
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Under review as a conference paper at ICLR 2026

KURISU-G²: A KNOWLEDGE RETRIEVAL AND GENERA-
TION ALGORITHM BASED ON DOCUMENT STRUCTURE

Anonymous authors
Paper under double-blind review

ABSTRACT

Retrieval-Augmented Generation (RAG) has become a standard paradigm for enriching
large language models with external knowledge, yet it often treats retrieved chunks inde-
pendently and overlooks their semantic and logical dependencies, leading to incoherent
or incomplete answers. GraphRAG addresses this by introducing graph-based context
representations, but it remains limited by the quality of the constructed graph, the heavy
reliance on LLMs for graph generation, and the lack of global logical consistency. In this
work, we propose an alternative perspective: leveraging principled graph-based similarity
measures, such as the Gromov–Wasserstein distance, to guide the retrieval, selection, and
unification of knowledge units. This approach preserves both the structural and relational
properties of the knowledge base, while enabling the enrichment of missing links that are
crucial for semantic integrity. We show that this perspective yields more coherent and
interpretable retrieval contexts compared to LLM-driven graph construction. Our results
highlight a promising path toward robust and logically consistent retrieval mechanisms in
RAG-based systems, with strong implications for high-stakes domains such as medicine
and law.

1 INTRODUCTION

While LLMs are highly effective to answer general queries, their costly training makes it impractical to
incorporate domain-specific or up-to-date information. To address this, Retrieval-Augmented Generation
(RAG) (Lewis et al., 2020) has emerged as a popular framework that enriches each query with a context
based on relevant knowledge units retrieved from a document. However, its retrieval mechanism does not
take into account the document structure thus resulting in an often redundant, conflicting, or jumbled context,
hence lowering the relevancy of the generated responses. In this paper, we describe a novel mechanism that
constructs a more reliable context by taking into account the structural and semantic relationships among
knowledge units.

Indeed, RAG typically ranks and selects context chunks independently, based solely on similarity to the
query, without considering inter-chunk relationships which may fail to capture deeper semantic or structural
connections in the data. The phenomenon of the Lost In Middle (Liu et al., 2023) also reveals that LLMs can
struggle finding the key information in a long and redundant context, which deteriorates the quality of the
generated answer. These limitations motivate the exploration of more structured retrieval mechanisms that
can account for the relationships between retrieved units of knowledge and improve the logical consistency
of the response. In particular, graph-based approaches have emerged as a promising direction, aiming to
model dependencies and interactions among knowledge units. Indeed, graphs as a data structure are partic-
ularly well-suited for representing relationships and dependencies among knowledge units and come with
an already established environment and framework. Recent approaches try to formalize the integration of
text into a graph structure, leading to Text-Attributed Graph (Zhao et al., 2023; Yang et al., 2021). However,

1

047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093

Under review as a conference paper at ICLR 2026

existing methods such as GraphRAG (Edge et al., 2024) still face challenges in constructing reliable graphs
and leveraging them effectively during retrieval. These approaches tackle the lack of coherence and links
among the pieces of contexts retrieved by RAG by explicitly modeling the relationships between knowledge
units as a graph. They can thus retrieve not only relevant chunks, but also a coherent and connected subgraph
of information. However, GraphRAG and similar methods such as ToG-2 (Ma et al., 2024) still suffer from
several limitations. Among those limitations lies the construction of the graph itself, which is created with
the usage of Large Language Models (LLMs) and is often heuristic as well as computationally expensive.
Moreover the choices in the graph traversal also rely on LLMs calls coupled with other pruning heuristics,
which can lead to biases in the representation of knowledge. These kind of method are not scalable as they
require a massive usage of LLMs to create the graph and to traverse it. Finally, existing graph-based methods
often treat the graph as a static structure and do not adapt it dynamically to the specific query or evolving
context. These observations motivate the development of more principled approaches to knowledge retrieval
that explicitly account for the structure, coherence, and relevance of the retrieved information. Kurisu-G² is
an alternative that achieves a trade-off between complexity and the richness of semantic links. It will use a
graph structure that will fetch the already existing links in the corpus as a basis to build a more coherent and
contextually relevant subgraph using a merging process to combine the relevant pieces of informations as
well as a grafting process to add new links between the relevant pieces of information.

2 METHODS

The algorithm we propose is based on the idea of exploring a Graph that represents the document containing
the content we want to use. Its aim is to identify the most relevant sub-nodes with respect to a given question,
using semantic similarities and a structural preservation constraint. In order to do so, it will traverse the graph
recursively, and at each depth, it will attempt to merge the relevant sub-nodes while preserving the overall
structure. If some attempted fusions do not respect the structural preservation constraint, some smaller
deformation of the graph will be allowed, and notably the addition of new edges between the nodes that are
not fused. At the end, it will return a path that contains the nodes (or the fused nodes). Depending on the
precision regarding the context we need, we can choose the context contained in the node at the end of the
traversal which contains less but precise information while the nodes at the beginning of the traversal will
contain more information that may not be needed to answer the question.

2.1 DOCUMENT GRAPH CONSTRUCTION

The first step in our approach is to construct a document graph that captures the relationships between
knowledge units (e.g., sentences, paragraphs, or documents) in the corpus. The aim of this graph is to be
a starting point for the retrieval process. Indeed, the core idea of this step is to use the structural links
that already exist in the corpus to create a graph whose edges already represent some logical or semantic
relationships between the knowledge units. In order to achieve this, we will not use Knowledge Graphs
as they are commonly described as a collection of entities and their relationships, but rather we will use a
graph where each node will contain a fragment of the text (e.g., a sentence or a paragraph) and the edges
will represent the relationships between these fragments. Typically, a directed edge from node A to node
B indicates that the fragment in node A is related to the fragment in node B, for example, at the first step
of the process, a link between two nodes can be created if the fragment in node B (sentence) is contained
in the fragment in node A (paragraph). This first step is thus a parsing step that will use models such
as Spacy(Honnibal et al., 2020) to parse the text and extract the sentences, paragraphs, and other relevant
information.

2

094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

Under review as a conference paper at ICLR 2026

2.2 FORMALIZATION OF THE STRUCTURE

2.2.1 PROBLEMATIC

The problem we are trying to solve concerns the retrieval of knowledge units from a corpus. In order to do
so, we need to fuse different knowledge units in our graph so that we catch the most relevant information
related to the query. However, the retrieval of knowledge units is not a trivial task. We must avoid retrieving
excessive irrelevant information, while ensuring we do not miss key information needed to answer the query.
This is where the fused Gromov-Wasserstein distance comes into play, as it will allow us to quantify how
the graph is modified in respect to the original graph, and thus to quantify how much information is lost or
gained in the process of fusion. The fused Gromov-Wasserstein distance is a distance that can be defined in
the space of graphs, and it is based on the idea of comparing the structure of two graphs while taking into
account the textual content of the nodes.

2.2.2 EVOLVING HIERARCHICAL DOCUMENT GRAPH

We define a Hierarchical Document Graph (HDG) as a labeled, directed graph:

G = (V,E, ℓV ,W)

where:

• V is a finite set of nodes;

• E ⊆ V × V is a set of directed edges.

• T is the set of natural language texts.

• ℓV : V → T is a node labeling function assigning to each node v ∈ V its raw textual content:

ℓV (v) = τv.

• W : V × V → [0, 1] is the edge existence matrix, where:

W (u, v) = puv

represents the weight of existence of an edge from u to v, considered during traversal or fusion.

Additional functions. We define the following auxiliary functions:

• κ : T → T , a function that maps raw text to its canonical or filtered version:

τ = κ(τ).

• ϕ : T → Rd, an embedding function applied to text:

χ = ϕ(τ), χ = ϕ(τ).

• δ : Rd × Rd → R+, a semantic or structural dissimilarity between node embeddings:

duv = δ(χu, χv).

Neighborhood. The (directed) neighborhood of a node v ∈ V is defined as:

N (v) = {u ∈ V | (v, u) ∈ E}

3

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

Under review as a conference paper at ICLR 2026

Hierarchical content composition. Initially, the rule we use to create our base Hierarchical Document
Graph is the following recursive content aggregation function: C : V → T such that:

C(v) = κ(τv) ∪
⋃

u∈N (v)

C(u)

where ∪ denotes string concatenation.

Fusion operator. Given a set of nodes F ⊆ V , the fusion operator FUSE(F) → v′ ∈ V ′ constructs a new
node v′ with:

ℓV (v
′) =

∑
u∈F

τu, N (v′) =
⋃
u∈F
N (u)

The embedding and cleaned content of v′ are computed externally:

τv′ = κ(ℓV (v
′)), χv′ = ϕ(ℓV (v

′)), χv′ = ϕ(τv′)

2.2.3 STRUCTURAL DISSIMILARITY DEFINITION

In our case, we wanted to weight the edges with the cosine similarity between the embeddings of the content
of the nodes, which can be computed as:

Suv =
⟨χu, χv⟩
∥χu∥∥χv∥

.

However, this similarity lies in the interval [−1, 1], and we needed a dissimilarity that lies in the interval
[0,+∞[. In order to do so we used the transformation:

dpuv =

 1
exp(Suv)
exp(1)

p

=

(
exp (p)

exp (Suv · p)

)
.

The interest of such a transformation is to bound the costs of the edges, preventing them from becoming too
large if the initial similarity was too close to −1

2.2.4 FUSED GROMOV-WASSERSTEIN DISTANCE BETWEEN HIERARCHICALDOCUMENT GRAPHS

Let G1 = (V1, E1, ℓ
(1)
V ,W1) and G2 = (V2, E2, ℓ

(2)
V ,W2) be two labeled directed graphs representing two

distinct knowledge subgraphs, each following the Evolving Hierarchical Document Graph formalism.
For every node v

(1)
i ∈ V1, v(2)j ∈ V2, we compute their embeddings via the external embedding function:

χ
(1)
i = ϕ(ℓ

(1)
V (v

(1)
i)), χ

(2)
j = ϕ(ℓ

(2)
V (v

(2)
j))

We define the structural dissimilarity matrices D1 ∈ Rn1×n1 and D2 ∈ Rn2×n2 by computing pairwise
dissimilarity between embeddings of nodes within each graph using the external dissimilarity function δ:

(D1)ik = δ(χ
(1)
i , χ

(1)
k), (D2)jl = δ(χ

(2)
j , χ

(2)
l)

We also define:

• Two discrete probability distributions µ1 ∈ ∆n1 , µ2 ∈ ∆n2 over the nodes of G1 and G2, typically
uniform.

4

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

Under review as a conference paper at ICLR 2026

• A content cost matrix C ∈ Rn1×n2 defined as:

Cij = ∥χ(1)
i − χ

(2)
j ∥

2.

Then the Fused Gromov-Wasserstein distance between the two graphs is given by:

D2
FGW(G1, G2) = min

T∈Π(µ1,µ2)

α
∑
i,j

CijTij + (1− α)
∑
i,k
j,l

|D1(i, k)−D2(j, l)|2 · TijTkl


where:

• T ∈ Rn1×n2 is a transport plan with marginal constraints T · 1n2 = µ1, T⊤ · 1n1 = µ2.

• α ∈ [0, 1] balances the influence of node content alignment versus structural consistency.

• The first term accounts for semantic distance between nodes.

• The second term penalizes discrepancies between intra-graph pairwise structural dissimilarities.

This distance provides a principled way to jointly compare the semantic content and structural layout of two
knowledge subgraphs, enabling graph alignment, clustering, or fusion tasks under structural constraints.

2.3 RECURSIVE TRAVERSAL WITH FGW-CONSTRAINED FUSION AND EDGE GRAFTING

2.3.1 ALGORITHM OVERVIEW

The algorithm begins by encoding the query q into a vector χq and computing cosine similarities between
χq and the children of the current node, which are then ranked in descending order of relevance. The most
similar children above a predefined threshold are selected for greedy fusion: if the FGW distance of the fused
graph satisfies the constraint, a new node f is created and connected to the explored node c with an edge
whose existence weight pcf equals the average weight of the edges linking c to the fused children. Finally,
additional edge grafting is performed by evaluating relevant grandchildren not included in the fusion; for
each candidate g, the similarity sim(q, g) is computed, and the connection to f is only preserved if it also
meets the FGW distance threshold, thus preventing disruptive insertions.

The whole pseudocode of the algorithm is given in the Appendix B.

2.3.2 EDGE EVOLUTION

The existence weights of candidate edges evolve through a reward distribution mechanism. At each step, a
global reward budget R is distributed among edges according to their similarity relative to the mean of the
current neighborhood. Edges with above-average similarity receive proportionally larger increments through
a softmax allocation, while edges significantly below the mean are slightly penalized. This evolution rule
reinforces semantically coherent links while gradually suppressing irrelevant or noisy ones. A discussion
regarding the choice of some concepts of the algorithm and what are the interests of such choices is given in
the Appendix B.2.

5

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

Under review as a conference paper at ICLR 2026

A

B
C

D E

B1
C1

D1 D2

(a) Initial Graph.

A

B
C

D E

F

B1

C1

D1 D2

(b) Fusion attempt of nodes B and C.

A

D E

F

B1 C1

D1
D2

(c) Accepted fusion and partial re-
connection.

Similarity level

Low High

Figure 1: Steps of the traversal and greedy fusion in the algorithm.

2.3.3 THEORETICAL COMPLEXITY ANALYSIS

We analyze the time complexity of the recursive traversal algorithm (v3), which includes greedy fusion
and edge grafting, both constrained by a Fused Gromov-Wasserstein (FGW) distance threshold. Let n the
number of nodes in the graph, k the average number of successors per node, and D the maximum recursion
depth (max_depth). The complexity of computing the FGW distance between two graphs of size n is
denoted as FGW(G1, G2), which is assumed to be O(n3)(Titouan et al., 2019).

Greedy Fusion with Dichotomic Search. At each depth level, the algorithm selects the relevant children
(typically up to k) and attempts to find the largest subset that can be fused without violating the FGW
constraint. This is done via a binary search over the sorted list of children, requiring at most O(log k) FGW
evaluations. Each FGW computation is O(n3), leading to a per-depth complexity of:

O(log k · n3)

Edge Grafting with Dichotomic Search. Similarly, for grafting, the algorithm considers up to k2 grand-
children (i.e., successors of successors), ranks them by similarity, and performs a binary search to connect
the largest admissible subset without violating the FGW constraint. This again leads to at most O(log k)
FGW evaluations of cost O(n3), for a total per-depth cost of:

O(log k · n3)

Total Complexity. Other operations, such as similarity computations, sorting, and updates of existence
weights, are negligible compared to the FGW calls and bounded by O(k · d) or O(k2 log k), which are
typically much smaller than O(n3).

The total complexity over D recursive steps is therefore:

O(D · log k · n3)

This complexity reflects the efficiency gained by using graph search over the space of fusion and grafting
candidates rather than testing all combinations, while maintaining structural fidelity through FGW con-
straints. However, the constant k is hard to estimate as it depends on the structure of the graph and thus
the input document. However, we can assume that k is upper bounded by a constant kmax, which is the

6

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

Under review as a conference paper at ICLR 2026

maximum number of children a node can have. Other models of complexity have been explored in the Ap-
pendix C. Those are based on some hypothesis on the structure of the document and lead to a closed-form
expression of the constant k.

2.4 ENHANCED GRAPH AND QUESTION CLUSTERING WITH FGW

2.4.1 OBJECTIVE

Outside of the context retrieval, The FGW distance can also be used as a way to cluster very specific ques-
tions, and more specifically what lies behind these questions thanks to the graph deformation. Indeed, one
other method to weight the edges of the graph is to use the cosine similarity between the question and the
content of the nodes, which can be computed as:

Sqv =
⟨q, χv⟩
∥q|∥χv∥

.

And then we can use the same transformation as before:

dpqv =

 1
exp(Sqv)
exp(1)

p

=

(
exp (p)

exp (Sqv · p)

)
.

Then we can use the FGW distance to compute the distance between the modified graphs obtained after the
deformation involved by the different questions. The idea that lies behind this method is that if two questions
deal with a close topic, even if the words used are different, the edge weights will be close enough to ensure
a low FGW distance between them. This method can thus be used to cluster very specific questions and then
the graphs obtained can be used to retrieve the relevant context for these questions.

A

B
C

D E

B1
C1

D1 D2

(a) Original graph

A

D

F

E

B1 C1

D1
D2

(b) Graph for Q1.

A

D

F

E

B1 C1

D1
D2

(c) Graph for Q2.

A

B

C

F

B1

C1

D1 D2

(d) Graph for Q3.

Figure 2: Top: original graph. Bottom: three variations. Q1 and Q2 fuse nodes B and C; Q3 fuses D and E.

In this example, there are three variations of the original graph. They are obtained from the original graph
after asking three different questions, the Fused Gromov Wasserstein distance between the first two graphs
will thus be low whereas the distance between the second and the third graph and the first and the third will
be higher due to the different fusions of nodes and the different weights on the edges. We can use this metric

7

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

Under review as a conference paper at ICLR 2026

as an interesting way to cluster questions or texts based on their relation with the other parts of the texts. As
explained, the FGW distance can be used to cluster questions related to a specific text based on the graph
deformation that is induced by the questions.

2.4.2 CLUSTERING OF QUESTIONS AND AUTOMATED DOCUMENTATION GENERATION ON LARGE
CORPUS

This perspective is interesting as it can allow us to discover the interesting clusters that are present in the
text, and thus to discover the different topics that are present in the text. However, in order to do so, we
would need to have a large number of questions related to the text. That is why we propose a two-way
algorithm that first try to generate all the questions possible based on each branch of the graph, and then
cluster these questions to discover the different relevant topics that are present in the text. This algorithm
can be interesting to summarize the text and more specifically to create knowledge cards on the different
topics presented in the text even if these topics are discussed in different parts of the text.

The clustering of questions can be used to generate automated documentation on large corpus, indeed it
can help to identify the main topics of interest within the text. An algorithm that can generate such a
documentation is presented in appendix D.

3 EXPERIMENTS

3.1 METHODOLOGY

We evaluated our approach on multiple datasets, such as HotPotQA (Yang et al., 2018), and LongBenchV2
(Bai et al., 2024). However, since our method relies on an evolving graph structure, we also conducted
experiments to assess its adaptability to different types of questions and text variations on custom datasets.
The interest of evaluating our method on these diverse datasets lies in its potential to generalize across
various question types and text structures, while showing that it can still be used for classical retrieval and
question answering tasks. We will mostly compare Kurisu-G² to the state-of-the-art methods such as RAG
(Lewis et al., 2020) and other retrieval methods that works on Knowledge Graphs such as ToG-2.0 (Ma et al.,
2024) or GraphRAG (Edge et al., 2024). HotpotQA is a multi-hop question answering benchmark in which
each question requires combining information from multiple documents to produce the correct answer. It
evaluates both the reasoning ability of the model and its robustness to noisy or partially relevant context. In
contrast, LongBench-v2 focuses on evaluating models in long-context settings, with inputs reaching several
tens of thousands of tokens. It includes diverse tasks such as multi-document understanding, summarization,
and information retrieval. This benchmark is particularly relevant for assessing the effectiveness of Retrieval-
Augmented Generation (RAG) methods in large-scale scenarios.

Model performance was evaluated using the Exact Match (EM) metric, defined as the percentage of predic-
tions that exactly match the gold answer after normalization (removal of casing, whitespace, and punctua-
tion). EM is a strict metric: any deviation, even minor, between the model output and the reference answer
results in a score of zero for that example. This is why we used the F1 score as a secondary metric, which
measures the overlap between the predicted and reference answers at the token level. However in order to
compare to ToG-2.0, we used their script to compute the EM score since it is slightly more lenient than the
classical EM score. For LongBenchV2, we used the multi-choice accuracy as the main metric, which is the
percentage of questions for which the model selects the correct answer from a list of options.

3.2 BENCHMARK AND COMPARISON PROCESS WITH OTHER METHODS

We also evaluated our method on LongBenchV2, on the short (0-32k words) and medium tests (32k-128k
words).We compared our method to the baseline RAG method.

8

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison (Exact Match %) on HotpotQA

Method HotpotQA
Baseline RAG (Llama3-8B) 24%
TOG-2.0 (Llama3-8B) 34%
Kurisu-G2 (Llama3-8B) 39%

Table 2: Performance comparison (Multi choices questions %) on LongBenchV2

Method Short Medium
Baseline RAG (Llama3-8B) 35% 27.9%
Kurisu-G2 (Llama3-8B) 38% 32%

However, the main benchmarks in the field of retrieval and question answering do not enable us to use the
edge evolution mechanism well.

3.3 RUNTIME ANALYSIS

We conducted a runtime analysis to evaluate the efficiency of Kurisu-G² compared to other methods. Our
experiments were performed on a machine with two Tesla T4 GPUs, and we measured the average time
taken for each method to process a batch of 32 questions.

The results are summarized in Table 3. Kurisu-G² demonstrates competitive runtime performance, particu-
larly in long-context scenarios where traditional methods struggle due to their reliance on LLMs to generate
the Knowledge Graph. The implementation used for GraphRAG was adapted from the llama-index reposi-
tory (Liu, 2022).

Table 3: Average runtime (in seconds) for a question using Llama3-8B.

Method Full Process Inference
Kurisu-G2 70 25
GraphRAG 1200 175

4 DISCUSSION

Our experiments demonstrate that Kurisu-G² can outperform existing methods in retrieval while still being
easy to implement and computationally efficient compared to other recent frameworks. However, there is
still several areas for improvement and future work such as the creation of a specific benchmark that could
measure how well the evolution of the graph performs.

For instance, there is room for improvement in the evolution phase of our algorithm, particularly in adapting
to new information and user queries. Handling noisy data also remains an open question: while we avoided
relying on large language models at the core of the algorithm, they could still help clean data or summarize
nodes when documents become too large

USAGE OF LARGE LANGUAGE MODELS

During this work, LLMs were used as a way to obtain ideas on how to polish some of the sentences in this
article.

9

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

Under review as a conference paper at ICLR 2026

REFERENCES

Yushi Bai, Shangqing Tu, Jiajie Zhang, Hao Peng, Xiaozhi Wang, Xin Lv, Shulin Cao, Jiazheng Xu, Lei
Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. Longbench v2: Towards deeper understanding and reasoning
on realistic long-context multitasks. arXiv preprint arXiv:2412.15204, 2024.

Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva Mody,
Steven Truitt, Dasha Metropolitansky, Robert Osazuwa Ness, and Jonathan Larson.
From local to global: A graph rag approach to query-focused summarization. April
2024. URL https://www.microsoft.com/en-us/research/publication/
from-local-to-global-a-graph-rag-approach-to-query-focused-summarization/.

Matthew Honnibal, Ines Montani, Sofie Van Landeghem, and Adriane Boyd. spacy: Industrial-strength
natural language processing in python. 2020. doi: 10.5281/zenodo.1212303.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented generation for
knowledge-intensive nlp tasks. Advances in neural information processing systems, 33:9459–9474, 2020.

Jerry Liu. LlamaIndex, 11 2022. URL https://github.com/jerryjliu/llama_index.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. Lost in the middle: How language models use long contexts. arXiv preprint arXiv:2307.03172,
2023.

Shengjie Ma, Chengjin Xu, Xuhui Jiang, Muzhi Li, Huaren Qu, Cehao Yang, Jiaxin Mao, and Jian Guo.
Think-on-graph 2.0: Deep and faithful large language model reasoning with knowledge-guided retrieval
augmented generation, 2024. URL https://arxiv.org/abs/2407.10805.

Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations: Theory
and application to reward shaping. In Icml, volume 99, pp. 278–287. Citeseer, 1999.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. A Bradford Book,
Cambridge, MA, USA, 2018. ISBN 0262039249.

Vayer Titouan, Nicolas Courty, Romain Tavenard, Chapel Laetitia, and Rémi Flamary. Optimal trans-
port for structured data with application on graphs. In Kamalika Chaudhuri and Ruslan Salakhut-
dinov (eds.), Proceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pp. 6275–6284. PMLR, 09–15 Jun 2019. URL https:
//proceedings.mlr.press/v97/titouan19a.html.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

Junhan Yang, Zheng Liu, Shitao Xiao, Chaozhuo Li, Defu Lian, Sanjay Agrawal,
Amit Singh, Guangzhong Sun, and Xing Xie. Graphformers: Gnn-nested trans-
formers for representation learning on textual graph. In NeurIPS 2021, December
2021. URL https://www.microsoft.com/en-us/research/publication/
graphformers-gnn-nested-transformers-for-representation-learning-on-textual-graph/.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhutdinov, and
Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question answering. In
Conference on Empirical Methods in Natural Language Processing (EMNLP), 2018.

Jianan Zhao, Meng Qu, Chaozhuo Li, Hao Yan, Qian Liu, Rui Li, Xing Xie, and Jian Tang. Learning on
large-scale text-attributed graphs via variational inference. ICLR, 2023.

10

https://www.microsoft.com/en-us/research/publication/from-local-to-global-a-graph-rag-approach-to-query-focused-summarization/
https://www.microsoft.com/en-us/research/publication/from-local-to-global-a-graph-rag-approach-to-query-focused-summarization/
https://github.com/jerryjliu/llama_index
https://arxiv.org/abs/2407.10805
https://proceedings.mlr.press/v97/titouan19a.html
https://proceedings.mlr.press/v97/titouan19a.html
https://www.microsoft.com/en-us/research/publication/graphformers-gnn-nested-transformers-for-representation-learning-on-textual-graph/
https://www.microsoft.com/en-us/research/publication/graphformers-gnn-nested-transformers-for-representation-learning-on-textual-graph/

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

Under review as a conference paper at ICLR 2026

A ILLUSTRATION OF THE FUSED GROMOV-WASSERSTEIN DISTANCE

A1
“cat”

A2
“dog”

A3
“pet”

G1

B1
“meow”

B2
“bark”

B3
“animals”

G2

B1 B2 B3

A1

A2

A3

π

Figure 3: Example of a FGW computation between two graphs with different structures

B PSEUDO-CODE AND DISCUSSION ABOUT THE ALGORITHMIC DESIGN CHOICES

B.1 PSEUDO-CODE OF THE ALGORITHM

Algorithm 1 Recursive traversal with fusion and FGW constraints (Part 1)

1: function RECURSIVETRAVERSALFUSIONFGW(start_node, question, G, embeddings, model,
max_depth, τ , ε, η)

2: q ← Encode(question)
3: path← [(start_node, None)]
4: current← start_node
5: for d = 0 to max_depth do
6: C ← successors of current
7: if C = ∅ then
8: break
9: end if

▷ Compute similarities and filter relevant children
10: Compute similarities si = ⟨q, vci⟩
11: Crelevant ← {ci : si > τ ·maxj pcurrent,cj · sj}

▷ Greedy fusion phase
12: S ← ∅
13: for c ∈ Crelevant do
14: S′ ← S ∪ {c}
15: T ′ ← concatenation of the texts of the nodes in S′

16: Create G′ with a fused node χd replacing S′

17: if FGW(G,G′) ≤ ε then
18: S ← S′

19: else
20: break
21: end if
22: end for

11

517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

Under review as a conference paper at ICLR 2026

Algorithm 2 Recursive traversal with fusion and FGW constraints (Part 2)

23: if |S| > 1 then
24: Create χd, replace c ∈ S, add χd to the graph
25: Compute pcf as the mean of pcu for u ∈ S
26: Assign pcf to the edge (current, χd)

▷ Edge grafting of additional edges
27: Gr ← grandchildren of c /∈ S
28: Sort Gr by similarity with q
29: for each g ∈ Gr do ▷ In practice, this loop is dichotomic
30: Compute sim(q, g)
31: if FGW(G,G+ (χd, g)) ≤ ε then
32: Compute p

(0)
fg (initial grafting weight)

33: Update pfg:

pfg ← min(1, max(0, pfg + η · (sim(χd, g)− τ)))

34: end if
35: end for
36: current← χd

37: Append (χd, score) to path
38: else
39: current← argmax si
40: Append (current, scurrent) to path
41: end if
42: end for
43: return path
44: end function

B.1.1 PARAMETERS

• start_node : ID of the starting node;
• question : question used to measure similarity;
• embeddings : embedding vectors for each node;
• G : directed graph G = (V,E);
• model : sentence encoder producing embeddings;
• alpha : weighting factor between content and structure in FGW;
• max_depth : maximum depth of exploration;
• sim_threshold : relative similarity threshold;
• fgw_threshold : maximum allowed FGW distance for a fusion.

B.2 DISCUSSION ON ALGORITHMIC DESIGN CHOICES

A key design choice of the algorithm is to associate each edge with a tuple of labels: a structural dissimilarity
and an existence weight. While the latter might seem optional, it is crucial for robustness. Without existence
weights, a purely greedy strategy based only on structural dissimilarity risks discarding beneficial fusions,
leading to overly rigid behavior. The existence weight acts as a soft balancing factor: it allows the algorithm
to favor semantically relevant connections while still preserving the global structure.

12

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

Under review as a conference paper at ICLR 2026

For example, a node at the root of a large subgraph may have children highly relevant to the query, but strict
FGW constraints could prevent their fusion due to structural deformation. Existence weights mitigate this
by enabling the creation of new, semantically meaningful links without causing uncontrolled densification.
In doing so, the algorithm avoids the main pitfall of purely fusion-based methods, where relevant knowl-
edge remains disconnected. By dynamically adjusting these weights, it incrementally refines the graph’s
connectivity in a data-driven and query-sensitive way.

B.3 EVOLUTION OF THE EXISTENCE WEIGHTS

Reward distribution update. Let E be the set of candidate edges with similarities se ∈ [0, 1]. For a
global reward budget R > 0, learning rate α ∈ (0, 1], and hyperparameters

τ+ > 0, τ− > 0, η ≥ 0, δ > 0, γ ∈ [0, 1), σmin > 0,

we compute the following update.

Centering and normalization.

µ =
1

|E|
∑
e∈E

se, σ =

√
1

|E|
∑
e∈E

(se − µ)2, σ̃ = max(σ, σmin),

ze =
se − µ

σ̃
.

Positive pool (boosts). We shift ze by a margin η to also include near-average edges:

pe = max{0, ze + η}.

Softmax weights with temperature τ+ are:

w+
e =

exp(pe/τ+)∑
j∈E exp(pj/τ+)

,

and the positive allocation is

a+e = (1− γ)Rw+
e ,

∑
e∈E

a+e = (1− γ)R.

Negative pool (penalties). For edges well below the mean:

M = {e ∈ E | ze < −δ},

we define

w−
e =


exp(|ze|/τ−)∑

j∈M exp(|zj |/τ−)
e ∈M,

0 e /∈M,

and set
a−e = −γRw−

e ,
∑
e∈E

a−e = −γR.

13

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

Under review as a conference paper at ICLR 2026

Final update rule. Each edge evolves according to

p(t+1)
e = min

(
1,max

(
0, p(t)e + α (a+e + a−e)

))
.

This update rule does not follow an existing formulation directly, but combines established principles:
softmax-based allocation as in attention mechanisms (Vaswani et al., 2017), normalization via z-scores,
reward shaping from reinforcement learning (Ng et al., 1999; Sutton & Barto, 2018), and projected updates
under constraints

C DEEPER COMPLEXITY ANALYSIS

C.1 AVERAGE-CASE COMPLEXITY WITH SIMILARITY-CONSTRAINED DECAYING CONNECTIVITY

We refine the average-case complexity by assuming that the average number of successors k(d) at recursion
depth d decreases exponentially, with a decay rate β that depends on the similarity threshold τ ∈ [0, 1]. This
threshold governs how selective the fusion and grafting operations are: higher values of τ restrict admissible
connections and lead to sparser graphs.

Connectivity Model. We model the depth-dependent connectivity as:

k(d) = k0 · e−β(τ)·d

with:

β(τ) = β0 + γ · τ where β0 ≥ 0, γ > 0

This formulation reflects the intuition that:

• When τ is low (e.g., 0.2), many weakly similar units are connected, resulting in slower decay
(β(τ) ≈ β0).

• When τ is high (e.g., 0.8 or more), only highly similar nodes are merged or grafted, which leads to
a sharp drop in connectivity with depth.

The parameter k0 (or ki,0 in the clustered model) represents the initial expected branching factor at the root
level of the traversal. Its value is influenced by several factors, including the structural granularity of the input
(e.g., paragraphs vs. sentences), the semantic density of the document or cluster, and the similarity threshold
τ used to filter candidate successors. In general, higher content density or lower similarity thresholds tend
to increase k0, whereas stricter constraints or fragmented content reduce it.

Complexity per Depth. At each depth d, the number of FGW evaluations is log k(d), giving:

C(d) = O(log(k0e−β(τ)d) · n3) = O((log k0 − β(τ)d) · n3)

This is valid as long as log k0 − β(τ)d ≥ 0, i.e., d < log k0

β(τ) . Define:

D′ = min

(
D,

⌊
log k0
β(τ)

⌋)

14

658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

Under review as a conference paper at ICLR 2026

Total Complexity. The total cost becomes:

D′∑
d=0

C(d) = O
(
n3 ·

[
(D′ + 1) log k0 −

β(τ)

2
D′(D′ + 1)

])

O
(
n3 ·

[
(D′ + 1) log k0 −

(β0 + γτ)

2
D′(D′ + 1)

])

C.2 ALTERNATIVE COMPLEXITY MODEL BASED ON GAUSSIAN CLUSTERING OF CONTENT

We propose an alternative probabilistic model of the algorithm’s complexity, based on the empirical ob-
servation that documents often exhibit clustered structures, with semantically coherent sections containing
varying amounts of relevant content. Rather than assuming uniform or exponentially decreasing connectiv-
ity, we model the distribution of relevant units as a mixture of Gaussian clusters.

Document Structure as Thematic Clusters. Let the input document be composed of x semantic clusters
(e.g., sections, argument blocks, or topics). Each cluster i ∈ [1, x] is assumed to contain a random number
Pi of relevant subunits (e.g., paragraphs or phrases), drawn from a Gaussian distribution:

Pi ∼ N (µi, σ
2
i), Pi ≥ 0

Here, µi denotes the expected number of relevant units (e.g., paragraphs or sentences) contained in cluster i,
while σi measures the variability of this number across different documents or instances of the same cluster
type. These parameters describe the size distribution of the clusters. In contrast, ki(d) characterizes the
connectivity within cluster i at recursion depth d, i.e., the average branching factor of nodes once the cluster
is instantiated. Thus, µi, σi control how many nodes are available in a cluster, whereas ki(d) determines
how these nodes are connected and traversed during the algorithm.

We define the total number of relevant processing units as:

N =

x∑
i=1

Pi

Each cluster i gives rise to a local subgraph where recursive traversal operates over the Pi nodes. The average
number of successors per node at recursion depth d within cluster i is modeled as:

ki(d) = ki,0 · e−βid with ki,0 ∼ N (µi, σ
2
i)

This extends the exponential decay model by assigning cluster-specific initial connectivity and decay rates.

Expected Complexity. Assuming the dominant cost remains FGW computationO(n3), the expected total
cost over all clusters becomes:

E[Ctotal] = O

(
n3 ·

x∑
i=1

Di∑
d=0

E [log (ki(d))]

)

15

705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

Under review as a conference paper at ICLR 2026

Using:

log(ki(d)) = log(ki,0)− βid ⇒ E[log(ki(d))] = E[log(ki,0)]− βid

Hence:

E[Ctotal] = O

(
n3 ·

x∑
i=1

[
(Di + 1) · E[log(ki,0)]−

βi

2
Di(Di + 1)

])

D AUTOMATIC DOCUMENTATION GENERATION ALGORITHM

Here is the pseudo-code of the algorithm that can generate automatic documentation on a large corpus based
on the clustering of questions. It relies on a pre generations of basic questions about the document with
an LLM, then a clustering of these questions in order to identify the main topics of interest, and finally a
retrieval of relevant context with Kurisu-G2 and a generation of documentation with an LLM.

Algorithm 3 GenerateAdequateDoc

Require: Large corpus C (documents→ sections→ paragraphs→ sentences), LLM, clustering parameters
params, Kurisu-G2 retrieval backend

Ensure: Structured documentation D guided by questions
1: G← GENERATEDOCUMENTGRAPH(C)
2: Q ← GENERATEQUESTIONSPERBRANCH(G,LLM)
3: Cq ← CLUSTERQUESTIONS(Q,params)
4: R ← IDENTIFYCLUSTERSANDREPRESENTATIVEQUESTIONS(Cq,LLM)
5: D ← ∅
6: for all (i, q⋆i) ∈ R do
7: Xi ← KURISUG2RETRIEVECONTEXT(q⋆i)
8: di ← LLMFORMATDOCUMENTATION(q⋆i ,Xi)
9: D ← D ∪ {di}

10: end for
11: D ← MERGEDOCS(D) ▷ Deduplication, cross-links, table of contents
12: return D

Algorithm 4 GenerateDocumentGraph

1: function GENERATEDOCUMENTGRAPH(C)
2: Initialize directed graph G← (V ← ∅, E ← ∅)
3: for all document, section, paragraph, sentence in C do
4: create node v with id, text, embedding
5: V ← V ∪ {v}
6: end for
7: add hierarchical edges (doc→section, section→paragraph, paragraph→sentence)
8: add semantic edges between nodes with similarity > threshold
9: return G

10: end function

16

752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

Under review as a conference paper at ICLR 2026

Algorithm 5 GenerateQuestionsPerBranch

1: function GENERATEQUESTIONSPERBRANCH(G, LLM)
2: B ← TRAVERSEBRANCHES(G) ▷ set of hierarchical paths
3: Q ← ∅
4: for all branch b ∈ B do
5: qb ← LLM.PROMPT(“Generate m relevant questions covering branch b”)
6: Q ← Q∪ qb
7: end for
8: return Q
9: end function

Algorithm 6 ClusterQuestions

1: function CLUSTERQUESTIONS(Q, params)
2: compute embeddings E(q) for each q ∈ Q
3: Apply dimensionality reduction (e.g., PCA / t-SNE / MDS) to E(q)
4: apply clustering algorithm (e.g., k-means) with params
5: obtain clusters Cq = {C1, . . . , CK}
6: return Cq
7: end function

Algorithm 7 IdentifyClustersAndRepresentativeQuestions

1: function IDENTIFYCLUSTERSANDREPRESENTATIVEQUESTIONS(Cq , LLM)
2: R ← ∅
3: for all cluster Ci ∈ Cq do
4: q⋆i ← LLM.PROMPT(“Synthesize and rephrase a pivot question for this cluster:” Ci)
5: R ← R∪ {(i, q⋆i)}
6: end for
7: returnR
8: end function

Algorithm 8 KurisuG2RetrieveContext

1: function KURISUG2RETRIEVECONTEXT(q⋆)
2: X ← KURISU-G2.RETRIEVE(q⋆, top-k,filters,window)
3: return X
4: end function

Algorithm 9 LLMFormatDocumentation

1: function LLMFORMATDOCUMENTATION(q⋆,X)
2: return LLM.PROMPT(“Write a documentation section answering q⋆ using only X

. Structure: title, summary, explanations, examples, cross-references.”)
3: end function

17

799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845

Under review as a conference paper at ICLR 2026

Algorithm 10 MergeDocs (optional post-processing)

1: function MERGEDOCS(D)
2: deduplicate similar sections
3: add cross-references and hyperlinks between related sections
4: build a hierarchical table of contents
5: return D
6: end function

Figure 4: MDS clustering of questions based on Fused Gromov Wasserstein distance on graphs derivated
from questions.

18

	Introduction
	Methods
	Document Graph Construction
	Formalization of the structure
	Problematic
	Evolving Hierarchical Document Graph
	Structural dissimilarity definition
	Fused Gromov-Wasserstein Distance Between HierarchicalDocument Graphs

	Recursive Traversal with FGW-Constrained Fusion and Edge Grafting
	Algorithm Overview
	Edge Evolution
	Theoretical Complexity Analysis

	Enhanced graph and question clustering with FGW
	Objective
	Clustering of questions and Automated documentation generation on large corpus

	Experiments
	Methodology
	Benchmark and comparison process with other methods
	Runtime Analysis

	Discussion
	Illustration of the Fused Gromov-Wasserstein distance
	Pseudo-code and discussion about the algorithmic design choices
	Pseudo-code of the Algorithm
	Parameters

	Discussion on Algorithmic Design Choices
	Evolution of the existence weights

	Deeper complexity analysis
	Average-Case Complexity with Similarity-Constrained Decaying Connectivity
	Alternative Complexity Model Based on Gaussian Clustering of Content

	Automatic documentation generation algorithm

