense, and
they shift plasticity in the desired direction (higher policy rank, fewer dead neurons), producing larger
dense—sparse gaps (Tabs. 5, 6). Why does reward structure matter here? Beyond update frequency
(baseline), the key is credit assignment strength: dense rewards give consistent, fine-grained signals
that select which features stay active and useful. Runs that keep many distinct policy features (high
rank) and maintain action diversity get reinforced and earn higher reward; collapse (dead neurons,
blown-up pre-activations) is penalized. In sparse rewards, feedback is rare and noisy, so many updates
carry too little information to point to the helpful features; links to rank and variance are weak, and
the number of dead neurons can still go up even though we never prune: some ReLU units just stop
firing because their inputs stay non-positive. Methods that clean up gradients or stabilize scales raise
the effective signal-to-noise of credit assignment, so they yield bigger gains where feedback is already
informative—dense.

Summary. Dense tasks collapse faster as epochs increase. Rank gap and policy PCA rank track
reward in both regimes (stronger in dense). Dead units are regime-dependent. Interventions that
stabilize features (larger batch size, normalization layers, CHAIN-SP) improve reward and reduce
collapse markers, with larger effects in dense.

— Gravitar (4 epochs) - Gravitar (6 epochs) - Gravitar (8 epochs) — NameThisGame (4 epochs) - NameThisGame (6 epochs) - NameThisGame (8 epochs) — Phoenix (4 epochs) = Phoenix (6 epochs) -:- Phoenix (8 epochs)

x101 x10?

10°
8 {Baseiine oo me—
7

=
2
=
)
L
w

y i i
T

7
fi gl e
10% ’,' 2 A

/)

N

’
i
i
I
y
/]
i

o
S

w
w

'
1N
&\

N

N

Episode return
IS
Dead neurons policy

N

Norm preactivation policy
Feature rank critic (PCA)

)
=

o

0 05 1 0 05 1 0 05 T 0 05 N 0 05 1 0 05 1
Environment stepsc10° Environment steps<10° Environment steps10° Environment steps10° Environment stepsc10° Environment stepsc10°

Figure 6: The 3 environments without any interventions with 4, 6 and 8 epochs.

16

Note on comparability. Absolute PCA ranks are not directly comparable across environments
because input statistics and action spaces differ. We therefore report within-environment changes
(deltas vs. that env’s baseline).

Metrics Dense Sparse
Rank Gap 0.583#%* (0.299%%*
PCA Rank (Policy) 0.515%%* (.328%*%*
PCA Rank (Value) -0.051 0.033
Policy Variance 0.423*** 0.146
Dead Neurons (Policy) -0.398%** (.257%#%*
Norm Preac. Policy -0.176%* -0.238%%*

Table 3: Spearman correlation between metric and normalized reward within dense/sparse groups. Stars:
Pp<.01%%, p<.001%*%,

Env PCA Rank (Policy) Policy Variance Dead Neurons (Policy) Norm Preac. Policy Rank Gap
Gravitar 21.824 -0.001 -2.85 -186.757 22.68
NameThisGame 11.684 -0.002 5.102 672.438 12.414
Phoenix -4.916 -0.005 22.576 390.948 -4.144

Table 4: Slope per epoch by environment (positive means the metric increases with more epochs).

Group Rank @4 epochs @6 epochs @8 epochs
Dense 1 Larger Batch Size (+1.228) Larger Batch Size (+1.069) CHAIN-SP (+0.655)
2 CHAIN-SP (+0.497) LayerNorm+CHAIN-SP (+0.764) LayerNorm+CHAIN-SP (+0.562)
3 LayerNorm (+0.497) LayerNorm No Scaling (+0.631) Larger Batch Size (+0.529)
Sparse 1 Larger Batch Size (+0.153) Larger Batch Size (+0.165) CHAIN-SP (+0.123)
2 PFO (+0.109) LayerNorm (+0.128) Larger Batch Size (+0.096)
3 No reward clipping (+0.007) CHAIN-SP (+0.116) LayerNorm+CHAIN-SP (+0.090)

Table 5: Top-3 interventions by A normalized reward within each reward structure (median vs. baseline).

Intervention @4 epochs @6 epochs @8 epochs
Larger Batch Size +1.075 +0.905 +0.433
LayerNorm +0.653 +0.492 +0.420
CHAIN-SP +0.562 +0.454 +0.531
RGB+No Resize —0.156 +0.004 +0.001

Table 6: Dense — Sparse gap in A normalized reward (median vs. baseline). Positive = helps dense more.

B Which studied metric best captures plasticity?

Setup. We fit two generalized linear models (GLMs) over all environments (Phoenix, Name-
ThisGame, Gravitar), epochs (4/6/8), and interventions. The first predicts final human-normalized
reward; the second follows the “Juliani-style” target (Juliani & Ash, 2024), i.e., change from
round 1 to end of training. We define round 1 as the subset of each run with global_step <
0.10 max(global_step), and we report its score as the mean episodic return over the final 5% of
that subset. For each run we aggregate metric values over the last 5% of steps, standardize predictors
within-environment, and include environment/epoch controls for the final-reward model (dropped for
the Juliani target).

We report HC3 heteroskedasticity-consistent standard errors, which are recommended when residual
variance can differ across runs and leverage may vary (Long & Ervin, 2000).2

We aggregate to one observation per run (env x seed X intervention), so within-run dependence is removed.

17

To address multiple comparisons across metric coefficients, we control the false discovery rate
using the Benjamini—-Hochberg (BH) procedure at g=0.05, which provides powerful inference while
bounding the expected proportion of false discoveries (Benjamini & Hochberg, 1995; Fan, 2016).

What we report. Below we explain each column shown for the GLM table so it’s clear how to
read the results.

* Bsta — Standardized GLM coefficient (features are z-scored, i.e. © — (x — pz)/0, SO
each predictor has mean 0 and standard deviation 1). Bigger |Sq| means a stronger effect.
Positive means higher metric = higher normalized reward (all else equal).

* ¢ — FDR-adjusted p-value (Benjamini—-Hochberg). Smaller is better. We treat ¢ < 0.05 as
statistically significant.

. ARidj — Drop in adjusted R? if we remove this metric from the model:
ARaZdj = Rfdj(full) - Rfdj(minus this metric).
Larger values mean the metric adds more unique explanatory power.

* Rank — Importance rank (lower is better), combining |Sq| and ARfdj; ties are broken by
smaller q.

Main findings Across both targets, higher policy PCA rank and non-trivial policy variance are
the strongest signals: they have the largest standardized coefficients in our GLMs. Signals about
spectrum shape line up too—lower top eigenvalue (\y) helps, and stronger second eigenvalue
(A2) is modestly good—while simple scale terms (e.g., critic weight norm) only add a little once
rank and variance are in. Capacity/instability markers like capacity loss and dead units hurt or add
little after the main signals. Why? The visuals suggest a simple mechanism: higher policy rank ~
richer features; higher action variance ~ healthier exploration; together they lift reward. Large Ay
and capacity loss look like instability or collapse that the GLM learns to down-weight. In practice,
if you can only track a few things, log policy PCA rank, policy variance, and a simple stability
proxy (A\a/An or capacity loss); the rest contribute marginal gains once these are present.

Table 7: Final-reward GLM.: top predictors (standardized design). Lower g and higher ARfdj indicate stronger
signal.

Metric (short) Bstd q ARfdj
Policy PCA rank 0.183 1.0 x 107 0.0465
Critic weight norm 0.084 1.9 x 107 0.0201
Policy variance 0077 1.7x107° 0.0178
A2 (policy) 0.083 1.2x107* 0.0151
AN (policy) —0.065 1.4 x 1077 0.0145
Capacity loss (policy) —0.061 6.0 x 1072 0.0139
Value PCA rank —0.062 3.2x107° 0.0138

Table 8: Juliani-style GLM (final — round 1): top predictors. Coefficient scales differ from the final-reward
model; compare ARfdj.

Metric (short) Bt qg A Rfdj
Policy PCA rank 942.19 2.0 x 107% 0.0374
Policy variance 596.30 7.0 x 1075 0.0328
Critic weight norm 506.04 2.3x107% 0.0221
AN (policy) -441.17 5.5 x 1074 0.0190
A2 (policy) 406.52 1.42 x 1072 0.0095

Capacity loss (policy) ~ -317.59 1.00 x 1072 0.0109
Dead neurons (policy) -330.44 5.95 X 1072 0.0056

C Breaking Down Batch Size Improvements

Bigger batches can help for two main reasons: more parallel environments (#Envs) give more diverse
data per update, and larger minibatches (MB) reduce gradient noise. Longer rollouts (R) and extra

18

epochs (E) can also change the outcome. To separate these factors, we run the matched settings in
Table 9. The Baseline uses 8 envs, MB=256, R=128 with E € {4, 6, 8}. Larger Batch Size scales
both diversity and averaging (64 envs, MB=2048, same R); Larger Batch Size, 4 is the half step (32
envs, MB=1024). To isolate the minibatch effect at fixed diversity, Larger Batch Size, MB4 keeps 8
envs and R=128 but sets MB=1024; MB4, R4 lengthens the rollout to R=512; and MB8, R8 pushes
MB and R further (MB=2048, R=1024) with 8 envs. We compare both reward and plasticity metrics
across these matched runs, holding the overall training budget (env steps) fixed, to see whether gains
track MB (noise reduction), #Envs/R (data diversity), or E (data reuse).

Experiment Epochs Envs Minibatch Rollout per Gradient
(E) (MB) Env (R) Steps
Baseline 4,6, 8 8 256 128 4
Larger Batch Size 4,6,8 64 2048 128 4
Larger Batch Size, 4 4,6,8 32 1024 128 4
Larger Batch Size, MB4 4,6,8 8 1024 128 1
Larger Batch Size, MB4, E4 16, 24, 32 8 1024 128 1
Larger Batch Size, MB4, R4 4,6,8 8 1024 512 4
Larger Batch Size, MBS, R8 4,6, 8 8 2048 1024 4

Table 9: Batch-

%}

ize ablations configuration summary

Baseline — Larger Batch Size x8 — Larger Batch Size x4~ Larger Batch Size, MB4 — Larger Batch Size, MB4, E4 — Larger Batch Size, MB4, R4 — Larger Batch Size, MBS, R8

x10% x10° x1072 x102
'ALE/Phoenix-v5 (E=4,16)
2.0 =4 z 5
g 2 85 oy
£ >3 b y6 Z4
S1s 2 54 £ o
3] S = I}
2 g 83 5 53
210 22 2 Sa 2
o 5 8 > o
2 ° 32 g 22
S o 5 S °
o5 21 2 21
=) £l 8
© £
g £ S
0.0 0 0 ————————— 0 0
00 025 0.50 0.75 1.0 .00 025 0.50 0.75 1.0 .00 025 0.50 0.75 1.0 .00 025 0.50 0.75 1.0 .00 025 0.50 0.75 1.0
Environment steps x10° Environment steps x10° Environment steps x10° Environment steps %10 Environment steps x108

Figure 7: Plasticity metrics tracked for the ablation on bigger batch size, Phoenix, 4 and 16 epochs.

Baseline — Larger Batch Size x8 — Larger Batch Size x4~ Larger Batch Size, MB4 — Larger Batch Size, MB4, E4 — Larger Batch Size, MB4, R4 — Larger Batch Size, MBS, R8

x10% %102 x10% %1072 %102
ALE/Phosnix-vS (E=6,24] 4
125 e z 5
[=10 6 >
g, g " 24
- 2
€100 | 3 cos ¢ 3
@) = I
2075 2 To6 4 53
v o2 2 s g
'8 c v > 5
%050 s S0.4 g 22
& @1 5 52 9
0.25 2 £02 g1
L o e
0.001" “o Z 0.0 et 0 o
00 025 050 075 1.00 00 025 050 075 1.00 00 025 050 075 1.00 00 025 050 075 1.00 00 025 050 075 1.00
Environment steps ~ x10° Environment steps ~ x10° Environment steps ~ x10° Environment steps ~ x10° Environment steps ~ x10°

Figure 8: Plasticity metrics tracked for the ablation on bigger batch size, Phoenix, 6 and 24 epochs.

Baseline — Larger Batch Size x8 — Larger Batch Size x4~ Larger Batch Size, MB4 — Larger Batch Size, MB4, E4 — Larger Batch Size, MB4, R4 — Larger Batch Size, MBS, R8

x10° x102 x10* %1072 x102
ALE/Phoenix-v5 (E=8,32)

. 24 320 6 5
4 2 5 g
£ >3 cl5 3 54
26 g s S4 "y
© = S 3 2 23
p %2 210 g3 g
84 & ® >]
2 [3 3, 22
a o 5 S °
“2 2 ! £ 03 —’_// < 1 21
© 1= o
/ 3 S
oLl Yo Z0.0 0 0
00 025 050 075 1.0 00 025 050 075 1.0 00 025 050 075 1.0 00 025 050 075 1.0 00 025 050 075 1.0
Environment steps X108 Environment steps ~ x10°8 Environment steps ~ x10° Environment steps ~ x10°¢ Environment steps ~ x10°

Figure 9: Plasticity metrics tracked for the ablation on bigger batch size, Phoenix, 8 and 32 epochs.

What changes with each factor?

1. Minibatch size positively affects training. Increasing the minibatch size to 1024 from the
default value of 256 leads to better perfomance in low epoch runs and slower collapse in

19

higher epoch ones (Figures 7 and 9). The same trend holds when comparing runs with
mini-batch size 1024 and 2048.

2. The way batch size is increased doesn’t matter Batch size can be either increased by
adding new environments or extending the rollout lengths. To test the way each of these
increasing methods works, we can consider pairs (Larger Batch Size, 4; Larger Batch Size,
MB4, R) and (Larger Batch Size; Larger Batch Size, MBS, R8) (see Table 9). In each of
them, the runs have the same minibatch size and number of gradient steps per batch, but
they differ in the way the batch size is increased. From our results, we see that no matter the
increasing method, the performance and collapse trends are similar (Figures 7, 8 and 9).

Higher data-reuse setting (E=8). At the same 10® env steps but with more reuse per update
(E=8), the differences sharpen. MB4 remains stable when looking at plasticity metrics, whereas
both MB4, R4 and the half Larger Batch Size collapse. Even the full larger batch and MB8, R8
partially degrade at the end of the curve and when looking at the feature rank policy (PCA). These
effects of high epochs are even sharper when looking at the MB4-E4 curves when none of them
really converge and where the collapse happens at the really beginning of the training. This points
to a simple story: longer rollouts and heavier reuse can hurt plasticity under the same interaction
budget, and the most reliable stabiliser is the larger minibatch (better gradient averaging), not just
more diverse or longer trajectories.

Takeaway. Bigger batches improve plasticity mainly because the minibatch is larger (better
gradient averaging). In our matched-budget runs, MB-only (#Envs fixed) reproduces most of the
gains seen with the full larger-batch setting and stays robust at the end of training.

D Study and methods details

D.1 Experimental setup

We follow the experimental protocol in Moalla et al. (2024) and train PPO on Phoenix, NameThis-
Game and Gravitar from the Arcade Learning Environment (ALE). Following Aitchison et al. (2023),
we selected NameThisGame (Atari-1) and Phoenix (the next one to form Atari-3) because together
they achieve a high predictive correlation to the full 57-game suite, and include Gravitar to form
the third environment, as a sparse-reward environment which among sparse ALE games has the
highest correlation with full-suite performance, making it a representative sparse task. Furthermore,
we want to see if the claims of Moalla et al. (2024) regarding the critic collapsing before the actor
in this environment hold for our interventions, which we apply to both the actor and the critic, in
contrast to Moalla et al. (2024), who only apply the interventions to the actor. In this protocol, we
add stochasticity to transitions, in an otherwise deterministic ALE, by repeating the previous action
independently of the action that the agent played with probability 25% (sticky actions). We use three
seeds for each hyperparameter configuration and show the average result with a shaded area bounded
by the minimum and maximum values. Actor and critic have separate trunks, because shared trunks
lead to interference between policy and value objectives, which can hurt performance (Cobbe et al.,
2021). Moreover, we observe that the baseline converges in all environments, so our training budget
is sufficient to train two trunks. The default number of epochs for the ALE benchmark is 4 (Huang
et al., 2022), and to amplify the effect of non-stationarity, we run each experiment with 4, 6, and
8 epochs. Runs with 6 and 8 epochs tend to have a worse performance, but the collapse in them
happens faster, allowing us to analyze the degradation of metrics within our sampling budget. A more
rapid collapse with the increased number of epochs can be explained by overfitting, so we expect
to see similar dynamics as in the works that studied training in an overfitting regime (Moalla et al.,
2024; Nikishin et al., 2022).

D.2 Interventions

We organize interventions according to the three categories (1) data (input), (2) auxiliary losses
(output), and (3) normalization layers (architecture), and include a fourth category for combinations
of normalization layers with auxiliary losses. Each intervention is evaluated against our plasticity
metrics under a unified PPO framework. In contrast to Moalla et al. (2024), we apply the interventions
to both the actor and the critic, which have separate networks. By developing the auxiliary-loss

20

taxonomy in Figure 1, we reveal a large region of unstudied loss functions and introduce a new
CHAIN-based intervention, CHAIN-SP. We provide a comprehensive experimental design and the
complete set of individual result plots in Appendix F, G. Table 2 presents a summary of the methods
we test, with detailed experimental descriptions available in Appendix F. Figure 1 presents the
summary boxplots, showing the effect of each intervention on episode return, feature rank (PCA),
capacity loss, and the number of dead neurons in the policy.

D.3 Hyperparameter Tuning

We use a rigorous, multi-step protocol to tune the actor and critic networks’ hyperparameters for
each auxiliary-loss intervention (Table 2). First, we optimize the actor hyperparameters over a
logarithmically spaced range (810 values) on the Phoenix environment for 6 epochs (3 x 107 steps),
while keeping the critic hyperparameters fixed. After identifying the optimal actor hyperparameters
and verifying its stability over an extended training period (1 x 108 steps), we tune the critic
hyperparameters using a similar approach. To ensure generality, we refine the actor settings by
testing values right above and below the optimum across three distinct environments, and confirmed
robustness using multiple random seeds. Full details of the tuning procedure are provided below:

D.3.1 Hyperparameter tuning protocol

In order to robustly tune the hyperparameters of each auxiliary-loss interventions, we followed
a multi-step protocol. First, we tuned the actor network hyperparameters while keeping the critic
hyperparameters fixed. Then, we performed a complementary tuning of the critic hyperparameters
using the optimal actor settings. The detailed protocol is as follows:

1. Initial Actor Hyperparameter Selection. We selected a broad range of possible values for
the actor network hyperparameters. They are 8-10 consecutive powers of 10. In this initial
phase, the critic hyperparameter was fixed to 0.

2. Actor Hyperparameter Tuning on Phoenix. The actor hyperparameters were evaluated on
the Phoenix environment over 6 epochs, corresponding to approximately 3 x 107 steps. The
best-performing actor hyperparameter was identified based on our performance metric. To
ensure that the optimal value was not an artifact of the chosen range, if the optimum was
observed at the boundary of the range, the range was extended and the new values were also
evaluated and thus up until finding an optimal value not on the boundary of the range.

3. Extended Stability Verification. Using the best actor hyperparameter identified in Step
2, we run a longer training for 1 x 10% steps with a single seed. This is to ensure that the
performance did not collapse over longer training horizons.

4. Critic Hyperparameter Tuning. With the actor hyperparameter fixed to the optimal value
from Step 2, we then selected a broad range of candidate values for the critic hyperparameter,
again on a logarithmic scale. Similar to Step 2, experiments were run on the Phoenix
environment for 6 epochs (up to 3 x 107 steps), and the best critic hyperparameter was
determined based on the performance metric. As before, if the optimum was located at the
range boundary, we then extended the range and tested the new values.

5. Multi-Environment Evaluation. In order to really optimize the actor hyperparameter, we
consider 1-2 values immediately below and above the optimal value identified in Step 2
(again in logarithmic scale). The new actor hyperparameters were tested with the optimal
critic hyperparameter (from Step 4) across 3 distinct environments. In each environment,
training was conducted for 6 epochs (up to 3 x 107 steps) to test generality.

6. Final Hyperparameter Selection. The hyperparameter configuration that consistently gave
superior performance across all 3 environments was selected. In the ideal case, a single
hyperparameter value is optimal for all environments.

7. Robustness and Generalization Test via Multiple Seeds. Finally, complete runs were
conducted using multiple random seeds to evaluate the reproducibility, robustness and
generalization of the selected hyperparameter configuration.

21

D.4 Additional details on our experimental setup

We use the hyperparameters detailed in Table 10 when training the baseline PPO agent in ALE.

E Metrics details

E.1 Dead neurons

We call a neuron dead if it does not activate any sample from the batch. Because in all our modifi-
cations we use ReLU activations, that is equivalent to all of the pre-activations of the neuron in the
batch being non-positive, as proposed by Gulcehre et al. (2022).

E.2 Feature rank

In deep reinforcement learning, the activations of the penultimate layer are treated as the network’s
features, which on a batch of N states form a matrix ¢ € RNV*P with D < N Kumar et al. (2021);
Lyle et al. (2022); Gulcehre et al. (2022); Andriushchenko et al. (2023). Various feature rank metrics
quantify the “quality” of ® by examining its singular values {o;(®)}2 ,, including both relative
measures (e.g., approximate rank via PCA) and absolute measures (e.g., counting singular values
above a threshold) Lyle et al. (2022). The approximate rank (PCA) is defined as

k D
rankpca (®) = mink{ k- Zai(fb)Q > (1-19) ZO’j(‘I))Q},

with § = 0.01 to retain 99% of the variance Andriushchenko et al. (2023); Yang et al. (2020). An
example of an absolute rank metric is the Feature Rank of Lyle et al. (2022), defined as

!{2 :04(®)/VN > 5}|,

while the PyTorch rank counts indices i for which o;(®)/(c1(®)VN) > € (e.g.,e = 1.19 x 1077
Lyle et al. (2022). Absolute and relative rank measures, while yielding different numerical values,
exhibit highly correlated temporal trajectories that fall into two distinct clusters, as demonstrated by
Moalla et al. (2024) in Appendix E.

Furthermore, in the same study, Moalla et al. (2024) reveals that PPO agents also experience
feature rank deterioration—a decline in rankpca () over time—driven by non-stationarity in policy
optimization Moalla et al. (2024). They show that as rankpca (P) decreases, PPO’s heuristic trust
region degrades, ultimately causing performance collapse even when the critic remains strong Moalla
et al. (2024).

E.3 Capacity loss

Capacity loss—often called target-fitting capacity (see Lyle et al. (2022))—is evaluated on interme-
diate checkpoints of a network during training to track how its ability to match a fixed, externally
defined target changes over time. In other words, it provides a concrete measure of the model’s
plasticity. Concretely, given a pre-specified target distribution (over inputs and outputs) and a fixed
number of optimization steps, the capacity loss at a particular checkpoint is simply the loss incurred
when that checkpoint is trained (within the allotted budget) to reproduce the target.

In deep RL, one typically measures an agent’s capacity by asking it to fit the outputs of another
model whose parameters were sampled from the same initialization distribution as the agent, using
data collected from a rollout generated by this "random" model ((Lyle et al., 2022); (Nikishin et al.,
2023)). We adopt this approach here, so that the data used for fitting comes—on average—from the
same distribution as the agent’s initial checkpoint. When performing the fit, the critic is trained by
minimizing an L? (mean-squared) loss between its outputs and the target’s outputs, whereas the actor
is trained by minimizing the forward Kullback—Leibler divergence between the target policy and the
checkpoint’s policy.

22

Table 10: Hyperparameters used when training the baseline for ALE.

Environment

Repeat action probability (Sticky actions) 0.25
3

Frameskip

Max environment steps per episode

Noop reset steps

108,000
0

Observation transforms

Grayscale True
Resize width (‘resize_w*) 84
Resize height (‘resize_h°) 84
Frame stack 4
Normalize observations False
Reward transforms
Sign True
Collector
Total environment steps 100,000,000
Num envs in parallel 8
Num envs in parallel capacity 1

Agent steps per batch

Total agent steps capacity
Models (actor and critic)

1.024 (128 per env)
36,000 (at least one full episode)

Activation ReLU

Convolutional Layers

Filters [32, 64, 64]

Kernel sizes [8, 4, 3]

Strides 4,2, 1]

Linear Layers

Number of layers 1

Layer size 512
Optimization

Advantage estimator

Advantage estimator GAE

Gamma 0.99

Lambda 0.95

Value loss

Value loss coefficient 0.5

Loss type L2

Policy loss
Normalize advantages

minibatch normalization

Clipping epsilon 0.1
Entropy coefficient 0.01
Optimizer (actor and critic)

Optimizer Adam
Learning rate 0.00025
Betas (0.9, 0,999)
Max grad norm 0.5
Annealing linearly False
Number of epochs 4,6,8
Number of epochs capacity fit 1
Minibatch size 256

Logging (% of the total number of batches)

Training
Capacity

every 0.1% (~100,000 env steps)
every 2.5% (41 times in total)

23

Loe, = (s aymmg, [KL(Too, (- 1 8) 1760, (- |)]s Loy = Esiaymme, [(Viown (8) = Vioo ()],

LCP = Lgcp + L¢)cp

Capacity loss for the checkpoint cp, L°P, is optimized the same way as PPO using minibatches. For
each rollout we do 1 epoch of optmization.

Smaller values of L., indicate that the checkpoint cp has preserved more plasticity.

E.4 Discussion about other possible metrics.

Fisher Information Matrix (FIM) A useful extra metric is the Fisher Information Matrix (FIM),
which measures how sensitive the network is to parameter changes through the covariance of
the score (the gradient of the log-likelihood). Prior work reports a simple signal in the trace of
the empirical FIM during training: an early sharp rise (“memorization”) followed by a decline
(“reorganization’). The switch between the two can be picked up by looking at a smoothed time-
derivative of the trace. (Falzari & Sabatelli, 2025) We did not track FIM here, but adding it is practical:
an EKFAC-style approximation makes it cheap enough to log per layer or globally. In PPO, we would
compute the policy FIM as the on-policy empirical Fisher, i.e., the batch average of Vg logmy(a |
s) Vglogmg(a | s)T ; compute the critic FIM by modeling V;(s) as the mean of a Gaussian with
fixed variance o and using its Gauss—Newton/Fisher E[072V ,V;(s)VVs(s) "] (or the empirical
form ((y — V(5))/02)? VVs(s) VVi(s)T), averaged over the batch. This would complement
our current rank, dead neurons and norm metrics by adding a curvature view. Practically, the expected
overhead is about 10-20% of training time, and prior results suggest consistent actor—critic differences
(critic traces often about an order of magnitude larger) and sensitivity to the amount of data reuse
(replay/epoch ratio). (Falzari & Sabatelli, 2025).

Different types of rank. We track several rank metrics (PCA rank, torch algebraic rank, stable/s-
rank, feature rank, and effective/Vetterli rank), following Moalla et al. (2024); see their Appendix E
for definitions and details. They often differ because each summarises the singular-value spectrum
differently. For example, the stable rank srank(A) = || A||%/||A||3 is steady under tiny singular
values and changes smoothly as the spectrum decrease, so it works well as a noise-robust size measure.
By contrast, the algebraic rank can jump when one singular value passes a threshold. The effective
rank erank(A) = exp(H (p)) with p; = 0;/ 3, 0; tells how evenly the singular values are spread;
it usually lies between 1 and the algebraic rank (Roy & Vetterli, 2007). Our case study already covers
a broad set of rank metrics. As optional additions—useful if one wants extra nuance—it could help
to log two simple stable-rank variants that complement (not replace) what we have:

1. A normalised stable rank, srank(A)/ min{m,n}, to put layers of different sizes on the
same scale. (Sanyal et al., 2019)

2. A p-stable rank, sr,(A4) = Z(O’i /Omax)?. Here p=2 is the usual stable rank; p=1 is more
sensitive to the tail. (Ipsen & Saibaba, 2024)

Normalising stable rank would put layers on a common scale for clearer cross-layer and cross-run
plots; logging both sr_1 (tail-sensitive) and srank (p=2, more top-eigenvalue-oriented) would help
separate “spike growth” from “tail filling,” and both are cheap to add since they only require |A| x F’
and op,ax (Via a short power iteration). We do not include them by default because our current set
already captures the spectrum trends we study; these variants add finer detail but bring diminishing
returns, so we list them as optional complements for future ablations.

F Interventions

In this section, we provide some details on the interventions tested. We apply all modifications to
both the actor and the critic.

24

F.1 Data-level modifications

Larger batch size We examine the impact of batch size on training dynamics. We increase it by
a factor of 8, but keep the number of gradient updates the same by increasing the minibatch size
by 8 as well. The only change for BATCH X 8 is that we collect eight times more transitions before
each optimization round by using eight times as many parallel environments and keep the number of
gradient steps constant by correspondingly using an eight-times larger minibatch, while maintaining
the same learning rate. The result is therefore more data per policy update round, the same number
of gradient updates per update round, but a lower number of policy update rounds overall. We
hypothesize that the noise in gradient updates would decrease, and thus the training will be more
stable.

RGB inputs unscaled To further investigate the richness of feature representations, we use colored
pixels inputs without image resizing compared to the baseline. Other image preprocessing parameters
are left the same.

No reward clipping. By default, we replace the reward by its sign. In this regularization, however,
we use the raw reward for training. We do that to test how an unpreprocessed signal affects training.

F.2 Loss function modifications

Regenerative Regularization We experiment with regenerative regularization (L2 Init) as proposed
in Kumar et al. (2023). We test regenerative regularization alone to evaluate its baseline effectiveness.
PFO. Proximal Feature Optimization (PFO) (Moalla et al., 2024) is a regularization technique for
stabilizing representation learning in PPO by constraining pre-activation drift during the policy
optimizations stage of the training. This approach mitigates plasticity loss, reduces the number of
dead neurons, and enhances feature diversity, effectively addressing performance degradation during
training.

InFeR. Initial Feature Regularization (InFeR) (Lyle et al., 2022) mitigates capacity loss by penal-
izing the distance between auxiliary outputs of current weights and initial weights. This stabilizes
feature dynamics, preserving plasticity and improving performance, particularly in sparse-reward
environments.

AdamW. AdamW (Loshchilov, 2017) is tested as a regularization technique analogous to regenerative
regularization, but instead, it encourages weights to remain close to zero.

F.3 Network architecture modifications

LayerNorm. LayerNorm, introduced by (Ba et al., 2016), is a widely used regularization technique
in deep learning. As shown by Lyle et al. (2022) and Juliani & Ash (2024), LayerNorm is effective in
mitigating plasticity loss during training for both off- and on-policy reinforcement learning. We also
test Layer Normalization without scaling (v fixed to 1, 3 fixed to 0).

BatchNorm. BatchNorm (Ioffe, 2015) is tested to assess its comparative performance against
LayerNorm. BatchNorm normalizes each layer’s pre-activations across the minibatch, reducing
internal covariate shift and smoothing the loss landscape. To evaluate its regularizing effect in
PPO, we insert BatchNorm layers immediately after each linear transform in both actor and critic
networks, keeping the learnable scale () and shift (5) parameters active so that the model can
re-adapt normalized activations as needed during training. We also test a variant of BatchNorm with
its affine parameters frozen (y = 1, 5 = 0) to isolate the pure normalization effect—this "no-scale"
BatchNorm lets us quantify how much of its benefit comes from variance stabilization alone versus
the added flexibility of learnable rescaling.

Unit Ball Normalization. Unit Ball Normalization (UBN) (Hussing et al., 2024) is proposed as a
method to mitigate Q-value divergence, providing stable gradients and enhancing performance in
high UTD scenarios. To evaluate its effectiveness, we implement UBN for actor models in PPO to
investigate its potential in preventing plasticity loss caused by large gradients.

Parseval. Parseval regularization is proposed as a method to mitigate plasticity loss, trainability
degradation, and primacy bias by enforcing orthogonality constraints on weight matrices—thereby
preserving useful optimization properties and stabilizing training dynamics in continual reinforcement
learning settings (Chung et al., 2024). Parseval regularization was initially proposed for linear layer
regularization. We extend it to convolutional layers by flattening each convolutional kernel into a
matrix. As in the original paper, we do not apply regularization to the last layer of the network.

25

F.4 Churn based modifications

CHAIN Churn Approximated ReductloN (CHAIN) is proposed as a method to mitigate the chain
effect of value and policy churn, providing more stable predictions and enhancing learning perfor-
mance across online and offline, value-based and policy-based RL settings (Tang & Berseth, 2024).
To evaluate its effectiveness, we implement CHAIN within the actor and critic network of PPO to
investigate its potential in preventing plasticity loss caused by large churn-induced parameter updates.

CHAIN-SP (Sampling-Policy) extends CHAIN by applying the churn-approximated reduction not
to the post-gradient-update model, but to the policy used during rollouts. In practice, rather than
stabilizing the actor network after each gradient step, CHAIN-SP constrains the sampling model—i.e.,
the policy that interacts with the environment—to minimize output churn relative to its previous
rollout version. By enforcing this stability at the rollout stage, CHAIN-SP aims to reduce large shifts
in action distributions that can accelerate plasticity loss. This modification is incorporated into the
PPO framework by maintaining a separate "rollout" copy of the actor network, applying the CHAIN
objective to penalize deviations between the new rollout policy and its immediate predecessor, and
using this stabilized policy for environment interactions.

F.5 Combinations of modifications

Recent results show that LayerNorm helps models retain its plasticity. Moreover, combining Lay-
erNorm with other regularizations results in an increase in model effectiveness and mitigation in
plasticity loss. For example, in Juliani & Ash (2024), LayerNorm with Regenerative Regularization
or Shrink+Perturb were the most successful interventions, retaining plasticity and having good
generalization ability Ash & Adams (2020).

We continue this direction of study, by combining LayerNorm with three types of regularizations:
LayerNorm + PFO, LayerNorm + BatchNorm No Scale, LayerNorm + CHAIN-SP.

F.6 Where do reset-style methods fit in our taxonomy?

Our taxonomy in Table 1 is only for auxiliary losses (component-on-which-the-loss-is-applied x
target). Reset-style methods like CBP (Dohare et al., 2021) and ReDo (Sokar et al., 2023) are
not auxiliary losses: they re-initialise parameters during training. Therefore they sit outside this
taxonomy. They are orthogonal to our three families (data, losses, normalisation): you can combine
a reset schedule with any loss-based method in the grid, but resets act via discontinuous parameter
changes rather than a loss term. We do not benchmark resets here; our focus is on continuous changes
that keep units active.

G Main paper figures on all environments.

G.1 Figure 1 on all environments

Figures 10, 11 and 12 aggregate every run: (1 baseline + 18 interventions) x 3 games x 3 seeds x 3
epochs, in a single set of boxplots.

We present all the modifications together. We follow the details of Moalla et al. (2024), Appendix
B.3 to compute the boxplots.

Each box summarises 9 independent runs (3 epoch budgetsx3 random seeds). The box spans the
inter-quartile range (Q1-Q3); the centre black tick marks the median and the red tick marks the mean.
Whiskers extend to the largest (smallest) value within Q3+1.5IQR (Q1-1.5IQR) (which is the default
Matplotlib rule). Points beyond the whiskers are plotted as outliers.

26

e Baseline
Data-level
mmm Auxiliary loss: weights

Episode return

m— Auxiliary
Auxiliary

loss: features
loss: outputs

mmmm Normalization layers
s Combinations

Feature rank policy (PCA)

Capacity loss policy

— Mean = Median O Outlier

Dead neurons policy

Baseline { ([N e i —
No reward clipping | {ZIE0H O i1} ——— e
RGB+No Resize {4 1 L] 1
Larger Batch Size —— T 1T+] 1
Adamw | (I 1 » 1
L2init{ HENI HIh 1 [
Parseval L il 1 ¢
InFeR 1 HEH o & —
PFOY I i - -
CHAIN Original HICH o m @ o
CHAIN-SP O 5 1) 1 b
LayerNorm Hl— op b o]
LayerNorm No Scaling HOF— B 1]
BatchNorm{ HH o - - ®
BatchNorm No Scaling 3] — - 1
UnitBallNorm Hih 1 ¢
LayerNorm+BatchNorm No Scaling { o-IH et Y
LayerNorm+PFO I D
LayerNorm-+CHAIN-SP Hib -l : o
00 05 10 15 20 0 1 2 3 a 0 2 a 2 2
x10% x102 x10 x10?
ALE/Phoenix-v5
Figure 10: Figure 1 on Phoenix.
e Baseline mmmm Auxiliary loss: features W Normalization layers
Data-level Auxiliary loss: outputs s Combinations — Mean = Median O Outlier
mm Auxiliary loss: weights
Episode return Feature rank policy (PCA) Capacity loss policy Dead neurons policy
Baseline [] $o HITIEH ol
No reward clipping fo p HIF q
RGB+No Resize i o 13 o m q
Larger Batch Size o o HIm—— [—
Adamw o W - 1l o -
L2init HIl— - [-
Parseval oo ol) ®
InFeR HIl— [') ——
PFO | [I 1 I —
CHAIN Original an— oo ko 1 o
CHAN-SPy I i S — 1 i | ——]
LayerNorm i e 1 b
LayerNorm No Scaling [w ® |
BatchNorm ol oo o %
BatchNorm No Scaling —— — e 1
UnitBallNorm I B - e
LayerNorm+BatchNorm No Scaling flo o m
LayerNorm+PFO —I— [o ol 1 - — ! s °
LayerNorm+CHAIN-SP I R ® W
0.0 05 o 1 2 3 0 1 2 3 0 2
x10* x102 x107! x102

ALE/NameThisGame-v5

Figure 11: Figure 1 on NameThisGame. We observe that LayerNorm and LayerNorm combined with loss
based methods mitigate the performance collapse and results in a good policy representation as in Phoenix.
Weight based methods perform better than on Phoenix.

No reward clipping L1 I —

LayerNorm No Scaling
BatchNorm No Scaling
LayerNorm+BatchNorm No Scaling

LayerNorm+CHAIN-SP

W Baseline W Auxiliary loss: features W Normalization layers
s Data-level Auxiliary loss: outputs s Combinations
W Auxiliary loss: weights

— Mean = Median O Outlier

Episode return Feature rank policy (PCA) Capacity loss policy Dead neurons policy
Baseline HE— o o
m o —
Om— oo

RGB+No Resize o
Larger Batch Size HOm— o
Adamw
L2init

ai;

:
i
an U

D
—— o
il

-
8

—o
Lo]
Parseval L
InFeR HIm-
PFO L S ———
HOHH
0
I
HE
Hil
HilH

5

CHAIN Original
CHAIN-SP
LayerNorm

°o0

BatchNorm

B
°o
o

UnitBallNorm Hho

L

HEH
LayerNorm+PFO I
Hl—

LS
=

L

o
o
o
@
-
o
-
o
o
.
~
o
-
~
o
-
~
w

. 4
x10° %102 x1071 x102

ALE/Gravitar-v5

Figure 12: Figure 1 on Gravitar. On a sparse environment, we observe that the combinations don’t perform
(in terms of feature representation metrics) as well as on Phoenix and NameThisGame. Furthermore, CHAIN
and CHAIN-SP inverts themselves compared to NTG. PFO has a high variance in terms of episodic return and

policy PCA feature rank for sparser environment.

G.2 Figure 2 and 4 with other interventions and number of epochs

G.2.1 Architecture interventions

— Baseline — BatchNorm — BatchNorm No Scaling — LayerNorm — LayerNorm No Scaling — UnitBallNorm

x10? x10?

Episode return

ALE PO 4 . 1
z z 107 12 10
3 . N S
9 310 3 g g
5 2 2 €10 =
> c S10- z 210
g S g 2 S
S 2102 @ 208 @
S 5 g s g
2 2 s M 210-
x g 2105 %0.6 >10
§ 8101 F s z
g I S 0.4 3
o H 20.
L1 S e 5 S10-7
E] g10 2 810
E E 100 [§] Fo02 [\]
fid 2 i
0 0.0
0.5 1. . 0.5 1. .0 0.5 1. . 0.5 1. . 0.5 1. . 0.5 1.
Environment stepx10° Environment stepx10° Environment stepx10° Environment stepx10°® Environment steps 10° Environment stepx10°

Figure 13: Figure 2, 4 with architecture interventions on Phoenix, 4 epochs

Episode return

— Baseline — BatchNorm — BatchNorm No Scaling — LayerNorm — LayerNorm No Scaling — UnitBallNorm
%102 " %102
~ 10 101 10
34 oy z125
-3 2108 z g Y
2107 T 102 E
23 g g g et
2 2 =2 a
S 5107 8 5075 8
¥2 5 »107° % Z107°
e J 10t 1 £0.50 S
@ 5 g g g
$1 2 51077 Zo02s 310
® £100 S 5
& 2 b4
0 0.00
; ;) ; T 0 05 T 0 05 T 0 ; T 0 ; T
Environment stepsc108 Environment stepsc108 Environment stepsc10°8 Environment stepsc10° Environment stepsc10° Environment stepsc10°

Figure 14: Figure 2, 4 with architecture interventions on Phoenix, 6 epochs

— Baseline — BatchNorm — BatchNorm No Scaling — LayerNorm — LayerNorm No Scaling — UnitBallNorm

o

Episode return
S

N

102 102
ALe/Phoenivs -
= >10° -1 = 107!
3 3 10 2.
4 3 z -4 2
= 2103 = = = 2 -3,
23 5 21073 o1 510
5 2 w £
g S10? 8 So. 8
22 2 >107° 5 10
g 810 S 20 8
v 5 g g g
3t £ g1o7 2 81077
© £10°0 o i O- ©
3 s 8
£y 2
; 05 1] ; 05 1 ; 05 1] ; 05 T ; 05 I ; 05 I
Environment steps10° Environment steps 10° Environment steps 10° Environment stepsc10° Environment stepsc10° Environment stepsc10°

Figure 15: Figure 2, 4 with architecture interventions on Phoenix, 8 epochs

28

— Baseline — BatchNorm — BatchNorm No Scaling — LayerNorm — LayerNorm No Scaling — UnitBaliNorm

x10% x10% x101
1.2{AEGravEervs _ N ,
g Z10t - 10~
= 10 -
g20 s > gl _g
< 3 2 Z103
:
i B 4 g10-
S 210 s 2
S1.0 g 2107 2107
2 9101) @
o g0 8 g
505 € 8100 Z10°°
] as 5100 ©
saved e v | IO 2 1077
0.5 1 .0 0.5 1. .0 0.5 1. .0 0.5 1. .0 0.5 1. . 0.5 1.
Environment stepx10°® Environment stepx10° Environment stepx10° Environment step10°® Environment stepx10° Environment stepx10°®

Episode return
Noos o @

o

> o

Episode return

~

-

o

°

Episode return

o

Figure 16: Figure 2, 4 with architecture interventions on Gravitar, 4 epochs

— Baseline — BatchNorm — BatchNorm No Scaling — LayerNorm — LayerNorm No Scaling — UnitBallNorm

X102 x10!

x102
ALE/Gravitar-v5

.
3
2

-2
3 > 225 10
g -2

<3 g10° 310 2,0 L] g

> < g 27 5

3 =) 1074 =] 01074

22 2102 8 S1s b

x 2 8

= i1 -6 H 2107

[8100 Z10 €10 S

w1 & g e ' 8106

H s 3 510

F] €100 S1o £0.5{ J/f g S

ki S £ -7

“o = 00 10

0.5 1. .0 0.5 1. .0 0.5 1. .0 0.5 1. 0. 0.5 1. . 0.5 1.

Environment steps<10° Environment steps<10° Environment steps<10° Environment steps<10° Environment steps<10° Environment steps<10°

Figure 17: Figure 2, 4 with architecture interventions on Gravitar, 6 epochs

— Baseline — BatchNorm — BatchNorm No Scaling — LayerNorm — LayerNorm No Scaling — UnitBallNorm

%102 %107 x10%
= >10% =
34 2 0 -2 <4
S 2 510 S ©
< 8103 2 < =]
>3 clo S < g
9] 219-4 -
H E=2 010 T 2
g %102 g S 8
x2 B 2 ™ =
= g >10-6 22 >
5 A 210 s z
2 910!] 2
@y 5 g [g
2 100 S10-® 2t §
£ ' £
o = 0
0.5 1. .0 0.5 1. .0 0.5 1. .0 0.5 1. . 0.5 1. . 0.5 1.
Environment steps<10° Environment steps<10° Environment steps<10° Environment steps<10° Environment steps<10° Environment steps<10°
Figure 18: Figure 2, 4 with architecture interventions on Gravitar, 8 epochs
~~ Baseline -~ BatchNorm — BatchNorm No Scaling — LayerNorm - LayerNorm No Scaling ~ UnitBallNorm
x10*
(O] ALENameTHIsGamevS J 10
o 102 <L 100
8 310° 2 g 2
8 3 g0 51072
2.0 10- :
© g0 g 20 S10
S > c >
.4 801 2.0 So. 2
glo g10 o 1070
2 £ g 2 3
510° ©10- g 10°%
. s
X .0 0.5 1.4 .0 0.5 1.4 .0 0.5 1.4 .0 0.5 1.4 . 0.5 1
i stepx10° Environment stepx10° Environment stepx10° Environment stepx10° Environment stepx10°®

Figure 19: Figure 2, 4 with architecture interventions on Name This Game, 4 epochs

— Baseline — BatchNorm — BatchNorm No Scaling — LayerNorm — LayerNorm No Scaling — UnitBallNorm

103 x10%
e .
T4 310 z
9 5 >1072 (e}
8 < .03 S [
£ 23 clo 2 s
2 2 S o 10-4
Te g B107 410 5
2 %2 3 < %
H 5 g 2106 g
94 e 310t 510 e
& g1 s g £
g
2 Eip0 8 g
2| [] 510 108 5
o z &
.0 0.5 1. .0 0.5 1. .0 0.5 1. .0 0.5 1. X 0.5 1. X 0.5 1.
Environment steps10° Environment steps10° Environment stepsc10° Environment steps<10° Environment steps10° Environment steps10°
Figure 20: Figure 2, 4 with architecture interventions on Name This Game, 6 epochs
— Baseline — BatchNorm — BatchNorm No Scaling — LayerNorm — LayerNorm No Scaling — UnitBallNorm
8 x10° %102 %102
e .
54 ;10
c < 2109 g
5° g 5 — |z
g g1 g10-t
b s E £
84 H] z
2 < 010! 5107°
& 2 & g
2 €100 8
2 g 510 107
£, E
0.5 1. X 0.5 1. .0 0.5 1. .0 0.5 1. .0 0.5 1. .0 0.5 1.
Environment steps<10° Environment stepsc10° i tepsc10° i tepsc10° i tepsc10° i teps10°®

Figure 21: Figure 2, 4 with architecture interventions on Name This Game, 8 epochs

29

G.2.2 Combination interventions

— Baseline — LayerNorm ~— LayerNorm-+BatchNorm No Scaling — La HAIN-SP — Lay 0 — L 2Init
x102 x102

x10
ALE/Phoenix-v5

w

1073

—

Feature rank policy (PCA)
~ S

°

1077

Norm preactivation policy
[R
S 2 2 8
apacity loss policy
[R
299 2

Feature rank critic (PCA)
o o B B o0
o » o i o

{

Capacity loss critic

A

5 5 5 ©°

.
< =

of

&l

B |

. . .0 0.5 1. .0 0.5 1. .0 0.5 1. X X X
tepx10° i teps 10° Environment stepx 109 Environment stepx 10° Environment stepx 10% Environment stepx 10%

Figure 22: Figure 2, 4 with combination interventions on Phoenix, 4 epochs

~- Baseline — LayerNorm - L: No Scaling — L HAIN-SP — L 0~ Lay 2Init
x10° %102 " %102
ALE/PhosnIxVE —a a10 10 . 102 =
8 S H 3102 s
c < 210 210 . Lo =
£ >3 c s s
26 = S S10-3 5
8 g g10° 8 0 o g1
g %2 2 S10 M
4 = S 510 2
2 e S100 §10°5 = g107®
& vy & 3 @ g
2 E £ F10- 205 8106
]) 8 2 J
g g 1077 &
0 0 0.0 10-7
0 0.5 1.1 .0 0.5 1. .0 0.5 1. .0 0.5 1. .0 0.5 1. .0 0.5 1.
Environment steps<10° Environment steps<10° Environment steps<10° Environment steps<10° Environment steps<10° Environment steps<10°

Figure 23: Figure 2, 4 with combination interventions on Phoenix, 6 epochs

— Baseline — LayerNorm — LayerNorm-+BatchNorm No Scaling — L: HAIN-SP — L — Lay Init
x102

0
ALE/Phoenix-v5

o
=)

8 3 oy 101 .
5 >

: g 10 2102 - -
Eg >3 c s !
s g § S10-3
2 2 2 210 2 210-4
= a 2102 F4 ol5 810
24 £2 3 S H >
H] . F-I. f1.0 S10-
2 H 210 510 b 3

" 5 2 g 2
“2 E] £ 3106 2os 810

® £100 © 5

& 2 1077 «

0.0
0 05 1

.0 .0 .0

. 1. X . 1. X 0.5 1. X . . 1. 0.5 1.
Environment stepsc10° Environment stepsc10° Environment stepsc10° Environment stepsc10° Environment stepsc10° Environment stepsc10°

Figure 24: Figure 2, 4 with combination interventions on Phoenix, 8 epochs

~— Baseline — LayerNorm — La No Scaling — Lay HAIN-SP — La) 0~ Lay: 2Init
x10° x10% x10?
1.2 {Averraviarvs _ N ,
g L10¢ 102 3 10
3 E g £15 2100
2 4 £10-
2 510° g0 o 5
2 S @
2 T 210 5 2107*
82 2102 8 M K
£ g > < Z10-5
s 3 Z10- g 210~
o1 g100 g gos 2
5 A = 2106 B 2106
3 : S100 , g ©
10- £ -7
g, 2 00 10
0.5 1. .0 0.5 1. .0 0.5 1. .0 0.5 1. .0 0.5 1. 0.5 1.
Environment stepx 10° Environment stepx10° Environment stepx 10° Environment stepx10° Environment stepx10° Environment stepx10°®

Figure 25: Figure 2, 4 with combination interventions on Gravitar, 4 epochs

~ Baseline — LayerNorm - LayerNorm+BatchNorm No Scaling — Lz HAIN-SP — La 0 — L 2Init
x10% %102
1.0fALE/Gravitar-vs _ 104 1072
S < 10-2
0.8 < 210° k9 g0
£ >3 < 51073 5
H 3 § g S ot
2 o
30-6 82 5102 ; 810+ 8
X F=1 . - -
S04 H 2 210 g1
o 5 910 F 2
Yo2 g1 2 2106 2106
’ E Ei0 5] ©
3 510 -7
0.0 £ 2 10 1077
05 T 0 05 T 0 ; T 0 05 T 0 5 T X 05 T
Environment steps10° Environment stepx10° Environment steps10° Environment stepx10° Environment steps10° Environment stepx10°

Figure 26: Figure 2, 4 with combination interventions on Gravitar, 6 epochs

30

~ Baseline — LayerNorm — L No Scaling — HAIN-SP — L ‘0 — Lay 2Init
%102 %102 %102
[2 10° - 102
g 10-2
3 2100 o 21 g107
£e 33 g0 g107 < :
o = = £ 21074
g g S102 g10 o £
< 2 8
3] g 210 2107
H § 100 g]
a e £ 2 go. g
[P 21 s 2106 E 210
, s £100 o = [§]
0 £, 2 1077 2 1077
0.5 1. 0.5 1. .0 0.5 1
Environment steps<10° Environment steps<10°

Environment steps<10°

0.5 1.
Environment steps<10°

0.5 1.
Environment steps<10°

0.5 1.
Environment steps<10°

Figure 27: Figure 2, 4 with combination interventions on Gravitar, 8 epochs

Episode return

1.4
stepx10°

Figure 28:

x10¢

Environment stepx10°

Environment stepx10°

— Baseline — LayerNorm — LayerNorm-+BatchNorm No Scaling — Lay HAIN-SP — Lay 0 — L 2lnit
104 102 102

AL EameTGamevE _al 10 107
s 3 z
g 2 -2
-3 210° g / ghe 2
ol s 81073 o 5
3 =1 @ = @
g 5102 B0 510 K
22 H] M
H 3 > < >
o 310 S10- ¢ E]
g1 a 2 g0.5 g

5

2 3 81076 2 ool 3
g 5100 8 .
“o = 1077 0.0

0 05 T 0 05 0 05 I Q 05 1 0 05)

i tepx 10° i

Environment stepx10°

0.5 1.
Environment stepx10°

Figure 2, 4 with combination interventions on Name This Game, 4 epochs

Episode return

0 05 T
Environment steps10°

~— Baseline — LayerNorm - La No Scaling — Lay HAIN-SP — Lay 0~ Lay 2Init
x102 x10% 1

54 5100 101 20 10
g H | 2107 g 2107
s 2103 H Z1s g
3 s 21072 k=t 21073
3] 4 5 2
& 102 8 . ° g
22 £ 210 1o 2107
& 5 Z & 2z
: :
51 3 Sos o
£ E 81078 % [§]
K 5100 g 106

0 2 1077 0.0

Q 05 T

0 0.5 1.
Environment stepx 10°

0 0.5 1.
Environment stepx10°

0.5 1.
Environment stepx10°

Environment steps 10°

0 05 T
Environment stepx 10°

Figure 29: Figure 2, 4 with combination interventions on Name This Game, 6 epochs

0.5 1.
Environment stepsc10°

Environment stepsc10°

05 1
Environment stepsc10°

— Baseline — LayerNorm — LayerNorm-+BatchNorm No Scaling — Lz HAIN-SP — L: — Lay Init
x10% x10% 2.0 x10%
§[ALENameTRGamevs _ 4 ~ .
4 za 2z 10 10t P
g s J10-2 4
€6 >3 clo 5 LS
3 g S 8. 5 g
g 2| F102 gt i
e a > 1 =]
@ 2 8.0~ 1.0
o4 22 2 2107 M
8 s " £ .0t 105 e
2 s 210 10~
&, 2 s 2 Los
5 £ B 10-6 2
2 £ 810 g
8 §10° 8
£y 2 107 0.0
05 T 0 0 05 1 0 05 1
Environment steps10°

Environment stepsc10°

0.5 1.
Environment stepsc10°

Figure 30: Figure 2, 4 with combination interventions on Name This Game, 8 epochs

G.2.3 Auxiliary-loss interventions

~ Baseline — CHAIN-SP — CHAIN Original InfFeR — AdamW — Parseval — PFO — L2init
x10* %102 %102
ALEPhosnRvS _ -
3 z 212l 10
] > o
£, 2102 | 2 10 210
> < s S 2
2 s 2 o8 o
2 > 0.
32 g . K4 S 06 81074
¥ gy N £o. N
[3 kel 20.4{ g10”
21 s g 5 &
2 £ 100 S £02 S10-8
3 S 4
k 2
0 0.0 1077
00 05 T 0 05 T 0 05 I 0
Environment stepx 108 Environment stepx 108

tepx 10°

T
stepx10°

0.5 1.
Environment stepx 109

0.5 1.
Environment stepx 109

Figure 31: Figure 2, reffig:3-auxiliary with auxiliary loss interventions on Phoenix, 4 epochs

31

— Baseline — CHAIN-SP — CHAIN Original ~ InFeR — AdamW — Parseval — PFO — L2init

104 102 -
1.2 REFRoeTE 4 10 - 1072
i g 9 S0
10 [4 210 S £10-2 =
£ 53 o 310 g
208 2 2 o o104
g g, g10 g0 £
306 < £ S >
S & S 21075 £10-5
204 c g10t S 9
20. g] 3
w g1 : 2106 F10-6
0.2 2 El0 o110
8 5 -
& =z 10
0.0 0 107
0.0 0.5 1. .0 0.5 1. .0 0.5 1. 0.5 1. .0 0.5 1. 0.5 1.
Environment stepx 10° Environment stepx10° Environment stepx10° Environment step10°® Environment stepx10° Environment stepx10°®
Figure 32: Figure 2, 4 with auxiliary loss interventions on Phoenix, 6 epochs
~ Baseline — CHAIN-SP — CHAIN Original InFeR — AdamW — Parseval — PFO — L2init
104 10?
1.0faLeTmRosmE _4 .10t r
3
) g 102
08 =N 210% g 2
€ 310~ £
5 z s 2w 7 °
206 g T102 | 810+ | Sos 3
) x2 E= - x -
Boa s H 2105 3 z
go. & S10t 210 Coa S
g 21 5 g e g
2 107°. 2 @
02 E £ 3 202 8
2 100 5
& 2 1077 &
0.0 o 0.0
0 0

05 1 05 1 05 1 05 1 05 1 0.5 1
Environment steps 10° Environment stepx 10° Environment steps 10° Environment stepx 10° Environment steps 10° Environment stepx10°

Figure 33: Figure 2, 4 with auxiliary loss interventions on Phoenix, 8 epochs

— Baseline — CHAIN-SP — CHAIN Original ~ InFeR — AdamW — Parseval — PFO — L2init

2 103 %107 x10"
OTRLE Gravitarvs _ .10
<3 9 <
|4 E g1 g8 v
gt 3 < H Ml H
5 g, 5., 810 £ M
] 3 %10 2 s 3
510 5 2 S0 M K
3 = S > s z
g & 8 & [g
a ol g 8106 @ 2
go.5 g s 810 g g
2 g 10) 2 8
g © 0 3
& 2 10 fid
0.0 0
0 05 T 0

05 1 05 1 X 05 1 05 1 05 1
Environment steps 10° Environment steps 10° Environment steps10° Environment stepx10° Environment steps 10° Environment stepx10°

Figure 34: Figure 2, 4 with auxiliary loss interventions on Gravitar, 4 epochs

— Baseline — CHAIN-SP — CHAIN Original ~ InfeR — AdamW — Parseval — PFO — L2init
102 x10*
s _ 107 R
8 S £ 2
€ <3 g I g8
£ > c o (%)
36 g g a
@ S g10 @ g
s g2 E g M
24 H B8 > H
o s ® = g4
H 5 g £ s
42] £10° g 32
% | £ I8} ©
3 1} i
o “o = o
0.5 1. 0.5 1. .0 0.5 1. .0 0.5 1. . 0.5 1. 0.5 1.
Environment steps10° Environment steps10° Environment steps10° Environment steps10° Environment steps10° Environment steps10°
Figure 35: Figure 2, 4 with auxiliary loss interventions on Gravitar, 6 epochs
~ Baseline -~ CHAIN-SP — CHAIN Original InFeR -~ AdamW — Parseval — PFO — L2init
x10% %102 x10!
s _ N
1.0 g 103 -2 I
o = 10
cos €3 S g 28 8
§ X g 5 102 310 5} S
= w T]
o6 | 22 g 810 S 2
3 Y M 2 =~ H >
304 5 s10 2107 [H
& 21 a 8106 £ 2
0.2 2 E100 2 o
] £10]
k] S 107 i
0.0 0
.0 0.5 1 .0 0.5 1.4 .0 0.5 1.4 .0 0.5 1.4 .0 0.5 1. 0.5 1.
tepsx 10° i stepx10° Environment stepx10° Environment steps10° Environment stepx10° Environment stepx10°
Figure 36: Figure 2, 4 with auxiliary loss interventions on Gravitar, 8 epochs
~ Baseline -~ CHAIN-SP — CHAIN Original InFeR -~ AdamW — Parseval — PFO — L2init
x10* x10!
1.0{ALENameThisGame-v5 _ 10
<3 9 N
o 3 >)
08 < 210° S 4 =1
£ , 2, 5 3 g6 g
206 s] 2 g
py 8 g1 3 £ 3
° >
204 § . 2 & 3
& 1 310 g o]
& g a 3 52 &
02 2 Elgo © 3 °©
& 2 £
0.0 o o
0.0 .0 .0

05 T
Environment stepx10°

Figure 37:

05 T
Environment stepx10°

05 T
Environment stepx10%

0.5 1.
Environment stepx 109

05 T
Environment stepx10°

0.5 1.
Environment stepx10°

Figure 2, 4 with auxiliary loss interventions on Name This Game, 4 epochs

32

— Baseline — CHAIN-SP — CHAIN Original ~ InFeR — AdamW — Parseval — PFO — L2init

x10°) x101
ALE/NameThisGame-v5 -
8 2 10w 10 2
g3 H z1072 £6 &
c N 10 = < 2
ER z s 210~ K] S
3 g] 5 3
w4 M 20 810 < =
3 < o > < >
2 g 8 100 S10- £]
2, ! £ 10 g 22 g
3 ®10-6 2 8
2 £ 810 2 S
] 5 100 g
0 “o = 1077 0
0.5 1. 0.5 1. 0.5 1. X 0.5 1. X 0.5 1. X 0.5 1.
Environment steps<10° Environment steps<10° Environment steps<10° Environment steps<10° Environment steps<10° Environment steps<10°
Figure 38: Figure 2, 4 with auxiliary loss interventions on Name This Game, 6 epochs
~~ Baseline -~ CHAIN-SP — CHAIN Original InFeR -~ AdamW — Parseval — PFO — L2init
8 x10% x10% x10*
AL eameThsGame VS _ _10° 101 6
3 2 g
6 P <3 g210* 102 95
£ > c 5. o
2 2 S10° 210
g < g g
g g, 8 g, §
g4 2 S102 S : %3
c g >
° o © = e
g g 3 5105 o2
82 @1 s10! g 2
El £ S10-¢ 21
8 S 100 g
o “o = 1077 0
.0 0.5 1. .5 1. X .5 1. .0 0.5 1. X 0.5 1. X 0.5 1.
Environment stepsc10° Environment stepsc10° Environment stepsc10° Environment stepsc10° Environment stepsc10° Environment stepsc10°

Figure 39:

G.2.4 Data-Level

Figure 2, 4 with auxiliary loss interventions on Name This Game, 8 epochs

interventions

— Baseline — Larger Batch Size — RGB+No Resize No reward clipping

Episode return
oo N
> & o

o
o

I
°

0% %102 x10!
ALEPhaeTvS 4 10t R 102
< 9 1072 <
9 = > o4 v
<, 210 g . | & £ 100
2 5 810 2; 5
2 2 H @
E 8102 B10¢| 5 “ 8.0
) > 38 /7 < 210
¥ Z 2105 / g, ~
s 8 ot 210 g z
8 810 g S0t
£1 s g e g
3 £ 81070 21 8
] 510° [8 1076
-7 &
g, 2 | 1077}/ o
0 ; T 0) T 0 ; : 0 05 T 0) X) 05 T
Environment stepx 108 Environment stepx 108 Environment stepx 108 Environment stepx 108 Environment stepx 108 Environment stepx10°

Figure 40: Figure 2, 4 with data-level interventions on Phoenix, 4 epochs

— Baseline — Larger Batch Size — RGB+No Resize ~ No reward clipping

x10% 102 " 100
ALE/Phoenix-v5 _ L 10
12 < g 102 <
3 g - Se 0
1.0 L3 210 g 5 < g 10
< 2 5 | 3 s 5
gos ER 510 B0 54 g0
o6 ¥ 5 > 2 >
- ¥ g | >10os 2
g g $101| g1o g 210
504 o1 s | 2 g2 2
o g 2 210-¢| | 5 8
2 0 2
02PN Dees | 5 || 8 ol k4 10
0.0 0 ! 1 o !
0 0.5 1 0.5 1.4 .0 0.5 1 .0 0.5 1.4 .0 0.5 1.4 0.5 1
Environment stepx10° Environment stepx 10° Environment stepx10° Environment stepx10° Environment stepx 10° Environment stepx10°

Figure 41: Figure 2, 4 with data-level interventions on Phoenix, 6 epochs

— Baseline — Larger Batch Size — RGB+No Resize ~ No reward clipping
x102 x10!

x10°
(ALE/Phoenix-v5

Episode return
T

o
2

w
o
2
icy

o

1072 =
51073 /

1074

o
2

loss critic

1075

»—\
U

H
N

§10°°
S

-
2

Feature rank policy (PCA)
£

Ny
Norm preactivation policy
pacity loss pol
Feature rank critic (PCA)
1y

107741

°
°

b

05 1
Environment stepsc10°

05 T 0 05 T 0 05 T 0 05 T 0 05 1
Environment stepsc10° Environment stepsc10° Environment stepsc10° Environment stepsc10° Environment stepsc10°

Figure 42: Figure 2, 4 with data-level interventions on Phoenix, 8 epochs

33

— Baseline — Larger Batch Size — RGB+No Resize No reward clipping

x10% x102 x10!
1 < L1102 I
9 = 10°
€ <3 g s g6 g
£ / > < s ° z
BLo s = o E 21072
° / 2, §10 H g, 8
E £ g > £ >
3] s) s 10
205 < o S ° &
& g1 8190 g 52 2
’: 2 £ S & O 10-6.
=l E S & 10
F g : § R
0.0 <o R o
0 0.5 1. .0 0.5 1. . 0.5 1 . 0.5 1. .0 0.5 1. . 0.5 1.1
Environment stepx 10° Environment stepx10° Environment stepx10° Environment step10°® Environment stepx10° Environment stepx10°®
Figure 43: Figure 2, 4 with data-level interventions on Gravitar, 4 epochs
— Baseline — Larger Batch Size — RGB+No Resize No reward clipping
x10% x10%
Lo z z - z 100
O3 3 >10 o
g s o
08 < 210) < =
£ 2z s g10-? © 5102
@ ° = w T]
50° 82 g g1 S E
3 z B > < 210+
§04 e s 2107 § 2
a 3 o1 g 8 o B
3 | Sl N g 8 210-6 H 3
0.2{f 2 £ 10 8 g1 8106
g S -7 -~
0.0 0 2 | 10 &
.5 1 X 0.5 1.4 .0 0.5 1 .0 0.5 1.4 .0 0.5 1.4 0.5 1
Environment stepx 10° Environment stepx10° Environment stepx10° Environment stepx10°® Environment stepx10° Environment stepsx 10°
Figure 44: Figure 2, 4 with data-level interventions on Gravitar, 6 epochs
~— Baseline — Larger Batch Size — RGB+No Resize No reward clipping
102 %102 x10'
8{ALEGraviarvS _ .
Ss g10 .10°2 g 100
< g 3 &3 g
c6 2 < =4
€ z S102 Sdeee Y| 31070 2 502
L 52 s 8107 / S2 8
° T 101 / > H 210
R g g10 / 21075 | e g0
R A O N g1 5 | 210 £1 g
/ & E10° [§] E O10-
s 5 s FITAN
0 “o z | 10 o
.0 0.5 1. .0 0.5 1. .0 0.5 1. .0 0.5 1. .0 0.5 1. .0 0.5 1.
Environment steps<10° Environment steps<10° Environment steps<10° Environment steps<10° Environment steps<10° Environment steps<10°

Figure 45: Figure 2, 4 with data-level interventions on Gravitar, 8 epochs

0 0.5 1

0.5 1 .0 0.5 1.4 .0 0.5 1 X . N X . N 0 0.5 1.
Environment steps 10° Environment stepx10° Environment steps 10° Environment stepx10° Environment steps 10° Environment steps 10°

— Baseline — Larger Batch Size — RGB+No Resize ~ No reward clipping

x10* x102
(ALE/NameThisGame-v5

1071
12 10
2.0 21072 8
g10 10% s
El 21073
908 15 / y] 6
o S10-
B0.6 2z
8
S

S04

0.2

1077

s
Feature rank policy (PCA)
o o n»
o & o
Norm preactivation policy
R
5 8 8
Ca
e
29 <
o] \\
of
&l
) \
Feature rank critic (PCA)
[N

/ At 3
0
Figure 46: Figure 2, 4 with data-level interventions on Name This Game, 4 epochs

— Baseline — Larger Batch Size — RGB+No Resize No reward clipping

x10% x102 x10!
A 101
1.0 250 10t - 212 100
o2 =
g s 31072 7 g £107?
£038 > £ 10% 3. S10 2
2 2. s 210~ 2 -2
K i 2 a = 10
=06 a S102f |/, 8.0-a M 2103
v < 20 10 >
3 £1.0 2 > €06 z
g s © = © 0. 10+
20.4 e @10t S10°° B
3 @ £ 3 ®os g
w o, 505 : 810 50 oS | 8 10-5
| — 2 €100 8 1 2
02 / 8 510 o2 P] T 10
0.0 = 1077
0 . N .0 1. X .. 1 . K 1. .0 0.5 1. .. 1.
Environment stepx 10° Environment stepx10° Environment stepx10° Environment stepx10°® Environment stepx10° Environment stepx 10°

Figure 47: Figure 2, 4 with data-level interventions on Name This Game, 6 epochs

34

G.3 Figure 5 on other environments

~ Baseline InFeR
10° 102 102 x102
St) _ — .,
21 o) —— o —=
5 S 32° g 10 Eldl 3
£ 2 E] . 2
< 12 520 £ 100 g 10 g4
B4 /)‘ gL 815 5 107 3 107 £4.0
Rl 2075 % E £ 100 R
g H I 2 100 5 10 235
£3 5050 o 2 2 =
& g g ol B10-2 §107 %30
| 5 Sos £ g 2
2025 2 = g &
2 8 8 10735 G101 25
*0.00 B o0
05 T 0 05 T o 05 T 0 05 T 0 05 T 0 05 T
Environment steps10° Environment steps10° Environment steps10° Environment steps10° Environment steps10° Environment steps10°

Figure 48: Figure 2, 5 with data-level interventions on Name This Game, 6 epochs

~— Baseline InFeR
X1 _ x102 102
2 {ALE/Gravitarvs _ _s) 102
< O} o 10
1.0 £102 E) v 3 V audtpatndt| I
£ > kS 3 s/ 3
508 g 2 s 5 / s 1073
e g 33 5 S 100/ 5
©0.6 S 100 £l E
b= €101 £ =3 =4 =
3 <10 S5 g @ g
£0.4 o e @ o @ 1g-4
a © ° o 2 ’ 210
&) ¢ g @ s 7
02{ 4 2 21 i g 10 5
g 3 & {
0.0 *100 0 100 1075
0.0 T 0.0 05 10 0.0 05 T 0.0 05 10 00 ; T
Environment stepx10® Environment steps10® Environment stepx 10° Environment steps10® Environment stepx10° Environment steps10®

Figure 49: Figure 2, 5 with data-level interventions on Gravitar, 6 epochs

H Extra figures.
H.1 Extended training runs

—— Bigger Batch Size

100 10 a0
35 5
5 230
4
g5 2
g 5 2
2 3 23
g | 820 5
2 H
2 F1s 2
& g 3 2
2 210 |
&
05 N
1
0.0 o
0 i 2 3 i 0 i 2 3 i 0 i 2 3 a
Environment steps. x108 Environment steps. xe Environment steps 0

Figure 50: With an 8-epoch training budget and 200m steps, the agent’s performance peaks early but then
collapses, showing the delayed collapse observed with smaller batch sizes.

H.2 Plasticity figures

— Gravitar (4 epochs) - Gravitar (6 epochs) - Gravitar (8 epochs) (4 epochs) (6 epochs) i (8 epochs) — Phoenix (4 epochs) =+ Phoenix (6 epochs) -+ Phoenix (8 epochs)
10° x10% 10! x102
[Adamw =3.0 >10t . 5 o —
3 £ R o |
6 £25 2 g g i
£ > c10° < 54
F 220] g
g 2 By 5 £3
o4 S1s 210 H H
g Elol} 80 & g
3, 310 210 s £2
W Zo0s £ 21 8
804 s 10° K ,_‘ o1
0 0.0 o PR
05 T 0 05 T) 0. T 0 05 T 0 05 T 0 05 T
Environment stepsc10°® Environment steps¢10° teps10° stepsc10¢ tepsc10° stepsc10¢
~ Gravitar (4 epochs) ~- Gravitar (6 epochs) Gravitar (8 epochs) (4 epochs) (6 epochs) (8 epochs) — Phoenix (4 epochs) =+ Phoenix (6 epochs) -+ Phoenix (8 epochs)
10° x102
Batchiarm Wo Seating _a N 1 2.
3 Z108 10 2125
S > o 2z
6 < 2 g < 220
€ >3 c 35 2100 S
2 2 S102 21072 2 s
£, g B 2 5075 215
2 22 2 s 2 8
2 [g 10t 210 20.50 210
25 h 8 o o
& 21 s g £ H
5 5 E 05
2 E 100 5] 5025 3
g 2 107 =
o o 0.00 0.0|
05 T 0 05 T 0 0 T 0 05 I X 5 1 0 05 T
Environment steps10° Environment steps<10° tepsc10° stepx10° tepsc 109 stepx10°

35

— Gravitar (4 epochs) = Gravitar (6 epochs) - Gravitar (8 epochs) — (4 epochs) - (6 epochs)

(8 epochs) — Phoenix (4 epochs) = Phoenix (6 epochs) -+ Phoenix (8 epochs)
10° X107

x107
g [Batchorm =, 5 . - 25
S 210 510 REES >
c6 <z a g 220
€ > c 3
2 23 S10 o102 .
] s = 2 £
o4 s g 8 £075 510
s 2 s
K g2 S 2 & 210
o e g G103 y £0.50 cl
2 h 2 o -
w2z st £ & E Bos
s E1o0 o 5025 o
& 2 10 i
4 “o = 0.00 0.0]
0 ; T X 05 T 0 05 T 0 05 T 0 T
Environment stepsc10°® Environment steps<10° tepsc10° stepsc10° stepsc10°
~ Gravitar (4 epochs) ~- Gravitar (6 epochs) Gravitar (8 epochs) — (4 epochs) i (6 epochs) (8 epochs) — Phoenix (4 epochs) =- Phoenix (6 epochs) - Phoenix (8 epochs)
x10* x10? x10* x10?
CHATN OriginaT _ N 3.0
1.0 wh 3.0 2. 1073 z
g, 1o z 025 z*
0.8 <2 2, < 2
5 oy § g10 220 2
Boe 320 % 2 5 23
20, g . .
3 215 g0 2107 %15 g
c o > 5 H
20.4 I3 © 2 8 22
a e 5 S
2 S L0 g 210~ 210 S
“ El 3 g 5 2
02 gos 10 8 gos &1
& 2 107 8
0.0 0.0 0.0 F
0 05 T 0 ¥ T X 05 T X 05 T 0 05 T 0 05 T
Environment steps 10° Environment stepx10° Environment stepx10° Environment stepx 10° Environment steps 10° Environment stepx10°
— Gravitar (4 epochs) - Gravitar (6 epochs) - Gravitar (8 epochs) — (4 epochs) ~ (6 epochs) (8 epochs) — Phoenix (4 epochs) = Phoenix (6 epochs) -+ Phoenix (8 epochs)
x10* x102 4 x10" %102
CHATNSP
1.50, e 2102 1073 = s Bt
S = > 3 4 >
125 <3 2 g g3 y L3
£ > < 3107 o B
21.00 2 k) & 8
gl 3 B0 2 5 H
2075 S2 10 810 32 g2
kN 5 8 z 5 3
2050 e 3 G oo s 13
& 21 s 210~ g o1
025 H g0 8 H g
@ S 1077 &
& 2
0.00 o 0 o
0 | 0 05 T 0 05 T 0 05 T X 05 T
stepx10° Environment stepx 10° Environment stepx 10° tepx 108 stepx10°
~ Gravitar (4 epochs) - Gravitar (6 epochs) Gravitar (8 epochs) — (4 epochs) i (6 epochs) (8 epochs) — Phoenix (4 epochs) =- Phoenix (6 epochs) -+ Phoenix (8 epochs)
10° x10% x107
g finrer _ . N 102 7
3s i g 2 4.0
g U 2300 g 2
€6 >4 < s o 235
H g St 2 25
2 H 210 21074 = o
@]] 5 g
H 23 g 8 " §3.0]
4 ~ - 2 x4 g
K H g z107° g 4 2
2 S2 b H o3 225
&2 g 8100 8107 £ H
s vl 21 £ S 52 &2.0]
8 s 10- &
0 “o = 1 1
05 T 0 05 T 0 0 - 0 05 I 0 05 T 0 05 T
Environment stepsc10°® Environment steps<10¢ tepsc10° stepsc10° tepsc10° stepsc10°
~ Gravitar (4 epochs) ~- Gravitar (6 epochs) Gravitar (8 epochs) — (4 epochs) i (6 epochs) (8 epochs) — Phoenix (4 epochs) =+ Phoenix (6 epochs) -+ Phoenix (8 epochs)
x10° x10? x10* %102
E3 - 2 , - |
PP 10~
-6 23 i k9 £6 2
El g H 8104 g 23
(] H 2 2 2 o
a4 22 S100 8105 24 s
3 ¥ B > = S2
2 & ® 2 I3 o
a e 8 7] S <
&2 g1 & g210°° g2 N
2 £10° 3 2 g
8 E
kd 2 1077 &
0 o o 0
05 T 05 X () [¥ 0 05 T 0 05 T X 05 T
Environment stepsc10° Environment steps<10° i tepsc10° steps<10° Environment steps<10° Environment stepsc10°
— Gravitar (4 epochs) - Gravitar (6 epochs) - Gravitar (8 epochs) — (4 epochs) ~ (6 epochs) (8 epochs) — Phoenix (4 epochs) = Phoenix (6 epochs) -+ Phoenix (8 epochs)
x10* %102 x10" x10%
Larger Bateh Size
2.0 g4 z 3
c £ H g7 g 24
515 2’ 5 210 E
2 = 2 @ 2 w3
¢ e s 8 Sa 3
210 22 g 3107 ¥ g,
© @ = e
2 < o o ; <
s £ 810 v °
50,5 5 s g10 g2 %,
g 13 8 g 8
& 2 1077, i
0.0] o = o o
) 05 T 0 05 T) R T 0 05 T 0 05 T
Environment stepx10° Environment steps10° tepx109 Environment steps10° Environment stepx10°
~ Gravitar (4 epochs) ~- Gravitar (6 epochs) Gravitar (8 epochs) — (4 epochs) i (6 epochs) (8 epochs) — Phoenix (4 epochs) =+ Phoenix (6 epochs) -+ Phoenix (8 epochs)
10% 101 x10! 25 102
LayerRiorm Wo Scaiing _ 0 _ 10| .
1o 4| giso Z10 Pl
< 8 g 4] oy
125 g g o L2
Soe z §10 2 - B
2 = 1.00; 210 o 2 a1
Lo g] g1072 S 0.6] g1s
g %075 2 2 * £
- g >
20.4 & 8 =z & 210
2 (L T £10 § 204 5
5 8 S e | 2 305
02 gozs £ 810-2 o %02 2
0.0 0,00 210 = 0.0
05 T 0 05 T 0 05 X 0 05 T 0 05 T 0 05 T
Environment steps10® teps 10° tepx10° stepx10° Environment stepx10° Environment steps 10¢

36

~ Gravitar (4 epochs) ~- Gravitar (6 epochs) Gravitar (8 epochs) — (4 epochs) (6 epochs) (8 epochs) — Phoenix (4 epochs) =+ Phoenix (6 epochs) -+ Phoenix (8 epochs)
10 30 x10" 107
Layertiorm X
1.0 325 z 25
>
£ oy g2 o
£08 20 3 g -4 220
E 9 S g g a
1 S 103 “ T 2
0.6 S1s §10 4 5 215
g x g 2 21 e
50.4) §1.0 5 ‘E & 210
2 " B g1 2 210 5
0.2 205 8 2 305 -
g £ S ©0.5] -
0.0 €00 2101 “o e — 0.0
0 05 T 0 05 1 0 05 T 00 05 I 0 05 X
Environment steps10° stepx10° stepx10° Environment stepx10° Environment steps 10°
~ Gravitar (4 epochs) ~- Gravitar (6 epochs) Gravitar (8 epochs) — (4 epochs) (6 epochs) i (8 epochs) — Phoenix (4 epochs) =- Phoenix (6 epochs) - Phoenix (8 epochs)
x10° x10% 4. x10% %102
Layerfiorm Batchiiorm o Jealing _ 1o
<4 3 z25
6 -4 K 21071)
€ £ =
5 g3 §10° g 520
ki 3 =1 a £
g, 2 |} s 2 o115
H %2 - >10-2 <
2 s 102 2z & ‘
2 £ 8
2 @ 5 g i
& g 2
' £ 8 205 Soz2|.
8 s 8 A
o £, 210t 1073 “00 oo
0 05 T 0 05 T 05 T X 05 T 0 05 T 0 05 T
Environment steps10°® Environment steps10°® Environment steps10° Environment steps10° Environment steps10°® Environment steps10°
— Gravitar (4 epochs) - Gravitar (6 epochs) - Gravitar (8 epochs) — (4 epochs) - (6 epochs) (8 epochs) — Phoenix (4 epochs) = Phoenix (6 epochs) -+ Phoenix (8 epochs)
x10* %102 x10! X102
LoyerNorm TCRAIN-SP. _ N 25
1.0 33 2 102 <3
€ E) g S20
€ g < g
8 S £ 2 g .
806 2 g H 2 5
K ¥ B > H H
204 B] £ g gLo
s g 8 @1 °
“o2 s £ 5 2 305
g 13 5] g 3
g] 8 -
0.0 0 z o 0.0
05 T 05 T) R T) 05 T 0 05 T
Environment steps10° tepx 108 tepx108 Environment steps10° Environment stepx 10°
~ Gravitar (4 epochs) - Gravitar (6 epochs) Gravitar (8 epochs) — (4 epochs) (6 epochs) i (8 epochs) — Phoenix (4 epochs) =- Phoenix (6 epochs) -+ Phoenix (8 epochs)
10 x102 x10! x107
1 5o[verormiPre ~30 > =5 25
g 3 :
12 S25 S10° 2 520
21.00 250l s a >
e g8 § g 53 5§15
gor £15 S102 > £ H
g &] 2 82 210 s
40.50; 1.0 4 2 L
o 5 2 2107 H 1 Zos
025 2o. H g
505 1ot ° 8 °
0.00 *0.0] = 0 0.0
0 05 T 0 I 05 T 0 05 T 5 1 0 05 T
tepx 109 stepx10° Environment stepx 10° Environment stepx 10° tepx 109 stepx10°
~ Gravitar (4 epochs) ~- Gravitar (6 epochs) Gravitar (8 epochs) — (4 epochs) (6 epochs) i (8 epochs) — Phoenix (4 epochs) =+ Phoenix (6 epochs) -+ Phoenix (8 epochs)
g L0 x10? 10 x10°
o reward ciippin
I | 330 gt < 5
m’“ | I S 21072 o z
c6 25 8100 g &3 2,
5 o) 5 8107 g g
H 320 H 3 £ :
o4 s 210 8107 2 g3
3 B > = 5
Z10- 3
2 810 g107° 8 2,
&2 4 2 v T
w £ g10°° 3! 2
g 107 ° 1077 & o1
0 o
05 T 05 T 0 0. T 0 05 T 0 05 T 0 05 T
Environment stepsc10° Environment steps<10° tepsc10° steps<10° Environment steps<10° Environment stepsc10°
— Gravitar (4 epochs) - Gravitar (6 epochs) - Gravitar (8 epochs) — (4 epochs) - (6 epochs) (8 epochs) — Phoenix (4 epochs) = Phoenix (6 epochs) -+ Phoenix (8 epochs)
%10 x10% 10 x10% x102
Parseval -
8 3 o
3 >
€6 €3 a =104 S
E g s 2 a15
8 22 2 @ z
94 < 2 8108 8
3 ¥ g > 2 1.0]
2 e 3 S <
3 o1 a ®10-6. °
&2 B 2 210 Z05
2 8 &
8 5
o “o = 1077, 0.0|
05 T) 05 T) T 0 05 T 0 05 T
Environment steps10° Environment steps<10¢ steps10° 10° steps10°
~ Gravitar (4 epochs) ~- Gravitar (6 epochs) Gravitar (8 epochs) — (4 epochs) (6 epochs) i (8 epochs) — Phoenix (4 epochs) =+ Phoenix (6 epochs) -+ Phoenix (8 epochs)
10° 102 N 100 x107
Pro _4 10- 4
3 fov . 3 >
] 4 >10" o
b S5 31 10 3 v Y 33
5 i g10 i 2107 g g
2 = 2 23 2
] g I (] 2
PR <2 2 10 M g2
K 5 8 52 H
2. b 10* 3
2 5 3 El
o s £ 21 gt
= g 5 10 K e
0 “o = 0 0
) R -0 0 0. 0

0.5 1.
Environment steps<10°

0.5 1.4
Environment stepsc10°

1.
tepx10°

1. 1. 1.
steps10° teps10° steps10°

37

— Gravitar (4 epochs) -+ Gravitar (6 epochs) - Gravitar (8 epochs) — (4 epochs) - (6 epochs) (8 epochs) — Phoenix (4 epochs) = Phoenix (6 epochs) -+ Phoenix (8 epochs)

10° x107 x10' x107
RaB NG Resize _ 101
5 g 10 0 z 5
2, H 02 ke 2
£4 > £10% < 84
2 2 S 1073 B3 w
g3 g S0 S 53
3 22 - 107 2 g
3 s 52 3
22 e 8100 T10-5 c c2
g g1 s g . H
1 2 E10 108 % 381
8 S £
0 Soll M- = 1077 o
0 05 T 0 05 T 0 05 T 0 05 T X 0 T
Environment stepsc10°® Environment steps<10° tepsc10° stepsc10° stepsc10°
~ Gravitar (4 epochs) ~- Gravitar (6 epochs) Gravitar (8 epochs) — (4 epochs) (6 epochs) (8 epochs) — Phoenix (4 epochs) =- Phoenix (6 epochs) - Phoenix (8 epochs)
x10° x10? x10* %102
— > -
33 g - 3
¢) 2107 310 e z
£ 3 = 3
2 g § 8 ot 2 g
@4 32 % 9 56 23
H g S0 k-l M g
3 x £10 2 ¥ 2
S 5 B 21076 54 32
a2 ol g 8 o o
w 5 o & 22 81
2 £10 3108 K 8
& g g
0 o = o 0
0 05 T 0 05 T 0 05 T .0 05 T 0 05 1 0 05 T
Environment stepsc10° Environment stepsc10° Environment stepsc10° Environment stepsc10°® Environment stepsc10° Environment stepsc10°

38

	Introduction
	Background
	Study design and methods
	Interventions
	Performance metrics

	Experiment Results
	Modifying the input data or rewards does not mitigate plasticity loss
	Loss-level interventions impact different plasticity metrics differently
	Normalization layers
	Dynamics over magnitudes

	Related Work
	Conclusion
	The role of the reward structure in plasticity collapse
	Which studied metric best captures plasticity?
	Breaking Down Batch Size Improvements
	Study and methods details
	Experimental setup
	Interventions
	Hyperparameter Tuning
	Additional details on our experimental setup

	Metrics details
	Dead neurons
	Feature rank
	Capacity loss
	Discussion about other possible metrics.

	Interventions
	Data-level modifications
	Loss function modifications
	Network architecture modifications
	Churn based modifications
	Combinations of modifications
	Where do reset-style methods fit in our taxonomy?

	Main paper figures on all environments.
	Figure 1 on all environments
	Figure 2 and 4 with other interventions and number of epochs
	Figure 5 on other environments

	Extra figures.
	Extended training runs
	Plasticity figures

