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Abstract

Compositionality of communication is considered
a prerequisite for reasoning. Despite overall im-
pressive performance, LLMs seem to have funda-
mental issues with compositionality in reasoning
tasks. Research of the emergence of languages
in referential games demonstrates that composi-
tionality can be achieved via combination of the
game organization and constraints on communi-
cation protocols. In this contribution we propose
and offer initial evaluation of the hypothesis that
compositionality in reasoning tasks with LLMs
can be improved by placing LLM agents in the
referential games that coax compositionality of
the communication. We describe a multi-stage
chemical game including recognition, naming,
and reconstruction of chemical structures by LLM
agents without leveraging their pre-existing chem-
ical knowledge.

1. Introduction

Reasoning is the hallmark of scientific process. Scientific
applications of Al are yet to include seamless collabora-
tive reasoning with human scientists. Specifically, com-
positionality appears to represent a big challenge even to
the models with otherwise outstanding capabilities. Fun-
damentally, reasoning tasks might require some new Al
architectures. Meanwhile, it pays to understand how much
LLMs can be pushed before they reach a performance ceil-
ing. Our approach is informed by the body of research
of emergent communication in multi-agent reinforcement
learning (MARL) (Lazaridou & Baroni, 2020). It is es-
tablished that compositionality of the emergent languages
is an independent feature that can be achieved via special
constraints on the communication protocol and/or specific
organization of the game where communication unfolds
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(Chaabouni et al., 2020). We hypothesize, that LLMs com-
munication can be pushed towards higher compositionality
if LLMs are trained or fine-tuned as they participate in a
properly organized referential game. Of course LLMs al-
ready have a handle on the natural human language and the
game is not expected to produce a new language. The role of
the game is to coax LLM agents to prioritize compositional
communication over non-compositional (Kottur et al., 2017;
Korbak et al., 2019).

We focus on reasoning tasks associated with chemical struc-
tures. Chemistry is one of the most successful applications
of Al in science. Molecular organic chemistry is highly
composable which makes is especially favorable for Al-
driven applications. On top of it, the phrasing of theory of
chemical structure is essentially identical to the definition
of compositionality:

* Theory of chemical structure: the chemical nature of
a complex molecule is determined by the nature and
number of atoms, its components, their mutual arrange-
ment and interaction.

* Compositionality: the meaning of any complex expres-
sion is determined by the meanings of its parts and the
way they are put together.

LLMs struggle with composability of chemical structures
and compositionality of reasoning about chemical structures.
The issue is quite pressing because the majority of relevant
chemical discovery workflows require a seamless, peer-like
interaction of Al with human chemists along the lines of
reasoning about components of molecular structure and their
impact on utility of molecules.(Ristoski et al., 2020)

Referential games are often used to study emergence of
languages (Lewis, 1969). Here, we are considering an asym-
metric game with two agents, the Sender and the Receiver.
As the Sender is exposed to the objects in the world, it learns
to represent these objects and to associate utterances with
the representations. The Sender shares utterances with the
Receiver over a communication channel which in our case
is discrete, variable length, and noiseless. The Receiver
learns to associate utterances with its own representation of
the world objects and to reconstruct the world objects. In
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Figure 1. Complex referential games, such as template transfer, have been shown to support emergence of compositional communication
[REF Template transfer] about multi-attribute objects. We are considering a similar construct, where objects, such as molecules, are
composable from fragments, and the compositional referential game can be scaffolded on simpler games. Panel A. World objects
are SMILES strings representing molecules. SMILES are split into substructure SMILES corresponding to the polymerizable groups
(Fragment 1) and pendants (Fragment 2). Fragments are assigned names in the first sub-game where Sender and Receiver established a
shared vocabulary. Panel B. First sub-game is a simple signaling game. The Sender and the Receiver learn a shared vocabulary by naming
a finite library of molecular fragments. Panel C. Second sub-game involves decomposition of the composable object into fragments. The
agents learn object representation as concatenated sub-strings corresponding to the fragments from the shared vocabulary. Panel D. Final
nested referential chemical game with shared vocabulary where the Sender decomposes a composable object into fragments from the
shared vocabulary, retrieves the names of these fragments, and constructs the utterance for the Receiver and the Receiver goes through the
inverse process.

MARL settings, the agents are rewarded for each instance of
communication where the Receiver correctly identified the
object that the Sender was exposed to. Accumulated rewards
are used to train the agents to improve their performance.

In this contribution, we train LLM model via fine-tuning
on the pairs object-representation, representation-utterance,
utterance-representation, and representation-object. The
general structure of our chemical referential game closely
follows (Korbak et al., 2019) and, by extension (Barrett &
Skyrms, 2017). The world objects are SMILES strings that
can be seen as simple concatenation of SMILES substrings.
They are constructed as a combinatorial library from a set
of performance-relevant groups and pendant groups. Each
SMILES in the world is described with a two-part message,
where the first part designates the performance-relevant
group and the second part designates the pendant. This
choice is informed by the referential games handling multi-
attribute objects, cf. shape-color in (Korbak et al., 2019).

1.1. Related work

Our effort exists at the intersection of three active areas of
research: reasoning and compositional communication with

LLMs, emergence of compositional languages in MARL,
and application of LLMs in chemistry. It’s been demon-
strated that while most invented languages are effective
(i.e. achieve near-perfect rewards), they are decidedly not
interpretable or compositional (Kottur et al., 2017). This
study showed development of the compositionality as a re-
sponse to limiting vocabulary and eliminating memory of
one of the communicating agents to simplify development
of shared grounding of communication tokens. Another
study (Korbak et al., 2019) reported achievement of emer-
gent compositional communication in a complex game or-
ganized according to a template transfer pattern introduced
in (Barrett & Skyrms, 2017). Elicitation of compositional
generalization capabilities from LLMs has been approached
via development of prompting strategies, such as skills-
in-context (SKiC) prompting (Chen et al., 2023), which
instructs LLMs how to compose basic skills to resolve more
complex problems. A novel prompt-free approach, Compo-
sitional Task Representations (CTR) (SHAO et al., 2023),
views each task as a composition of latent codes. CTR em-
ploys multi-task training to learn a discrete, compositional
codebook, substantially outperforms prompt-based methods
in zero-label learning on average.
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Introduction of chemical benchmarks for LLMs ((Guo et al.,
2023)) revealed general difficulties in comprehension of
SMILES notation which translates into issues in down-
stream tasks. Focus of chemical applications of LLMs on in-
structions inevitably runs in the bottleneck of handling com-
posability and compositionality of chemistry.(Fang et al.,
2024)

2. Methodology
2.1. Data

Molecular combinatorial library is constructed from 7
performance-relevant groups and 63 pendant groups. The
groups are merged via simple concatenation either in “’per-
formance group” + “’pendant group A” pattern or ’perfor-
mance group” + “pendant group A” + “pendant group B”
pattern, producing total of 11042 SMILES strings suitable
for LLM fine-tuning. Only the first pattern including two
fragments per molecule is used in the referential game set-
ting 1A mimicking the games involving objects with two
attributes (Korbak et al., 2019; Lazaridou & Baroni, 2020).

2.2. Game

The first sub-game 1B is a simple signaling game where the
Sender and the Receiver establish a shared vocabulary that
allows them to communicate about a fixed set of objects,
such as fragments that are used to construct the combina-
torial library. In the studies of language emergence, the
agents are free to converge on any arbitrary vocabulary. In
our case, both LLM agents are exposed to the natural lan-
guage, scientific terminology and even SMILES notation.
It is tempting to leverage SMILES comprehension to name
the fragments. However, inconsistent handling of compos-
ability of SMILES is the reason why we are setting up the
game-based process in the first place. Therefore, we pro-
ceed by asking the Sender to come up with short, unique
names for the fragments that are not established chemical
terms. The Receiver then needs to learn the correspondence
between names and fragments. Effectively, the Receiver
faces a supervised learning task on a small dataset, so for
practical considerations we simply included the look-up ta-
ble of fragments and names in the system prompts of both
LLM agents and instructed the agents to use the table for
search and retrieval of the relevant items.

In the second sub-game 1C the Sender learns to split a
SMILES string into the sub-strings in the shared vocabulary.
This primary task implies the secondary task, where the
Sender has to match the fragment strings produced during
the split to the content of the look-up table in the system
prompt, and if both fragments have exactly matching entries,
the Sender has to retrieve the corresponding names from
the table. The Receiver handles the similar inverse task,

except that it needs to split a space-separated name shared
by the Sender instead of a single SMILES string which is
an enormous simplification.

These sub-games are nested in complete referential game
1D. The Sender encounters a world object, represents it as a
sset of fragments that have exact matches in the shared vo-
cabulary, retrieves names of these fragments, and combines
the names into a message. The Receiver parses the message
into names of the fragments, retrieves the fragments from
the look-up table, and reconstructs the world object.

2.3. Model training

The language model used as sender and receiver in this
signaling game was fine-tuned on a dataset derived from data
described in section 2.1. From the 11, 042 SMILES strings
and associated performance + pendant group labels in the
Molecular combinatorial library, we created a dataset of
input and output texts. This dataset covers various tasks that
help LLMs learn to: a) split an initial SMILES notation of a
molecule into sub-structure SMILES, b) map sub-structure
SMILES to fragment names, ¢) map fragment names to sub-
structure SMILES, and d) construct a SMILES string from
the sub-structure SMILES of its fragments. We used Meta-
Llama-3-70B-Instruct (AI@Meta, 2024) to create prompt
variations for all four tasks, resulting in a dataset of 103, 300
entries for fine-tuning the LLMs.

This work utilizes two different LLMs: 1) Phi-1.5 (Li et al.,
2023), a small-sized model with 1.3B parameters, and 2)
Mistral-7B-Instruct-v0.2 (Jiang et al., 2023), a medium-
sized model with 7B parameters. Both models were fine-
tuned with LoRA (Hu et al., 2022), targeting the q proj, k
proj, and v proj modules. The following LoRA parameters
were used for fine-tuning: 1) rank of low-rank factorization
(lorar) = 8, 2) scaling factor for the rank (lora alpha) = 32,
and 3) lora dropout = 0.1. Additional fine-tuning parameters
included: 1) learning rate = le-4, 2) weight decay = 0.05,
and 3) batch size = 96 (for Mistral-7B-Instruct-v0.2) and
128 (for Phi-1.5).

3. Results and Discussion

Development of the shared vocabulary is a good example
how partial “’skills” of Large Language Models need to be
mitigated to help them operate in the desired manner. LLMs
have familiarity with SMILES notation and chemical struc-
ture concepts. They are neither consistent, nor generalizable,
nor exhaustive.

To further assess the performance of LLMs in the Final ref-
erential chemical game, we used two language models: Phi-
1.5 and Mistral-7B-Instruct-v0.2. For each LLM, we consid-
ered the base model with zero-shot and two-shot prompting
techniques, as well as a fine-tuned model. Table 1 presents
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Train Test
LLM Sender Sender Receiver Sender Sender Receiver
(Exact Match) (Partial Match) (Exact Match) || (Exact Match) (Partial Match) (Exact Match)

Phi-1.5 zero-shot 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Phi-1.5 2-shot 1.8% 3.5% 0.0% 0.0% 0.0% 0.0%
Phi-1.5 Fine-tuned 33.0% 71.3% 50.4% 0.0% 36.0% 32.1%
Mistral zero-shot 2.7% 36.3% 13.3% 3.4% 51.7% 6.5%
Mistral 2-shot 14.7% 66.5% 50.40% 12.1% 81.8% 15.8%
Mistral Fine-tuned 96.9 % 99.6 % 100.0% 72.2% 91.7 % 68.6 %

Table 1. Accuracy scores assessing Sender’s ability to construct Utterance from SMILES (World Object) and Receiver’s ability to
reconstruct SMILES notation from Utterance. Exact Match measures if the Sender/Receiver’s output fully matched expected output.
Partial Match for Sender counts instances where at least one part of Utterance is correct. Fine-tuned LLMs Phi-1.5 and Mistral-7B-
Instruct-v0.2 shows significant improvement over base model with zero-shot and two-shot prompts

the results from various models for the referential game. We
measured the accuracy of the Sender generating Utterance
and the Receiver reconstructing SMILES separately. In the
Train and Test games, the fine-tuned Mistral model signifi-
cantly outperformed other models in Sender and Receiver
accuracy with 72.2% and 68.6% respectively for test split.

The zero-shot and two-shot accuracy results for Phi-1.5 and
Mistral models demonstrate the base models’ inability to
parse and reason with SMILES notation of molecules. Mis-
tral was able to understand SMILES better than the smaller
Phi-1.5, as shown in the two-shot results. Fine-tuning with
data created from the Molecular combinatorial library im-
proved the capability of these models to understand, parse,
and compose SMILES notation. Even after fine-tuning, Phi-
1.5 was still unable to generate Utterance from SMILES,
as indicated by the 0% Exact Match accuracy and only
36% Partial Match accuracy. However, Mistral handled
SMILES notation much better after fine-tuning, with 72.2%
and 91.7% accuracy in Exact Match and Partial Match, re-
spectively.

We evaluate compositionality of the communication as to-
pographic similarity (Brighton & Kirby, 2006; Lazaridou
& Baroni, 2020; Korbak et al., 2019) - Spearman correla-
tion of in-world distances between the objects (SMILES
strings representing molecules) and their semantic distances.
Semantic distances are evaluated as Cosine distances be-
tween embedding vectors of the names produced by the
Sender. In-world distances are evaluated as Levenshtein
editing distances between SMILES strings and Dice dis-
tances between Morgan fingerprints (Rogers & Hahn, 2010)
of SMILES strings. Embeddings are obtained using all-
MiniLM-L6-v2 sentence-transformer model (Reimers &
Gurevych, 2019). With the base Mistral model (Mistral
zero-shot), topographic similarity preyensntein 1S 0.07 and
PDice 18 0.09. Performance improvement of the fine-tuned
model (Mistral Fine-tuned) is accompanied by appreciable
increase of topographic similarity: prevenshtein 15 0.65 and

PDice is 0.82.

4. Conclusion

To our knowledge, this is the first attempt to leverage com-
plex referential game setting to improve compositionality
of communication between general-purpose LLMs.

It is tempting to consider RL-like setting of the referential
game involving LLMs, where instead of fine-tuning (either
is RL manner or supervised learning manner) the desired be-
havior is reinforced via prompting. Success of this approach
appears to be highly sensitive to the nature of the LLM, just
like with other prompt-driven reasoning strategies.

We would like to draw a deeper parallels with the field of
emergent communication in MARL and notice that con-
temporary studies typically involve complex agent archi-
tectures with separate modules responsible for perception
and communication. It seems that the demand for seamless
communication with human agents calls for adoption of
LLMs as enablers of shared grounding. Compositionality
and reasoning, however, might be better delegated to the
higher-level agents interacting with LLMs. In this case, the
focus of communication games shifts from the emergence
of language to the emergence of reasoning as a response to
the complexity of the environment and interactions between
agents.
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