
Under review as a conference paper at ICLR 2022

KG-FID: INFUSING KNOWLEDGE GRAPH IN FUSION-
IN-DECODER FOR OPEN-DOMAIN QUESTION AN-
SWERING

Anonymous authors
Paper under double-blind review

ABSTRACT

Current Open-Domain Question Answering (ODQA) model paradigm often con-
tains a retrieving module and a reading module. Given an input question, the read-
ing module predicts the answer from the relevant passages which are retrieved by
the retriever. The recent proposed Fusion-in-Decoder (FiD), which is built on top
of the pretrained generative model T5, achieves the state-of-the-art performance
in the reading module. Although being effective, it remains constrained by ineffi-
cient attention on all retrieved passages which contain a lot of noise. In this work,
we propose a novel method KG-FiD, which filters noisy passages by leveraging
the structural relationship among the retrieved passages with a knowledge graph.
We initiate the passage node embedding from the FiD encoder and then use graph
neural network (GNN) to update the representation for reranking. To improve the
efficiency, we build the GNN on top of the intermediate layer output of the FiD
encoder and only pass a few top reranked passages into the higher layers of en-
coder and decoder for answer generation. We also apply the proposed GNN based
reranking method to enhance the passage retrieval results in the retrieving module.
Extensive experiments on common ODQA benchmark datasets (Natural Question
and TriviaQA) demonstrate that KG-FiD can improve vanilla FiD by up to 1.5%
on answer exact match score and achieve comparable performance with FiD with
only 40% of computation cost.

1 INTRODUCTION

Open-Domain Question Answering (ODQA) is the task of answering natural language questions in
open domains. A successful ODQA model relies on the acquisition of world knowledge. A popular
line of works assume that the knowledge is explicitly stored in an extensive accessible external cor-
pus. They first retrieve a small number of passages from the unstructured text corpus by a retriever
module and then process the retrieved passages to generate answer by a reader module (Karpukhin
et al., 2020; Guu et al., 2020; Izacard & Grave, 2020b). One of the early representative works in
this paradigm is DrQA (Chen et al., 2017), which uses a TF-IDF based retriever and a neural reader
to extract answer from the retrieved passages. With the development of Pre-trained Language Mod-
els (PLMs), it shows that dense passage retrieval (DPR) (Karpukhin et al., 2020; Qu et al., 2021)
outperforms TF-IDF based retrieval (Chen et al., 2017; Yang et al., 2019). And generative QA sys-
tems (Lewis et al., 2020; Roberts et al., 2020) outperform extraction based systems (Devlin et al.,
2018; Guu et al., 2020).

Among these readers, Fusion-in-Decoder (FiD) (Izacard & Grave, 2020a) achieves the state-of-the-
art performance in ODQA by building generative seq2seq model T5 (Raffel et al., 2019) on top of
DPR retrieved passages. The key benefit of FiD is that the answer decoder can efficiently fuse the in-
formation from multiple passages. In detail, it separately encodes retrieved passages, each appended
with question, and then concatenates all resulting passage token embeddings to send to the decoder.
Although being effective, FiD has two main drawbacks. (1) Effectiveness. Some of the retrieved
passages are irrelevant to the input question, which can be noise and hurt the model performance.
(2) Efficiency. Jointly modeling all retrieved passages (100 in the original paper) is inefficient and
limits the real application of such model. Simply reducing the number of retrieved passages sent to

1

Under review as a conference paper at ICLR 2022

the reader will significantly reduce the model performance (Izacard & Grave, 2020a). Therefore, it
still remains unstudied how one can improve both the effectiveness and efficiency of FiD.

Besides unstructured text corpus, the world knowledge required to answer questions also exists in
knowledge graphs (KG), which represent entities and relations in a structural way. Based on the
alignment information between KG entities and passages, one can apply KG to build the inter-
relationship between retrieved passages to improve the retrieval accuracy. Thus, we propose a novel
method KG-FiD to address both the effectiveness and efficiency drawbacks of FiD by jointly training
knowledge graph based passage reranking with answer decoder.

To improve effectiveness, KG-FiD employs passage reranking with knowledge graph, by applying
graph neural networks (GNNs) to model structural and semantic information of passages and output
scores for reranking. To initialize the node embeddings of GNN, we use the passage embeddings
output from the FiD encoder. After reranking the input passages, only a few top-reranked passages
are fed into decoder for answer generation, which reduces the number of noisy passages.

To improve efficiency, KG-FiD adopts the intermediate layer representations instead of the final
layer in the FiD encoder to initiate passage node embeddings for reranking. Then only a few top
reranked passages will be passed into the higher layers of encoder and the decoder for answer gen-
eration. This is coupled with a joint training of passage reranking and answer generation. As shown
in Section 4.3, this can significantly reduce computation cost while still maintaining a good answer
generation performance.

Furthermore, instead of directly using the DPR retriever as the original FiD paper, we propose to
apply the GNN based reranking model after the DPR retriever to enhance passage retrieval results
and further boost the performance of our model. We use the passage embeddings generated by DPR
to initial the node embeddings of GNN, which allows reranking from a much larger set of initial
candidate passages from DPR to enhance coverage of answers.

We summarize our contributions as follows:
1. We are the first work fusing knowledge graph information into FiD for open domain QA.

2. We are the first work to jointly optimize graph-based reranker and decoder in FiD. And we
propose a solution to make our model KG-FiD much more efficient than vanilla FiD.

3. We conduct extensive experiments on commonly-used ODQA benchmark datasets: Natural
Questions and TriviaQA. The results show that KG-FiD can significantly improve both the accuracy
and efficiency of baseline models. KG-FiD outperforms the vanilla FiD by up to 1.5% in answer
exact match score and achieves on-par performance with FiD with only 40% of its computation cost.

2 RELATED WORK

ODQA with text corpus ODQA usually assumes that a large external knowledge source is ac-
cessible and can be leveraged to help answer prediction. For example, previous works (Chen et al.,
2017; Karpukhin et al., 2020; Izacard & Grave, 2020a) mainly use Wikipedia as knowledge source
which contains millions of text passages. In this case, current ODQA models mainly contains a re-
triever to select related passages and a reader to generate the answer based on the retrieved passages.
Thus, the follow-up works mainly aim to: (1) Improve retriever: from sparse retrieval based on TF-
IDF or BM25 (Chen et al., 2017; Yang et al., 2019) to dense retrieval (Karpukhin et al., 2020) based
on contextualized embeddings generated by pre-trained language models (PLMs). Moreover, some
further improvement are also proposed such as better training strategy (Qu et al., 2021), rerank-
ing based on retrieved passages (Wang et al., 2018; Nogueira & Cho, 2019; Mao et al., 2021), and
knowledge distillation from reader to retriever (Izacard & Grave, 2020b); (2) Improve the reader:
changing from Recurrent Neural Network (Chen et al., 2017) to PLMs such as extractive reader
BERT (Karpukhin et al., 2020; Iyer et al., 2021; Guu et al., 2020) and generative reader BART and
T5 (Izacard & Grave, 2020a; Lewis et al., 2020). Besides, some works (Guu et al., 2020; Lewis
et al., 2020; Sachan et al., 2021a) have shown that additional unsupervised pre-training on retrieval-
related language modeling tasks can further improve ODQA performance. However, none of them
studied the noise and inefficiency issues of the current best-performed reader FiD (Izacard & Grave,
2020a).

2

Under review as a conference paper at ICLR 2022

Encoder
L1 Layers

Text
Knowledge

Source

DPR
Retriever

P1

P3

P5

P6

P2

P4

P7
P8

KG

Decoder

Input
Question

Encoder
L1 Layers

Encoder
L-L1 Layers

Encoder
L1 Layers

Encoder
L1 Layers

Concatenation

Output
Answer

P1

P3

P5

P2

P7

Question + P1

Question + P2

Question + P3

Question + P5

Encoder
L1 Layers

Question + P7

Encoder
L-L1 Layers Retrieved

Passages &
Embeddings

Graph-based Reranking Joint Passage Reranking & Answer Generation

When did the Yankees
move to New York?

1903

New York
Yankees

Yankee
Stadium

Staten Island
Yankees

New York
Yankees

OperatorYankee
Stadium

New York
Yankees

Parent
Club

Staten Island
Yankees

......

N0
 Passages N1

 Passages

N2
 Passages

Figure 1: Overall Model Framework. Pi indicates the node of the passage originally ranked the i-th
by the DPR retriever, with the article title below it. The left part shows passage retrieval by DPR,
passage graph construction based on KG (Section 3.1) and graph based retriever reranking (Section
3.4). The right part shows how we improve the FiD reader by joint passage reranking and answer
generation (Section 3.2 and 3.3).

ODQA with knowledge graph Besides the unstructured text corpus, world knowledge also exists
in knowledge graphs (KGs), which represent entities and relations in a structural way. Some works
(Berant et al., 2013; Sun et al., 2018; 2019; Xiong et al., 2019) restrict the answer to be entities
in the knowledge graph and focus on the modeling of entity and relation embeddings for answer
prediction. While our work focus on more general ODQA setting where the answer can be any
words or phrases. Under this setting, some recent efforts have been made to leverage knowledge
graphs for ODQA. For example, UniK-QA (Oguz et al., 2020) transforms KG triplets into text
sentences and combine them into text corpus, which loses structure information of KG. Other works
use KG to build relationship among passages similar to ours. KAQA (Zhou et al., 2020) use passage
graph to propagate passage retrieve scores and answer span scores. Graph-Retriever (Min et al.,
2019) iteratively retrieve passages based on the relationship between passages, and also use passage
graph to improve passage selection in an extractive reader. However, none of them studied applying
KG to improve the FiD model.

3 METHOD

The overview of our framework is illustrated in Figure 1. Given an input question, we first apply
DPR (Karpukhin et al., 2020), a BERT-based dual-encoder framework, to retrieve candidate pas-
sages from the large corpus. Then the reading module read the retrieved passages, along with the
question, to generate an answer. In this work, we use Fusion-in-Decoder (FiD) model for the reading
module which achieves the state-of-the-art reader performance.

As the focus in this work is to improve FiD via knowledge graph (KG), we first introduce how to
apply KG to build a graph structure among the retrieved passages (Section 3.1). Then we illustrate
improving the effectiveness of FiD by graph based reranking (Section 3.2) and improving the effi-
ciency of FiD by using intermediate layer representation (Section 3.3). Finally we show how we
adopt the graph based reranking method with DPR retriever to further boost model performance
(Section 3.4).

3

Under review as a conference paper at ICLR 2022

3.1 CONSTRUCT PASSAGE GRAPH USING KG

The intuition behind using KG is that there exists the structural relationship among the retrieved
passages which can be captured by the KG. Similar to Min et al. (2019), we construct the passage
graph where vertices are passages of text and the edges represent the relationships that are derived
from the external KGs as KG = {(eh, r, et)}, where eh, r, et are the head entity, relation and tail
entity of a triplet respectively.

First, we formalize the definition of a passage. Following previous works (Wang et al., 2019;
Karpukhin et al., 2020), each article in the text corpus is split into multiple disjoint text blocks
of 100 words called passages, which serve as the basic retrieval units. We assume there is a one-
one mapping between the KG entities and articles in the text corpus. Specifically, we use English
Wikipedia as the text corpus and English Wikidata (Vrandečić & Krötzsch, 2014) as the knowledge
graph, since there exists an alignment between the two resources1. For example, for the article titled
with “New York Yankees”, it contains passages such as “The New York Yankees are an American
professional baseball team ...”. The article also corresponds to a KG entity with the same name as
“New York Yankees”.

Then we define the mapping function e = f(p), where the KG entity e corresponds to the article
which p belongs to. Note that one passage can only be mapped to one entity, but multiple passages
could be mapped to the same entity. The final passage graph is defined as G = {(pi, pj)}, where
passages pi and pj are connected if and only if their mapped entities are directly connected in the
KG, i.e., (f(pi), r, f(pj)) ∈ KG.

Since the total number of passages is very large, e.g., more than 20M in Wikipedia, constructing and
maintaining a graph over all the passages is inefficient and memory-consuming. Thus, we build a
passage graph on the fly for each question, based on the retrieved passages.

3.2 IMPROVING FID EFFECTIVENESS VIA GRAPH-BASED RERANKING

In this section, we briefly introduce the vanilla FiD reading module before illustrating our graph-
based passage reranking method. By default, we suppose the reader takes N1 = 100 retrieved
passages {pr1 , pr2 , · · · , prN1

} as input.

Vanilla Reading Module: We denote the hidden dimension asH and number of encoder layers and
decoder layers as L, FiD first separately encodes each passage pri concatenated with question q:

P(0)
i = T5-Embed(q + pri) ∈ RTp×H , P(l)

i = T5-Encoderl(P
(l−1)
i) ∈ RTp×H (1)

where Tp is the sequence length of a passage concatenated with the question. T5-Embed(·) is the
initial embedding layer of T5 model (Raffel et al., 2019) and T5-Encoderl(·) is the l-th layer of
its encoder module. Then the token embeddings of all passages output from the last layer of the
encoder are concatenated and sent to the decoder to generate the answer tokens A:

A = T5-Decoder([P(L)
1 ;P(L)

2 ; · · · ;P(L)
N1

] ∈ RN1Tp×H) (2)

Graph-based Passage Reranking: Since the decoding process of vanilla FiD will jointly model
all the retrieved passages, it becomes vulnerable to the noisy irrelevant passages. Thus, we propose
to rerank the input N1 passages during the encoding and only select top-N2 (N2 < N1) reranked
passages into the decoder. By such reranking, we aim to filter out irrelevant passages so that they’ll
not go through the decoding process.

Our model is based on both the structural graph information and the textual semantic information of
passages. The previous section introduced the construction of passage graph, which we denote as G1.
To represent the semantic information of passages, one can use another pre-trained language model
to encode the passage texts, but it can incur heavy computational cost as N1 is large and introduce
lots of additional model parameters. Here we propose to reuse the encoder-generated question-
aware passage representation from FiD for passage reranking as it is already computed in Equation
1. Specifically, the initial passage embeddings Z(0)

i comes from the [CLS] token embedding of

1Entity recognition and linking can be used if there is no such alignment.

4

Under review as a conference paper at ICLR 2022

the final layer in the FiD-Encoder, i.e., Z(0)
i = P(L)

i ([CLS]). In this way, no additional contextual
computation is needed for reranking.

We then employ a GAT (Veličković et al., 2017) with Lg layers as the graph neural network (GNN)
model to update representations for each node based on the passage graph. The l-th layer of the
GNN model updates the embedding of node i as follows:

Z
(l)
i = h(Z

(l−1)
i , {Z(l−1)

j }(i,j)∈G1) (3)

where h is usually a non-linear learnable function which aggregates the embeddings of the node
itself and its neighbor nodes. The reranking score of passage i is calculated by si = WTZ

(Lg)
i

where W is a trainable model parameter. After reranking, the final top-N2 (N2 < N1) passages are
sent for decoding. Suppose their indices are {g1, g2, · · · , gN2

}, the decoding process is:

A = T5-Decoder([P(L)
g1 ;P(L)

g2 ; · · · ;P(L)
gN2

] ∈ RN2Tp×H) (4)

The training loss of passage ranking for each question is:

Lr = −
N1∑
i=1

yi log ŷi, where ŷi =
exp(si)∑N1

j=1 exp(sj)
(5)

where yi = 1 if pri is the gold passage2 that contains the answer, and 0 otherwise. As a result, the
passage reranking and answer generation are jointly trained. We denote the answer generation loss
for each question is La, then the final training loss of our reader module is L = La + λLr, where λ
is a hyper-parameter which controls the weight of our proposed reranking task in the total loss.

3.3 IMPROVING FID EFFICIENCY VIA INTERMEDIATE REPRESENTATION

Recall that in the section 3.2, we take the passage representation from the last layer of FiD-encoder
for passage reranking. In this section, we propose to further reduce the computation cost by taking
the intermediate layer representation rather than the last layer. Besides efficiency, another intuition
is that answer generation task is more difficult than passage reranking which only needs to predict
whether the passage contains the answer or not. Thus we may not need the representation from the
whole encoder module for passage reranking.

Suppose we take the representation from the L1-th layer (1 ≤ L1 < L), i.e., Z(0)
i = P(L1)

i ([CLS])
for i ∈ {1, 2, · · · , N1}, and the reranking method remains the same. Then only the top-N2 (N2 <
N1) reranked passages will go through the rest layers of FiD-encoder. Suppose their indices are
{g1, g2, · · · , gN2}, for l ≥ L1 + 1:

P(l)
i =

{
T5-Encoderl(P

(l−1)
i), if i ∈ {g1, g2, · · · gN2

}
Stop-Computing else,

(6)

Then P(L)
g1 ,P

(L)
g2 , · · · ,P

(L)
gN2

are sent into the decoder for answer generation as in Equation 4. In
Section 4.3, we demonstrate this can reduce 60% computation cost than the original FiD while
keeping the on-par performance on two benchmark datasets.

Then we analyze the time complexity of our proposed KG-FiD. Suppose the length of answer se-
quence A is denoted as Ta. For vanilla FiD reader, the time complexity of the encoder module
is O(L · N1 · T 2

p), where L,N1 denote the number of encoder layers and the retrieved passages
for reading and Tp is the average length of the passage. The square comes from the self-attention
mechanism. The decoder time complexity is O(L · (N1 · Tp · Ta + T 2

a)), where N1 · Tp · Ta comes
from the cross-attention mechanism. For our reading module, all the N1 candidate passages are
processed by the first L1 layers of encoder. But only N2 passages are processed by the remaining
L−L1 encoder layers and sent into the decoder. Thus, the encoder computation complexity becomes
O((L1 ·N1 + (L−L1) ·N2) · T 2

p), and the decoder computation takes O(L · (N2 · Tp · Ta + T 2
a)).

Because L1 < L,N2 < N1, both the encoding and decoding of our method is more efficient than
vanilla FiD.

2We follow (Karpukhin et al., 2020) on the definition of gold passages.

5

Under review as a conference paper at ICLR 2022

Furthermore, suppose the answer is much shorter than the passage (which is the case in our experi-
ments), i.e., Ta � Tp. Then the decoding computation is negligible compared to the encoding. In
this case, the approximated ratio of saved computation cost brought by our proposed method is:

1−
(L1 ·N1 + (L− L1) ·N2) · T 2

p

L ·N1 · T 2
p

= (1− L1

L
)(1− N2

N1
)

This shows that we can reduce more computation cost by decreasing L1 or N2. For example, if
setting L1 = L/2, N2 = N1/5, we can reduce 40% of computation cost. More empirical results
and discussions will be presented in Section 4.3.

3.4 APPLYING GRAPH-BASED RERANKING FOR RETRIEVER

Our framework applies DPR (Karpukhin et al., 2020) as the retriever, which applies a BERT based
passage encoder to encode all theN passages in the text corpus {p1, p2, · · · , pN}. In this section, we
apply the proposed graph-based reranking for improving passage retrieval, since DPR independently
retrieve N1 passages based on the similarity with input question without considering inter-passage
relationship. Besides, we note that there still exists valuable information out of the N1 passages.
Thus we propose to retrieve N0 (N0 > N1) passages, then rerank them and finally input top-N1

reranked passages into the reader.

Suppose all the passage embeddings are fixed and stored in memory as M ∈ RN×D where D is the
hidden dimension. For an input question q, DPR applies a BERT based question encoder to obtain
its representation Q:

Mi = BERTpassage(pi) for i ∈ {1, 2, · · ·N}, Q = BERTquestion(q) (7)

Then it applies FAISS (Johnson et al., 2019) to conduct fast dot-product similarity search between
Q and M , and returns N0 (N0 � N) passages with the highest similarity scores.

Following Section 3.1, we construct a graph among the N0 passages denoted as G′1. To avoid
additional computation cost, we propose to reuse the offline passage embeddings M generated
from the DPR retriever in Equation 7 as the initial passage representation: E

(0)
i = Mri for

i ∈ {1, 2, · · · , N0}. We then employ an Lg-layer GAT (Veličković et al., 2017) model to update
passage node embeddings: E(Lg) = GAT(E(0),G′1), which are used for reranking. Specifically,
the reranking score for each passage pri is calculated by si = QTE

(L)
i , where Q is the question

embedding also generated by the retriever in Equation 7. Then we sort the retrieved passages by the
reranking scores, and input the top-N1 passages into the reader. To train the reranking, we adopt the
same loss function as Equation 5.

As we only add a lightweight graph neural network and reuse the pre-computed and static DPR
passage embeddings, our reranking module can process a large number of candidate passages effi-
ciently for each question. This is different with the reader module, where the passage representation
generation requires on-the-fly processing of a large pre-trained language model (T5-encoder). In
experiments, we set N0 = 1000, N1 = 100. In Section 4.4, we demonstrate that such reranking can
further boost the performance.

4 EXPERIMENT

In this section, we conduct extensive experiments on two most commonly-used ODQA benchmark
datasets: Natural Questions (NQ) (Kwiatkowski et al., 2019), which is based on Google Search
Queries, and TriviaQA (Joshi et al., 2017), which contains questions from trivia and quiz-league
websites. We follow the same setting as Izacard & Grave (2020a) to preprocess these datasets,
which is introduced in Appendix A.1. All our experiments are conducted on 8 Tesla A100 40Gb
GPUs.

4.1 IMPLEMENTATION DETAILS

Knowledge Source: Following Karpukhin et al. (2020); Izacard & Grave (2020a), we use the En-
glish Wikipedia as the text corpus, and apply the same preprocessing to divide them into disjoint

6

Under review as a conference paper at ICLR 2022

passages with 100 words, which produces 21M passages in total. For the knowledge graph, we use
English Wikidata. The number of aligned entities, relations and triplets among these entities are
2.7M, 974 and 14M respectively.

Model Details: For the retrieving module, we use the DPR retriever (Karpukhin et al., 2020) which
contains two BERT (base) models for encoding question and passage separately. For the GNN
reranking models, we adopt 3-layer Graph Attention Networks (GAT) (Veličković et al., 2017). We
also try different GNN model type and number of layers, which will be illustrated in Section 4.4. For
the reading module, same as Izacard & Grave (2020a), we initialize it with the pretrained T5-base
and T5-large models (Raffel et al., 2019). Our implementation is based on the HuggingFace Trans-
formers library (Wolf et al., 2019). For number of passages, we setN0 = 1000, N1 = 100, N2 = 20.
We include the results of hyper-parameter search in Appendix A.3.

Training Process: For training our framework, we adopt the separate-training strategy: we first
train the DPR model following its original paper, then freeze the DPR model to train the reranking
in the retriever module, and finally the KG-FiD . For the training of retriever module, the optimizer
is AdamW with learning rate as 1e-3 and linear-decay scheduler. The weight decay rate is 0.01.
Batch size is set as 64. The number of total training steps is 15k, and the model is evaluated every
500 steps and the model with best validation results is saved as the final model. For the training of
KG-FiD , we adopt the same training setting except that the learning rate is 1e-4 for the base model
and 5e-5 for the large model. We also adopt learning rate warm up with 1000 steps.

Evaluation: We follow the standard evaluation metric of answer prediction in ODQA, which is
the exact match score (EM) (Rajpurkar et al., 2016). A generated answer is considered correct if it
matches any answer in the list of acceptable answers after normalization3. For all the experiments,
we conduct 5 runs with different random seeds and report the averaged scores.

4.2 BASELINE METHODS

We mainly compare KG-FiD with the baseline model FiD (Izacard & Grave, 2020a). We also
experiment with its variants FiD-KD (Izacard & Grave, 2020b), which trains a better retriever by
performing knowledge distillation from the FiD reader. We adopt the retriever from FiD-KD to
replace the DPR retriever , which we name as KG-FiD-KD. For other baselines, we compare with
the state-of-the-art methods from each category: (1) leveraging knowledge graphs: Graph-Retriever
(Min et al., 2019), KAQA (Zhou et al., 2020), and UniK-QA (Oguz et al., 2020); (2) performing
additional unsupervised pre-training on a large corpus: REALM (Guu et al., 2020), RAG (Lewis
et al., 2020), Joint Top-K (Sachan et al., 2021a) and EMDR2 (Sachan et al., 2021b); (3) hybrid
methods which contains multiple readers: R2-D2 (Fajcik et al., 2021), UnitedQA (Cheng et al.,
2021).

4.3 MAIN RESULTS

Comparison with Baselines: Table 1 shows the results of our method and all baselines. We
see that our proposed model KG-FiD consistently and significantly improves FiD on both NQ and
TriviaQA datasets over both base and large model. Specifically, for large model, KG-FiD improves
FiD by 1.5% and 1.1% on two datasets respectively. When equipped with the retriever of FiD-KD,
our model (denoted as KG-FiD-KD) also brings consistent improvements, such as 0.8% and 0.5%
on base model over two datasets respectively. From the table, we see that our model KG-FiD-KD
(large) outperforms all the baseline methods except two hybrid models R2-D2 and UnitedQA, which
contain much more model parameters and complicated pipelines such as the combination of multiple
readers. Even compared with the two hybrid models, our method significantly outperforms them on
the TriviaQA dataset.

Efficiency & Accuracy: Table 2 show the comparison between our method and FiD in the large
version. The results of base version is shown in Appendix A.3. We see that for KG-FiD, decreasing
L1 can improve the computation efficiency as analyzed in Section 3.3, while increasing L1 can
improve the model performance. We think the performance improvement comes from the noise
reduction of passage filtering. For a larger L1, the passage embeddings for reranking will have a
better quality so that the gold passages are less likely to be filtered out. It’s important to note that

3The normalization includes lowercasing and removing articles, punctuation and duplicated whitespace.

7

Under review as a conference paper at ICLR 2022

Model #params NQ TriviaQA
Graph-Retriever (Min et al., 2019) 110M 34.7 55.8
KAQA (Zhou et al., 2020) 110M - 66.6
UniK-QA (Oguz et al., 2020)? 990M 54.0 64.1
REALM (Guu et al., 2020) 330M 40.4 -
RAG (Lewis et al., 2020) 626M 44.5 56.1
Joint Top-k (Sachan et al., 2021a) 440M 49.2 64.8
EMDR2 (Sachan et al., 2021b) 440M 52.5 71.4
R2-D2 (Fajcik et al., 2021)† 1.4B 55.0 69.9
UnitedQA (Cheng et al., 2021)† 2.1B 54.7 70.5
FiD (base) (Izacard & Grave, 2020a) 440M 48.2 65.0
FiD (large) (Izacard & Grave, 2020a) 990M 51.4 67.6
FiD-KD (base) (Izacard & Grave, 2020b) 440M 49.6 68.8
FiD-KD (large) (Izacard & Grave, 2020b) 990M 53.7 72.1

Our Implementation
FiD (base) 440M 48.8 66.2
KG-FiD (base) 443M 49.6 66.7
FiD (large) 990M 51.9 68.7
KG-FiD (large) 994M 53.4 69.8
FiD-KD (base) 440M 50.0 68.5
KG-FiD-KD (base) 443M 50.8 69.0
FiD-KD (large) 990M 53.7 72.1
KG-FiD-KD (large) 994M 54.2 72.3

Table 1: Exact match score of different models over the test sets of NQ and TriviaQA datasets. ?
means that additional knowledge source like tables is used in this method. † stands for hybrid models
where multiple readers are used. All the baseline results are directly taken from the original papers
except the ones under Our Implementation.

Model Computation Cost NQ TriviaQA

dev test dev test
FiD (large) 100% 50.1 51.9 68.1 68.7
KG-FiD (large, L1=6) 40% 50.0 52.0 68.5 68.9
KG-FiD (large, L1=12) 60% 50.3 52.3 68.8 69.2
KG-FiD (large, L1=18) 80% 50.9 52.6 69.1 69.8
KG-FiD (large, L1=24) 100% 51.3 53.4 69.2 69.8

Table 2: Exact match score of FiD (large) and KG-FiD (large) with different computation cost.

our model can achieve the performance on par with FiD with only 40% of computation cost. When
consuming the same amount of computations (L1 = 24), our model significantly outperforms FiD
on both NQ and TriviaQA datasets respectively. These experiments demonstrate that our model is
very flexible and can improve both the efficiency and effectiveness by changing L1.

4.4 ABLATION STUDY

Since our proposed graph-based reranking method can be applied in both reading and retrieving
modules: joint passage reranking and answer generation (Section 3.2) and graph based reranking af-
ter retrieving (Section 3.4). We conduct ablation study to validate the effectiveness of each one. For
simplicity, we name the former one as Reader-Reranking and the latter one as Retriever-Reranking.
Table 3 shows the experiment results by removing each module. We see the performance of KG-
FiD drops when removing any of the two modules, demonstrating both of them can improve model
performance. Another thing we observe is that retriever-reranking is more effective in base model
while reader-reranking is more effective in large model. This is reasonable since reader-reranking
relies on the effectiveness of reader encoder module, where large model is better than base model.

8

Under review as a conference paper at ICLR 2022

Model NQ TriviaQA

base large base large
FiD 48.8 51.9 66.2 68.7
KG-FiD 49.6 53.4 66.7 69.8
w/o Retriever-Reranking 49.3 53.1 66.2 69.5
w/o Reader-Reranking 49.4 52.3 66.5 69.2

Table 3: Ablation study of our graph-based reranking method in retriever and reader modules. EM
scores are reported.

Model NQ TriviaQA

w/ KG w/o KG w/ KG w/o KG
Retriever-Reranking 49.4 49.0 66.5 66.2
Reader-Reranking (base, L1=3) 48.2 47.1 65.4 65.0
Reader-Reranking (base, L1=6) 48.8 48.4 65.6 65.3
Reader-Reranking (base, L1=9) 48.9 48.8 66.0 66.0
Reader-Reranking (base, L1=12) 49.3 49.3 66.2 66.2

Table 4: Ablation study on the effectiveness of KG in our proposed reranking method in two mod-
ules. w/ KG refers to using GNN for passage reranking as our current model while w/o KG refers
to using MLP instead of GNN. EM scores are reported.

Model NQ TriviaQA

H@10 H@20 H@50 H@100 H@10 H@20 H@50 H@100
DPR 74.8 79.2 83.7 86.3 76.3 79.7 83.2 85.2
w/ Retriever-Reranking 77.1 81.4 85.4 87.5 77.3 80.7 83.9 85.8

Table 5: Passage Retrieval Results. H@K is the Hits@K metric, measuring the percentage of top-K
retrieved passages that contain the ground-truth passage.

Effectiveness of KG: Table 4 shows the comparison results of using KG or not in the retriever-
reranking and reader-reranking modules. If not using KG, we apply a Multi-layer Perceptron (MLP)
as the reranking model instead of GNN. We see that in the retriever-reranking part, using KG can
significantly improve the model performance. For reader-reranking part, we see that the effect of
KG varies with the choice of L1, number of layers to compute passage representation for reranking.
The larger improvement comes from the smaller L1. This is reasonable since when L1 is small,
the quality of initial node embeddings generated by L1 layers of encoder is sub-optimal, hence the
graph structure information becomes more important. In summary, for the reader module, KG is
more useful when we want to reduce computation cost by setting a small L1.

Passage Reranking Results: We additionally show that our proposed GNN reranking method can
improve the passage retrieval results. This is demonstrated in Table 5, where we report Hits@K
metric (H@K), measuring the percentage of top-K retrieved passages that contain the gold passages
(passages that contain the answer). We see that DPR w/ KG-Reranking consistently outperforms
DPR for all the K ∈ {10, 20, 50, 100}, which shows that such reranking can increase the rank of
gold passages which are previously ranked lower by DPR.

5 CONCLUSION

This work tackles the task of Open-Domain Question Answering. We focus on the current best
performed reader model FiD and propose a novel KG-based reranking method to improve both its
effectiveness and efficiency. Our reranking model reuses the passage representation generated by the
reader encoder and apply graph neural networks to compute reranking scores. We propose to use
the intermediate layer of encoder to reduce computation cost while maintaining good performance.
We further show that our GNN based reranking method can also be applied to retriever to further
boost model performance. Experiments on Natural Question and TriviaQA show that our model can
significantly improve original FiD by 1.5% and achieve on-par performance with FiD but reducing
60% of computation cost.

9

Under review as a conference paper at ICLR 2022

REFERENCES

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic parsing on freebase from
question-answer pairs. In Proceedings of the 2013 conference on empirical methods in natural
language processing, pp. 1533–1544, 2013.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading wikipedia to answer open-
domain questions. arXiv preprint arXiv:1704.00051, 2017.

Hao Cheng, Yelong Shen, Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. Unitedqa:
A hybrid approach for open domain question answering. arXiv preprint arXiv:2101.00178, 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Martin Fajcik, Martin Docekal, Karel Ondrej, and Pavel Smrz. Pruning the index contents for
memory efficient open-domain qa. arXiv preprint arXiv:2102.10697, 2021.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang. Realm: Retrieval-
augmented language model pre-training. arXiv preprint arXiv:2002.08909, 2020.

Srinivasan Iyer, Sewon Min, Yashar Mehdad, and Wen-tau Yih. Reconsider: Improved re-ranking
using span-focused cross-attention for open domain question answering. In Proceedings of the
2021 Conference of the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, pp. 1280–1287, 2021.

Gautier Izacard and Edouard Grave. Leveraging passage retrieval with generative models for open
domain question answering. arXiv preprint arXiv:2007.01282, 2020a.

Gautier Izacard and Edouard Grave. Distilling knowledge from reader to retriever for question
answering. arXiv preprint arXiv:2012.04584, 2020b.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus. IEEE
Transactions on Big Data, 2019.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehension. arXiv preprint arXiv:1705.03551, 2017.

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. arXiv
preprint arXiv:2004.04906, 2020.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a
benchmark for question answering research. Transactions of the Association for Computational
Linguistics, 7:453–466, 2019.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented gener-
ation for knowledge-intensive nlp tasks. arXiv preprint arXiv:2005.11401, 2020.

Yuning Mao, Pengcheng He, Xiaodong Liu, Yelong Shen, Jianfeng Gao, Jiawei Han, and Weizhu
Chen. Reader-guided passage reranking for open-domain question answering. arXiv preprint
arXiv:2101.00294, 2021.

Sewon Min, Danqi Chen, Luke Zettlemoyer, and Hannaneh Hajishirzi. Knowledge guided text
retrieval and reading for open domain question answering. arXiv preprint arXiv:1911.03868,
2019.

Rodrigo Nogueira and Kyunghyun Cho. Passage re-ranking with bert. arXiv preprint
arXiv:1901.04085, 2019.

10

Under review as a conference paper at ICLR 2022

Barlas Oguz, Xilun Chen, Vladimir Karpukhin, Stan Peshterliev, Dmytro Okhonko, Michael
Schlichtkrull, Sonal Gupta, Yashar Mehdad, and Scott Yih. Unified open-domain question an-
swering with structured and unstructured knowledge. arXiv preprint arXiv:2012.14610, 2020.

Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang Ren, Wayne Xin Zhao, Daxiang Dong, Hua
Wu, and Haifeng Wang. Rocketqa: An optimized training approach to dense passage retrieval for
open-domain question answering. In Proceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, pp.
5835–5847, 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. arXiv preprint arXiv:1910.10683, 2019.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

Adam Roberts, Colin Raffel, and Noam Shazeer. How much knowledge can you pack into the
parameters of a language model? arXiv preprint arXiv:2002.08910, 2020.

Devendra Singh Sachan, Mostofa Patwary, Mohammad Shoeybi, Neel Kant, Wei Ping, William L
Hamilton, and Bryan Catanzaro. End-to-end training of neural retrievers for open-domain ques-
tion answering. arXiv preprint arXiv:2101.00408, 2021a.

Devendra Singh Sachan, Siva Reddy, William Hamilton, Chris Dyer, and Dani Yogatama. End-to-
end training of multi-document reader and retriever for open-domain question answering. arXiv
preprint arXiv:2106.05346, 2021b.

Haitian Sun, Bhuwan Dhingra, Manzil Zaheer, Kathryn Mazaitis, Ruslan Salakhutdinov, and
William W Cohen. Open domain question answering using early fusion of knowledge bases
and text. arXiv preprint arXiv:1809.00782, 2018.

Haitian Sun, Tania Bedrax-Weiss, and William W Cohen. Pullnet: Open domain question answering
with iterative retrieval on knowledge bases and text. arXiv preprint arXiv:1904.09537, 2019.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Petar Veličković, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and R Devon
Hjelm. Deep graph infomax. arXiv preprint arXiv:1809.10341, 2018.

Denny Vrandečić and Markus Krötzsch. Wikidata: a free collaborative knowledgebase. Communi-
cations of the ACM, 57(10):78–85, 2014.

Shuohang Wang, Mo Yu, Xiaoxiao Guo, Zhiguo Wang, Tim Klinger, Wei Zhang, Shiyu Chang,
Gerry Tesauro, Bowen Zhou, and Jing Jiang. R 3: Reinforced ranker-reader for open-domain
question answering. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

Zhiguo Wang, Patrick Ng, Xiaofei Ma, Ramesh Nallapati, and Bing Xiang. Multi-passage
bert: A globally normalized bert model for open-domain question answering. arXiv preprint
arXiv:1908.08167, 2019.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

Wenhan Xiong, Mo Yu, Shiyu Chang, Xiaoxiao Guo, and William Yang Wang. Improving question
answering over incomplete kbs with knowledge-aware reader. arXiv preprint arXiv:1905.07098,
2019.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

11

Under review as a conference paper at ICLR 2022

Wei Yang, Yuqing Xie, Aileen Lin, Xingyu Li, Luchen Tan, Kun Xiong, Ming Li, and Jimmy Lin.
End-to-end open-domain question answering with bertserini. arXiv preprint arXiv:1902.01718,
2019.

Mantong Zhou, Zhouxing Shi, Minlie Huang, and Xiaoyan Zhu. Knowledge-aided open-domain
question answering. arXiv preprint arXiv:2006.05244, 2020.

12

Under review as a conference paper at ICLR 2022

(a) Results on NQ (b) Results on TriviaQA

(c) Results on NQ (d) Results on TriviaQA

Figure 2: Preliminary Analysis on the retrieved passages by DPR.

A APPENDIX

A.1 DATASET

The datasets we use are Natural Questions (NQ) and TriviaQA. The open-domain version of NQ is
obtained by discarding answers with more than 5 tokens. For TriviaQA, its unfiltered version is used
for ODQA. We also convert all letters of answers in lowercase except the first letter of each word on
TriviaQA. When training on NQ, we sample the answer target among the given list of answers, while
for TriviaQA, we use the unique human-generated answer as generation target. For both datasets,
we use the original validation data as test data, and keep 10% of the training set for validation.

A.2 PRELIMINARY ANALYSIS

We conduct preliminary analysis on the graph constructed among passages. Note that for each
question, we first apply the retriever to retrieve a few candidate passages, then build edge connection
only among the retrieved passages, which means that the passage graph is question-specific. Since
the passage graph depends on the retrieved passages, before further utilizing the graph, we need
avoid two trivia situations: (1) all the retrieved passages come from the same article (2) The number
of graph edges is very small. Thus we conduct statistics of the passage graphs on two ODQA
benchmark datasets, which is shown in Figure 2. For each question, the number of retrieved passages
is 100. We see that the two trivia situations only happen for a small portion of questions.

A.3 ADDITIONAL EXPERIMENT RESULTS

We show additional experiment results in this section, which includes the efficiency and performance
comparison between FiD (base) and KG-FiD (base) shown in Table 6, and hyper-parameter search
results listed below:

GNN Model Design: We conduct search on the model type and number of layers of our GNN based
reranking model. For efficiency, we rerank 100 passages returned by DPR retriever and search
them based on the passage retrieval results. Table 8 shows the Hits scores for different choices.
We see that GAT outperforms vanilla GCN model (Kipf & Welling, 2016) which is reasonable
since GAT leverage attention to reweight neighbor passages by their embeddings. The best choice

13

Under review as a conference paper at ICLR 2022

Model Computation Cost NQ TriviaQA

dev test dev test
FiD (base) 100% 47.0 48.8 65.4 66.2
KG-FiD (base, L1=3) 40% 46.7 48.4 64.9 65.6
KG-FiD (base, L1=6) 60% 47.2 49.0 65.2 66.1
KG-FiD (base, L1=9) 80% 47.4 49.3 65.7 66.3
KG-FiD (base, L1=12) 100% 48.0 49.6 66.0 66.7

Table 6: Exact match score of FiD (large) and KG-FiD (large) with different computation cost.

Model N2=10 N2=20 N2=30
KG-FiD 47.6 48.0 48.0

λ=0.01 λ=0.1 λ=1.0
KG-FiD 47.7 48.0 46.6

Table 7: EM scores on NQ dev data of our
model under different choices of filtered pas-
sage numbers and weights of reranking loss.

Model H@1 H@5 H@10 H@20
GCN 49.1 69.7 75.7 79.9
GAT 50.1 70.1 76.1 80.2

#Layers
1 49.0 69.7 75.8 79.8
2 49.6 70.0 76.0 80.2
3 50.1 70.1 76.1 80.2
4 49.5 69.9 76.1 80.1

Table 8: Passage Retrieval Results on NQ
dev data of our model under different GNN
types and number of layers.

for the number of GNN layers is 3. Note that other GNN models such as GIN (Xu et al., 2018),
DGI (Veličković et al., 2018) can also be applied here and we leave the further exploration of GNN
models as future work.

N2 and λ. For the reader-reranking part, we also conduct hyper-parameter search on the number
of passages after filtering: N2 ∈ {10, 20, 30} and the weight of reranking loss when training the
reading module: λ ∈ {0.01, 0.1, 1.0}. As shown in Table 7, N2 = 20 achieves better results than
N2 = 10, but further increasing N2 does not bring performance gain while decreasing the efficiency
of model since the number of passages to be processed by the decoder is increased. Thus we choose
N2 = 20. For the loss weight λ, we found that with its increment, the performance first increases
then significantly drops. This shows that it’s important to balance the weight of two training losses,
as we want the model to learn better passage reranking while not overwhelming the training signal
of answer generation.

14

	Introduction
	Related Work
	Method
	Construct Passage Graph using KG
	Improving FiD Effectiveness via Graph-based Reranking
	Improving FiD Efficiency via Intermediate Representation
	Applying Graph-based Reranking for Retriever

	Experiment
	Implementation Details
	Baseline Methods
	Main Results
	Ablation Study

	Conclusion
	Appendix
	Dataset
	Preliminary Analysis
	Additional Experiment Results

