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Abstract

Speaker diarization, an important task in speech
processing, has been predominantly relied on
acoustic signal analysis to differentiate speak-
ers. This reliance on acoustic features often
overlooks the wealth of semantic content within
speech that can provide additional clues regard-
ing speaker identities. Addressing this gap,
our study introduces a semantically enriched
diarization approach that extends beyond the
acoustic domain, tapping into the nuances of
linguistic content. We present a novel method
that employs advanced language understand-
ing to extract semantic cues, which are integral
to discerning speaker contributions within con-
versations. Our approach utilizes these cues
to formulate pairwise constraints, introducing
a multi-modal clustering process to segment
and classify speakers and their spoken contents.
By integrating these semantically derived con-
straints into the diarization pipeline, we achieve
substantial improvements in accuracy. Exten-
sive evaluations on public dataset illustrate that
our method consistently outstrips acoustic-only
systems, offering a more holistic perspective
on speaker diarization by fully embracing the
semantic information of speech.

1 Introduction

Speaker Diarization (SD) addresses the pivotal
question of "who speaks when" by assigning
speaker labels to segments of an audio stream
(Wang et al., 2017; Du et al., 2022). In most ap-
plication settings, these labels are integrated with
the transcribed words or sentences from an Auto-
matic Speech Recognition (ASR) system. Despite
the wealth of transcribed text available, prevail-
ing SD systems (Park et al., 2021) predominantly
rely on acoustic signals. A traditional SD system
typically comprises the following components: (1)
a Voice Activity Detection (VAD) module; (2) a
speaker embedding extractor employing technolo-
gies such as x-vector (Snyder et al., 2018), d-vector

(Wan et al., 2017), ECAPA-TDNN (Dawalatabad
et al., 2021), and ResNets (Zhou et al., 2021; Chen
et al., 2023); and (3) a speaker clustering module
like Agglomerative Hierarchical Clustering (AHC)
(Han et al., 2008), Spectral Clustering (SC) (Wang
et al., 2017), or UMAP-HDBSCAN (Zheng and
Suo, 2022). While these components are effective,
traditional SD systems overlook the semantic in-
formation embedded within speech content, which
limit system’s robustness. This oversight becomes
particularly detrimental in challenging acoustic en-
vironments characterized by noise and reverbera-
tion, where relying on purely acoustic information
can lead to degradation in performance.

Some previous works (Zuluaga-Gémez et al.,
2021; Flemotomos and Narayanan, 2022; Park and
Georgiou, 2018; Paturi et al., 2023) have utilized se-
mantic information in speaker diarization tasks, but
only limited to two-speaker scenarios with clearly
distinctive semantic roles, such as job interviews
and doctor-patient medical consultations. More re-
cent works (Park et al., 2023; Wang et al., 2024;
Cheng et al., 2023) leverage large language models
to improve speaker-related text diarization. How-
ever, their use of semantic information are effec-
tive only for shorter context, primarily influencing
boundary decisions within a few sentences. To
have a better understanding of the global speaker
structure of the entire conversations or multi-party
meetings, the state-of-the-art approaches still resort
to acoustic-only speaker clustering.

In this work, we address unrestricted multi-party
meetings and conversations, characterized by ran-
dom contents, multiple speakers and long duration,
highlighting the need for comprehensive speaker
profiling. We improve upon the acoustic-only
speaker clustering methods by introducing a multi-
modal clustering approach that fully considers the
acoustic and semantic information in global con-
text, namely the Joint Pairwise Constraints Prop-
agation (JPCP) framework. The main contribu-
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Figure 1: Semantic pairwise constraints are applied in both Embedding Normalization and the Affinity Function in

the clustering process of speaker embeddings.

tions of this paper are as follows:

(1) We introduce additional spoken language pro-
cessing (SLP) modules to extract speaker-related
information from transcripts and develop a strategy
to construct pairwise semantic constraints.

(2) We incorporate pairwise constraints propa-
gation methods to embedding normalization and
affinity function, and investigate the effectiveness
of these semantic constraints.

2 Semantic Speaker Constraints

2.1 Semantic Speaker-related Tasks

In our study, we follow the extraction pipeline de-
tailed in (Cheng et al., 2023) to obtain speaker
embeddings from conversational speech signals.
Utilizing a speaker embedding extractor, we obtain
a series of embeddings F = {e1, e, ...,en} and
N is the number of speaker embeddings. These
embeddings are then mapped to the correspond-
ing transcribed text using a Forced Alignment (FA)
module (Shi et al., 2023), which aligns the text with
the audio timestamps, ensuring accurate synchro-
nization between audio and spoken words.

To extract speaker-related information from the
transcriptions, we focus on two Spoken Language
Processing (SLP) tasks: (1) Dialogue Detection
discriminates between multi-speaker dialogues and
monologues, conceptualized as a binary classifi-
cation challenge. (2) Speaker-Turn Detection
assesses each sentence in a sequence to estimate
speaker change, functioning as a sequence label-
ing problem that identifies semantically significant
speaker role transitions.

Accounting for the ASR errors that can impact
SLP tasks, we employ a hybrid approach that fuses
acoustic and semantic information(Cheng et al.,
2023) by integrating the outputs of semantic mod-
els with acoustic embeddings to further enhance
the performance of identifying dialogue states and

speaker turns, which are pivotal to SD system.

2.2 Semantic Pairwise Constraints

Prevailing speaker clustering systems extract
speaker embeddings from acoustic signals only,
making it difficult to incorporate semantic content.
In order to leverage both modalities in the cluster-
ing process, we propose to use semantic informa-
tion to establish constraints among embeddings.

We derive two types of constraints from seman-
tic speaker-related information: must-link M and
cannot-link C, defined as:

M = {(ei, €))|l(e;) = U(e;)},
C = {(ei,e;)|l(e;) # l(ej)},

where [(-) denotes the speaker label associated with
an embedding.

The criteria for establishing M and C are as
follows: M is formed between two embeddings if
they originate from the same non-dialogue segment.
Conversely, C is established between embeddings
separated by a detected speaker-turn boundary.

ey

2.3 Propagate and Normalize Semantic
Constraints

The semantic constraints obtained by the aforemen-
tioned methods exhibit two shortcomings: (1) the
SLP modules may introduce errors into the con-
straints; (2) due to the decoding text length limita-
tions of SLP modules, the constructed constraints
typically only apply to embeddings within a spe-
cific time duration, failing to affect embeddings
separated by long intervals. In this paper, we de-
sign propagation and normalization mechanisms to
mitigate these issues effectively.

We improve constraint reliability by integrating
additional must-link and cannot-link pairs with co-
sine similarity. These pairs are identified based on
their affinity scores relative to thresholds 6,,, and



0., indicating strong similarity and dissimilarity
respectively.

My = {(ei, €)lg(ei, ) > Om},

Cp = {(ei7€j)|g(ei7ej) < 06}7

where g(+) is the cosine similarity function. The

semantic constraints can be filtered by cosine simi-
larity results:

M = {(ei,e5)l(ei €5) € M & (e, e5) ¢ Cp}
Cn = {(ei,ej)|(ei,ej) cC& (ei,ej) ¢ Mp(}3

2

)
The final must-link M ; and cannot-link Cy can

be constructed as:
M = Mp UM,

4
C;=CpUC, @

For more details on the semantic constraints con-
structions process, please refer to the appendix A.

3 Semantic Constrained Diarization

The JPCP framework is illustrated in Figure 1.
Similar to traditional acoustic-only SD systems,
JPCP processes speaker embeddings through em-
bedding normalization, affinity function and clus-
tering to assign speaker labels. However, it distin-
guishes the acoustic-only SD systems by integrat-
ing semantic constraints into each of these stages,
thereby improving the influence of semantic in-
sights on the final clustering outcomes.

3.1 Constrained Embedding Normalization

We incorporate the semi-supervised dimension re-
duction (SSDR) algorithm (Zhang et al., 2007) into
the speaker embedding normalization module to
incorporate semantic constraints. We construct the
following weight matrix S:

ﬁ—i—ﬁ if(ei,ej)e/\/lf,
Sij = ﬁ — % if (ei,ej) € Cf, (5)
ﬁ otherwise,

where o and (3 are parameters that adjust the influ-
ence of must-link and cannot-link constraints.

The aim of constrained embedding normaliza-
tion is to identify projection matrix W yield low-
dimensional embeddings W”e;, € R? and d is the
new dimension, aligning with both the manifold
structure of the original embeddings and seman-
tic constraints. We define the objective function
J(W) as:

J(W)=WTEL,ETW, (6)

with Ly = D4 — S being the Laplacian matrix and
D; is the degree matrix of S. The optimization
problem with J(W) is a standard eigenproblem,
solvable by determining the eigenvectors of ELET
associated with the largest eigenvalues.

3.2 Constrained Affinity Function

After embedding normalization, we compute the
affinity matrix A = {A;j}nxn where A;; =
d(e;, €), with d(-) representing the cosine distance
and €] representing the normalized embeddings.
In traditional acoustic-only systems(Wang et al.,
2017), A is subjected to a series of refinement steps
like row-wise thresholding and symmetrization.

To further refine the affinity matrix with seman-
tic speaker-related information, we introduce E2CP
(Lu and Peng, 2011), which effectively models the
global relationships implied by the semantic con-
straints. The constraints are initially encoded in a
matrix Z:

+1 if (ei,ej) S Mf,
Zij =q -1 if (ei,ej) € Cf, @)

0 otherwise.

Then the matrix is transformed to a propagated
constraints matrix Z:

Z=(1-NI-AL)'ZI- L), ®

where L, = De_l/Q.ADe_l/2 is the normalized
Laplacian matrix, and D, is the degree matrix of A
and I is a identity matrix. The parameter A € [0, 1]
modulates the impact of the semantic constraints.
The refined affinity matrix A € RV is then
updated to incorporate the influences of the propa-
gated constraints Z:

L J1-(-2Z)a- Ay ifZ5 >0,
" (14 Q%ZJ).A” if Q%Z'j < 0.
O
Upon calculating the affinity matrix A, it is then
fed into the spectral clustering (SC) process to de-
rive the ultimate speaker clustering outcome.

4 Experimental setup

4.1 Dataset and Metrics

Our experiments are evaluated on AISHELL-4 (Fu
et al., 2021) which focuses on multi-speaker meet-
ing whose content is manually annotated.

We report the following clustering algorithm
metrics: Normalized Mutual Information (NMI)



Diarization System Constraints Speaker Clustering Methods C[ill;s;er M;;?:IS SpKDIff # gg‘z:]l;; lzg/:)trlcffextDER @)
Acoustic Only System No Semantic Constraints SC - - 11 26.1816 3.7723
Semantic Turn-Cut System  No Semantic Constraints SC 0.8901 0.8616 11 25.6421 3.4636
Semantic Constraints SSDR + SC 0.9010 0.8857 11 25.9185 3.8122
Semantic Constraints E2CP + SC 0.9162 0.8863 10 25.2774 3.0967
JPCP System Semantic Constraints SSDR + E2CP + SC 0.9171 0.8871 9 25.3168 3.0379
Simulation Constaints 6% SSDR + E2CP + SC 0.9939 0.9879 4 24.5919 1.9810
Simulation Constaints 12% SSDR + E2CP + SC 0.9961 0.9927 3 24.4809 1.9028

Table 1: Performance evaluation of cluster metrics and speaker diarization results. SpkDiff # refers to difference in

number of speakers between inference and ground truth.

and Adjusted Rand Index (ARI)(Chac’on and Ras-
trojo, 2020). As the transcribed text and FA module
have been used in the pipeline, we directly report
the Concatenated Minimum-permutation Word Er-
ror Rate (cpWER)(Watanabe et al., 2020). Addi-
tionally, we use the metric Text Diarization Error
Rate (TextDER)(Gong et al., 2023), to evaluate the
amount of text assigned to wrong speakers.

4.2 Configuration of Modules

Our system followed the pipeline outlined in
(Cheng et al., 2023) while incorporating improve-
ments to certain acoustic models. Our speaker
embedding extractor is an adaptation of CAM++
(Wang et al., 2023)!, which has been trained on
a vast Mandarin speech corpus. For ASR mod-
ules, we utilize the Paraformer (Gao et al., 2022),
which has been trained with the aid of the FunASR
(Gao et al., 2023) toolkits”. These models are open-
source and constant across all experiments.

For dialogue detection and speaker turn detec-
tion tasks, we rely on semantic models built upon
a pre-trained BERT language model (Devlin et al.,
2019). We generated training samples using a slid-
ing window approach with a window length of 64
tokens and a shift of 16 tokens. The labels for
semantic tasks stem from the manually annotated
speaker information within the speech content.

The development of semantic constraints is out-
lined in Section 2.2. To evaluate the effective-
ness of our proposed method, we also generated
simulated pairwise constraints from ground truth
speaker labels.

For the experiments on SSDR, we have set o
to 10.0 and S to 2.0. The dimensionality of the
embeddings extracted by CAM++ is 192, and we
have selected a reduced dimension d of 180. In the
E2CP experiments where semantic constraints are
employed, the parameter A is set to 0.6. However,

'The speaker embedding extractor came from https://
github.com/alibaba-damo-academy/3D-Speaker

2The ASR and FA models came from https://github.
com/alibaba-damo-academy/FunASR

when utilizing simulated constraints, which are as-
sociated with a higher level of confidence, we have
set A to 0.2.

5 Results and Disscussions

The results presented in Table 1 highlight the
comparative analysis between our approach and
acoustic-only system. We have employed the
“Semantic Turn-Cut” strategy from (Cheng et al.,
2023), which combines semantic timestamps with
VAD results for more precise segmentation.

Our JPCP strategy demonstrates a noticeable im-
provement over the acoustic-only baseline. Specif-
ically, our method achieved a 19% decrease in
TextDER and 3.3% in cpWER. The decline in Sp-
kDiff also substantiates that our method has a pos-
itive impact on the global clustering performance.
When comparing against SSDR, the E2CP vari-
ant of our JPCP approach shows even more pro-
nounced effects on the clustering results.

The performance of these methods largely de-
pends on the quality of the constraints, where the
gains for the JPCP approach with conventionally
inferred constraints are more modest due to their in-
herent limitations. However, the experiments with
simulated constraints underscore the potential of
our method. For a more detailed exploration of
the results obtained using simulated constraints,
readers are referred to the appendix B.

6 Conclusion

In this work, we have proposed the Joint Pairwise
Constraint Propagation (JPCP) framework, a novel
system that employs SLP modules to generate se-
mantic constraints from ASR transcriptions and
integrates them into the speaker clustering process.
Our approach significantly enhances speaker di-
arization in multi-party meeting scenarios while
preserving the integrity of the core system modules.
Experimental results validate that incorporating se-
mantic constraints markedly improves speaker di-
arization performance.
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7 Limitations

In this work, the SLP modules employed, specif-
ically Dialogue Detection and Speaker Turn De-
tection tasks, are not entirely accurate in captur-
ing speaker-related semantic information in certain
complex meeting scenarios. For instance, when
meetings draw to a close, participants often ex-
press similar opinions, thereby blurring semantic
speaker turn points. In future work, we aim to de-
velop more suitable speaker-related SLP tasks to
overcome these challenges.

Additionally, this study does not employ Large
Language Models as done in works like (Park et al.,
2023; Wang et al., 2024), instead opting for BERT.
In our future work, we plan to utilize more ad-
vanced language models in the hopes of obtaining
improved and more comprehensive speaker-related
semantic information.
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A Constraints Construction Cases and
Illustrations

Figure 2 presents a concrete example of how con-
straints are constructed from the two SLP tasks: For
the Dialogue Detection task, a text segment judged
as non-dialogue suggests that all corresponding em-
beddings are related by must-link constraints, akin
to the green connections in Figure 3. Conversely,
for the Speaker-Turn Detection task, the presence
of a transition point dictates that embeddings span-
ning this point should be connected with cannot-
link constraints, represented by the red connections
in the figure.

Cannot-Link

Speaker
Embeddings

Must-Link

Semantic Results [ ] [ ]

Speaker-1 Turn Speaker-2 Turn

Transcribed Text What's the weather like today?: It's sunny and warm outside.

Figure 2: A case of strategy for constructing constraints.
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Figure 3: The impact of pairwise constraints rate on both
clustering metrics and the effectiveness of the overall
speaker diarization system.

There is an inherent transitivity associated with
must-link constraints. That is, if (e;,e;) € M
and (ej,ex) € M, then it can be inferred that
(e;,ex) € M. Unfortunately, such a property
does not extend to cannot-link constraints. If
(ei,ej) € C and (ej,e,) € C, we cannot ascer-
tain the relationship between e; and ey, as, in a real
meeting scenario, following a dialogue between
speakers A and B, either speaker C may begin
speaking, or speaker A may continue. Hence, con-
straints derived solely from semantic information
can only determine the relationship between em-
beddings adjacent to a speaker-turn. This limitation
underlines the need to supplement constraints with
additional information, such as cosine scores, as
described in Section 2.3.

B Experiments on Simulation Constraints

In this section, we will detail the construction of
simulation constraints to explore the upper-bound
performance of our proposed system. By utilizing
the actual speaker labels derived from the ground
truth timestamps, we can assign each speaker em-
bedding with its corresponding speaker label. Fol-
lowing the definitions of must-link and cannot-link
constraints in Section 1, we randomly select a pro-
portion p of constraints from the N x (N — 1)/2
possible embedding pairs (e;, e;) to serve as the
experimental constraints for our study.

Figure 3 presents the results of our experiments,
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illustrating a significant improvement in system
performance with an increasing proportion of con-
straints. Remarkably, the use of a minimal amount
of constraints (approximately 6%) achieves results
that approach the theoretical upper bound, com-
pared to systems not employing any constrained
clustering techniques.
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