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ABSTRACT

Recommender systems are widely used to help people find items that are tailored
to their interests. These interests are often influenced by social networks, making
it important to use social network information effectively in recommender sys-
tems, especially for demographic groups with interests that differ from the major-
ity. This paper introduces STUDY, a Socially-aware Temporally caUsal Decoder
recommender sYstem. The STUDY architecture is significantly more efficient to
learn and train than existing methods and performs joint inference over socially-
connected groups in a single forward pass of a modified transformer decoder net-
work. We demonstrate the benefits of STUDY in the recommendation of books for
students who have dyslexia or are struggling readers. Students with dyslexia often
have difficulty engaging with reading material, making it critical to recommend
books that are tailored to their interests. We worked with our non-profit partner
Learning Ally to evaluate STUDY on a dataset of struggling readers. STUDY was
able to generate recommendations that more accurately predicted student engage-
ment, when compared with existing methods.

1 INTRODUCTION

Recommender systems are one of the major applications of AI systems and are an essential driver
of many of our online experiences today. With applications ranging from e-commerce (1) and ad-
vertising platforms (2) to video platforms (3), we are relying on recommender systems to surface
relevant and interesting content to individual users. In this work, we focus on recommender systems
deployed in the educational setting (4) to suggest relevant literature for students in grades 1 through
12, specifically audiobook content on a platform designed to assist students with reading difficulties
such as dyslexia. Prompting content that is more likely to engage the student is theorized to lead to
more successful learning outcomes.

In the applied educational setting, systems can be targeted towards either teachers (5) or students (6)
to suggest content, and in both cases the goal of these systems is to surface relevant and engaging
educational material that is beneficial to the students’ learning. Student-facing educational recom-
mender system is built from data relevant to students interaction. with the platform, which falls into
the following categories (7):

• Data about the students, or "user data"

• Data about the content to be recommended, or "item data"

• Data about the context of the current session (e.g. time of day, session device, etc.), or
"context data".

Two widely used types of recommender systems are "Batch" and "Sequential". Batch recommender
systems operate on representations of previous interactions, and don’t model time or relative order.
They include collaborative filtering based methods (8) and Embarrassingly Shallow Autoencoders
(EASE) (9). Sequential recommender (10) systems operate on representations of historical user
interaction as sequences (11).

The classroom setting enables socially-structured recommendation because of the availability of
a clearly-defined hierarchical network, which groups students into classrooms, year cohorts, and
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Figure 1: (a) a sequential autoregressive transformer with causal attention that processes each user
individually, (b) an equivalent joint forward pass that results in the same computation as (a), c) shows
that introducing new nonzero values (shown in purple) to the attention mask allows information to
flow across users. Predictions condition on all interactions with an earlier timestamp, irrespective of
whether the interaction came from the same user or not.

schools. This makes the utilization of social recommendation systems (12) particularly attractive
where the relationships between users are leveraged to make recommendations.

In this work we present Socially-aware Temporally caUsal Decoder recommender sYstems
(STUDY), a sequence-based recommender system for educational content that makes use of known
student hierarchies to improve recommendations. Our method does joint inference over groups of
students who are adjacent in the social network. Our method utilizes a single transformer decoder
network to model both within-user and cross-user interactions. This paper is organized as follows:
we provide a review of the related work in Section 2, we review related previous recommender sys-
tems in Section 3, we introduce our new socially-aware recommender system in Section 4, and we
present our experimental results in Section 5.3.1 before concluding in section 6.

In summary, the contributions of this paper are:

• Proposing a novel architecture and data pipeline for performing socially-aware sequential
recommendation.

• Comparing the new method to modern and classical recommendation baselines.

• Performing ablations and performance breakdowns to better understand the new model.

2 RELATED WORK

2.1 EDUCATION

Recommender systems for educational content have been studied in the context of online learn-
ing programs/massive open online courses (MOOCs) (13) but are not as common for primary and
secondary school student applications. Experiments with recommender systems in education have
generally been limited by the lack of publicly-available large data sources - one review found only
5 experimental studies with sample sizes of over 1000 participants (14). However, versions of rec-
ommender systems have been applied in educational measurement and assessment for over four
decades through computerized adaptive testing (15), where the test items presented to the test-takers
depend on the current estimate of the student’s ability.
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In more recent literature, expansions on methods for computerized adaptive testing have been pro-
posed for recommending new content in an adaptive learning framework (16) where content can be
automatically presented to students given their particular stage of learning. These adaptive learning
systems require access to some measures of student subject-matter performance and do not account
for the student’s interest in the material nor the social dynamics that may lead to greater engagement.
Alternative approaches are needed in content recommendation contexts where a student’s reading
level cannot be measured or measures are not included in the available data for recommendations.
In the case of our applied scenario, we do not assume that student or "user data" includes measures
of student performance.

Previous studies have shown that higher levels of student motivation predicts growth in reading
comprehension (17); thus promoting content that is most likely to align with a student’s interests is
hypothesized to produce better reading and literacy outcomes, particularly for students with reading
difficulties. In the United States, often the reading content assigned in by teachers aligns to a state or
district-level curriculum for a particular grade level, but for assigning reading materials outside the
required texts, other strategies are needed, and we hypothesize that incorporating social connections
can be an effective strategy for recommending content successfully.

In one study of a book recommendation system, using an app function that allowed users to view the
reading histories of peers had a beneficial long-term effect on reading choices (18), indicating that
incorporating social dynamics into recommendations may lead to more effective recommendations.
In another social network analysis of second and third graders in the US (19), the researchers found
that on average students were able to effectively identify peers with higher reading skills to ask these
peers for help, thus even for younger learners, peer relationships may be relevant for content selected.
In rural areas which sometimes lack resources to help with struggling students, a study (20) found
that adolescent reading choices were often motivated by conversations and materials borrowed from
friends and family, suggesting that a recommender system that includes peer preferences could also
be effective for reaching the rural student population.

2.2 CLICK-THROUGH RATE PREDICTION

One of the popular approaches for recommender systems is click-through rate prediction (21), where
the probability of a user clicking on a specific presented item is predicted. These probabilities are
then used as a proxy for user preferences. Click-through Rate (CTR) models typically make predic-
tions for a suggested next item for a user based on the user’s sequence of previous interactions, user
data and context data. Model architectures used in this problem range from standard models like
Transformers used in Behavior Sequence Transformers (BST) (22) and Convolutional Neural Net-
works used in (23) to more task specific architectures such as Wide & Deep models (24) and Field-
Leveraged Embedding Networks (FLEN) (25). This approach contrasts with other approaches such
as neural collaborative filtering (26) and K-Nearest Neighbors (KNN) recommenders (27) where
there is no attempt to explicitly model the likelihood of the user interacting with a specific item.

2.3 SOCIALLY-AWARE RECOMMENDATION SYSTEMS

When social connectivity information exists for users, there are many modeling approaches that
leverage this information. Methods such as TrustMF (28) and Sorec (29) project user preference
vectors into a latent space using matrix factorization approaches. The underlying assumption of
these systems is homophily i.e. that users who are more socially connected are more likely to have
similar preferences.

Deep-learning based methods have leveraged graph neural networks to learn using social connec-
tivity structure. Methods such as DiffNet (30) and KCGN (31) utilize graph convolutional neu-
ral networks whereas methods such as GraphRec (32) and Social Attentional Memory Networks
(SAMN) (33) employ graph attention mechanisms. Other notable work includes Disentangled Graph
Neural Networks (DGNN) which have the capability to model non-heterogeneous relationships and
utilize a memory augmented graph network (12).

In this work we take a different approach to that of previous work, which has used graph neural net-
works or other custom architectures with separate components to handle cross-user interactions. We
utilize a single transformer decoder with a specifically-designed attention mask to do joint inference
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over groups of users. With this approach we have developed a single consistent way to handle both
within-user and cross-user interactions in a computationally efficient manner.

3 REVIEW OF BASELINE WORK

We review related work, used as baselines for comparison in the experiments section 5.3.1.

3.1 ITEM-BASED KNN RECOMMENDER

KNN recommender systems (34) compute the cosine similarity between the user’s current feature
vector and each entry in the training dataset. They then recommend to the user the k distinct items
with highest cosine similarity to the user’s current feature vector. When feature vectors are sparse
most entries in the training dataset will have a cosine similarity of exactly zero with the user’s current
feature vector. In this KNN implementation, we iterate over every sequence in the training dataset
and featurize each item by computing a feature vector from the h interactions preceding it.

3.2 INDIVIDUAL

Following the click-through rate prediction (35) method of recommendation this methodology takes
the next-click prediction approach to recommendation, and hence treats making recommendations
as a causal sequence-modeling problem. In particular, this modeling framework borrows from the
language modeling literature (36) due to a similar problem setup. Concretely, given a set of students
sj ∈ S, and a set of historical item interactions {ikj : ∀j|sj ∈ S, ∀k < ∥sj∥, k ∈ N} we learn
a propensity function P (ikj ) = f(ikj |ik

′<k
j ; θ), where the propensity of an item at a point in time

the likelihood the student will interact with that item at that time. To this end we modeled f as a
causal decoder-only transformer with a next-token prediction objective to maximize the following
likelihood of our data D, L(D) =

∑
sij∈D log f(sij |sij′<j ; θ). This is the formulation we used for the

model referred to as Individual, since inference is carried out for each individual student separately.

3.3 SAMN

Social Attentional Memory Networks (SAMN) (33) are a class of batch recommenders that take
social network information into account. Given a a set of users, a set items and a social connectivity
graph, we learn fixed embeddings for each item and each user. To score the likelihood of the user
interacting a with a specific item we compute a score using the user’s embedding, the item’s embed-
ding and the embeddings of known 1st degree social contacts (friends). As it is a batch recommender
and does not take the sequence of interactions into account at training or test time. Given that we
need to make recommendations for new users at test time we utilize the Heater framework (37) to
learn default user embeddings computed from user features (in this case grade level).

3.4 SR-GNN

Session-based Recommendation with Graph Neural Networks (SR-GNN) (38) are a class of sequen-
tial recommenders that utilise graph neural networks. Concretely they take the sequence of items
interacted with in the current session and construct an item graph, with two items A and B being
connected if the user interacted with item B directly after interacting with item B. A gated graph
neural network is then used to compute a session embedding from the input graph of items. This
session embedding is used to rank items to produce recommendations.

4 METHOD

We present our new Socially-aware Temporally Causal Decoder Recommender System (STUDY),
enabling the efficient use of the unique social structure inherent to students in schools.
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4.1 STUDY

We motivate our model by observing that for students with few previous interactions, we can rely
on data from other students with similar preferences to seed the model to improve predictive perfor-
mance. Concretely, we concatenate the interaction sequences of multiple students within the same
classroom. This precludes using a causal sequence modeling approach to model this problem, since
some item-interactions for students presented earlier in the sequence could have occurred at a later
point in time relative to item-interactions for the students presented later in the sequence. Modeling
data represented in this format using causal sequence modeling would lead to anti-causal data leak-
age and the model would learn to make recommendations conditioned on information not available
at inference time.

Hence we introduce temporally causal masking into our model: a change to our model’s forward
pass using a training process similar to causal sequence modeling that respects the causal relation-
ships in our data as shown in Figure 1. Conceptually we concatenate the user vectors of students in
the same classroom and allow predictions for a particular item to condition on all interactions that
happened in the past, both within-user and cross-user. In more detail, if there is a subset of users
u1, u2, · · · , un who are all in the same classroom, with interaction sequences S1,S2, · · · ,Sn, and
with timestamp vectors T 1,T 2, · · ·T 2 where tij is the timestamp of the interaction described at sij -
and each user vector Sn and timestamp vector Tn is terminated with a separator token - we define
the concatenated classroom vectors generated by the procedure described in Section 5.2 as

Ŝ =
(
S1S2 · · ·Sn

)
T̂ =

(
T 1T 2 · · ·Tn

)
We define the matrix M

mi,j = 1t̂i<t̂j

as the temporally causal mask matrix. This matrix is used as the mask in our attention operator
instead of the usual causal mask used in decoder-only transformers. Hence our we redefine the
attention operator in the decoder-only transformer as follows.

A = Softmax(QKT

√
dk

)⊙M

Attention(Q,K,V) = AV

where Q is the query matrix, K is the key matrix and V is the value matrix. With this modifi-
cation we can use next-item prediction sequence modeling to train the model without anti-causal
information leakage, utilizing a multihead generalization of this attention mechanism (39). We call
the model defined by this procedure STUDY.

5 EXPERIMENTS

5.1 DATA

We test STUDY on a dataset of historical interactions with an educational platform collected by
our nonprofit partner, Learning Ally. This platform recommends and provides access to audiobooks
with the goal of promoting reading in students with dyslexia. The data offered was anonymized,
with each student, school and district identified only by a unique randomly generated identification
number. Furthermore, all descriptive student data was only available as highly aggregated sum-
maries. There are historical records of interactions between students and audiobooks in the dataset.
For each interaction recorded we have a timestamp, an item ID and an anonymized student ID, an
anonymized school ID and a grade level. This data was collected over two consecutive school years
containing over 5 million interactions per each school year totalling over 10 million interactions.
These interactions come from a cohort of over 390,000 students. We use the data from the first
school year as our training dataset and split the data from our second school year into a validation
dataset and a test dataset. This split was done according to the temporal global splitting strategy (40).
This was done to model the scenario of deployment as realistically as possible. To partition the data
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Evaluation Subset n KNN(%) SAMN(%) SRGNN (%) Individual (%) STUDY(%)

All

1 16.10± 0.11 0.32± 0.02 31.46± 0.15 31.78± 0.15 32.21± 0.15
3 23.95± 0.15 2.01± 0.05 37.41± 0.16 37.73± 0.16 38.09± 0.15
5 27.38± 0.15 3.64± 0.09 39.38± 0.17 39.89± 0.15 40.26± 0.16

10 31.70± 0.15 6.87± 0.10 42.68± 0.19 43.42± 0.19 43.79± 0.22
20 35.15± 0.15 11.56± 0.15 46.24± 0.19 46.71± 0.18 47.86± 0.16

Non-continuation

1 2.80± 0.04 0.33± 0.02 3.55± 0.04 4.01± 0.04 4.05± 0.05
3 5.31± 0.07 1.95± 0.04 11.49± 0.10 12.27± 0.10 12.58± 0.10
5 6.55± 0.06 3.56± 0.07 14.31± 0.09 15.44± 0.10 15.86± 0.10

10 9.26± 0.09 6.68± 0.09 19.17± 0.14 20.71± 0.15 21.08± 0.12
20 12.22± 0.11 11.29± 0.15 24.91± 0.15 25.76± 0.14 27.60± 0.18

Novel

1 0.32± 0.02 0.32± 0.02 0.47± 0.03 0.55± 0.03 0.73± 0.03
3 1.72± 0.04 1.87± 0.05 4.23± 0.07 4.05± 0.06 4.90± 0.09
5 2.56± 0.07 3.45± 0.06 6.44± 0.07 6.65± 0.07 7.75± 0.10

10 5.03± 0.05 6.47± 0.12 11.22± 0.13 12.00± 0.12 12.96± 0.11
20 7.85± 0.09 10.99± 0.11 17.41± 0.14 17.65± 0.12 20.03± 0.15

Table 1: Hits@n percentage metrics for the different recommendation models evaluated on the his-
torical data in the test split, across three subsets: all, non-continuation and novel.

from the second school year into a test set and a validation set we split by student, following the user
split strategy (40). If a data split does not contain at least a full academic year then the distributions
would not match due to seasonal trends in the data.

Overall this dataset is well suited to studying social recommendation algorithms due to the exis-
tence of implied social connections through known proximity and also due to the large amount of
interaction data on record. The existing book selections were made through either student choice
or teacher recommendation, where often the teacher-assigned content aligned to materials assigned
to the whole class or required curriculum. Interactions with the assigned content, however, were
still up to the learner, and thus we believe the existing data is a good fit for modeling preferences
and likely engagement with content. Further details on the data including summary statistics can be
found in Appendix A

5.2 PREPROCESSING

In order to get the training data representation, we express the items as tokens. The top v most
popular items get a unique and sequential integer as their token, while the rest of the items get
assigned to an out-of-vocabulary token. The student interaction history will therefore become a list
of such tokens associated with a time point.

Additional processing steps are then taken based on the model type used downstream. For trans-
former models: we split the student history into slices based on a context window of length c. For
models that process students jointly: we split the sequence associated with each student into seg-
ments of length s, s < c, then compose sequences of length c by joining segments from multiple
students in the same classroom, taking care to use a separator token.

Additional information, including a diagram of our preprocessing steps, are in Appendix B.

5.3 EVALUATING MODELS

We implement KNN, SR-GNN(38) and SAMN1 (22) as baseline models, a transformer-based model
that does inference for each student separately, which we will call Individual, as well as a trans-
former that operates over groups of students called STUDY.

We compare results from the Individual model, STUDY model, the item-based KNN baseline, SR-
GNN (38) as a recent baseline and SAMN (33) as a social baseline . We tuned the hyperparameters
learning rate on the validation set and report final results on the test set. We took the both the context
length c and the segment size s for our transformer models to be 65, enough to the full history of
most students in our dataset. Details about further hyperparameters and compute can be found in

1We used the author’s repository https://github.com/chenchongthu/SAMN as a guideline. We
found a discrepancy between this code and the method described in the paper, but it didn’t affect final perfor-
mance.
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Figure 2: Models broken down by student engagement, accompanied by a histogram of student en-
gagement in the lower chart. (left) Hits@1 across five models KNN, SAMN, SRGNN, Individual
and STUDY. SRGNN matches STUDY and Individual until sequences of length 50, and underper-
forms on longer sequences (right) A comparison of the Individual against the Force Mix ablation.

Appendix C. Hits@n scores was used as our evaluation metric, where hits@n is the percentage of
interactions when the actual item interacted with falls within the top n recommendations from the
model under evaluation. Since we observe that students tend to repeatedly interact with an item
multiple times before completing it, we additionally evaluate our models on the subset of the dataset
where the student is interacting with a different item to the item previously interacted with, referred
to as non-continuation evaluation. We also evaluate on the subset of the dataset where the students
are interacting with an item for the first time, referred to as novel evaluation. This motivated by
the fact that we are interested in the power of our recommendation systems to engage students
with new items in order to maximize time spent on the educational platform. Aggregate statistics
are computed per student then averaged over students to prevent students with large numbers of
interactions from dominating the reported statistics. We also examine the relevant performance of
these models on different slices of data, looking at co-factors such as demographic characteristics
and school performance. We present the results of this experiment in section 5.3.1.

5.3.1 RESULTS AND ANALYSIS

Table 1 shows the performance of the models STUDY, Individual, KNN, SR-GNN and SAMN on
the test split of audiobook usage data. Uncertainties shown are always 95% confidence intervals
computed over 50 bootstraps. We observe that both transformer models, Individual and STUDY, as
well as the GNN model SR-GNN, largely outperform KNN and SAMN, with the STUDY model
outperforming the Individual model. We see that the social model SAMN, derived from the collab-
orative filtering family of models, fails to pick up on the sequential patterns in the dataset, such as
users revisiting the exact same item or similar items. This is exhibited by SAMN having similar
performance in the evaluation subsets all, non-continuation and novel. The performance differences
are most pronounced when evaluated on the entire test set as seen in the all section of the table,
but also holds up when evaluated across the more difficult non-continuation and novel test subsets.
Crucially, with the STUDY model outperforming the individual model, we can see that leveraging
the social hierarchy of our users to do joint predictions leads to improved recommendations.

In Table 3 we see the relative performance of the models under examination to be constant, with
STUDY outperforming Individual. Individual slightly outperformed SR-GNN, which in turn out-
performs KNN. SAMN trailed behind with almost 0 hits@1, we attribute this to SAMN’s non-
sequential nature. This ordering is the same when slicing by demographic variables such as metro-
code (which describes schools as being in urban, suburban, rural or town areas), school socio-
economic indicators which indicate the level of wealth of the area the in the vicinity of a school.
We also observe the same ordering of models by performance when slicing by academic variables
such as classroom reading scores. In Figure 2 we slice model performance by student engagement,
which we measure by the number of interactions the student has on record. Here we see similar rela-
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Figure 3: a) the size of train, validation and test data splits given by the number of student-title
interactions recorded. Y-axis is millions of interactions. b), c) and d), hits@1 and histograms of
number of students across slices (b) socio-economic indicator, (c) classroom reading score and (d)
Metro code which describes schools as being Urban, Suburban, Rural or Town.

tive performance between STUDY, Individual and SR-GNN for students with up to 50 interactions,
but for students with more engagement, we see SR-GNN starting to underperfrom its transformer
counterparts, with KNN and SAMN lagging behind across all values of engagement.

5.4 ABLATION EXPERIMENTS

Force Mix: In our model because we set segment size s equal to context size c we only do joint
inference over groups of students when processing a student who does not have enough previous
interactions to fill the transformer’s context. We experiment with shorter segment size s = 20 ≪ c
as per the definitions in Section 5.2. Practically, this leads to the model always sharing its context
between students in a classroom when possible, even for students have enough history to fill the
transformer context. In Figure 2 The model from the Force Mix ablation only matches Individual
on students who have up to about 17 interactions on the platform, and starts to underperform on
students with more interactions. Given that the segment length for the Force Mix model is 20, it is at
students with 20 previous interactions where Force Mix starts to forgo the available history for the
student at hand in favor of conditioning on data from other peer students. From here we can conclude
that conditioning on peer student history is beneficial if it is done in addition to conditioning on all
available history for a student, but not if it comes at the cost of conditioning on less history than
available for the particular student.

Classroom Grouping: In STUDY we do joint inference over students in the same classroom. We
ablate the importance of using this particular grouping. Concretely, we experiment with grouping
students who are in the same district and school year as being in a single group. We also experiment
with grouping all students in the dataset into a single group, which results in completely random
groups of students being jointly processed together. In Figure 4(left) we compare the performance
of our model that uses classrooms to group students for joint inference compared to a model that uses
intersection of district and school year to group students, to a model that uses a single group as well
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Figure 4: Figure (left): grouping the students for STUDY by classroom, grouping by the intersec-
tion of district and school year, grouping randomly, and doing individual inference. Figure (right):
training with subsets of the training data of various sizes on Individual and STUDY.

as to a model that does inference for each student individually. We can see that using classrooms for
grouping results in the best performance, that using the intersection of district and school year for
grouping performs slightly worse, and that putting all students in the same group performs similarly
to individual processing. From here we can conclude that using groups of users whom we expect to
have correlated interests is necessary for the performance of our model and using poorly designed
groups can harm model performance.

Data Tapering:We compare the effect of using only a subset of the available data and compare the
performance of STUDY and Individual. We compare the use of 25%, 50%, 75% and the entire
dataset, with the aim of discerning the effect of using social information on the data efficiency of
the system. In Figure 4(right) we see that STUDY outperforms the Individual recommender across
all data subsets used to train the models, confirming the benefit of adopting social recommender
systems such as STUDY even when in a data-constrained environment. We also note that both
models witness a performance drop when the amount of data used increases from 50% to 75%,
suggesting that not all additional data is beneficial.

6 CONCLUSION

In this paper we present STUDY, a socially aware recommendation system that leverages cross-user
information at inference time and we demonstrate its applicability to the practical problem of book
recommendation for children inside a classroom. This is an important problem, as engagement with
reading materials from an early age can positively impact language acquisition, communication
skills, social skills and literacy skills.

Our novel STUDY method uses attention masks that are causal with respect to interaction times-
tamps and is able to process both within-user and across-user interactions using a single forward
pass through a modified transformer decoder network. It avoids complex architectures and circum-
vents the need for graph neural networks which are notoriously difficult to train; thus, STUDY is an
efficient system that can be deployed by partners with limited computational bandwidth that doesn’t
sacrifice model performance. We also compare STUDY to a number of baselines, both sequen-
tial and non-sequential, and social and non-social. We show that STUDY outperforms alternative
sequential and social methods, in a variety of scenarios, as demonstrated in ablation studies.

Limitations: Evaluations were limited to offline evaluations on historical data, inline with much of
the literature. However, these evaluations cannot account for the utility of recommended items that
the user has never interacted with in the past, but would have enjoyed. Furthermore, our method
is limited to structures where all the known relationships between users are homogeneous - each
student in the classroom is assumed to have the same relationship with each other. Given that social
dynamics in reality are more complicated, in future work we wish to explore extending this method
to social networks with richer heterogeneous relationships between users where proximity between
users can vary within a classroom.
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