
Under review as a conference paper at ICLR 2024

VISUAL ENCODERS FOR DATA-EFFICIENT IMITATION
LEARNING IN MODERN VIDEO GAMES

Anonymous authors
Paper under double-blind review

ABSTRACT

Video games have served as useful benchmarks for the decision making commu-
nity, but going beyond Atari games towards training agents in modern games has
been prohibitively expensive for the vast majority of the research community. Re-
cent progress in the research, development and open release of large vision models
has the potential to amortize some of these costs across the community. However,
it is currently unclear which of these models have learnt representations that re-
tain information critical for sequential decision making. Towards enabling wider
participation in the research of gameplaying agents in modern games, we present
a systematic study of imitation learning with publicly available visual encoders
compared to the typical, task-specific, end-to-end training approach in Minecraft,
Minecraft Dungeons and Counter-Strike: Global Offensive.

(a) Minecraft Dungeons (b) Minecraft (c) Counter-Strike

Figure 1: Representative screenshots of all games studied in this paper.

1 INTRODUCTION

Video games have served as useful benchmarks for the decision making community, training agents
in complex games using reinforcement learning (RL) (Vinyals et al., 2019; Berner et al., 2019;
Wurman et al., 2022), imitation learning (IL) (Kanervisto et al., 2020; Pearce & Zhu, 2022; Sestini
et al., 2022), or a combination of both paradigms (Baker et al., 2022; Fan et al., 2022). However,
video games do not only serve as benchmarks but also represent a vast entertainment industry where
AI agents may eventually have applications in games development, including game testing or game
design (Jacob et al., 2020; Gillberg et al., 2023).

In the past, video game research often necessitated close integration with the games themselves to
obtain game-specific information and establish a scalable interface for training agents. Considering
the costs associated with domain expertise and engineering efforts required for close integration,
our focus is on training agents to play video games in a human-like manner, receiving only images
from the game and producing actions corresponding to controller joystick and button inputs. To
eliminate integration costs during training, we use behavior cloning to train agents entirely offline,
utilising previously collected human gameplay data. Although prior research has explored encoding
images into lower-dimensional representations for behavior cloning, these studies primarily targeted
robotics applications (Nair et al., 2022), where images often resemble real-world scenes. Inspired
by the challenges and potential applications in video games, we investigate the following research
question: How can images be encoded for data-efficient imitation learning in modern video games?

Towards our guiding research question, we compare both end-to-end trained visual encoders and
pre-trained visual encoders in three modern video games: Minecraft, Minecraft Dungeons and

1

Under review as a conference paper at ICLR 2024

Counter-Strike: Global Offensive (CS:GO). We examine 12 distinct end-to-end trained visual en-
coders, varying in network architecture (Residual Networks (ResNets) (He et al., 2016a;b) or Vision
Transformers (ViTs) (Dosovitskiy et al., 2021; Steiner et al., 2022)), image input size, and the ap-
plication of image augmentations. In contrast, pre-trained visual encoders are often trained on large
datasets containing diverse real-world images, potentially providing useful and generalisable rep-
resentations without additional training. However, it remains uncertain how well these pre-trained
encoders perform in video games, which often exhibit substantial differences from real-world im-
ages. We identify four primary categories of training paradigms among pre-trained visual encoders
and train agents using the representations from a total of 10 different pre-trained encoders spanning
all these categories: (1) self-supervised trained encoders (e.g. DINOv2 (Oquab et al., 2023)), (2)
language-contrastive trained encoders (e.g. OpenAI CLIP (Radford et al., 2021)), (3) supervised
trained encoders (e.g. Imagenet classification trained FocalNet (Yang et al., 2022)), and (4) recon-
struction trained encoders (e.g. the encoder of a variational autoencoder (VAE) (Kingma & Welling,
2013)). Finally, inspired by the cost associated with collecting human gameplay data and the hy-
pothesis that pre-trained encoders could be advantageous in the absence of extensive training data,
we investigate the performance of these visual encoders across varying amounts of training data.

Our results show that even though visual encoders trained end-to-end in complex video games can be
effective with relatively small 128×128 images and limited amounts of high-quality data, substantial
improvements can be achieved by employing pre-trained encoders, especially DINOv2.

2 RELATED WORK

Learning Agents in Video Games. Video games have often served as benchmarks for decision-
making agents, leading to impressive performance in modern video games where a programmatic in-
terface (Vinyals et al., 2019; Berner et al., 2019) or large quantities of expert demonstrations (Baker
et al., 2022; Fan et al., 2022; Reed et al., 2022) are available for training. Recent work directly
leverages or fine-tunes pre-trained foundation models to collect training data (Cai et al., 2023a) or
guide action selection (Wang et al., 2023; Lifshitz et al., 2023; Cai et al., 2023b), but games without
such close integration, extensive datasets or pre-trained models have seen comparably little research
attention. Pearce & Zhu (2022) used imitation learning to train agents to play CS:GO with a com-
bination of online scraped gameplay and expert demonstrations. Similarly, Kanervisto et al. (2020)
benchmarked imitation learning agents across a diverse set of video games, including six modern
games without programmatic interfaces. They emulated keyboard and mouse inputs to take actions
in these games, akin to our approach. However, their study was limited to relatively simple visual
encoders and agents did not leverage temporal history used in most recent decision-making agents.

Visual Encoders for Imitation Learning. Prior research has compared pre-trained visual encoders
to those trained end-to-end using imitation learning for robotic applications (Nair et al., 2022; Yuan
et al., 2022). These studies generally found that pre-trained encoders exhibit better generality and
performance than those trained on smaller, task-specific data sets. However, given the real-world
nature of robotics and the availability of datasets, it remains uncertain how these findings translate
to the realm of video games. Our study seeks to bridge this gap.

Visual Encoders for Video Games. In the context of video games, pre-trained visual models have
been employed to extract visual representations that differentiate between genres and styles (Trivedi
et al., 2023), indicating their ability to detect relevant features in games. However, domain-specific
models trained using self-supervised representation learning techniques can yield higher-quality rep-
resentations than certain pre-trained visual encoders (Trivedi et al., 2022). Our study expands upon
previous experiments by concentrating on modern video games and examining a broad spectrum of
recent pre-trained and end-to-end trained visual encoder architectures.

3 IMITATION LEARNING FOR VIDEO GAMES FROM PIXELS

3.1 BEHAVIOUR CLONING

Behavior cloning (BC) is an imitation learning approach that trains agents through supervised learn-
ing using a dataset of provided demonstrations, denoted as D = (o1, a1), . . . , (oN , aN), where N
represents the total number of samples in the dataset. Each demonstration comprises tuples (o, a),

2

Under review as a conference paper at ICLR 2024

Visual
Encoder Policy Actions MLP 512 LSTM 512 LSTM MLP512 Actions

Policy

Figure 2: Architecture illustration: Core network architecture used throughout all the experiments.

which correspond to the image observation o and the human player’s chosen action a at a specific
point during training. Using this data, a policy π(a | o; θ) is trained to mimic the distribution of
actions found in D, based on the current image observed, by minimising the loss

L(θ) = E(o,a)∼D,â∼π(·|o;θ) [l(a, â)] (1)

where l measures the discrepancy between the ”true” action a and the policy’s sampled action â. For
continuous and discrete actions, we use the mean-squared error and cross-entropy loss, respectively.

3.2 IMAGE PROCESSING

Received images, sampled from the dataset during training or directly from the game during eval-
uation, are first resized to the required image size of the respective visual encoder (see Table 1)1.
If image augmentation is used for an encoder, images are augmented after resizing using the same
augmentations applied by Baker et al. (2022). Finally, image colour values are normalised.

3.3 ARCHITECTURE

The architecture of all trained agents is illustrated in Figure 2, and Table 1 lists all visual encoders
considered in our experiments. The processed image ot is fed through the visual encoder to obtain
an embedding zt. The policy receives this embedding and outputs actions at for the respective game.

Policy Network. For all experiments, the policy architecture remains identical. First, the received
embedding zt is projected to 512 dimensions with a MLP with one hidden layer of dimension 512
before being fed through a two-layered LSTM (Hochreiter & Schmidhuber, 1997) with hidden di-
mensions of 512. The LSTM processes the projected embedding and a hidden state ht−1 which
represents the history of previously received embeddings during a sequence (obtained either as a
sampled sequence during training or online evaluation). Following the two-layered LSTM, a MLP
with one hidden layer of 512 dimensions is used to project the 512-dimensional representation out-
putted by the LSTM to as many dimensions as there are actions. At each intermediate layer, the
ReLU activation function is applied.

End-to-End Visual Encoders. For visual encoders trained end-to-end with the BC loss, we con-
sider three ResNet (He et al., 2016a;b) and three vision transformer (ViT) (Dosovitskiy et al., 2021;
Steiner et al., 2022) architectures. The Impala (Espeholt et al., 2018) ResNet architecture is a com-
monly used visual encoder for decision making agents but designed for smaller image sizes than
128× 128 and, thus, outputs large embeddings. For comparison, we evaluate two alternative larger
ResNet architectures designed for images of size 128×128 and 256×256, respectively, which output
smaller embeddings. For ViTs, we evaluate the commonly used tiny model architecture proposed
by Steiner et al. (2022) which outputs fairly small embeddings. For comparison, we also evaluate
two alternative architectures with slightly larger models that output comparably larger embeddings.
See Appendix A.1 for full details on all end-to-end visual encoder architectures.

Pre-Trained Visual Encoders. We consider four paradigms of pre-trained visual encoders with rep-
resentative models being evaluated in our experiments: OpenAI’s CLIP (Radford et al., 2021) as lan-
guage contrastive pre-trained encoders, DINOv2 (Oquab et al., 2023) as self-supervised pre-trained
encoders with self-distillation objectives between a teacher and student network, FocalNet (Yang
et al., 2022) trained on ImageNet21K classification as supervised pre-trained encoders, and a varia-
tional autoencoder (VAE) (Kingma & Welling, 2013) from stable diffusion (Rombach et al., 2022)

1For the resizing, we use linear interpolation for end-to-end encoders and bicubic interpolation for all pre-
trained encoders to be consistent with the processing pipeline used during training of the pre-trained encoders.

3

Under review as a conference paper at ICLR 2024

Table 1: Overview of all visual encoder architectures considered in this study including the type
of training category, image sizes, parameter counts and the size of computed embeddings. For all
encoders trained end-to-end with BC, we train them with and without image augmentation. For
pre-trained models we only report the size of visual encoder used to embed images.

Category Model Image size Parameters Embedding size

End-to-end

Impala ResNet 128× 128 98K 7200
Custom ResNet 128× 128 585K 1024
Custom ResNet 256× 256 586K 1024
ViT Tiny 224× 224 5.5M 192
Custom ViT 128× 128 8.8M 512
Custom ViT 256× 256 8.9M 512

Language contrastive
pre-trained

CLIP ResNet50 224× 224 38M 1024
CLIP ViT-B/16 224× 224 86M 512
CLIP ViT-L/14 224× 224 303M 768

Self-supervised
pre-trained

DINOv2 ViT-S/14 224× 224 21M 384
DINOv2 ViT-B/14 224× 224 86M 768
DINOv2 ViT-L/14 224× 224 303M 1024

Classification supervised
pre-trained

FocalNet Large FL4 224× 224 205M 1536
FocalNet XLarge FL4 224× 224 364M 2048
FocalNet Huge FL4 224× 224 683M 2816

Reconstruction pre-trained Stable Diffusion 2.1 VAE 256× 256 34M 4096

as reconstruction pre-trained encoder. These visual encoders have already been trained on large
amounts of real-world images. During all our experiments, we freeze these encoders and only use
them to obtain embeddings of images without any fine-tuning or further training. For details on
the models used, see Appendix A.2, and for details on the network architecture, training data, and
further considerations of these encoders we refer to the original papers.

Training Configuration. For each network update, we sample 32 random sequences of 100 consec-
utive image-action pairs within the dataset. Before each training step, the hidden state and cell state
of the LSTMs in the policy are reset and the mean BC loss is computed across all sequences with the
hidden state accumulating across the 100 samples within a sequence. The Adam optimiser (Kingma
& Ba, 2014) is used with decoupled weight decay (Loshchilov & Hutter, 2019) of 0.01 and a learn-
ing rate of 3 · 10−4. To stabilise training, gradients are normalised at 1.0 and we use half precision
for all training. In Minecraft Dungeons, we train each model for 1 million gradient updates. In
Minecraft and CS:GO, models are trained for 500,000 gradient updates.

4 VIDEO GAMES FOR EVALUATION

We train and evaluate BC models with all visual encoders in three different games, Minecraft Dun-
geons, Minecraft and CS:GO, illustrated in Figure 1. Below, we will outline details regarding the
training data and action space for each game.

4.1 MINECRAFT DUNGEONS

Minecraft Dungeons is an action-adventure role-playing video game with isometric camera view
centered on the player. The player controls the movement and actions (including dodge roll, attack,
use health potion, use items) of a single character which is kept in the center of the video frame (as
seen in Figure 1a). The player has to complete diverse levels by following and completing several
objectives. In our evaluation, we focus on the “Arch Haven” level of Minecraft Dungeons which
contains fighting against several types of enemies and navigation across visually diverse terrain.

Dataset. Before data collection, we pre-registered this study with our Institutional Review Board
(IRB) who advised on the drafting of our participant instructions to ensure informed consent. After

4

Under review as a conference paper at ICLR 2024

their approval, four players2 played the “Arch Haven” level, and game frames at 1280× 720 resolu-
tion, actions (joystick positions and button presses on a controller), and character position within the
level were captured. The dataset includes a total of 139 recorded trajectories with more than eight
hours of gameplay at 30Hz. Individual demonstrations vary between 160 and 380 seconds which
corresponds to 4,800 and 11,400 recorded actions, respectively. We use 80% of the data for training
and reserve 20% for validation. Each player was instructed to complete the level using a fixed char-
acter equipped with only the starting equipment of a sword and bow, and most players followed the
immediate path towards level completion.

Action space. Agents have access to all effective controls in Minecraft Dungeons, including the x-
and y-positions of both joysticks, the right trigger position (for shooting the bow), and ten buttons.
The most frequently used buttons during recordings control sword attacks, bow shooting, healing
potions, and forward dodging.

Online evaluation. To evaluate the quality of trained BC policies, we rollout the policy in the game
with actions being queried at 10Hz (see Appendix D for details). These actions are then taken in
the game using Xbox controller emulation software. Each rollout spawns the agent in the beginning
of the “Arch Haven” level and queries actions until five minutes passed (3,000 actions) or the agent
dies four times resulting in the level being failed. We run 20 rollouts per trained agent and report the
progression throughout the level (Appendix C).

4.2 MINECRAFT

Minecraft is a game that lets players create and explore a world made of breakable cubes. Players
can gather resources, craft items and fight enemies in this open-world sandbox game. Minecraft is
also a useful platform for AI research, where different learning algorithms can be tested and com-
pared (Johnson et al., 2016). We use the MineRL (Guss et al., 2019; Baker et al., 2022) environment,
which connects Minecraft with Python and allows us to control the agents and the environment. We
use MineRL version 1.0.2, which has been used for large-scale imitation learning experiments be-
fore (Baker et al., 2022), and which offers simpler mouse and keyboard input than previous MineRL
versions (Guss et al., 2019).

Task and online evaluation. To evaluate our BC models, we use the “Treechop” task; after spawn-
ing to a new, randomly generated world, the player has to chop a single log of a tree within 1 minute.
This is the first step to craft many of the items in Minecraft, and has been previously used to bench-
mark reinforcement learning algorithms (Guss et al., 2019). See Figure 1b for a screenshot of the
starting state. The agent observes the shown image pixels in first-person perspective, can move the
player around and attack to chop trees. For reporting the performance of trained models, we rollout
each model for 100 episodes with the same world seeds, and record the number of trees the player
chopped. If the player chopped at least one tree within the first minute, the episode is counted as a
success, otherwise it is counted as a failure (the timeout is set to 1 minute).

Dataset. We use the Minecraft dataset released with the OpenAI VPT model (Baker et al., 2022)
to select demonstrations of tree chopping. We choose the 6.13 version of the dataset and filter it to
40 minutes of human demonstrations that start from a fresh world and chop a tree within 1 minute.
We also remove any erroneous files that remain after the filtering. The demonstrations include the
image pixels seen by the human player at 640× 360 resolution and the keyboard and mouse state at
the same time, recorded at 20Hz. We also run the models at 20Hz.

4.3 COUNTER-STRIKE: GLOBAL OFFENSIVE

CS:GO is a first-person shooter game designed for competitive, five versus five games. The core
skill of the game is accurate aiming and handling the weapon recoil/sway as the weapon is fired.
Previous work has used CS:GO as a benchmark to train and test behavioural cloning models (Pearce
et al., 2023), with best models able to outperform easier bots (Pearce & Zhu, 2022). We incorporate
experiments using CS:GO, as it offers visuals more similar to the real-world images that most pre-
trained visual encoders were trained on, in contrast to our primary evaluation in Minecraft Dungeons
and Minecraft (see Figure 1c).

2120 recordings were collected by one player with the remaining 19 recordings being roughly evenly split
across the other three players.

5

Under review as a conference paper at ICLR 2024

beach gate path stairs books cave
Progression zone

0

20

40

60

80

100
Pr

og
re

ss
io

n
pe

rc
en

ta
ge

Impala ResNet
ResNet 128

ResNet 256
No Augmentation

(a) End-to-end ResNets

beach gate path stairs books cave
Progression zone

ViT Tiny
ViT 128

ViT 256
No Augmentation

(b) End-to-end ViTs

beach gate path stairs books cave
Progression zone

CLIP RN50
DINO ViT-S/14

Focal Large
SD VAE

Larger
Largest

(c) Pre-trained encoders

Figure 3: Online evaluation progression for BC agents in Minecraft Dungeons with (a) end-to-
end ResNets, (b) end-to-end ViTs, and (c) pre-trained visual encoders. We visualise the mean and
standard deviation, computed over three training seeds, of the percentage of rollouts progressing
through each of the objective zones within the “Arch Haven” level. Results for the ViT Tiny model
are only aggregated over two seeds, as one seed resulted in an invalid checkpoint.

Following Pearce et al. (2023), we use the “Clean aim train” dataset and setup. The controlled
player is placed in the middle of an arena, and random enemies are spawned around them who try
to reach the player. The player can not move; they can only aim to different directions (Figure 1c).
The dataset contains 45 minutes of expert-human gameplay from one player, recorded at 16Hz. To
evaluate models, we run each model for three rollouts of five minutes each, and report the average
and standard deviation of the kills-per-minute.

5 EVALUATION

In our evaluation, we focus on the guiding question of how to encode images for data-efficient im-
itation learning in modern video games. The evaluation is structured in four experiments studying
(1) which end-to-end visual encoder is most effective, (2) which pre-trained encoder is most effec-
tive, (3) how do the best end-to-end and pre-trained visual encoders compare under varying amounts
of training data, and (4) how do the best visual encoders compare in a video game with visuals
more akin to the real-world. For each experiment, we train each model with three different seeds
and report aggregated training and online evaluation metrics. Lastly, we visually inspect the visual
encoders with respect to the information they attend to during action selection. An outline of the
computational resources used for training and evaluation can be found in Appendix G.

5.1 HOW TO CHOOSE END-TO-END VISUAL ENCODERS?

To identify which end-to-end visual encoder is the most effective, we train all six end-to-end visual
encoder architectures (listed in Table 1) with and without image augmentations using the BC loss.
Figures 3a and 3b visualise the online evaluation performance for all models with end-to-end ResNet
and ViT visual encoders, respectively, in Minecraft Dungeons. We observe that image augmentation
consistently improves online performance, leading to models that more robustly progress further.
ResNet image encoders slightly outperform ViT models, but by no significant margins. Lastly,
no notable difference can be observed for end-to-end encoders trained on images of 128 × 128 or
256×256 resolution. These results suggest that comparably small images of 128×128 are sufficient
even for complex video games like Minecraft Dungeons. In Minecraft (Table 2, left half), we also
observe that the input image size has no significant effect on the results. However, ViT 256 and
ViT Tiny outperform most ResNets by statistically significant margins (double-tailed Welch’s test,
p < 0.05) without image augmentations.

These results suggest two main findings: (1) Small images of 128 × 128 can be sufficient to train
agents in complex modern video games, and (2) image augmentation has the potential to signifi-
cantly improve performance but is game-specific.

6

Under review as a conference paper at ICLR 2024

Table 2: Minecraft online evaluation of agent success rate chopping a single tree with end-to-end
trained (left) and pre-trained (right) visual encoders. Mean and one standard deviation computed
over three training seeds. The best model in each group is highlighted in bold. Stars (*) indicate
number of valid seeds averaged over if less than three, as some unstable runs resulted in invalid
checkpoints.

Model name Success rate (%)

Impala ResNet** 4.00± 4.00
ResNet 128 12.67± 3.86
ResNet 256 10.00± 2.45
ViT Tiny 23.33± 4.19
ViT 128 19.00± 2.94
ViT 256 24.33 ± 0.94

Impala ResNet +Aug* 14.00± 0.00
ResNet 128 +Aug 10.00± 1.41
ResNet 256 +Aug 6.67± 1.70
ViT Tiny +Aug 20.00± 5.66
ViT 128 +Aug 20.33± 8.06
ViT 256 +Aug 13.67± 2.62

Model name Success rate (%)

CLIP ResNet50 19.33± 8.65
CLIP ViT-B/16 11.33± 1.25
CLIP ViT-L/14 11.33± 3.30

DINOv2 ViT-S/14 22.33± 2.49
DINOv2 ViT-B/14 25.33± 2.05
DINOv2 ViT-L/14 32.00 ± 1.63

FocalNet Large 16.00± 5.66
FocalNet XLarge 15.33± 4.03
FocalNet Huge 13.00± 1.41

Stable Diffusion VAE 20.00± 5.89

5.2 HOW TO CHOOSE PRE-TRAINED VISUAL ENCODERS?

To identify most suitable pre-trained visual encoders for video games, we compare BC agents trained
with the representations of 10 pre-trained encoders. These encoders are frozen during BC training.

In Minecraft Dungeons (Figure 3c) and MineCraft (Table 2, right half), we find that BC models
with DINOv2 visual encoders generally outperform other models. In Minecraft Dungeons, the BC
models trained with DINOv2 ViT-B/14 pre-trained encoder outperforms all other models, including
any end-to-end trained visual encoder. The stable diffusion encoder still outperforms FocalNet and
CLIP visual encoders, but performs notably worse than all DINOv2 models. In Minecraft, the
largest DINOv2 ViT-L/14, significantly (p < 0.05) outperforms all but the noisiest models (Tiny
ViT, ViT 128 +Aug, Stable Diffusion and CLIP ResNet 50). While smaller DINOv2 models appear
better than FocalNet or CLIP, their results are not significantly different from ViT-B/14 and ViT-S/14
DINOv2 models. Stable diffusion VAE works similarly to smaller DINOv2 models in Minecraft.
Lastly, we observe that there is no clear correlation between the model size of pre-trained encoders
and online performance. While larger DINOv2 models perform best in Minecraft, the same trend
does not hold for CLIP and FocalNet where encoders with fewer parameters perform better.

5.3 HOW MUCH DATA DO YOU NEED?

A significant advantage of utilising pre-trained visual encoders is their independence from additional
training, potentially resulting in more reliable performance with limited data. In contrast, visual
encoders specifically trained for a particular task may be less generalisable but have the potential to
outperform general-purpose pre-trained encoders. To test this hypothesis, we examine how the top-
performing end-to-end and pre-trained visual encoders (based on online evaluation performance)
compare with varying amounts of data.

In Minecraft Dungeons, we select the DINOv2 ViT-S/14, ViT-B/14 models, as well as the ResNet
and ViT architectures on 128 × 128 images and image augmentation as the best-performing pre-
trained and end-to-end trained encoders, respectively. We generate two reduced datasets with 50%
(∼ 4 hours) and 25% (∼ 2 hours) of the training data by sampling trajectories uniformly at ran-
dom. Each of the selected models is then trained on the 50% and 25% training datasets for 500 and
250 thousand gradient updates, respectively. Figure 4 shows the online evaluation performance of
all models. As expected, we can see that the performance of all models gradually deteriorates as
the training data is reduced. For pre-trained models, the larger DINOv2 ViT-B/14 outperforms the
smaller ViT-S/14 when dealing with smaller datasets. Regarding end-to-end trained models, the ViT
model’s performance declines more rapidly with smaller data quantities compared to the ResNet.
However, contrary to expectations, both end-to-end trained visual encoders yield performance com-
parable to pre-trained models in lower data regimes.

7

Under review as a conference paper at ICLR 2024

beach gate path stairs books cave
Progression zone

0

20

40

60

80

100

Pr
og

re
ss

io
n

pe
rc

en
ta

ge

ResNet 128 +Aug
ViT 128 +Aug

DINO ViT-S/14
DINO ViT-B/14

50% Data
25% Data

Figure 4: Online evaluation progression for
the best-performing BC agents in Minecraft
Dungeons with the full dataset (solid line)
and subparts of the dataset.

Table 3: Online evaluation performance for the
best-performing BC agents in Minecraft with the
full dataset and 10% of the dataset.

Model name Success rate (%)

ViT 256 (Full) 24.33± 0.94
ViT 256 (10%) 10.33± 1.70

ViT Tiny (Full) 23.33± 4.19
ViT Tiny (10%) 16.50± 1.50

DINOv2 ViT-L/14 (Full) 32.00± 1.63
DINOv2 ViT-L/14 (10%) 15.00± 2.16

DINOv2 ViT-B/14 (Full) 25.33± 2.05
DINOv2 ViT-B/14 (10%) 17.00± 1.41

In Minecraft, we also experimented with a low-data regime by using only 10% (∼ 3.5 minutes, 14
demonstrations, 4269 steps of data) of gameplay data. The results for the two best end-to-end and
pre-trained models are shown in Table 3. The success rate drops by half for all models, but it is still
better than some models in the full experiments. This is surprising considering the small amount
of data. Similar to Minecraft Dungeons, there is no significant difference between pre-trained and
end-to-end visual encoders, suggesting that either of them could work well with less than 5 minutes
of high-quality demonstration data. However, contrary to Minecraft Dungeons, there is no clear
difference between both DINOv2 encoders in the lower data regime, suggesting that there is no
clear correlation between model size and online performance in the very low data regime.

5.4 GRAD-CAM INSPECTION OF VISUAL ENCODERS

To understand what information is captured by visual encoders at various times in the games, we
use gradient-weighted class activation mapping (Grad-CAM) (Selvaraju et al., 2017) to inspect each
trained visual encoder. We visualise the Grad-CAM activations of visual encoders for images in
Minecraft Dungeons and Minecraft with action logits of trained BC policies serving as the targets,
these can be interpreted as which parts of the image are most relevant for the visual encoder during
action selection. For more details on the Grad-CAM visualisations, plots for more game screenshots
in both games and all visual encoders, see Appendix F.

Figure 5 shows the Grad-CAM activations for the best-performing visual encoders in both Minecraft
Dungeons and Minecraft. In Minecraft Dungeons, many visual encoders tend to focus on the parts
of the image containing the player character and enemy units. We hypothesise that other activations
might correspond to way points the models focus on to navigate through the level. In Minecraft,
most visual encoders tend to focus on parts indicative of nearby terrain, wood, and the progress of
chopping a tree, aligning with the objective of the task.

5.5 VISUAL ENCODERS IN CS:GO WITH MORE REALISTIC VISUALS

To investigate visual encoders in a video game with more realistic images, akin to the training data
of most pre-trained visual encoders, we evaluate ResNet 128 +Aug, ViT 128 +Aug and DINOv2
ViT-S/14 as the best-performing end-to-end and pre-trained visual encoders in CS:GO.

Table 4: Online evaluation performance in CS:GO as given by the kills-per-minute (KPM) in the
aim training map. Mean and one standard deviation are provided.

ResNet 128 +Aug ViT 128 +Aug DINOv2 ViT-S/14

7.97± 0.57 4.42± 0.59 2.18± 1.12

8

Under review as a conference paper at ICLR 2024

(a) Original (b) RN 128 +Aug (c) ViT 128 +Aug (d) DINOv2 ViT-S (e) DINOv2 ViT-B

(f) Original (g) ViT 256 (h) ViT Tiny (i) DINOv2 ViT-L (j) DINOv2 ViT-B

Figure 5: Grad-CAM visualisation of the activation of the best-performing visual encoders for
Minecraft Dungeons (top) and Minecraft (bottom) with action logits of a BC policy serving as tar-
gets. Red areas represent the parts of the image the visual encoders focus on the most.

Results in Table 4 indicate end-to-end trained models perform significantly better (p < 0.05) than
DINOv2, and ResNet outperforms ViT (also p < 0.05). Initially, we hypothesised that the image
processing in CS:GO3 might be the cause for the poor online performance of DINOv2. However,
further investigation with four pre-trained visual encoders in Minecraft (detailed in Appendix E)
indicates that pre-trained visual encoders are not as sensitive to the image processing as hypothe-
sised from the performance of DINOv2 ViT-S/14 in CS:GO. Even with similar image processing as
applied in CS:GO, agents trained with pre-trained visual encoders were able to exhibit performance
comparable to our original findings in Minecraft. We leave further investigation into the efficacy of
pre-trained visual encoders in CS:GO and the observed failure of DINOv2 for future work.

6 CONCLUSION

In this study, we systematically evaluated the effectiveness of imitation learning in modern video
games by comparing the conventional end-to-end training of task-specific visual encoders with the
use of publicly available pre-trained encoders. Our findings revealed that training visual encoders
end-to-end on relatively small images can yield strong performance when using high-quality, repre-
sentative data for the evaluation task, even in low-data regimes of few hours or minutes. DINOv2,
trained with self-supervised objectives on diverse data, consistently outperformed other pre-trained
visual encoders, indicating its generality and suitability for video games. Interestingly, agents us-
ing these pre-trained visual encoders demonstrated performance comparable (or superior) to those
employing game-specific visual encoders across different data volumes. However, careful attention
must be given to image resizing and processing as seen in CS:GO. Overall, our results suggest that
the use of effective pre-trained visual encoders, such as DINOv2, should be seriously considered in
the context of modern video games.

In order to maintain focus and feasibility in our study, we concentrated on a specific set of visual
encoders, enabling a range of comparisons between different architectures and pre-trained model
paradigms. Nevertheless, our study could be complemented by exploring additional comparison
points, such as diverse supervised-trained pre-trained encoder architectures and additional scenarios
within the examined or other video games. Although our study focused on settings with available
training data for the evaluation task, future work could explore the potential benefits of pre-trained
visual encoders when agents need to generalise across diverse levels or maps with variable visuals.

3The CS:GO dataset contains images at a resolution of 280×150 but images have to be resized to 224×224
for DINOv2. This up-scaling of the image height after initial down-scaling during the dataset collection differs
from the image processing applied during the pre-training of DINOv2.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Bowen Baker, Ilge Akkaya, Peter Zhokov, Joost Huizinga, Jie Tang, Adrien Ecoffet, Brandon
Houghton, Raul Sampedro, and Jeff Clune. Video pretraining (vpt): Learning to act by watching
unlabeled online videos. In Advances in Neural Information Processing Systems, 2022.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw Debiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large
scale deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

Shaofei Cai, Zihao Wang, Xiaojian Ma, Anji Liu, and Yitao Liang. Open-world multi-task control
through goal-aware representation learning and adaptive horizon prediction. In Proceedings of
the Conference on Computer Vision and Pattern Recognition, pp. 13734–13744, 2023a.

Shaofei Cai, Bowei Zhang, Zihao Wang, Xiaojian Ma, Anji Liu, and Yitao Liang. Groot: Learning
to follow instructions by watching gameplay videos. arXiv preprint arXiv:2310.08235, 2023b.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An im-
age is worth 16x16 words: Transformers for image recognition at scale. In International Confer-
ence on Learning Representations, 2021.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with im-
portance weighted actor-learner architectures. In International conference on machine learning,
pp. 1407–1416. PMLR, 2018.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang,
De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: Building open-ended embodied
agents with internet-scale knowledge. In Advances in Neural Information Processing Systems,
2022.

Jonas Gillberg, Joakim Bergdahl, Alessandro Sestini, Andrew Eakins, and Linus Gisslen. Technical
challenges of deploying reinforcement learning agents for game testing in aaa games. arXiv
preprint arXiv:2307.11105, 2023.

William H Guss, Brandon Houghton, Nicholay Topin, Phillip Wang, Cayden Codel, Manuela
Veloso, and Ruslan Salakhutdinov. Minerl: A large-scale dataset of minecraft demonstrations.
arXiv preprint arXiv:1907.13440, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In IEEE conference on computer vision and pattern recognition, 2016a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In European Conference on Computer Vision. Springer, 2016b.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Mikhail Jacob, Sam Devlin, and Katja Hofmann. “it’s unwieldy and it takes a lot of time” —
challenges and opportunities for creating agents in commercial games. In Proceedings of the
AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, volume 16, pp.
88–94, 2020.

Matthew Johnson, Katja Hofmann, Tim Hutton, and David Bignell. The malmo platform for artifi-
cial intelligence experimentation. In Ijcai, pp. 4246–4247, 2016.

Anssi Kanervisto, Joonas Pussinen, and Ville Hautamäki. Benchmarking end-to-end behavioural
cloning on video games. In IEEE conference on games. IEEE, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

10

Under review as a conference paper at ICLR 2024

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Shalev Lifshitz, Keiran Paster, Harris Chan, Jimmy Ba, and Sheila McIlraith. Steve-1: A generative
model for text-to-behavior in minecraft. arXiv preprint arXiv:2306.00937, 2023.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. In IEEE/CVF conference on computer vision and pattern recognition,
2022.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019.

Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav Gupta. R3m: A univer-
sal visual representation for robot manipulation. In Conference on Robot Learning, 2022.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
robust visual features without supervision. arXiv preprint arXiv:2304.07193, 2023.

Tim Pearce and Jun Zhu. Counter-strike deathmatch with large-scale behavioural cloning. In IEEE
Conference on Games, pp. 104–111. IEEE, 2022.

Tim Pearce, Tabish Rashid, Anssi Kanervisto, Dave Bignell, Mingfei Sun, Raluca Georgescu, Ser-
gio Valcarcel Macua, Shan Zheng Tan, Ida Momennejad, Katja Hofmann, et al. Imitating human
behaviour with diffusion models. In International Conference on Learning Representations, 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov,
Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al.
A generalist agent. Transactions on Machine Learning Research, 2022.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. 2022 ieee. In CVF Conference on Com-
puter Vision and Pattern Recognition, 2022.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
ization. In Proceedings of the IEEE international conference on computer vision, pp. 618–626,
2017.

Alessandro Sestini, Joakim Bergdahl, Konrad Tollmar, Andrew D Bagdanov, and Linus Gisslén.
Towards informed design and validation assistance in computer games using imitation learning.
In Human in the Loop Learning Workshop at the Conference on Neural Information Processing
Systems, 2022.

Andreas Steiner, Alexander Kolesnikov, Xiaohua Zhai, Ross Wightman, Jakob Uszkoreit, and Lucas
Beyer. How to train your vit? data, augmentation, and regularization in vision transformers.
Transactions on Machine Learning Research, 2022.

Chintan Trivedi, Konstantinos Makantasis, Antonios Liapis, and Georgios N Yannakakis. Learning
task-independent game state representations from unlabeled images. In 2022 IEEE Conference
on Games, 2022.

Chintan Trivedi, Konstantinos Makantasis, Antonios Liapis, and Georgios N Yannakakis. Towards
general game representations: Decomposing games pixels into content and style. arXiv preprint
arXiv:2307.11141, 2023.

11

Under review as a conference paper at ICLR 2024

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
arXiv preprint arXiv:2305.16291, 2023.

Peter R Wurman, Samuel Barrett, Kenta Kawamoto, James MacGlashan, Kaushik Subramanian,
Thomas J Walsh, Roberto Capobianco, Alisa Devlic, Franziska Eckert, Florian Fuchs, et al. Out-
racing champion gran turismo drivers with deep reinforcement learning. Nature, 602(7896):223–
228, 2022.

Jianwei Yang, Chunyuan Li, Xiyang Dai, and Jianfeng Gao. Focal modulation networks. In Ad-
vances in Neural Information Processing Systems, 2022.

Zhecheng Yuan, Zhengrong Xue, Bo Yuan, Xueqian Wang, Yi Wu, Yang Gao, and Huazhe Xu. Pre-
trained image encoder for generalizable visual reinforcement learning. In Advances in Neural
Information Processing Systems, 2022.

12

Under review as a conference paper at ICLR 2024

A VISUAL ENCODERS

In this section, we will describe the architectures of all end-to-end visual encoders,the image aug-
mentations applied for end-to-end visual encoders, and detail the sources of the pre-trained encoders
used in our study.

A.1 END-TO-END VISUAL ENCODERS

Impala ResNet The Impala ResNet architecture faithfully implements the visual encoder of the
”large architecture” outlined by Espeholt et al. (2018) consisting of a 3×3 convolution with stride 1,
max pooling with 3×3 kernels and stride 2 followed by two residual blocks of two 3×3 convolutions
with stride 1. This joint block is repeated three times with 16, 32, and 32 channels, respectively.

Custom ResNet The architecture for our custom ResNet models is modelled after Liu et al. (2022)
and illustrated in detail in Figure 6.

Conv2d ,
stride=4, padding=3

Conv2d ,
stride=1, padding=3 GroupNorm Conv2d ,

stride=1, padding=0 GeLU Conv2d ,
stride=1, padding=0 GroupNorm Conv2d ,

stride=2, padding=1

Repeat for

GeLU LayerNorm

Figure 6: Illustration of the architecture of our custom ResNet visual encoders for 128 × 128 and
256× 256 images.

ViT Our ViT architectures are all based on the reference implementation at https://github.
com/lucidrains/vit-pytorch/blob/main/vit_pytorch/vit.py. For all models,
we use no dropout, and the following configurations are used across the considered ViT visual
encoders:

Model name Patch size Num layers Width MLP dim Num heads

ViT Tiny 16 12 192 768 3
Custom ViT 16 4 512 512 12

Table 5: Configurations of end-to-end ViT models.

The ViT Tiny architecture follows the suggested architecture of Steiner et al. (2022). In contrast,
both custom ViT for 128 × 128 and 256 × 256 have notably fewer layers, wider dimensions of the
attention layers and no increase of dimensions in the MLP projections. In our experiments, we found
that such an architecture resulted in better online evaluation performance in several video games.

Image augmentations If image augmentations are applied during training, we randomly augment
images after the down-scaling process. We implement all augmentations with the torchvision
library and randomly sample augmentations during training. We apply the following augmentations
as described by Baker et al. (2022):

• Change colour hue by a random factor between -0.2 and 0.2
• Change colour saturation with a random factor between 0.8 and 1.2
• Change brightness with a random factor between 0.8 and 1.2
• Change colour contrast with a random factor between 0.8 and 1.2
• Randomly rotate the image between -2 and 2 degrees
• Scale the image with a random factor between 0.98 and 1.02 in each dimension
• Apply a random shear to the image between -2 and 2 degrees
• Randomly translate the image between -2 and 2 pixels in both the x- and y-direction

13

https://github.com/lucidrains/vit-pytorch/blob/main/vit_pytorch/vit.py
https://github.com/lucidrains/vit-pytorch/blob/main/vit_pytorch/vit.py

Under review as a conference paper at ICLR 2024

A.2 PRE-TRAINED VISUAL ENCODERS

In this section, we will detail the sources for all pre-trained visual encoders considered in our eval-
uation.

OpenAI CLIP For the visual encoders of OpenAI’s CLIP models (Radford et al., 2021), we use
the official interface available at https://github.com/openai/CLIP. We use the following
models from this repository: ”RN50” (ResNet 50), ”ViT-B/16”, and ”ViT-L/14”. In preliminary
experiments, we found the available larger ResNet models to provide no significant improvements
in online evaluation performance and the ViT model with a larger patch size of 32 to perform worse
than the chosen ViT models with patch sizes of 16 and 14.

DINOv2 For the DINOv2 pre-trained visual encoders (Oquab et al., 2023), we use the official in-
terface available at https://github.com/facebookresearch/dinov2. Due to the com-
putational cost, we do not evaluate the non-distilled ViT-G/14 checkpoint with 1.1 billion parame-
ters.

FocalNet For the FocalNet pre-trained visual encoders (Yang et al., 2022), we used the Hugging
Face timm library (https://huggingface.co/docs/timm/index) to load the pre-trained
models for its ease of use. We use the FocalNet models pre-trained on ImageNet-22K classification
with 4 focal layers: ”focalnet large fl4”, ”focalnet xlarge fl4”, and ”focalnet huge fl4”.

Stable Diffusion For the pre-trained stable diffusion 2.1 VAE encoder, we use the Hugging
Face checkpoint of the model available at https://huggingface.co/stabilityai/
sdxl-vae. This model can be accessed with the diffusers library. In contrast to other encoders,
the VAE outputs a Gaussian distribution of embeddings rather than an individual embedding for a
given image. We use the mode of the distribution of a given image as its embedding since (1) we
want to keep the embeddings of the frozen encoder for a given image deterministic, and (2) we find
the standard deviation to be neglectable for most inputs.

B ADDITIONAL EVALUATION DATA

In this section, we provide additional insight into our evaluation.

Minecraft Dungeons Figure 7a (top) shows the training loss for all models with end-to-end visual
encoders in Minecraft Dungeons. From the training loss, we can see that image augmentations
generally increase the training loss despite improving online performance as seen in Figures 3a
and 3b. We also note that training for the custom ResNet with 256 × 256 images and the Impala
ResNet exhibit high dispersion across three seeds, leading to large shading and stagnation of the
loss early in training. We hypothesise that this occurs for the Impala ResNet due to the overly large
embeddings which complicate learning a policy with BC.

For BC models with pre-trained visual encoders, the training loss shown in Figure 7b appears com-
parably similar for most models. Only the reconstruction-based stable diffusion encoder and the
CLIP ResNet50 models stand out since they outperform and underperform all other models, respec-
tively.

Comparing the training loss of BC models trained with end-to-end and pre-trained visual encoders
further shows that end-to-end encoders trained without image augmentation are capable of reaching
lower losses. We hypothesise that this occurs since the end-to-end trained encoders are specialised
to perform well on the exact training data the loss is computed over.

Minecraft In contrast, the training loss in Minecraft (Figure 7 bottom) quickly stagnates and con-
verges to similarly low values for all end-to-end and pre-trained encoders.

14

https://github.com/openai/CLIP
https://github.com/facebookresearch/dinov2
https://huggingface.co/docs/timm/index
https://huggingface.co/stabilityai/sdxl-vae
https://huggingface.co/stabilityai/sdxl-vae

Under review as a conference paper at ICLR 2024

0 200000 400000 600000 800000
Steps

10−4

10−3

10−2

10−1

Tr
ai

ni
ng

 lo
ss

Impala ResNet
ResNet 128
ResNet 256
ViT Tiny

ViT 128
ViT 256
No Augmentation

0 100000 200000 300000 400000
Steps

10−1

2 × 10−2

3 × 10−2

4 × 10−2

6 × 10−2

Tr
ai

ni
ng

 lo
ss

Impala ResNet
ResNet 128
ResNet 256
ViT Tiny

ViT 128
ViT 256
No Augmentation

(a) End-to-end training loss

0 200000 400000 600000 800000
Steps

10−2

10−1

Tr
ai

ni
ng

 lo
ss

CLIP RN50
DINO ViT-S/14

Focal Large
SD VAE

Larger
Largest

0 100000 200000 300000 400000
Steps

2 × 10−2

3 × 10−2

4 × 10−2

6 × 10−2

Tr
ai

ni
ng

 lo
ss

CLIP RN50
DINO ViT-S/14

Focal Large
SD VAE

Larger
Largest

(b) Pre-trained training loss

Figure 7: Training loss in log-scale for BC agents in Minecraft Dungeons (top) and Minecraft (bot-
tom) with (a) end-to-end trained and (b) pre-trained visual encoders. The training loss of all seeds
at every step is averaged at twenty regular intervals throughout training. We visualise the mean and
standard deviation across three seeds.

CS:GO In CS:GO, the training loss improves all throughout training for all three trained models
with the models trained with DINOv2 ViT-S/14 pre-trained encoders achieving the lowest training
loss. In contrast, both the end-to-end trained ResNet and ViT encoders trained with 128 × 128
images and image augmentation have higher training loss. We highlight that these end-to-end trained
visual encoders are trained with image augmentations whereas the models with DINOv2 pre-trained
encoders are not. Such image augmentations have been seen to consistently increase the training loss
in Minecraft Dungeons and might be the main reason for the higher training loss of the end-to-end
trained models.

C MINECRAFT DUNGEONS ARCH HAVEN LEVEL

To measure progress for the online evaluation in Minecraft Dungeons, we define boundaries of zones
which determine the progression throughout the ”Arch Haven” level we evaluate in. These zones
and a heatmap showing the visited locations of the human demonstrations used for training are
visualised in Figure 9. The heatmap also shows the path followed by most demonstrations towards
completion of the level.

15

Under review as a conference paper at ICLR 2024

0 100000 200000 300000 400000
Steps

10−4

10−3

10−2

10−1

Tr
ai

ni
ng

 lo
ss

ResNet 128 +Aug
ViT 128 +Aug
DINO ViT-S/14

Figure 8: Training loss in log-scale for BC agents in CS:GO with (a) end-to-end trained and (b)
pre-trained visual encoders.

beach
gate
path
stairs
books

(a) Progression zones (b) Human dataset heatmap

Figure 9: (a) A visualisation of the boundaries of each progression zone in the ”Arch Haven” level
in Minecraft Dungeons used for online evaluations. (b) A heatmap visualising the visited locations
of the human dataset of demonstrations within the ”Arch Haven” level.

D MINECRAFT DUNGEONS ACTION FREQUENCY IN ONLINE EVALUATION

The visual encoders used in our evaluation have vastly different model sizes (see Table 1) and,
thus, notably different computational cost at inference time. This is particularly challenging during
online evaluation in Minecraft Dungeons, since there exists no programmatic interface to pause or
slow down the game like in Minecraft and CS:GO. We attempt to take actions during evaluation at
10Hz to match the action selection frequency of the (processed) training data, in particular due to the
recurrent architecture of our policy. However, we are unable to perfectly match this frequency for all
visual encoders on the hardware used to conduct the evaluation (see Appendix G for specifications
on the hardware used during training and online evaluation) despite using a more powerful GPU for
pre-trained visual encoders due to their comparably large size.

Table 6 lists the average action frequencies of all models during online evaluation in Minecraft
Dungeons across all runs conducted as part of our evaluation. We note that most end-to-end trained
visual encoders enable fast inference achieving close to 10 Hz action frequency. The ViT Tiny model
is the slowest model, likely due to its deeper 12 layers in comparison to the other end-to-end trained
ViT models with 4 layers as shown in Table 5, but we are still able to take actions at more than
8.5Hz. For pre-trained visual encoders, we see comparably fast action frequencies for all CLIP and
most DINOv2 models as. The largest DINOv2 and stable diffusion VAE have notably slower action
frequencies, but the FocalNet models induced the highest inference cost. However, we highlight that

16

Under review as a conference paper at ICLR 2024

we did not observe behaviour during online evaluation which would suggest that these models were
significantly inhibited due to this discrepancy.

Table 6: Average action frequencies during online evaluation in Minecraft Dungeons across 60 runs
per model (20 for each seed).

Model name Action freq. (Hz)

Impala ResNet 9.83
ResNet 128 9.90
ResNet 256 9.81
ViT Tiny 8.63
ViT 128 9.90
ViT 256 9.46

Impala ResNet +Aug 9.78
ResNet 128 +Aug 9.67
ResNet 256 +Aug 9.62
ViT Tiny +Aug 8.77
ViT 128 +Aug 9.69
ViT 256 +Aug 9.63

Model name Action freq. (Hz)

CLIP ResNet50 9.85
CLIP ViT-B/16 9.84
CLIP ViT-L/14 9.71

DINOv2 ViT-S/14 9.81
DINOv2 ViT-B/14 9.81
DINOv2 ViT-L/14 7.93

FocalNet Large 8.00
FocalNet XLarge 6.13
FocalNet Huge 6.91

Stable Diffusion VAE 8.77

E IMAGE PROCESSING INVESTIGATION

As described in Section 5.5, we observe that a DINOv2 model performed poorly in CS:GO while this
family of pre-trained visual encoders led to high online evaluation performance in both Minecraft
Dungeons and Minecraft. We hypothesised that the cause of this poor performance in CS:GO is
the image resizing. The CS:GO dataset includes images cropped and down-scaled to a resolution of
280×150 whereas DINOv2 pre-trained visual encoders (and most other pre-trained visual encoders)
expect image sizes of 224 × 224. Therefore, images are down-scaled from a higher resolution to
280 × 150 during data collection and then up-scaled again to 224 × 224. We hypothesise that
this resizing causes discrepancies in the resulting images compared to the expected processing of
resizing images from a higher resolution directly to 224× 224.

To verify this hypothesis, we conduct experiments in Minecraft instead of CS:GO since the dataset
in CS:GO is only available with images of 280 × 150. In our original evaluation in Minecraft, we
down-scaled images from a higher resolution of 640 × 360 to the respective resolution required by
each visual encoder during training. To mimic the situation in CS:GO and separate the confound-
ing factors of down-scaling followed by up-scaling and squared and non-squared aspect ratios, we
consider two alternative image processing:

1. CS:GO-like processing: We down-scale images to width 280 (keeping aspect ratio), crop
to 280× 150 from the middle, and re-size from this resolution to the resolution required by
the respective visual encoder.

2. Squared aspect ratio: We down-scale images from the dataset to 150 × 150 and re-size
from this resolution to the resolution required by the respective visual encoder.

The first processing allows us to study how different visual encoders are affected by processing
as done in CS:GO, whereas the second processing allows us to study how the same experiment
behaves if squared aspect ratio is retained all throughout the process. We train and evaluate the
best performing pre-trained visual encoder of each family of models (following Table 2) with the
respective processing.

Table 7 shows the online evaluation performance of models trained with four different pre-trained en-
coders either using the original image processing, CS:GO-like processing, or the described squared
processing. As we can see, the large DINOv2 as well as the CLIP ResNet encoder perform com-
parable for both the original processing and the CS:GO-like processing, but the performance of the

17

Under review as a conference paper at ICLR 2024

Table 7: Minecraft online evaluation of agent success rate chopping a single tree with varying visual
encoders and image processing. Mean and one standard deviation computed over two seeds.

Model name Original processing CS:GO-like processing Squared processing

CLIP ResNet50 19.33± 8.65 19.00± 6.00 23.50± 0.50

DINOv2 ViT-L/14 32.00± 1.63 32.00± 4.00 37.50± 1.50

FocalNet Large 16.00± 5.66 13.50± 0.50 17.50± 0.50

Stable Diffusion VAE 20.00± 5.89 15.50± 0.50 17.00± 8.00

FocalNet and Stable Diffusion encoders deteriorates slightly. Furthermore, all but the Stable Diffu-
sion visual encoder perform best with the squared processing. Models trained with this processing,
which ensures a squared aspect ratio for the initial down-scaling, perform best in terms of average
performance and exhibit notably lower deviation across two runs. Overall, these results indicate that
the processing applied in CS:GO is not necessarily detrimental to the performance of trained agents
and maintaining a squared aspect ratio across image processing is desirable if resizing has to be done
at several stages.

Given these results, the question as to why the smallest DINOv2 visual encoder performed poorly
in CS:GO, as shown in Section 5.5, remains unanswered. We leave further investigation into the
efficacy of pre-trained visual encoders for decision making in CS:GO for future work.

F GRAD-CAM VISUALISATIONS

To generate Grad-CAM (Selvaraju et al., 2017) visualisations, we use the library available at
https://github.com/jacobgil/pytorch-grad-cam. We use all actions of the pol-
icy trained on the embeddings of each visual encoder as the target concept to analyse, and visualise
the average Grad-CAM plot across all actions. Following https://github.com/jacobgil/
pytorch-grad-cam#chosing-the-target-layer, we use the activations of these lay-
ers within the visual encoders to compute visualisations for:

• ResNet: Activations across the last ResNet block
• ViT: Activations across the layer normalisation before the last attention block
• FocalNet: Activations across the layer normalisation before the last focal modulation block
• SD VAE: Activations across the last ResNet block within the mid-block of the encoder

18

https://github.com/jacobgil/pytorch-grad-cam
https://github.com/jacobgil/pytorch-grad-cam#chosing-the-target-layer
https://github.com/jacobgil/pytorch-grad-cam#chosing-the-target-layer

Under review as a conference paper at ICLR 2024

F.1 MINECRAFT DUNGEONS

(a) Original image (b) Impala ResNet (c) Impala ResNet +Aug

(d) ResNet 128 (e) ResNet 128 +Aug (f) ResNet 256 (g) ResNet 256 +Aug (h) ViT Tiny

(i) ViT Tiny +Aug (j) ViT 128 (k) ViT 128 +Aug (l) ViT 256 (m) ViT 256 +Aug

(n) CLIP RN50 (o) CLIP ViT-B/16 (p) CLIP ViT-L/14 (q) DINOv2 ViT-S/14 (r) DINOv2 ViT-B/14

(s) DINOv2 ViT-L/14 (t) Focal Large (u) Focal XLarge (v) Focal Huge (w) SD VAE

Figure 10: Grad-Cam visualisations for all encoders (seed 0) with policy action logits serving as the targets.

19

Under review as a conference paper at ICLR 2024

(a) Original image (b) Impala ResNet (c) Impala ResNet +Aug

(d) ResNet 128 (e) ResNet 128 +Aug (f) ResNet 256 (g) ResNet 256 +Aug (h) ViT Tiny

(i) ViT Tiny +Aug (j) ViT 128 (k) ViT 128 +Aug (l) ViT 256 (m) ViT 256 +Aug

(n) CLIP RN50 (o) CLIP ViT-B/16 (p) CLIP ViT-L/14 (q) DINOv2 ViT-S/14 (r) DINOv2 ViT-B/14

(s) DINOv2 ViT-L/14 (t) Focal Large (u) Focal XLarge (v) Focal Huge (w) SD VAE

Figure 11: Grad-Cam visualisations for all encoders (seed 0) with policy action logits serving as the targets.

20

Under review as a conference paper at ICLR 2024

(a) Original image (b) Impala ResNet (c) Impala ResNet +Aug

(d) ResNet 128 (e) ResNet 128 +Aug (f) ResNet 256 (g) ResNet 256 +Aug (h) ViT Tiny

(i) ViT Tiny +Aug (j) ViT 128 (k) ViT 128 +Aug (l) ViT 256 (m) ViT 256 +Aug

(n) CLIP RN50 (o) CLIP ViT-B/16 (p) CLIP ViT-L/14 (q) DINOv2 ViT-S/14 (r) DINOv2 ViT-B/14

(s) DINOv2 ViT-L/14 (t) Focal Large (u) Focal XLarge (v) Focal Huge (w) SD VAE

Figure 12: Grad-Cam visualisations for all encoders (seed 0) with policy action logits serving as the targets.

21

Under review as a conference paper at ICLR 2024

(a) Original image (b) Impala ResNet (c) Impala ResNet +Aug

(d) ResNet 128 (e) ResNet 128 +Aug (f) ResNet 256 (g) ResNet 256 +Aug (h) ViT Tiny

(i) ViT Tiny +Aug (j) ViT 128 (k) ViT 128 +Aug (l) ViT 256 (m) ViT 256 +Aug

(n) CLIP RN50 (o) CLIP ViT-B/16 (p) CLIP ViT-L/14 (q) DINOv2 ViT-S/14 (r) DINOv2 ViT-B/14

(s) DINOv2 ViT-L/14 (t) Focal Large (u) Focal XLarge (v) Focal Huge (w) SD VAE

Figure 13: Grad-Cam visualisations for all encoders (seed 0) with policy action logits serving as the targets.

22

Under review as a conference paper at ICLR 2024

F.2 MINECRAFT

(a) Original image (b) Impala ResNet (c) Impala ResNet +Aug

(d) ResNet 128 (e) ResNet 128 +Aug (f) ResNet 256 (g) ResNet 256 +Aug (h) ViT Tiny

(i) ViT Tiny +Aug (j) ViT 128 (k) ViT 128 +Aug (l) ViT 256 (m) ViT 256 +Aug

(n) CLIP RN50 (o) CLIP ViT-B/16 (p) CLIP ViT-L/14 (q) DINOv2 ViT-S/14 (r) DINOv2 ViT-B/14

(s) DINOv2 ViT-L/14 (t) Focal Large (u) Focal XLarge (v) Focal Huge (w) SD VAE

Figure 14: Grad-Cam visualisations for all encoders (seed 0) with policy action logits serving as the targets.

23

Under review as a conference paper at ICLR 2024

(a) Original image (b) Impala ResNet (c) Impala ResNet +Aug

(d) ResNet 128 (e) ResNet 128 +Aug (f) ResNet 256 (g) ResNet 256 +Aug (h) ViT Tiny

(i) ViT Tiny +Aug (j) ViT 128 (k) ViT 128 +Aug (l) ViT 256 (m) ViT 256 +Aug

(n) CLIP RN50 (o) CLIP ViT-B/16 (p) CLIP ViT-L/14 (q) DINOv2 ViT-S/14 (r) DINOv2 ViT-B/14

(s) DINOv2 ViT-L/14 (t) Focal Large (u) Focal XLarge (v) Focal Huge (w) SD VAE

Figure 15: Grad-Cam visualisations for all encoders (seed 0) with policy action logits serving as the targets.

24

Under review as a conference paper at ICLR 2024

(a) Original image (b) Impala ResNet (c) Impala ResNet +Aug

(d) ResNet 128 (e) ResNet 128 +Aug (f) ResNet 256 (g) ResNet 256 +Aug (h) ViT Tiny

(i) ViT Tiny +Aug (j) ViT 128 (k) ViT 128 +Aug (l) ViT 256 (m) ViT 256 +Aug

(n) CLIP RN50 (o) CLIP ViT-B/16 (p) CLIP ViT-L/14 (q) DINOv2 ViT-S/14 (r) DINOv2 ViT-B/14

(s) DINOv2 ViT-L/14 (t) Focal Large (u) Focal XLarge (v) Focal Huge (w) SD VAE

Figure 16: Grad-Cam visualisations for all encoders (seed 0) with policy action logits serving as the targets.

25

Under review as a conference paper at ICLR 2024

(a) Original image (b) Impala ResNet (c) Impala ResNet +Aug

(d) ResNet 128 (e) ResNet 128 +Aug (f) ResNet 256 (g) ResNet 256 +Aug (h) ViT Tiny

(i) ViT Tiny +Aug (j) ViT 128 (k) ViT 128 +Aug (l) ViT 256 (m) ViT 256 +Aug

(n) CLIP RN50 (o) CLIP ViT-B/16 (p) CLIP ViT-L/14 (q) DINOv2 ViT-S/14 (r) DINOv2 ViT-B/14

(s) DINOv2 ViT-L/14 (t) Focal Large (u) Focal XLarge (v) Focal Huge (w) SD VAE

Figure 17: Grad-Cam visualisations for all encoders (seed 0) with policy action logits serving as the targets.

26

Under review as a conference paper at ICLR 2024

G TRAINING AND EVALUATION HARDWARE

All training runs have been completed using Azure compute using a mix of Nvidia 16GB V100s,
32GB V100s and A6000 GPUs.

Minecraft Dungeons For Minecraft Dungeons, end-to-end training runs for Impala ResNet, cus-
tom ResNets (for 128× 128 and 256× 256 images) and custom ViT for 128× 128 images without
image augmentation have been done on four 16GB V100s for each run. Training runs for the same
models with image augmentation have been run on one A6000 GPU (with 48GB of VRAM) for
each run. Training the ViT Tiny and ViT model for 256 × 256 images needed more VRAMs, so
these were trained on eight 16GB V100s for each run.

For training runs using pre-trained visual encoders, we computed the embeddings of all images in
the Minecraft Dungeons dataset prior to training for more efficient training using A6000 GPUs.
After, we were able to train each model using pre-trained visual encoders with four 16GB V100s for
a single run.

To train models on half or a quarter of the training data for the third set of experiments, we used four
16GB V100s for a single run of any configuration.

Since the Minecraft Dungeons game is unable to run on Linux servers, we used Azure virtual ma-
chines running Windows 10 for the online evaluation. For evaluation of end-to-end trained models,
we use a machine with two M60 GPUs, 24 CPU cores and 224GB of RAM. However, we noticed
that this configuration was insufficient to evaluate models with larger pre-trained visual encoders at
the desired 10Hz. Therefore, we used a configuration with one A10 GPU, 18 CPU cores and 220GB
of RAM which was able to run the game and rollout the trained policy close to the desired 10Hz for
all models.

Minecraft The training hardware is similar to Minecraft Dungeons, with A6000s used for em-
bedding/training with pretrained models, and 32GB V100s used to train the end-to-end models.
Training pretrained models took considerably less time, with most models training within hours on
a single A6000 GPU.

Minecraft evaluation was performed on remote Linux machines with A6000s, as MineRL is able to
run on headless machines with virtual X buffers (xvfb). Each GPU had maximum of three rollouts
happening concurrently, with each rollout running at 3-9 frames per second, depending on the model
size.

Counter-Strike: Global Offensive Training was performed on the same hardware as with
Minecraft experiments. For evaluation, we ran CS:GO on a local Windows machine with an Nvidia
Titan X, as per instructions in the original CS:GO paper Pearce & Zhu (2022). We ran the game at
half speed (and adjusted action rate accordingly) to allow model to predict actions in time.

27

	Introduction
	Related Work
	Imitation Learning for Video Games from Pixels
	Behaviour Cloning
	Image Processing
	Architecture

	Video Games for Evaluation
	Minecraft Dungeons
	Minecraft
	Counter-Strike: Global Offensive

	Evaluation
	How to Choose End-To-End Visual Encoders?
	How to Choose Pre-Trained Visual Encoders?
	How Much Data Do You Need?
	Grad-Cam Inspection of Visual Encoders
	Visual Encoders in CS:GO with More Realistic Visuals

	Conclusion
	Visual Encoders
	End-To-End Visual Encoders
	Pre-Trained Visual Encoders

	Additional Evaluation Data
	Minecraft Dungeons Arch Haven Level
	Minecraft Dungeons Action Frequency in Online Evaluation
	Image Processing Investigation
	Grad-Cam Visualisations
	Minecraft Dungeons
	Minecraft

	Training and Evaluation Hardware

