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Abstract
Embedding and visualization techniques are es-
sential for analyzing high-dimensional data, but
they often struggle with complex data governed
by multiple latent variables, potentially distorting
key structural characteristics. This paper consid-
ers scenarios where the observed features can be
partitioned into mutually exclusive subsets, each
capturing a different smooth substructure. In such
cases, visualizing the data based on each feature
partition can better characterize the underlying
processes and structures in the data, leading to im-
proved interpretability. To partition the features,
we propose solving an optimization problem that
promotes graph Laplacian-based smoothness in
each partition, thereby prioritizing partitions with
simpler geometric structures. Our approach gen-
eralizes traditional embedding and visualization
techniques, allowing them to learn multiple em-
beddings simultaneously. We establish that if sev-
eral independent or partially dependent manifolds
are embedded in distinct feature subsets in high-
dimensional space, then our framework can reli-
ably identify the correct subsets with theoretical
guarantees. Finally, we demonstrate the effec-
tiveness of our approach in extracting multiple
low-dimensional structures and partially indepen-
dent processes from both simulated and real data.

1. Introduction
Dimensionality reduction methods are crucial for extracting
scientific insights from high-dimensional data by embed-
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ding it in a low-dimensional space, making it more suitable
for visualization and downstream analysis. Such methods
aim to reduce the dimensionality of a dataset while pre-
serving its underlying structural characteristics. Specifically,
given N observations with D features, {yi}Ni=1 ⊂ RD, stan-
dard techniques such as Laplacian Eigenmaps (Belkin &
Niyogi, 2003), Diffusion Maps (Coifman & Lafon, 2006), t-
distributed Stochastic Neighbor Embedding (tSNE) (Van der
Maaten & Hinton, 2008), and UMAP (McInnes et al., 2018),
first construct an N ×N similarity graph between the given
data points using all D features. Then, they embed the
N graph nodes in a low-dimensional space where certain
structural characteristics of the graph are preserved.

However, when the data’s underlying structure is highly
complex, standard methods may struggle to accurately cap-
ture and embed it in low dimensions. In particular, we
are motivated by settings where several different groups
of features are governed by distinct latent variables, each
representing a unique low-dimensional substructure. If the
number of unique latent variables is large, visualizing the
data using all features with tSNE or UMAP can severely
distort the data’s underlying structure and fail to disentan-
gle distinct latent variables (Kohli et al., 2021; Chari &
Pachter, 2023). For Laplacian Eigenmaps and Diffusion
Maps, there is significant redundancy in their representation
that grows non-linearly with the number of underlying latent
variables (Blau & Michaeli, 2017). This phenomenon is due
to the eigenstructure of the graph Laplacian, where many
eigenvectors are dependent and represent overlapping direc-
tions of variation. As a result, when the number of latent
variables is large, the embedding dimension may need to
substantially exceed it to fully capture the data’s structure.

To address this challenge, we propose to partition first, em-
bed later, namely a procedure for partitioning the features of
a dataset into disjoint subsets, such that they exhibit simpler
structures across the samples compared to the entire dataset.
Specifically, given a prescribed number of partitions K, we
propose to learn a partitioning of the D features into K
mutually exclusive subsets and K corresponding similarity
graphs of size N ×N . Each similarity graph describes the
pairwise affinities between all N observations when consid-
ering only the corresponding subset of features. By creating
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(a) The observed data and the traditional approach (b) Our proposed approach

Figure 1. Illustration of our setting and proposed approach. (a) Simulated data consisting of two distinct substructures governed by
independent latent variables: a closed loop (depicted in blue) and a helical curve (depicted in orange). Each substructure is embedded
within a specific (unknown) subset of the observed features. The tSNE embedding, based on all features, is presented on the right in two
panels: the top panel is colored according to the blue variable, while the bottom panel is colored according to the orange variable. (b) Our
approach effectively divides the features into two subsets (K=2), with each subset consistently capturing information from only one of the
underlying structures (blue and orange). Using these features, the tSNE embeddings for each feature partition can be used to recover
the driving latent variables. The structure of each embedding (illustrated on the right), which is based solely on one subset of features,
corresponds to one of the distinct latent variables (indicated by blue or orange).

separate graphs based on different sets of features, we can
decompose complex data into simpler substructures, thereby
better capturing their underlying patterns. Moreover, if each
feature subset describes a low-dimensional geometry, it can
be embedded and visualized more effectively than the entire
dataset using all features. Multiple low-dimensional em-
beddings that capture different substructures in the data are
often easier to interpret than a single embedding in higher-
dimensional space; see Figure 1. For further discussions on
selecting the number of partitions K and validating that our
approach leads to a simplified data representation, we refer
the reader to Appendix G.

The setting where distinct feature subsets may contain
unique geometric structures is widespread in applications.
In hyperspectral imaging, different feature groups corre-
spond to different wavelengths, which capture distinct chem-
ical or physical phenomena of the observed materials or en-
vironment (Gowen et al., 2015; Khan et al., 2018). Similarly,
in astrophysics, different spectral bands of electromagnetic
radiation serve as feature groups in the data, capturing dis-
tinct astrophysical phenomena such as interstellar extinction
and gravitational waves (Indebetouw et al., 2005; Burke-
Spolaor et al., 2019). In cellular biology and genomics,
different groups of genes are associated with distinct cellu-
lar processes (Sastry et al., 2019; Lamoureux et al., 2021),
as exemplified in Section 5.2.

To find the best feature partitions and their associated simi-

larity graphs, we propose minimizing an objective function
that relies on a certain graph Laplacian-based smoothness
score. Our approach naturally extends the graph construc-
tion step in common embedding and visualization tech-
niques, such as tSNE and Diffusion Maps, by enabling the
simultaneous learning of multiple graphs from adaptively
chosen feature partitions. We analyze this objective function
in a setup where multiple low-dimensional manifolds are
embedded in a high-dimensional space, possibly with partial
dependence. We show that, in a suitable asymptotic regime
with high dimension and large sample size, the minimum is
attained only when the features are correctly partitioned into
subsets that contain the individual embedded manifolds.

In Figure 1, we illustrate our approach on a high-
dimensional dataset where two distinct low-dimensional
latent structures are embedded within different, unknown
feature subsets (depicted in orange and blue). The tradi-
tional tSNE embedding, constructed using all features, fails
to reveal these underlying structures, resulting in a convo-
luted representation. In contrast, our method automatically
uncovers and partitions the features associated with each
latent structure, effectively disentangling the data. The re-
sulting tSNE embeddings, generated separately for each par-
tition, distinctly capture the corresponding latent variables,
providing a more interpretable and structured visualization.
Importantly, the latent variables governing each feature sub-
set are not restricted to a single dimension but can represent

2



Partition First, Embed Later: Feature Partitioning for Refined Embedding and Visualization of High-Dimensional Data

more complex low-dimensional geometries, reinforcing the
need for feature partitioning before embedding.

2. Related Work
Feature partitioning has been explored in bi-
clustering (Dhillon, 2001; Kluger et al., 2003), where
the objective is to simultaneously cluster features and
observations into subsets with similar entries or corre-
lated rows/columns. Additionally, traditional clustering
techniques, such as k-means (Lloyd, 1982) and spectral
clustering (Ng et al., 2001), can be adapted for feature
partitioning by treating each feature vector as a sample
in RN . Our approach differs from such methods in that
it does not require features to have similar values or be
correlated in order to be grouped together. Instead, we
group features based on shared latent variables, which
we identify from the inferred geometric structure across
the samples. This enables more general and flexible
partitioning of features into groups. Indeed, we demonstrate
in Section 5.1 and Appendix D that conventional clustering
and bi-clustering methods fail to correctly partition features
in several experiments with both simulated and real data.

A closely related research area is unsupervised feature se-
lection, which focuses on identifying important data fea-
tures (Lindenbaum et al., 2021; Shaham et al., 2022). These
methods typically utilize a similarity graph constructed us-
ing all features to rank the features according to a Laplacian-
based smoothness score. However, these methods only
retain a subset of the features, which may not represent all
the latent variables of the data. Moreover, these methods do
not specify which selected features correspond to distinct
substructures in the data. In contrast, our approach does not
lose any information since it retains all features in the data.
Moreover, it separates the features into interpretable groups
that can be embedded and visualized more effectively.

Another related line of work focuses on decoupling data
from a product-manifold (Zhang et al., 2021; He et al.,
2023). This line of work is applicable to our setup if differ-
ent feature groups are sampled from statistically indepen-
dent manifolds. These methods attempt to deconvolve the
eigenstructure of the graph Laplacian constructed using all
the features to recover the graph Laplacians of the individual
manifolds. One major limitation of such approaches is that
the statistical error in the estimate of graph Laplacian-based
quantities grows exponentially with the intrinsic dimen-
sion (Singer, 2006). Hence, these methods are prone to
large errors if the product manifold is governed by many
independent latent variables. In contrast, our approach de-
composes the product manifold into individual manifolds
with low intrinsic dimensions, allowing for a much more
accurate construction of graph Laplacians for each manifold.
Moreover, our approach supports cases where the subsets

of features forming the data are partially dependent (see
Sections 4 and 5) — a scenario that cannot be addressed by
existing product-manifold decoupling techniques.

An alternative approach was introduced by (Van der Maaten
& Hinton, 2012), who extended the tSNE algorithm to gen-
erate multiple embeddings of the data. Their method con-
structs a single affinity matrix from the high-dimensional
data and produces several low-dimensional embeddings
whose integration (via a specialized combination rule) best
approximates the original affinity matrix. In contrast, our
approach directly constructs multiple affinity matrices by
partitioning the features into groups that capture distinct low-
dimensional substructures. Each of these feature groups can
be used to generate a separate embedding, enabling a more
accurate representation of the underlying geometry—often
obscured when relying on a single global affinity matrix.

Finally, we mention Independent Subspace Analysis (ISA)
and related techniques (Theis, 2006; Niu et al., 2010), which
seek linear projections of the data into subspaces that are
statistically independent or contain distinct structures. In
high dimensions, these subspaces have many more degrees
of freedom than the partitions learned by our approach,
which can be prohibitive from a computational and statisti-
cal perspective (Bickel et al., 2018). Additionally, the ana-
lytical properties of these methods are not well understood
in high-dimensional settings, especially when the substruc-
tures in the data are partially dependent. In contrast, our
approach provides theoretical guarantees on accurate recov-
ery of feature partitions in challenging high-dimensional
scenarios, even under partial dependence between latent
variables across partitions.

Notations: Bold symbols represent vectors or matrices. The
d-th coordinate of a vector y is denoted by (y)d or yd. For
any x ∈ RD and ω ∈ RD

+ , denote the weighted norm by
∥x∥2ω =

∑D
d=1 ωd(x)

2
d.

3. Our Approach
This section presents the necessary background, motivation,
and details of our proposed approach. First, in Section 3.1,
we review the construction of similarity graphs from data
and introduce the key concept of data smoothness defined
over these graphs. Next, in Section 3.2, we formulate an
optimization problem that adaptively partitions features into
disjoint subsets and constructs corresponding graphs to max-
imize the total smoothness of the data. The proofs for this
section are provided in Appendix I.1.

3.1. Traditional graph construction and the graph
smoothness score

Given a set of observed data points y1, . . . ,yN ∈ RD,
common embedding and visualization techniques initially
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construct a graph representing their pairwise similarities. A
popular choice of the graph affinity matrix W ∈ [0, 1]N×N

is a row-normalized Gaussian kernel defined by

Wi,j =


exp(−∥yi−yj∥

2/ϵi)∑N
t=1 exp(−∥yi−yt∥2/ϵi)

i ̸= j

0 i = j
(1)

for all i, j = 1, . . . , N , where {ϵi}Ni=1 ⊂ R+ represent
bandwidth parameters controlling the effective neighbor-
hood size around each point. Zeroing out the main diag-
onal aligns with tSNE’s graph construction step and also
makes the resulting affinity matrix W more robust to noise
(Karoui, 2010; Landa et al., 2021). Other embedding tech-
niques, such as Diffusion Maps and Laplacian Eigenmaps,
construct the affinity matrix without zeroing out the main
diagonal and with a single global bandwidth parameter.

The tSNE algorithm determines the bandwidth parameters
ϵ1, . . . , ϵN from (1) by imposing an entropy constraint on
the rows of W . This constraint is given by

N∑
j=1

Wi,j logWi,j ≤ − log(α), (2)

for i ∈ {1, . . . , N}, where α denotes a predefined global
neighborhood size parameter known as the perplexity, typ-
ically set between 5 and 30. The tSNE graph construc-
tion enforces this constraint by adjusting the bandwidth
parameters {ϵi} adaptively to the local sampling density.
In contrast, other common graph construction techniques
usually employ a global bandwidth constraint of the form
ϵ1 = . . . = ϵN discussed in (Singer et al., 2009).

Many feature selection methods (He et al., 2005; Linden-
baum et al., 2021) utilize the affinity matrix for identifying
a meaningful subset of features. In particular, given some
affinity matrix W̃ ∈ [0, 1]N×N that encodes the similarity
between each pair of data points, these methods utilize a
score of the form

S(W̃ , d, {yi}Ni=1) =

N∑
i,j=1

W̃i,j

(
(yi)d − (yj)d

)2
, (3)

to measure the smoothness of the dth coordinate of the
data over the graph. This score is often referred to as the
Laplacian score (He et al., 2005) for certain choices of the
affinity matrix W̃ . Summing this score over all coordinates,
we define the graph smoothness score by

J(W̃ , {yi}Ni=1) =

N∑
i,j=1

W̃i,j∥yi − yj∥2. (4)

The following proposition shows that the affinity matrix W
defined in (1) minimizes the graph smoothness score in (4),
subject to constraints of perplexity and stochasticity for each
row (while zeroing out the main diagonal).

Proposition 3.1. The matrix W ∈ [0, 1]N×N defined in (1)
is a solution to

argmin
˜W∈[0,1]N×N

J(W̃ , {yi}Ni=1), (5)

subject to the constraints W̃i.i = 0,
∑N

j=1 W̃i,j = 1 and∑N
j=1 W̃i,j log W̃i,j ≤ − log(α) for all i ∈ {1, . . . , N},

where ϵ1, . . . , ϵN ∈ R+ from (1) are the minimum values
that satisfy the entropy constraint.

Similar results appeared in (Cuturi, 2013; Van Assel et al.,
2024) under slightly different constraints.

If the data is sampled from a Riemannian manifold and the
bandwidth parameters ϵ1, . . . , ϵN ∈ R+ are fixed as con-
stants (ignoring the entropy constraints), then the following
proposition characterizes the relation between the objective
function in (5) and the manifold’s intrinsic dimension.

Proposition 3.2. Let M ⊂ RD be a smooth, compact,
Riemannian manifold with intrinsic dimension dim(M) <
D. Suppose y1, . . . ,yN ∈ M are sampled independently
from a smooth non-vanishing density f over M, and let
W be defined as in (1). Then, for all i ∈ {1, . . . , N} and
sufficiently small ϵ1, . . . , ϵN ∈ R+ , we have

N∑
j=1

Wi,j∥yi − yj∥2
a.s.−→

N→∞

ϵi
2
· dim(M) +O(ϵ2i ). (6)

Hence, for the affinity matrix W from (1) with sufficiently
small bandwidth parameters, the objective function in (5)
approximates the intrinsic dimension of the manifold multi-
plied by the sum of bandwidth parameters. This quantity is
smaller for manifolds with lower intrinsic dimensions, i.e.,
simpler manifolds governed by fewer latent variables, or
when the bandwidth parameters {ϵi} are smaller.

3.2. Feature Partitioning and Multi-Graph Learning

Given the dataset y1, . . . ,yN ∈ RD, we propose to parti-
tion the D features into K mutually exclusive subsets, each
accompanied by a corresponding N ×N affinity matrix. In-
tuitively, the data restricted to each subset of features should
have a simpler geometric structure than the data across all
features combined. To find the feature partitions and their
associated graphs, we propose to minimize the sum of graph
smoothness scores from (4) over all feature partitions.

Concretely, let {ω̃(1), . . . , ω̃(K)} ∈ {0, 1}D be a feasible
feature partitioning, where ω̃

(k)
d = 1 if the dth feature is

used within the kth partition, and ω̃
(k)
d = 0 otherwise. The

feature partitions cover all features and are mutually ex-
clusive; namely, they satisfy

∑K
k=1 ω̃

(k)
d = 1 for all d ∈

{1, . . . , D}. The affinity matrices corresponding to the K
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partitions are denoted by W̃
(1)

, . . . , W̃
(K) ⊂ [0, 1]N×N .

We now extend the graph smoothness score defined in (4)
to support multiple feature partitions as

G({W̃ (k)}Kk=1, {ω̃(k)}Kk=1, {yi}Ni=1) (7)

=

K∑
k=1

N∑
i,j=1

W̃
(k)
i,j ∥yi − yj∥2ω̃(k) ,

recalling that ∥v∥2
ω̃(k) =

∑D
d=1 ω̃

(k)
d v2d for any v ∈

RD. Notably, when all the affinity matrices are the

same (W̃
(1)

= . . . = W̃
(K)

= W̃ ), then this
score coincides with the score defined in (4), i.e.,
G({W̃ (k)}Kk=1, {ω̃

(k)}Kk=1, {yi}Ni=1) = J(W̃ , {yi}Ni=1).

We define the following optimization problem to determine
the feature partitions and corresponding affinity matrices.

Problem 3.3.

min{
˜W

(k)
}
,
{
ω̃(k)

}G({W̃ (k)}Kk=1, {ω̃(k)}Kk=1, {yi}Ni=1), (8)

under the constraints
∑K

k=1 ω̃
(k)
d = 1,

∑N
j=1 W̃

(k)
i,j = 1,

W̃
(k)
i,i = 0, and

∑N
j=1 W̃

(k)
i,j log

(
W̃

(k)
i,j

)
≤ − log(α), for

i = 1, . . . , N , k = 1, . . . ,K, and d = 1, . . . , D, where α
is a perplexity parameter.

Next, we characterize the solutions to Problem 3.3.

Proposition 3.4. There exists an optimal partitioning
solution {ω(k)}Kk=1 and corresponding affinity matrices
{W (k)}Kk=1 that solve Problem 3.3 and are of the form

W
(k)
i,j =


exp
(
−∥yi−yj∥

2

ω(k)/ϵk,i

)
∑

t̸=i exp
(
−∥yi−yt∥

2

ω(k)
/ϵk,i

) if i ̸= j

0 else

,(9)

ω
(k)
d =

{
1 if k = k̃ for some k̃ ∈ Ω(d)
0 else

, (10)

Ω(d) = argmin
k∈{1,...,K}

S(W (k), d, {yi}Ni=1), (11)

for d = 1, . . . , D and i, j = 1, . . . , N , where the bandwidth
parameters {ϵk,i} ⊂ R+ are the minimum values that sat-
isfy the entropy constraints in Problem 3.3, and S is the
Laplacian-type score defined in (3).

We see that the affinity matrix W (k) is simply a row-
normalized Gaussian kernel constructed from the features in
the kth partition, analogously to the traditional construction
in (1) using all features. Additionally, the dth feature of the
data is assigned to the kth partition if it is smoother with
respect to the affinity matrix W (k) than the other affinity
matrices, as measured by the Laplacian-type score in the

right-hand side of (11). Thus, our approach naturally ex-
tends the traditional graph construction techniques discussed
in Section 3.1 by forming multiple graphs from disjoint fea-
ture partitions, which are optimized to minimize the total
smoothness of the features across their associated graphs.

To further motivate Problem 3.3, consider data formed by
concatenating K feature groups, where the features in each
group were sampled independently from a different Rie-
mannian manifold. In this case, under the optimal solution
from Proposition 3.4, the objective function in (8) converges
to a weighted sum of the manifolds’ intrinsic dimensions
(see Proposition 3.2). The weights depend on the corre-
sponding bandwidth parameters {ϵk,i}, which are set to
enforce the negative entropy constraints. However, for an
incorrect partitioning — where features from different man-
ifolds are mixed in each partition — the intrinsic dimension
of the data in each partition would be higher. Consequently,
the required bandwidth parameters that satisfy the entropy
constraints would be larger. Overall, we can interpret the
optimization problem as dividing the feature space into par-
titions whose intrinsic dimensions are as small as possible.

We now consider the task of solving Problem 3.3. A natu-
ral strategy is alternating minimization, where the objective
function is minimized over the graph parameters while keep-
ing feature partitions fixed, and vice versa. The solution to
each step of this alternating minimization is given explicitly
by Proposition 3.4. Unfortunately, due to the binary nature
of the feature partitions, this procedure is sensitive to local
minima. To address this issue, in Appendix C we introduce
a regularized variant of the objective function (see Prob-
lem C.1) that produces a soft assignment of features instead
of hard assignments into partitions (see Proposition C.2).
Our proposed algorithm (see Algorithm 1 in Appendix C)
solves several instances of the regularized problem sequen-
tially, each with a reduced regularization parameter, ini-
tialized with the solution to the previous instance of the
regularized problem. In the final step, the regularization
parameter reaches zero, thereby minimizing the original
unregularized problem. This sequence of solutions to the
regularized problems is less likely to get stuck in a local
minimum compared to solving the unregularized problem
directly; see Appendix C for more details.

4. Analysis
In this section, we analyze a variant of the feature partition-
ing problem (see Problem 3.3) under a data generative model
with K partially dependent subsets of features. We investi-
gate the objective function landscape in a high-dimensional
asymptotic regime and establish that its minimizer recov-
ers the correct feature partitions. Additionally, numerical
results in Appendix E demonstrate that the landscape of this
variant closely mirrors that of the original problem. The
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proofs for this section are provided in Appendix I.2.

We define a variant of the graph smoothness score as

G̃
(
ϵ, {W̃ (k)}Kk=1, {ω̃(k)}Kk=1, {yi}Ni=1

)
(12)

=

K∑
k=1

N∑
i,j=1

W̃
(k)
i,j ·

∥yi − yj∥2ω̃(k)

(1/D)
∑

d ω̃
(k)
d

.

This variant adjusts the Laplacian-based score by normaliz-
ing the portion related to each partition based on the average
number of features used within that partition. This adjust-
ment accounts for the changes made to the optimization
problem, which we define next. As we will show, these
modified formulations will retain key properties of the orig-
inal problem.

Building on this score, we propose to analyze a simplified
variant of Problem 3.3, aimed at identifying the feature
partitions and their associated affinity matrices. This ver-
sion adopts a regularized minimization framework that in-
corporates the negative entropy constraint directly into the
objective, enabling a more tractable analysis.

Problem 4.1. Consider the optimization problem defined
by

min{
˜W

(k)
}

k

,
{
ω̃(k)

}
k

G̃
(
{W̃ (k)}Kk=1, {ω̃}Kk=1, {yi}Ni=1

)
(13)

+ϵ

K∑
k=1

N∑
i,j=1

W̃
(k)
i,j log

(
W̃

(k)
i,j

)

with the following constraints
∑K

k=1 ω̃
(k)
d = 1,∑N

j=1 W̃
(k)
i,j = 1, W̃

(k)
i,i = 0, for i = 1, . . . , N , k =

1, . . . ,K and d = 1, . . . , D.

We characterize the affinity matrices that minimize this
objective in the following corollary.

Corollary 4.2. Let {ω̃(k)} be a partitioning that satisfies
the constraints in Problem 4.1. Then, graph affinity matrices
that minimize (13) while fixing the partitioning parameters
{ω̃(k)} are

W
(k)
i,j =


exp

−
∥yi−yj∥

2

ω̃(k)

ϵ·(1/D)
∑D

d=1
ω̃
(k)
d


∑N

t=1 exp

−
∥yi−yt∥

2

ω̃(k)

ϵ·(1/D)
∑D

d=1
ω̃
(k)
d

 if i ̸= j

0 else

(14)

for i, j = 1, . . . , N and k = 1, . . . ,K.

Note that the effective bandwidth parameter of each W (k)

adapt according to the number of features in its correspond-
ing partition ω(k), for k = 1, . . . ,K.

Next, we derive the asymptotic value of the objective un-
der a high-dimensional regime. We consider a genera-
tive data model in which the observed space is based on
subsets of features that exhibit partial dependence. Let
M1 ⊂ Rd1 . . . ,MK+1 ⊂ RdK+1 be latent smooth com-
pact Riemannian manifolds with corresponding smooth,
non-vanishing densities f1, . . . , fK+1. The latent samples
{x(s)

i }Ni=1 ∈ Ms are independently sampled according to
fs for s = 1, . . . ,K +1. The observed data points, denoted
by {yi}Ni=1 ∈ RD, are constructed by

yT
i =

(
(y

(1)
i )T , . . . (y

(K)
i )T

)
∈ RD, (15)

y
(s)
i = P (s)

[
x
(s)
i

x
(K+1)
i

]
∈ RDs s = 1, . . . ,K,

for i = 1, . . . , N , where D =
∑K

s=1 Ds, and the entries of
P (s) ∈ RDs×(dk+dK+1) are independently sampled from
N (0, 1/Ds) for s = 1, . . . ,K.

To establish a direct correspondence between each partition
ω(k) and the true K partitions used in the construction of the
observation space, we denote ω(k) = (ω(k,1), . . . ,ω(k,K))
for k = 1, . . . ,K. We define the relative proportion with
respect to each true partition by

∑Ds

d=1 ω
(k,s)
d /Ds → p

(k)
s ∈

(0, 1), for any k, s ∈ {1 . . . ,K}, where
∑K

k=1 p
(k)
s = 1 for

all s.

The next theorem characterizes the objective function of
Problem 4.1 in a high-dimensional asymptotic regime where
D,N → ∞ and D/ log(N) → ∞. We assume that the
relative size of each feature subset satisfies Ds/D → βs ∈
(0, 1) for any s ∈ {1, . . . ,K}, where β ∈ (0, 1)K and∑K

s=1 βs = 1.
Theorem 4.3. There exists ϵ̄(M, f) ≤ 1 such that for any
ϵ < ϵ̄ and p

(k)
s ∈ [

√
ϵ, 1− (K − 1)

√
ϵ], any partitioning so-

lution {ω(k)} (obeying Problem 4.1’s constraints) satisfies

min{
˜W

(k)
} 1

ϵN

(
G̃(
{
W̃

(k)
}
,
{
ω(k)

}
, {yi}) (16)

+ϵ

(
K∑

k=1

N∑
i,j=1

W̃
(k)
i,j log(W̃

(k)
i,j )

))
+K log(N − 1)

a.s.−→
N,D→∞

K∑
k=1

dim(MK+1)

2
log

( ∑K
s=1 p

(k)
s∑K

t=1 p
(k)
t βt

)
(17)

+

K∑
k,s=1

dim(Ms)

2
log

(
p
(k)
s∑K

t=1 p
(k)
t βt

)

+K

K+1∑
s=1

(
hs(fs)−

dim(Ms) log(πϵ)

2

)
+O(

√
ϵ),

where hs(fs) = −
∫
z∈Ms

fs(z) log fs(z)dz is the differ-
ential entropy of the density fs overMs.
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(a)

(b)

Figure 2. Product of 2-dimensional ellipsoids. (a) Simulated data
including N = 1000 samples in R6, where the first three coordi-
nates describe one ellipsoid and the last three describe another, and
both parameterized by polar angles depicted by colored ellipses.
In the first scenario, the ellipsoids are independent (Top). In con-
trast, in the second, they are partially dependent (Bottom) since
one polar angle is shared between the two ellipsoids (the black
ellipse). (b) The absolute value of the feature–feature correlation
matrix of the two datasets. For clarity, we slightly abuse notation
by using yd, or correspondingly ỹd, to denote the dth coordinate
(i.e., feature) of the data.

Evidently, only the first two terms in (17) are affected by the
feature partitions, while the rest depend on ϵ, the manifolds’
properties, and their densities. In the following theorem, we
show that the minimizer of (17) in the case of two partitions
(K = 2) accurately separates the data features as ϵ→ 0.

Theorem 4.4. Let K = 2, and define f : (0, 1)2 → R by

f(p1, p2) =

K∑
k=1

dim(MK+1)

2
log

( ∑K
s=1 p

(k)
s∑K

t=1 p
(k)
t βt

)
(18)

+

K∑
k,s=1

dim(Ms)

2
log

(
p
(k)
s∑K

t=1 p
(k)
t βt

)
,

where p
(1)
1 = p1 and p

(1)
2 = p2 and therefore p

(2)
1 =

1 − p
(1)
1 , p(2)2 = 1 − p

(2)
2 . Then, the limiting minimizer

(p∗1, p
∗
2) = limϵ→0 argminp1,p2∈[

√
ϵ,1−

√
ϵ]2 f(p1, p2) is

either (0, 1) or (1, 0).

Table 1. Performance of different methods for partitioning the fea-
tures for the two scenarios shown in Figure 2. The partitioning
error is the number of coordinates assigned incorrectly, averaged
over 100 randomized experiments, and the standard deviation is
shown in parentheses. The correct partition should separate the first
three coordinates from the last three, thereby correctly capturing
the two ellipsoid structures.

METHOD\DATA INDEPENDENT PARTIALLY
DEPENDENT

SPECTRAL 1.85 1.95
CO-CLUSTERING (0.91) (0.8)
SPECTRAL 1.99 2.15
BI-CLUSTERING (0.59) (0.78)
K-MEANS 1.77 2.22
(ON FEATURES) (0.55) (0.74)
SPECTRAL CLUSTERING 1.71 2.2
(ON FEATURES) (0.94) (0.73)
FP (OURS) 0. 0.
ALGORITHM 1 (0.) (0.)

To conclude, we proposed a variant of the feature partition-
ing problem in Problem 4.1 and analyzed its loss landscape
in an asymptotic regime.We considered a data-generating
process where the features are composed of K partially
dependent feature groups, making the partitioning task non-
trivial. Finally, we showed that in this nontrivial case, the
loss is minimized when the partitioning solution aligns with
the ground truth when K = 2. In Appendix E, we show the
close resemblance between the loss landscapes of the exam-
ined problem and Problem 3.3 using a synthetic dataset.

5. Experiments
This section highlights our approach and its advantages
through synthetic and real data. In Section 5.1, we illustrate
and quantify its effectiveness in a controlled environment
using artificial data. Next, in Sections 5.2 and 5.3, we show
the applicability of our approach to two real-world high-
dimensional biological datasets, yielding enhanced visual-
izations that are consistent with known biological processes.
Finally, in Appendix D, we use video data to demonstrate
that our approach can enhance the ability to visualize and
correctly analyze complex datasets.

5.1. Product of 2-Dimensional Ellipsoids

This experiment demonstrates the effectiveness of our ap-
proach in decomposing the data into different substructures
in a controlled environment using synthetic datasets. We
simulated two datasets in R6: one with two independent
feature subsets and another with partially dependent ones,
and the task is to retrieve these subsets (K = 2). In the
independent case, samples are drawn independently from
two rotated 2D ellipsoids in R3, and their coordinates are
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(a) (b)

Figure 3. Partitioning the genes in scRNA-seq data to discover distinct salient cellular processes. (a) The figure includes the tSNE
embeddings using all genes (left) versus genes from partition 1 (middle) and partition 2 (right). Top: Cells colored by cell type, with
partition 1 capturing the LD/UD to DC developmental trajectory. Bottom: Cells colored by cell cycle phase, with partition 2 revealing
cycling progression. (b) A quantitative comparison of embeddings generated by different algorithms, assessing their correspondence with
the two latent processes governing the data via k-nearest neighbor error. The results show that our partitioning approach most effectively
reveals the underlying structure, with each process captured in a distinct partition. See Appendix F.2 for details on the error metric.

stacked to form vectors in R6. In the partially dependent
case, the generating process is the same, except that one of
the polar angles is shared between the ellipsoids. The inde-
pendent (Top) and partially dependent (Bottom) datasets are
visualized in Figure 2(a), and their correlation matrices are
shown in Figure 2(b). See Appendix F.1 for further details.

In Table 1, we assess the performance of several methods
adapted to partition the features in the two scenarios de-
scribed above. The recorded error is the number of coordi-
nates (out of six) assigned incorrectly, averaged over 100
randomized experiments. The results demonstrate that tra-
ditional clustering or bi-clustering approaches cannot be
utilized to solve the problem we consider here. Indeed,
while these approaches perform slightly better in the in-
dependent case than in the (more challenging) dependent
case, they still incur substantial errors in both cases. In
contrast, our proposed approach consistently recovers the
correct partitions across all experiments.

5.2. Dermal scRNA-seq Data

In this experiment, we demonstrate that our approach effec-
tively separates co-occurring biological processes in single-
cell RNA-sequencing data, enabling clear visualization of
each process, thereby improving scientific discovery capa-
bilities. Specifically, we analyze embryonic dermal cells
from mouse skin (Qu et al., 2024), which exhibit two inter-
twined processes: cell cycle progression (G1, G2M, and S
phases) and cell type development (from lower dermal (LD)
to upper dermal (UD) to dermal condensate (DC) cells).

The dataset comprises N = 5572 cells and D = 5000
features, each representing the expression level of a gene

within each cell after standard processing is applied, includ-
ing variability-based feature selection; see Appendix F.2.
The preprocessing is similar to that employed in (Qu et al.,
2024). In that study, the authors examined the genes through
a gene similarity graph derived from the cells’ affinity matrix
and their gene profiles. In contrast, our approach partitions
the genes according to their graph structure, generating a
separate graph for each subset. To motivate the use of our
approach, we note that each of these processes is associ-
ated with different subsets of genes, many of which are
well-characterized (Tirosh et al., 2016).

Using our approach, we partition the genes into two groups
(K = 2). In Figure 3, we compare the tSNE embedding
based on all features with separate tSNE embeddings based
on each extracted partition. The embedding based on all
genes reveals the cell type development (top) but not the cell
cycle phase progression (bottom). In contrast, the partition-
based embeddings reveal both processes: partition 1 cap-
tures the cell type structure, while partition 2 reveals the
cell cycle structure. We further validate these findings in
Appendix F.2. First, Figure 9 demonstrates similar results
using alternative embedding techniques, underscoring the
importance of partitioning. Then, in Figure 10, we repeat
the task with 10,000 features. While the added genes may
introduce variability, our approach still recovers key sub-
structures. Finally, in Figure 11, we repeat the experiment
on a different biological dataset with similar characteristics
and observe consistent results.

In Figure 3(b), we quantitatively compare the embeddings
generated based on our extracted partitions with those pro-
duced by alternative techniques. The evaluated approaches
include: 1) tSNE embedding using all features; 2) two
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tSNE embeddings based on our partitions (‘FP’); 3) two
embeddings of IC-PML (He et al., 2023); 4) a single embed-
ding of LDLE (Kohli et al., 2021); 5) two embeddings of
Multi-tSNE (Van der Maaten & Hinton, 2012); 6) raw data
features; and 7) raw data features after partitioning (‘FP Fea-
tures’). For each approach, we assess the correspondence
between the structure of the provided embeddings and the
latent variables. Specifically, the metric assesses how well
the latent variables are reflected within the local neighbor-
hoods of the embeddings for different neighborhood sizes
(k-Nearest Neighbors), providing a comprehensive view
of the embeddings’ quality; see Appendix F.2 for further
details. Our approach consistently yields the lowest error,
outperforming existing methods when evaluated either on
the raw feature partitions or on their tSNE embeddings.

Importantly, the gene partitions obtained by our approach
are consistent with known biological phenomena: partition
1 includes the genes Sox2 and Foxd1, which are known to
be expressed in DC cell types, as well as the genes Ptch1
and Lef1, known to be expressed in both UD and DC cell
types (Qu et al., 2022). In contrast, partition 2 includes
Mki67 and Ccna2, which are known to be cell cycle genes
(Tirosh et al., 2016). Overall, our approach separates the
genes according to the two underlying biological processes
that govern their expression.

5.3. Liver scRNA-seq Data

In this experiment, we demonstrate our approach on biolog-
ical data whose features are transformed to enable effective
partitioning. Specifically, we consider a single-cell RNA-
sequencing liver lobule dataset (Droin et al., 2021), charac-
terized by two independent latent variables, with multiple
genes influenced by both of them. Here, the raw features
(genes) cannot be partitioned into partially or fully indepen-
dent subsets, making a suitable transformation necessary.

The dataset comprises N = 6889 cells and D = 2000
features, each representing the expression level of a gene
within each cell after standard processing is applied; see
Appendix F.3 for details. The dataset’s structure is governed
by two latent variables: spatial zonation, associated with the
cells’ locations along the liver layers (1–8); and the circa-
dian cycle, associated with the time each cell was sampled
(ZT 0, 6, 12, and 18) within a 24-hour cycle.

Droin et al. (2021) modeled the expression of each gene
across cells based on the cells’ liver layer and sampling time,
with prior knowledge incorporated into the model. They
showed that the two latent variables govern overlapping
subsets of genes. To address this challenge, we decorrelated
the features using principal component analysis (PCA), a
standard preprocessing step in the field (Andrews et al.,
2021). We then applied our approach to the transformed
data, partitioning the new features into K = 2 groups.

In Figure 12, we compare the tSNE embeddings generated
based on each group with a standard tSNE embedding based
on all features. The standard embedding provides a single
visualization where both latent variables are partially visible.
Specifically, the circadian cycle is reflected by four clusters
corresponding to the four sampling time points, although
the cyclic structure is less evident. In contrast, the embed-
ding based on partition 2 reveals both the clusters and the
cyclic structure. Additionally, while zonation is partially
visible within each cluster in the standard embedding, it
is less evident than the clear, progressive pattern seen in
partition 1’s embedding. The latter aligns with the zonation
layers effectively. These results demonstrate the benefit of
our approach in revealing distinct latent variables.

6. Discussion
This paper presents a novel computational framework to
partition the features of a high-dimensional dataset into sub-
sets with simpler underlying structures. Embedding and
visualizing the data using the features of each subset can ef-
fectively reveal these simple structures, which are obscured
in the embedding that uses all the features. We demon-
strate the effectiveness of our approach both analytically
and empirically using simulated and real-world data, even
when the features consist of partially dependent subsets.
In Appendix G, we discuss practical considerations, e.g.,
the selection of the number of feature partitions. Addition-
ally, we include an experiment on a subset of the COIL-20
dataset in Appendix H, demonstrating the effectiveness of
our approach in scenarios where the feature separability
assumption may not hold.

Our approach addresses some of the criticisms of low-
dimensional embeddings raised in (Chari & Pachter, 2023).
In particular, it enables more accurate embedding of sub-
structures with low intrinsic dimensions through the pro-
posed partitioning, as demonstrated in our experiments.
While there is no guarantee that these substructures can be
faithfully visualized in two or three dimensions, the result-
ing partitions remain valuable for a range of analytical tasks
beyond visualization. Thus, by focusing on partitioning the
data into simpler structures, our approach is inherently less
susceptible to such criticism.

We identify several promising directions for future research.
First, developing fully automated methods to determine the
optimal number of partitions K would enhance the practi-
cality of our approach. Second, exploring more efficient op-
timization techniques for Problem 3.3 and deriving convex
relaxations could significantly improve computational effi-
ciency and solution quality. Finally, extending the method
to account for uninformative or nuisance features presents
an important avenue for broadening its applicability.
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A. Code Repository
The code for this paper is given in https://github.com/erezpeter/Feature_Partition.git

B. The Algorithm

Algorithm 1 Feature Partitioning
1: Input: Data samples y1, . . . ,yN ∈ RD; Number of partitions K ∈ N; Number of iterations T .
2: Initialize the feature partition vectors ω(1), . . . ,ω(K) according to

ω
(k)
d =

ω̃
(k)
d∑K

s=1 ω̃
(s)
d

, for k = 1, . . . ,K; d = 1, . . . , D,

where ω̃(1), . . . , ω̃(K) i.i.d.∼ Uniform[0, 1]D.
3: Set δ ← δinit according to (24).
4: for t = 1 to T do
5: if t = T then
6: Set δ ← 0.
7: end if
8: while the score Greg from (19) decreases do
9: (a) Update the affinity matrices W (1), . . . ,W (K) ∈ [0, 1]N×N according to (9).

10: (b) Update feature partition vectors ω(1), . . . ,ω(K) ∈ [0, 1]D according to (21).
11: (c) Compute the new score Greg according to (19).
12: end while
13: Update δ ← δ/2.
14: end for
15: Return ω(1), . . . ,ω(K).

Note: In our simulations, we run this algorithm multiple times with different random initializations and return the solution
with the lowest score.

C. Algorithmic Details
This section presents an algorithm for solving the feature partitioning problem described in Problem 3.3. The algorithm
solves a sequence of regularized versions of this problem sequentially, gradually reducing the regularization until the
problem aligns with the original problem. In this section, we derive the algorithm update formulas, compare it to a naive
solution to Problem 3.3, and analyze its computational complexity. The proofs for this section are given in Appendix I.3.

A direct approach for solving Problem 3.3 naturally arises from Proposition 3.4 in the form of an alternating minimization
procedure, by minimizing the objective function over the partition parameters while keeping the affinity matrices fixed, and
vice-versa. However, such a technique is susceptible to converge to local minima due to the binary nature of the partition
parameters, as illustrated in Figure 4 (rightmost column). In order to address this issue, we define a regularized version of
the problem that allows soft partitions {ω(k)} ⊂ [0, 1]D. The new objective function uses an entropic regularization term
for the weights {ω(k)} with a regularization parameter δ ∈ R+. Specifically, we define the regularized objective function as

Greg(δ, {W̃
(k)}Kk=1, {ω̃(k)}Kk=1, {yi}Ni=1) = G({W̃ (k)}, {ω̃(k)}, {yi}Ni=1) (19)

+δ

(
D log(K) +

D∑
d=1

K∑
k=1

ω̃
(k)
d log(ω̃

(k)
d )

)
,

where G is the objective function of the unregularized problem defined in (7).

The new regularized optimization problem is defined as follows.
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Figure 4. An experiment comparing the landscape and iterations of Algorithm 1 (first three columns) with a naive alternating minimization
technique based on Proposition 3.4 (rightmost column). On the left, each column shows the loss landscape of our regularized loss in
each iteration t ∈ {1, . . . , 3}, where the partitioning updates in steps 5–8 are drawn on top of that. Specifically, in the first row, the loss
landscape consists of varying values of the first two partition coordinates, while the last two are constrained to be the initial solution at this
step. The bottom row is similar, but considers varying values for the third and fourth coordinates, while constraining the first two. The
black arrows depict the partitioning parameter updates applied throughout each algorithm iteration. In the rightmost column, we provide a
similar visualization for the alternating minimization based on the unregularized objective function. The data is composed of N = 400
samples in D = 4 dimensions that consist of two concatenated circles, meaning that the correct solution is ω(1) = (0, 0, 1, 1). In the
regularized case (Left), after the algorithm converges for a specific configuration at t, its updated parameter values are assigned to ω{t+1},
as described in Algorithm 1.

Problem C.1. Let δ ∈ R+. Consider the following minimization problem

min{
˜W

(k)
}K

k=1

,
{
ω̃(k)

}K

k=1

Greg(δ, {W̃
(k)}Kk=1, {ω̃(k)}Kk=1, {yi}Ni=1), (20)

with the constraints:
∑K

k=1 ω̃
(k)
d = 1,

∑N
j=1 W̃

(k)
i,j = 1, W̃ (k)

i,i = 0 and
∑N

j=1 W̃
(k)
i,j log W̃

(k)
i,j ≤ − log(α) for i = 1, . . . , N ,

k = 1, . . . ,K, and d = 1, . . . , D.

Our proposed algorithm (Algorithm 1) aims to solve the original problem (Problem 3.3) by solving a sequence of the
regularized versions of the problem (Problem C.1) with diminishing regularization until the two problems align. Specifically,
it begins by solving Problem C.1 for some δ = δinit, and then uses its solution as the initialization point for solving the
regularized problem with reduced δ. This procedure repeats itself with the lowered value of δ. In the last iteration, the
regularization parameter δ is set to zero to match the unregularized problem.

The entropy regularization modifies the loss landscape to penalize hard partitioning solutions and is intended to prevent rapid
convergence to poor local minima characterized by hard partitions, as discussed in the context of the unregularized objective
at the beginning of the section. Specifically, for any d ∈ {1, . . . , D}, a hard assignment {ω̃(k)}Kk=1 ⊂ {0, 1}D yields zero
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entropy, i.e.,
∑K

k=1 ω̃
(k)
d log ω̃

(k)
d = 0. In contrast, the regularization favors soft assignments {ω̃(k)}Kk=1 ⊂ (0, 1)D, with

the uniform assignment ω̃(k)
d = 1/K for all k ∈ {1, . . . ,K} and d ∈ {1, . . . , D} attaining the minimum negative entropy

of − log(K) (See Theorem 2.6.4 in (Cover & Thomas, 1991)).

We begin by describing the problem’s solution for each δ. Given that there are two sets of parameters—the feature partitions
{ω(k)} and their corresponding affinity matrices {W (k)}—we propose an alternating minimization approach to solve the
regularized problem for each δ. Specifically, the method alternates between minimizing the objective function over the
affinity matrices while keeping the partition weights fixed and vice versa. The solution to each step in the alternating
minimization procedure is described by the following proposition, whose proof can be found in Appendix I.3.

Proposition C.2. Let δ ≥ 0, {ω(k)}Kk=1 ⊂ [0, 1]D be a partitioning weights and {W (k)}Kk=1,⊂ [0, 1]N×N be affinity
matrices that satisfy the constraints of Problem C.1.

Define {W (k)∗} ⊂ [0, 1]N×N as in (9) based on {ω(k)}Kk=1, and {ω(k)∗}Kk=1 by

ω
(k)∗
d = exp

(
−
∑

i,j W
(k)
i,j

(
(yi)d − (yj)d

)2
δ

)
/

K∑
s=1

exp

(
−
∑

i,j W
(s)
i,j

(
(yi)d − (yj)d

)2
δ

)
. (21)

Then, we have that

{W (k)∗} = argmin

{ ˜W
(k)

}

Greg(δ, {W̃
(k)}Kk=1, {ω(k)}Kk=1, {yi}Ni=1), (22)

{ω(k)∗} = argmin
{ω̃(k)}

Greg(δ, {W (k)}Kk=1, {ω̃(k)}Kk=1, {yi}Ni=1). (23)

We now turn to the choice of the initial regularization parameter, δinit, which determines the starting point of the sequential
procedure. In the following proposition, we propose to select δinit such that the regularized objective evaluated at the uniform
partitioning — i.e. ω(k)

d = 1/K for all d ∈ {1, . . . , D} and k ∈ {1, . . . ,K}— is guaranteed to be less than or equal to its
value at any hard partitioning.

Proposition C.3. Let {ω(k)}Kk=1 ⊂ [0, 1]D be a soft uniform partitioning, i.e. ω
(k)
d = 1/K, and let {W (k)}Kk=1 be

the corresponding affinity matrices from Proposition C.2. Let {ω(k)}Kk=1 ⊂ {0, 1}D and {W (k)}Kk=1 be the optimal
partitioning solution as discussed in Proposition 3.4.

Define

δinit ≡ G({W (k)}Kk=1, {ω(k)}Kk=1, {yi}Ni=1)

D · log(K)
. (24)

Then, for any hard partitioning solution {ω̃(k)}Kk=1 ⊂ {0, 1}D and any corresponding affinity matrices {W̃ (k)}Kk=1, we
have:

Greg(δinit, {W
(k)}Kk=1, {ω(k)}Kk=1, {yi}Ni=1) ≤ Greg(δinit, {W̃

(k)}Kk=1, {ω̃(k)}Kk=1, {yi}Ni=1) (25)

The proof of Proposition C.3 can be found in Appendix I.3.

In Algorithm 1, we outline the steps of our proposed feature partitioning procedure based on Propositions C.2 and C.3.
In Figure 4, we illustrate the convergence behavior of our proposed optimization procedure versus a naive alternating
minimization of the unregularized objective function (in Problem 3.3). As observed from the rightmost column, the latter
quickly converges to an incorrect solution. However, as seen from the leftmost column, the regularization guides the solution
towards a uniform partition at t = 1. As the regularization parameter δ{t} decreases (second and third columns from the
left), the solution gradually shifts towards the correct partition.

Determining the Bandwidth Parameters. The expression of the affinity matrices in Proposition C.2 is based
on {ϵk,i}K,N

k=1,i=1 ⊂ [0,∞), which are chosen to be the minimal values that satisfy the entropy constraints

(
∑

j=1 W
(k)∗
i,j logW

(k)∗
i,j ≤ − log(α) for all k = 1, . . . ,K and i = 1, . . . , N ). Our approach for setting the bandwidth
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parameters is very similar to the one used in tSNE, albeit adapted for weighted Euclidean distances (appearing in the form
of the affinity matrices in Proposition C.2) instead of standard Euclidean distance. Specifically, we use a binary–search–like
search to set the bandwidth parameters to satisfy the entropy constraints, as described below.

As the bandwidth parameters are computed independently of each other, we focus on a specific ϵk,i for some i ∈ {1, . . . , N}
and k ∈ {1, . . . ,K}. The behavior of the entropic function

∑N
j=1 W

(k)∗
i,j logW

(k)∗
i,j with respect to ϵk,i can be characterized

by Lemma I.1 in Appendix I.1 (which is used for the proof of Proposition 3.1 and Lemma I.3), where we use the notation
∆j = ∥yi − yj∥2ω(k) for j = 1, . . . , N . Specifically, Lemma I.1 indicates that this entropic function is non-increasing in
ϵk,i and bounded in the interval [− log(N − 1),− log(α̃k,i)], where

α̃k,i = |{j ∈ {1, . . . , N}/{i} : ∥yi − yj∥ω(k) = min
t ̸=i
∥yi − yj∥ω(k)}|. (26)

Moreover, it establishes that as ϵk,i → 0 the entropy converges to− log(α̃k,i), whereas as ϵk,i →∞ it tends to− log(N−1).
Since the entropy is monotonic and bounded with respect to this parameter, we employ a binary-search-like iterative
procedure to efficiently approximate the appropriate value of ϵk,i to within a small error, similarly to the one used in tSNE.

Computational Complexity. We now analyze the computational complexity of the parameter updates shown in Algorithm 1,
which are based on the expressions defined in Proposition C.2. Consider a dataset with N observations in RD, where the
features are partitioned into K subsets. The computational complexity of updating the K partitions and their corresponding
affinity matrices using our approach is O(KN2D), based on the next proposition.

Proposition C.4. Let the data consist of N data points in RD. Then, the computational complexity of obtaining the
partitioning weights {ω(k)∗}Kk=1 and the affinity matrices {W (k)∗}Kk=1, as defined in Proposition C.2, is O(KN2D).

Its proof can be found in Appendix I.3. For reference, the computational cost of the affinity matrix construction in tSNE is
O(N2D). Hence, the computational complexity of our approach incurs an additional factor of K, which is typically small.
Nonetheless, it may be significantly slower than tSNE due to the iterative procedure we employ for solving our optimization
problem.

To enhance scalability, we also describe an implementation that exploits a low-rank approximation of the data, which can
considerably reduce the running time for large datasets. Specifically, we approximate the data by truncating its singular
value decomposition (SVD) to S ≪ min(N,D) leading components, and then use this compact representation to speed up
computations. Subsequently, the computational complexity of updating the K partitions and their corresponding similarity
graphs will reduce to O(K(S2N2 + S2D)); see the following proposition.

Proposition C.5. Let the data consist of N data points in RD. Suppose the data is given in the form of a singular value
decomposition (SVD) approximation of rank S ≪ N,D. Then, the computational complexity of obtaining the partitioning
weights {ω(k)∗}Kk=1 and the affinity matrices {W (k)∗}Kk=1, as defined in Proposition C.2, is O(K(S2N2 + S2D)).

Its proof can be found in Appendix I.3.

D. Additional Experiment Involving Two Concatenated Views of Rotating Figurines
We demonstrate the effectiveness of our approach in disentangling three simultaneously occurring processes, each associated
with a distinct rotating object in a shared scene recorded by two separate cameras. Our method enables clearer visualization
of each process individually and reveals the correspondence between the two imaging sources, effectively integrating their
information.

Specifically, we consider a dynamic scene with three rotating figurines, each spinning at a different angular speed. The
rotation angles define the latent parameters governing the scene (Lederman & Talmon, 2018). Two cameras capture this
scene simultaneously: both record the shared bulldog figurine, while each also captures a unique, camera-specific figurine.
At each time point, the two corresponding image frames—one from each camera—are concatenated horizontally to form
a single, wider image. This sequence of concatenated images constitutes the dataset used in our analysis, comprising
N = 5000 grayscale images with D = 9600 pixels each, as illustrated in Figure 5(a). As a result, each individual camera
view depends on two latent parameters, while the stacked dataset as a whole is governed by all three.

In (Lederman & Talmon, 2018) and similarly in (Lindenbaum et al., 2015), the views were treated separately and then
aligned to extract the shared component. In contrast, our method operates directly on the concatenated dataset, allowing
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(a) Illustration of the data generating process. (b) Quantative comparison.

(c) The three extracted partitions using our approach. (d) tSNE embeddings.

Figure 5. Partitioning and embedding data from two concatenated views of rotating figurines. The dataset consists of N = 5000 grayscale
images, each with D = 9600 pixels, formed by horizontally concatenating synchronized video frames from two different viewing angles
(illustrated in Figure 5(a)). (a) Illustration of the data acquisition setup. At each time point, two cameras simultaneously capture the
scene, each observing two out of three rotating figurines (Yoda, Bulldog, and Bunny), which are rotating at distinct angular speeds. (b)
Quantitative comparison of embeddings produced by various algorithms, evaluated using K-nearest neighbor error against the known
latent angles of the figurines. Our method yields the lowest error, indicating that the extracted partitions best reflect the underlying
structure. Further evaluation details are provided in Appendix D. (c) The three feature partitions identified by our method (indicated by
three different colors). (d) Top row: tSNE embeddings using all pixels, with data points colored by the rotation angle of the Yoda (left),
Bulldog (center), and Bunny (right) figurines. Bottom row: tSNE embeddings based on each extracted partition, colored respectively by
the angle of the figurine best captured by that partition (left: Yoda, center: Bulldog, right: Bunny), as shown in Figure 5(c).
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(a) (b)

Figure 6. Embeddings of two concatenated views of rotating figurines. (a) Top row: Diffusion Maps embedding based on all pixels
colored by the angle of the Yoda (top left), Bulldog (top middle), and Bunny (top right) figurines. Bottom row: tSNE embeddings based
on the first (bottom left), second (bottom middle), and third extracted partitions (bottom right) as shown in Figure 5(c), with data points
colored by the angles of the Yoda, Bulldog, and Bunny figurine, respectively. (b) Embeddings using UMAP analogous to (a).

us to recover the substructure associated with each figurine—including those whose visual footprint spans both camera
views. This leads to better visual separation of the underlying processes and reveals the correspondence between the two
measurement sources.

We apply our approach to the stacked images and extract K = 3 pixel partitions. In Figure 5(d), we compare the tSNE
embedding based on all the pixels with the embedding based on each pixel partition. While the embedding based on all
pixels reflects only the Bunny figurine’s angle, the partition-based embeddings successfully capture the rotational structure
originating from all the figurines, with each embedding corresponding to a specific figurine. In Figures 6(a) and 6(b), we
further compare the embeddings obtained using UMAP and Diffusion Maps to validate the observed structures.

In Figure 5(b), we quantitatively compare the tSNE embeddings generated from our pixel partitions with those produced by
alternative techniques, similarly to the comparison in Section 5.2. The error measure used here differs slightly, as the ground
truth latent variables are continuous rotation angles of three figurines, rather than discrete clusters. Hence, to compute an
error measure for a given embedding of the dataset, we do the following. For each data point i and for each one of the three
rotation angles, we find the k nearest neighbors of point i and the k nearest angles of angle i, and compute the relative set
difference between the two groups. Specifically, the score is defined as the number of neighbors in the angle-based set
that are not present in the embedding-based set, divided by k. This provides three scores of angle inconsistencies for each
point (corresponding to the angles). Following the same procedure used in Section 5.2, we then average these scores across
all data points, producing three error measures that quantify the inconsistency of the embedding with respect to the three
figurines’ angles. For methods that provide a single embedding of the data, we average these three scores, quantifying how
much this embedding is consistent with all the latent processes. For methods that produce three embeddings, we expect each
embedding to be consistent with only one of the latent processes. Therefore, in such cases, we assign to each embedding
only one of its three scores (without repetition) such that the average of the assigned scores is minimized for the three
embeddings.

All methods were applied in a consistent manner with the setup described in Section 5.2, with necessary adjustments to
support the comparison across multiple embeddings when applicable. In particular, for algorithms capable of producing
multiple embeddings, we generated three—one for each latent process. The results demonstrate that our method significantly
outperforms the alternatives in aligning with the underlying rotational structure of the data, highlighting its effectiveness in
disentangling independent sources of variation.

We further evaluate our approach by comparing it to traditional clustering methods when applied to the feature space
instead of the sample space. Specifically, we extract K = 3 partitions using k-means and spectral clustering, treating the
values of each feature across all images as a sample point in RN . We also apply these algorithms with K = 4 to provide a
more flexible setting that may better capture the structure present in the data. The resulting partitions, shown in Figure 7,
highlight that both k-means and spectral clustering fail to isolate each figurine into a distinct partition, whereas our approach
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(a) An image from the dataset (b) K-means (K=3)

(c) K-means (K=4) (d) Spectral Clustering(K=3,10-nn,eigs=3)

(e) Spectral Clustering (K=4,10-nn,eigs=4)

Figure 7. Pixel partitions generated using k-means and spectral clustering by clustering the pixel data while treating the samples as
coordinates (i.e., applied to the transposed data matrix). Each color indicates a different partition. Here, K denotes the number of clusters
used, 10-nn refers to the use of a 10-nearest neighbors graph, and “eigs” indicates the number of eigenvectors used in spectral clustering.

successfully does so, as illustrated in Figure 5(c).

To quantitatively assess how well each approach partitions the pixels and captures the underlying structure of the data, we
evaluate the correspondence between each extracted pixel partition and the true rotation angles of the figurines—the latent
variables governing the data. To this end, we define an accuracy measure as follows. For a given partition and figurine, we
compute the relative overlap between two sets of 50-nearest neighbors for each image: one based on the true figurine angle
and the other based on the pixel values restricted to the partition. The relative intersection score, defined as the size of their
intersection divided by 50, reflects how strongly the latent parameter (rotation angle) is expressed in the partition’s feature
space. Since the figurines rotate independently, an ideal partitioning should align with exactly one figurine’s angle. Thus, for
each approach, we match each figurine to the partition with the highest relative intersection score and report the average
correspondence across all three figurines. Furthermore, we compute the standard deviation of the relative intersection score
above, and report its average across all three figurines. We repeat this evaluation using 30-nearest neighbors to provide
additional insights into the consistency of the results.

The resulting mean overlap score are shown in Table 2, reflecting the accuracy of each approach in partitioning the pixels
into the true subsets associated with each figurine. As evident from the results, our approach substantially outperforms the
clustering methods and more effectively isolates the latent factors of variation.

Thus, to conclude, our approach outperforms both clustering and embedding-based methods in capturing the underlying
structure of the data. By effectively isolating the latent factors of variation, it provides a more faithful decomposition of the
observed measurements, demonstrating clear advantages over traditional techniques.

Implementation details. To generate the embedding of the tSNE embedding based on all the features in Figure 5(d) we
used perplexity of 40 with 100 simulations. The visualizations using the tSNE algorithm of the data based on each partition
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Agreement of Agreement of
Method 30-nearest neighbors (std) 50-nearest neighbors (std)

All features 8.21 (4.91) 11.74 (4.75)
K- means (K=3) 18.49 (9.74) 25.93 (10.61‘)
K-means (K=4) 18.23 (9.11) 25.42 (10.31)

Spectral Clustering (nn=10,K=3, eigs=3) 18.28 (8.4) 24.72 (8.82)
Spectral Clustering (nn=10,K=4,eigs= 4) 18.85 (8.71) 25.49 (9.19)
Spectral Clustering (nn=30,K=3, eigs=3) 18.12 (8.5) 24.47 (8.97)
Spectral Clustering (nn=30,K=4,eigs=4) 18.19 (8.5) 24.53 (8.98)
Spectral Clustering (nn=10,K=3,eigs=5) 18.04 (8.5) 24.41 (8.98)
Spectral Clustering (nn=10,K=4,eigs=5) 18.63 (8.76) 25.25 (9.26)
Spectral Clustering (nn=10,K=3,eigs=10) 17.51 (7.94) 23.8 (8.22)
Spectral Clustering (nn=30,K=4,eigs=10) 18.94 (10.35) 25.49 (11.51)

FP (Ours) 75.93 (12.22) 85.15 (8.59)

Table 2. Quantitative comparison of different pixel partitions produced by various clustering algorithms, evaluated using k-nearest
neighbor against the known latent angles of the figurines. Our approach yields the lowest error, indicating that the extracted partitions best
reflect the underlying structure. The “All Features” baseline refers to using all pixels to compute the k-nearest neighbors without applying
any partitioning. Here, K indicates the amount of clusters used within each method, “nn” indicates the amount of nearest neighbors,
and “eig” indicates the amount eigenvectors used. For the Feature Partioning method we partitioned the pixels into 3 partitions. Further
evaluation details are provided in Appendix D.

uses a perplexity of 110. The high perplexity can be attributed to a known issue with tSNE, where it sometimes distorts
circular embeddings, resulting in discontinuities. A common solution to this problem is to increase the perplexity of the
embedding.

The Diffusion Maps embeddings, shown in Figure 6(a), were generated using a bandwidth parameter that is the maximal
squared Euclidean distance among each data point and its corresponding 10-nearest neighbor. Furthermore, we used a
normalization factor of α = 1. Finally, the UMAP embeddings based on our extracted partitions in Figure 6(b) were
generated using a local neighborhood parameter (n neighbors) of 80 due to the 1-dimensional structure of the embedding.
This is a due to the same issue as discussed above for tSNE. The UMAP embedding based on all the features was constructed
with its default parameter 15.

Details of Quantitative Comparison with Embedding-Based Methods. The parameters used for each algorithm are
identical to the ones used in Section 5.2, with the exception that we generated 3 embeddings for any algorithm that allowed
it, for LDLE we used the ηmin parameters of 5 and 10, and for the tSNE of our extracted partitions we used a perplexity of
10. We note that our approach was applied with entropy constraints that correspond to a perplexity of 10.

Details of Quantitative Comparison with Clustering Methods. The parameters used for k-means and spectral clustering
followed the default settings in scikit-learn, unless stated otherwise.

E. Numerical Comparison of Empirical and Analytical Loss Landscapes
In Figure 8(a), we compare the empirical loss landscape of (16) with its analytical counterpart derived in (17), for the case
K = 2. The dataset consists of N = 1000 samples drawn uniformly from three latent manifolds,M1,M2,M3 ⊂ R2,
where each manifold forms a unit circle andM3 serves as the shared component between partitions. The observed feature
dimensions are D1 = 2500 and D2 = 7500. As predicted by Theorem 4.3, the minima of the loss function occur near the
ground truth partitioning solutions (i.e., p1 = 1, p2 = 0 or vice versa). In Figure 8(b), we show the empirical landscape
of the original loss function defined in Problem 3.3 under the same data configuration. The observed landscape closely
resembles that of the simplified objective studied in Section 4, further supporting the validity of the analytical approximation.
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(a) (b)

Figure 8. An experiment based on Section 4 for K = 2 with with ϵ = 0.2. (a) The analytical loss landscape of Problem 4.1 presented
in (17) (Left) and the mean empirical loss as defined in (16) (Right). For the empirical case, the p1, p2 ∈ (0, 1) indicate the proportion
of features out of the two feature subsets used by ω(1), while ω(2) taking the remainder. The color represents the mean value over 100
simulations, based on the affinity matrices defined in Corollary 4.2. (b) We consider a similar mean empirical loss based on Problem 3.3
(min

{W (k)}K
k=1

G({W (k)}Kk=1, {ω(k)}Kk=1, {yi}Ni=1)), where the affinity matrices are as defined in (9). The perplexity parameter was

set to α = 20. Additional details can be found in Appendix E.

F. Experimental Details and Additional Results
F.1. Details for Section 5.1

In this experiment, we define two sets, Y, Ỹ ⊂ R6. The two datasets are defined based on a 2-dimensional ellipse defined by

A = {(8 cos(θ) sin(ϕ), 6 sin(θ) sin(ϕ), 4 cos(θ))T | θ ∈ [0, 2π], θ ∈ [0, π]}, (27)

and R,S ∈ R3×3 be two orthogonal matrices. We now define the two sets by

Ỹ =

{(
Ra
Sb

)
| a, b ∈ A

}
(28)

Y =

{(
Ra
Sb

)
| a, b ∈ A, θ(a) = θ(b)

}
, (29)

where θ(a) denotes the polar angle θ corresponding to the data point a in the parametrization of A in (27).

The set Ỹ corresponds to the independent case discussed in Section 5.1, where as the first three and last three coordinates
are independent of each other. Additionally, Y represents the partially-dependent case, in which the first and last three
coordinates are partially coupled through a shared polar angle. In both cases, the samples used in the experiment— denoted
by ỹ1, . . . , ỹN ∈ Ỹ and y1, . . . ,yN ∈ Y— were drawn independently and uniformly from their respective sets.

This experiment evaluates the ability of our approach and several baseline algorithms to partition the coordinates into the true
feature subsets defining the data—namely, the first three coordinates and the last three. The comparison includes Spectral
Co-Clustering (Dhillon, 2001), Spectral Bi-Clustering (Kluger et al., 2003), k-means (Lloyd, 1982) and spectral clustering
(Ng et al., 2001). We evaluated Spectral Co-Clustering and Bi-Clustering using their feature clustering. Additionally, we
applied k-means and spectral clustering on the features, treating samples as coordinates (i.e., applied on the transposed data),
and clustering them into K = 2 groups. Additionally, for spectral clustering, we used two embedding dimensions. The
output of each of the clustering algorithms will be considered as a pair of binary indicator vectors ω̃(1), ω̃(2) ∈ {0, 1}6.
Specifically, the vector ω̃(1) ∈ {0, 1}6 takes the value 1 for all coordinates assigned to the first cluster and 0 otherwise. The
complementary vector ω̃(2) is defined analogously, indicating membership in the second cluster.

Finally, we define the error measure used to quantify the discrepancy between the estimated partitions ω̃(1), ω̃(2) ∈ {0, 1}6
and the true partitions ω(1),ω(2) ∈ {0, 1}6. As discussed above, the true partitions are given by ω(1) = (1, 1, 1, 0, 0, 0),
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(a) (b)

(c) (d)

Figure 9. Additional embeddings of the scRNA-seq data from Section 5.2, highlighting the advantages of our approach to discover
distinct salient cellular processes. Plots (a) and (c) show the UMAP embeddings of the data in two and three dimensions, respectively,
using either all genes or only the genes from partitions 1 and 2. Similarly, plots (b) and (d) present the corresponding Diffusion Maps
embeddings. Within each plot, the top row includes the cells’ embeddings colored by their cell type, with partition 1 revealing the LD/UD
to DC developmental trajectory. At the bottom, the cells are colored by the cell type, with partition 2 revealing the cycling progression.

with ω(2) being the complimentary vector. The error is defined as

d({ω(k)}Kk=1, {ω̃(k)}Kk=1}) = min
k̃∈{1,2}

∥ω(1) − ω̃(k̃)∥1, (30)

where ∥a∥1 =
∑6

d=1 |ad| denotes the L1 norm. Only ω(1) is considered, as ω(2) is its complementary partition. This error
can be interpreted as a non-normalized Jaccard distance between the true feature partition and the estimated one, up to a
permutation of the ordering of partitions.

F.2. Details and Additional Results for Section 5.2

This section provides additional information and extended results related to Section 5.2. We begin by describing the
preprocessing applied to the dataset, followed by additional visualizations using the extracted feature partitions. We then
repeat the experiment using a larger gene set and a related dataset to further demonstrate the applicability of our method.
Finally, we provide details about the quantitative evaluation done in the main text.

Dataset Preprocessing. In Section 5.2, we applied our approach to the dataset used in (Qu et al., 2024), specifically the
wild-type cells within the E14.5 WLS experiment. The data included a count data matrix comprised of 5, 572 cells along
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Figure 10. Embeddings obtained by repeating the experiment of Section 5.2 using 10000 genes (instead of 5000 in Section 5.2). The
embeddings in the upper row are colored according the cell type, while the bottom row (containing the same embeddings) is colored
according to the cell cycle state. The embedding based on all the genes and the embedding from partition 2 reflect the cell type
development, while the embedding based on partition 1 uniquely reflects the cell cycle development. We can see that despite the additional
variation due to the extra genes, the substructures remains clearly visible.

with their 32, 285 gene expressions. We employed the normalization scheme from the Seurat package, where the gene
counts in each cell were divided by the total number of genes within that cell and then scaled by 10, 000. Each entry was
subsequently log-normalized using the transformation log(1 + x). We then retained the 5, 000 most highly variable genes.
Finally, we used the z-score transformation on each gene across the samples and reduced the rank of the data matrix to 50
by truncating the singular value decomposition (SVD). As for our approach, we applied Algorithm 1 on the data using a
perplexity parameter of 40 and 100 simulations.

For comparison, Qu et al. (2024) used only the top 2, 000 highly variable genes and retained the top 30 principal components,
which corresponds to keeping the leading 30 components in the SVD. Thus, our configuration involves a larger set of genes
and a higher-rank representation, retaining more variability in the data.

Additional Results. The effectiveness of our feature partitioning is further demonstrated through additional embeddings
of the dataset, computed using all genes as well as each extracted partition; see Figure 9. As in Figure 3, the embedding
based on all genes reveals only the cell type, while each partition reveals only one of the biological processes: cell type (by
partition 1) and cell cycle (by partition 2). It is evident that the partitioning of features has a vital effect on visualization
techniques in general, and is not specific to tSNE.

We next repeat the original experiment in a more challenging setting using 10, 000 of the most variable genes to show
the robustness of our approach. By increasing the number of genes, we allow noisy features into our dataset, making the
partition task more complex. We applied our approach again with K = 2, and in Figure 10 we compare the tSNE embedding
based on all genes, with the embeddings based on each of the extracted partitions. Evidently, the two partitions still extract
the two underlying structures that correspond to the cell type (by partition 2) and cell cycle (by partition 1). Furthermore, the
genes identified in the final paragraph of Section 5.2 (as belonging to the extracted partitions associated with the underlying
variables) were also captured in this experiment.

We repeat the experiment on a similar dataset to further validate our results on data with similar characteristics. Specifically,
we consider the wild-type cells within the E14.5 SMOM experiment (Qu et al., 2024) that consists of a count data matrix
with 5, 598 cells along with their 32, 286 genes expressions. We apply the same preprocessing pipeline as in the previous
experiment, including the selection of highly variable genes. As before, we evaluate two configurations: one using the top
5,000 most variable genes and another using the top 10,000.

In Figure 11, we show the results for both configurations. We compare the tSNE embeddings based on all the genes with the
embeddings based on each extracted partition. As shown in Figure 11, the embedding based on all the genes reveals only the
structure related to the cell type development, while obscuring the cell cycle phase. On the other hand, the embeddings
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(a)

(b)

Figure 11. A similar experiment to the one done in Section 5.2 on a different dataset. Plot (a) shows the embedding of N = 5598
cells characterized by their D = 5000 gene values, while plot (b) presents the corresponding embedding obtained using D = 10000
genes. The upper row within each plot indicates each cell’s type, while the bottom row shows each cell’s cell cycle state. As shown, the
embeddings based on all the genes and partition 2 genes are inductive to the cell type development (top), while the embedding based on
partition 1 genes reflects the cell cycle development (bottom).

from our two partitions reveal both the cell cycle phase and the cell type development (in partition 1 and 2, respectively).
Furthermore, the genes identified in the final paragraph of Section 5.2 were also identified in this dataset using our approach
applied to both configurations.

Quantitative Comparison. The quantitative comparison shown in Figure 3(b) compare how well the embeddings generated
based on our extracted partitions reveal the two underlying processes of the data compared to other methods. To define an
error measure for a given embedding of the dataset, we proceed as follows. For each point (cell) i and each of the two types
of labels (cell phase and type), we find the k nearest neighbors of point i and compute the proportion of nearest neighbors
whose label differs from the label of point i. This provides two scores (of label inconsistencies) for each point, corresponding
to the two processes. We then average these scores across all data points, producing two error measures: one quantifying the
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inconsistency of the embedding with respect to the cell phase and the other with the cell type. For methods that provide a
single embedding of the data, we average these two scores, quantifying how much this embedding is consistent with both
latent processes. For methods that produce two embeddings, we expect each embedding to be consistent with only one of
the latent processes. Therefore, in such cases, we assign to each embedding only one of its two scores (without repetition)
such that the average of the assigned scores is minimized for the two embeddings.

Next, we describe the parameters used by the different embedding algorithms in the quantitative comparison. It is important
to note that the error measured for IC-PML, Multi-tSNE, and LDLE for each specific K-nearest neighbor corresponds to the
smallest error observed across a wide range of hyperparameter values. The specific hyperparameter settings explored are
detailed below:

• IC-PML (960 parameter configurations):

– Number of manifolds: 2
– Total eigenvectors: 50
– Number of eigenvectors used from each manifold: [1, 2, 3, 4, 5].
– Epsilon parameters: the maximal distance between each point and its k-th nearest neighbor, where the considered
k included 5, 10, 20, 40.

– Similarity criterion coefficient: [0.01, 0.03, 0.05, 0.1, 0.3, 0.5]
– Eigenvalue criterion coefficient: [0.01, 0.03, 0.05, 0.1, 0.3, 0.5, 1, 2]

• LDLE (32 parameter configurations):

– Embedding dimensions:2 and 3.
– ηmin: 10 and 20.
– k tune: 5, 10, 20 and 40

– torn: We considered the torn and non-torn data embedding options.

• Multi-tSNE (8 parameter configurations):

– Number of maps: 2
– Embedding dimension: 2 and 3.
– Perplexity: 5, 10, 20 and 40.

• tSNE based on all features (8 parameter configurations):

– Embedding dimension: 2 and 3.
– Perplexity: 5, 10, 20 and 40.

• Feature Partition (Ours):

– Perplexity: 40
– Simulations: 100

• tSNE based on the Feature Partition (Ours):

– Perplexity for Feature Partition: 40
– Simulations for Feature Partition: 100
– Perplexity for tSNE: 40
– Embedding dimension: 3
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F.3. Data Preparation and Comparative Visualizations for Section 5.3

In Section 5.3, we applied our approach to the dataset used in (Droin et al., 2021). The data included a count data matrix
comprised of 6889 cells along with their 14812 gene expressions. We employed the normalization scheme from the Seurat
package, where the gene counts in each cells were divided by the total number of genes within that cell and then scaled by
10000. Each entry was subsequently log-normalized using the transformation log(1+x). We then retained 2000 of the most
highly variable genes. Finally, we used the z-score transformation across the samples and applied principal components
analysis (PCA) to reduce the data to dimension 20. As for our method, we applied Algorithm 1 using a perplexity of 40 and
100 simulations. All tSNE embeddings used a perplexity of 40.

(a)

(b)

Figure 12. tSNE embeddings generated using all the features and using the features from our proposed partitioning, applied to the liver
dataset described in Appendix F.3. (a) Embedded data points (blue) are overlaid with the labels of specific liver layers (orange). (b)
Embedded data points are colored according to their circadian clock phase. Our method effectively disentangles the two underlying
factors: partition 1 captures the spatial liver layer structure while partition 2 captures the circadian phase. In contrast, the tSNE embedding
using all features reflects a complex mixture of both variables, making it difficult to interpret the embedding.
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Figure 13. The minimal objective value achieved by our algorithm (defined in (8)), normalized by the number of samples N , as a function
of the number of partitions K. Results are shown for the dataset of three rotating figurines used in Appendix D.

G. Choosing the Number of Partitions (K) and Validating the Usefulness of Our Partitioning
The selection of the number of partitions (K) is a practical consideration that directly affects the outcome of our algorithm
and therefore the visualizations generated based on it. A sub-optimal choice of K can result in visualizations that are either
overly complex or redundant. In this section, we discuss how to determine K and discuss the implications of selecting a
sub-optimal number of partitions. Finally, we propose a procedure to verify whether the data is indeed composed of subsets
of features that are partially dependent as our approach assumes.

Determine K for K ≥ 2. In order to determine K we propose to inspect the behavior of the smoothness score from our
approach, defined in (8), as a function of the number of partitions K. As long as K increases but remains lower than the
true number of partitions, we expect to see a rapid decay of the score. Then, when K reaches the true number of partitions,
we expect to see an ‘elbow’, after which the score saturates or decays very slowly. This phenomenon is reminiscent of
similar situations, such as manually selecting the number of clusters in k-means or the number of components in PCA. We
demonstrate this behavior of the smoothness score in Figure 13.

Next, we discuss the expected impact of over-selecting or under-selecting K on the resulting representation and embedding.
If the number of partitions is lower than the number of true partitions in the data, we expect the partitions to separate the
features into super-groups that correspond to the most distinct geometric structures, even if some of these groups could be
further subdivided. In this case, each group of features describes a geometry that is simpler than that of the original data,
i.e., it has a lower intrinsic dimension. Hence, the outcome of our procedure in this case still improves the ability to embed
and visualize the data in a low-dimensional space, albeit sub-optimally — where the embedding dimension may need to be
higher than it would be if the optimal choice of K was used.

If the number of partitions is slightly larger than the true number of partitions in the data, we expect that one or more
of the true partitions will be arbitrarily subdivided. This will introduce redundancy into the representation, where some
feature subsets will exhibit similar geometric structures. The user should take into account this possibility and inspect
the resulting embeddings for potential redundancy. Nonetheless, the partitioning is still beneficial in this case, since the
data for each partition can be easily embedded and visualized in a low-dimensional space. If the number of partitions is
grossly overestimated, then in addition to redundancy, some of the feature subsets may not reliably represent the underlying
geometry of any of the true feature subsets.

Determine Whether K = 1. When the data cannot be partitioned into features with simpler structures, we expect that
applying our algorithm to partition the features into two or more groups will result in partitions with similar or nearly identical
underlying structures. Consequently, the graphs that correspond to the partitions will also exhibit similar characteristics,
leading to embeddings (such as tSNE) that closely resemble each other.
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To determine if the features can be partitioned into meaningful subsets, we propose a type of a permutation test. Specifically,
we propose to compare the smoothness score produced by our method from the original data to the analogous score
obtained from manipulated versions of the data. The manipulated versions are obtained by applying a random orthogonal
transformation to the features, in which case the data does not satisfy our underlying assumption by design. The different
steps of this procedure and their justification are detailed below:

1. Apply our procedure with K = 2 to the given data matrix and store the associated score, defined in (8).

2. Generate multiple modified versions of the dataset by applying random orthogonal transformation to the features of
the data. Each orthogonal transformation randomly mixes all the features in the dataset. If distinct feature partitions
existed in the original data, they will be completely mixed after the transformation. Hence, our underlying assumption
does not hold for these manipulated datasets.

3. Apply our procedure with K = 2 to each transformed dataset and store the associated scores, defined in (8).

4. Compare the score from step 1 to the distribution of the scores from step 3. If the score from step 1 is smaller than a
chosen percentile of the scores from step 3 (e.g., 0.01), we conclude that the original data contains feature partitions
with significantly distinct structures, suggesting that our assumption holds, at least to some extent.

H. Experiment on the COIL-20 Dataset
We conducted an additional experiment using a subset of the COIL-20 dataset (Nene et al., 1996), consisting of 128× 128
grayscale images of three distinct but visually similar cars captured at varying azimuths. While this dataset may not explicitly
satisfy our approach’s theoretical assumptions, it provides an interesting test case for our approach. For this experiment,
we used all images from the car objects 2, 5, 18, which resemble one another, resulting in 216 images in total. The images
were flattened to vectors and the resulting dataset was approximated using its 20 leading SVD components to reduce its
variability.

We applied our algorithm with K = 2 partitions and two different perplexity parameters: 10 and 20. The resulting tSNE
visualizations can be seen in Figure 14. Evidently, the standard tSNE visualization that use all pixels (left) reveals a closed
loop structure corresponding to the object’s azimuth. Notably, partition 1 (middle) produces a more coherent representation
of the azimuth, demonstrating also enhanced stability across different perplexity values. Interestingly, partition 2 (right)
effectively separates the images based on car identity, suggesting our method naturally discovered semantically meaningful
features. The actual pixel partitions are shown in Figure 14(c). Specifically, partition 1 identified the outer pixels that
typically capture the front and back of the car—features that correspond more closely to the azimuth of the object rather to
its identity, as reflected in Figures 14(a) and 14(b). In contrast, partition 2 focused on the rooftop region, which corresponds
more directly to the identity of each specific car object.
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(a) tSNE embeddings with perplexity parameter of 10

(b) tSNE embeddings with perplexity parameter of 20

(c) Extracted partitions overlaid in blue and yellow on three sample images.

Figure 14. The experiment detailed in Appendix H. The dataset includes N = 216 gray-scale images with D = 16, 384 pixels from
COIL-20. Each image contains a single rotated object, and the considered objects are three types of cars. (a) tSNE embedding of the data
with a perplexity parameter of 10, (b) tSNE embedding of the data with a perplexity parameter of 20. (c) Three sample images from the
dataset, overlaid with the partitions extracted by Algorithm 1, shown in yellow (partition 1) and blue (partition 2).
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I. Proofs
Proofs overview.

This section is organized into three main parts: Appendix I.1 contains the proofs of the results in Section 3, Appendix I.2
presents the proofs of the results in Section 4, and Appendix I.3 includes the proofs of the results in Appendix C.

Below is a brief outline of the results and proofs presented in Appendix I.1:

1. Lemma I.1. This is an auxiliary lemma used in Proposition 3.1 and Lemma I.3 that characterizes the entropy function
of a discrete distribution. Specifically, it considers a normalized exponential distribution that is based on the pairwise
distances within the data.

2. The proof of Proposition 3.1. The proof begins by showing that the problem is convex. Then, it derives an optimal
solution to the optimization problem under some assumptions of the data by using the Karush-Kuhn-Tucker (KKT)
conditions for convex optimization problems using Lemma I.1. Finally, we derive an optimal solution that admits the
same form as the previous one when the assumptions do not hold.

3. Lemma I.2. This is an auxiliary lemma used in Proposition 3.2 that approximates specific integrals over a manifold in
terms of the manifold’s properties and density. The lemma uses results from (Singer, 2006).

4. The proof of Proposition 3.2. The proof begins by asymptotically approximating the function using results from (Hein
et al., 2005). Then, it derives its expression using Lemma I.2 in terms of the manifold’s characteristics and density.
Finally, a further simplification of the expression is done by referring to results from (Osher et al., 2017).

5. Lemma I.3. This is an auxiliary lemma used in Proposition 3.4 that characterizes the optimal graphs in a Problem 3.3
with fixed partitions. The proof begins by showing that the problem is convex. Then, it derives an optimal solution to
the optimization problem under some assumptions of the data by using the Karush-Kuhn-Tucker (KKT) conditions for
convex optimization problems using Lemma I.1. Finally, we derive an optimal solution that admits the same form as
the previous one when the assumptions do not hold.

6. Lemma I.4. This is an auxiliary lemma used in Proposition 3.4 that characterizes the optimal partitions in a Problem 3.3
with fixed graphs.

7. The proof of Proposition 3.4. The proof divides the problem into two sub-problems, fixing either the feature partitions
or their associated graphs in each case. Then it combines the results from Lemmas I.3 and I.4 to fully characterize the
problem’s optimal solutions.

Similarly, below is an outline of the results and proofs presented in Appendix I.2:

1. The proof of Corollary 4.2. The proof begins by proving that the optimization problem is convex. Then, it derives an
optimal solution to the optimization problem under some assumptions of the data by using the Karush-Kuhn-Tucker
(KKT) conditions for convex optimization problems using Lemma I.1. Finally, we derive an optimal solution that
admits the same form as the previous one when the assumptions do not hold.

2. Lemma I.5. This is an auxiliary lemma used in Lemma I.6 and in Lemma I.7 to generate an upper bound for a given
event by separating it into multiple s events.

3. Lemma I.6. This is an auxiliary lemma used in Theorem 4.3 that characterizes a specific sum in terms of the data setup
parameters and partition parameters defined in Section 4.

4. Lemma I.7. This is an auxiliary lemma used in Theorem 4.3 that characterizes a specific sum via an integral, in terms
of the data setup parameters and partition parameters as defined in Section 4.

5. Lemma I.8. This is an auxiliary lemma used in Lemma I.9 that approximates specific integrals over a manifold in
terms of the manifold’s properties and density and some predefined parameters. Its proof uses results from Lemma I.2.

6. Lemma I.9. This is an auxiliary lemma used in Theorem 4.3 that approximates specific integrals over a manifold in
terms of the manifold’s properties, density and some predefined parameters. Each of the integrals under consideration
includes a nested integral, with the inner integral being addressed in Lemma I.8.
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7. The proof of Theorem 4.3. The proof begins by solving the minimization problem over the graph parameters derived
in Corollary 4.2. It then asymptotically approximates the solution as the dimension and number of samples tends to
infinity, utilizing Lemmas I.6 and I.7. Next, it approximates this asymptotic value by applying Lemma I.9 to express it
in terms of the manifold’s properties, density, and partition parameters.

8. Lemma I.10. This auxiliary lemma, used in Theorem 4.4, considers the case of two partitions. It demonstrates that
the analytical form derived in Theorem 4.3 is minimized when the partitioning is close to the true feature partitioning
under a constraint on the possible partitioning solutions.

9. The proof of Theorem 4.4. The proof builds on Lemma I.10 by considering a sequence of problems and demonstrates
that the problem is minimized when the true partitioning solution is used.

Finally, below we outline the results and proofs presented in Appendix I.3:

1. Lemma I.11. This is an auxiliary lemma used in Proposition C.2 that characterizes the optimal graphs in a Problem C.1
with fixed partitions. The proof begins by showing that the problem is convex. Then, it derives an optimal solution to
the optimization problem under some assumptions of the data by using the Karush-Kuhn-Tucker(KKT) conditions for
convex optimization problems using Lemma I.1. Finally, we derive an optimal solution that admits the same form as
the previous one when the assumptions do not hold.

2. The proof of Proposition C.2. The proof divides the problem into two sub-problems, fixing either the feature partitions
or their associated graphs in each case. Then it combines the results from Lemma I.3 from Section Appendix I.1 and
Lemma I.11 to achieve a full characterization of optimal solutions to the problem.

3. The proof of Proposition C.3.The proof begins by evaluating the objective of Problem C.1 under a specific regulariza-
tion parameter, using the soft uniform partitioning and its corresponding affinity matrix as defined in Proposition C.2.
It then upper bounds this value by the objective achieved by any hard partitioning solution.

4. The proof of Proposition C.4. The proof analyzes the computational complexity of each update rule proposed in
Proposition C.2.

5. The proof of Proposition C.5. The proof analyzes the computational complexity of each update rule proposed in
Proposition C.2 when the data is given the form of singular value approximation. It starts by rewriting each term as a
multiplication of matrices and then derives the computational complexity by considering each multiplication within.

I.1. Proofs of Section 3.1 and Section 3.2

Lemma I.1. Let i ∈ {1, . . . , N}, and let ∆1, . . . ,∆N ∈ [0,∞) be some distance function between the i-th element and all
the other elements. Define the function f : [0,∞)→ R by

f(β) =
∑

j∈{1,...,N}/{i}

exp(−∆jβ)∑
t∈{1,...,N}/{i} exp(−∆tβ)

log
exp(−∆jβ)∑

s∈{1,...,N}/{i} exp(−∆sβ)
. (31)

Then f is a non-decreasing function and satisfies

lim
β→0

f(β) = − log(N − 1) and lim
β→∞

f(β) = − log(α̃N ), (32)

where α̃i = |{j ∈ {1, . . . , N − 1} | ∆j = mins∈{1,...,N}/{i} ∆s}. Furthermore, for any j ∈ {1, . . . , N}/{i} we get that

lim
β→∞

exp(−∆jβ)∑
t∈{1,...,N}/{i} exp(−∆tβ)

log
exp(−∆jβ)∑

s∈{1,...,N}/{i} exp(−∆sβ)
(33)

=

{
1

α̃N
if∆j = α̃N

0 else
.

Proof. We indicate that this proof is not new, and is shown here for completeness. Without loss of generality the proof will
assume i = N . Therefore, α̃N that will be used throughout the proof will be related to the i-th element.
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The proof will begin by bounding the first derivative of f(β) between zero and some positive constant for all β ∈ [0,∞),
and therefore show that it is non-decreasing. Then, to bound the image of f it will derive the value of f at the boundaries of
the domain.

We begin by deriving the bounds of the derivative of f . To do so, we rewrite f by

f(β) =

N−1∑
j=1

(
exp(−∆jβ)∑N−1

t=1 exp(−∆tβ)
· log exp(−∆jβ)∑N

s=1 exp(−∆sβ)

)
(34)

=

N−1∑
j=1

exp(−∆jβ)∑N−1
t=1 exp(−∆tβ)

· log(exp(−∆jβ))

 (35)

−

N−1∑
j=1

exp(−∆jβ)∑N−1
t=1 exp(−∆tβ)

· log(
N−1∑
s=1

exp(−∆sβ))


=

N−1∑
j=1

exp(−∆jβ)∑N−1
t=1 exp(−∆tβ)

log(exp(−∆jβ))

 (36)

−

(∑N−1
j=1 exp(−∆jβ)∑N−1
t=1 exp(−∆tβ)

)
log(

N−1∑
s=1

exp(−∆sβ))

= −β

N−1∑
j=1

exp(−∆jβ)∑N−1
t=1 exp(−∆tβ)

·∆j

− log(

N−1∑
s=1

exp(−∆sβ)). (37)

The derivative of f is non negative as

d

dβ
f(β) (38)

=−

N−1∑
j=1

exp(−∆jβ)∑N−1
t=1 exp(−∆tβ)

·∆j

 (39)

− β

N−1∑
j=1

∆j ·
exp(−∆jβ)(−∆j)

∑N−1
r=1 exp(−∆rβ)− exp(−∆jβ)

(∑N−1
s=1 exp(−∆sβ)(−∆s)

)
(
∑N−1

t=1 exp(−∆tβ))2

−
∑N−1

r=1 exp(−∆rβ)(−∆r)∑N−1
s=1 exp(−∆sβ)

=−

N−1∑
j=1

exp(−∆jβ)∑N−1
t=1 exp(−∆tβ)

·∆j

 (40)

− β

N−1∑
j=1

∆j exp(−∆jβ)

(
− ∆j∑N−1

t=1 exp(−∆tβ)
+

∑N−1
s=1 exp(−∆sβ)∆s

(
∑N−1

t=1 exp(−∆tβ))2

)

+

∑N−1
r=1 exp(−∆rβ)∆r∑N−1
s=1 exp(−∆sβ)

=β

N−1∑
j=1

∆j exp(−∆jβ)

(
∆j∑N−1

t=1 exp(−∆tβ)
−
∑N−1

s=1 exp(−∆sβ)∆s

(
∑N−1

t=1 exp(−∆tβ))2

)
(41)

=β

N−1∑
j=1

∆2
j ·

exp(−∆jβ)∑N−1
t=1 exp(−∆tβ)

− β

N−1∑
j=1

N−1∑
s=1

∆j∆s ·
exp(−∆jβ) exp(−∆sβ)

(
∑N−1

t=1 exp(−∆tβ))2

 (42)
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=β

N−1∑
j=1

∆2
j

exp(−∆jβ)∑N−1
t=1 exp(−∆tβ)

− β

N−1∑
j=1

∆j
exp(−∆jβ)∑N−1

t=1 exp(−∆tβ)

2

(43)

=β ·
N−1∑
j=1

exp(−∆jβ)∑N−1
t=1 exp(−∆tβ)

·

(
∆j −

(
N−1∑
r=1

∆r
exp(−∆rβ)∑N−1

s=1 exp(−∆sβ)

))2

(44)

≥0. (45)

where in (43) we use the variance decomposition into moments (V ar(∥X∥2) = E[∥X∥4]− E[∥X∥2]2 for some random
variable X) and in (44) we use the fact that all the elements are non-negative.

The derivative of f can be bounded from above as well as will derived below. Based on (44), we can see that

d

dβ
f(β) = β ·

N−1∑
j=1

exp(−∆jβ)∑N−1
t=1 exp(−∆tβ)

·

(
∆j −

(
N−1∑
r=1

∆r
exp(−∆rβ)∑N−1

s=1 exp(−∆sβ)

))2

(46)

= β

N−1∑
j=1

exp(−∆jβ)∑N−1
t=1 exp(−∆tβ)

∆2
j −

N−1∑
j=1

exp(−∆jβ)∑N−1
t=1 exp(−∆tβ)

∆j

2
 (47)

≤ β

N−1∑
j=1

exp(−∆jβ)∑N−1
t=1 exp(−∆tβ)

∆2
j (48)

≤ max
j∈{1,...N−1}

β∆2
j . (49)

Since the derivative of f is nonnegative, its image is bounded by the values it achieves on the boundary of its domain. To
find these values, we examine each normalized exponential j ∈ {1, . . . , N − 1} within f

exp(−β∆j)∑N−1
t=1 exp(−β∆t)

=
1

1 +
∑

t∈{1,...,N−1}/{j} exp((∆j −∆t)β)
∈ [0, 1]. (50)

Its limiting value when β tends to zero is

lim
β→0+

exp(−∆jβ)∑N−1
t=1 exp(−∆tβ)

= lim
β→0+

1∑N−1
t=1 exp((∆j −∆t)β)

(51)

=
1

N − 1
. (52)

To derive its value when β →∞, we define Imin = {j ∈ {1, . . . , N − 1} : ∆j = mins∈{1,...,N−1} ∆s}. In this limiting
case each term converges to

lim
β→∞

exp(−∆jβ)∑N−1
t=1 exp(−∆tβ)

(53)

= lim
β→∞

1∑N−1
t=1 exp((∆j −∆t)β)

(54)

= lim
β→∞

1∑
t∈Imin

exp((∆j −∆t)β) +
∑

t̃ ̸∈Imin
exp((∆j −∆t̃)β)

(55)

=

{ 1
|Imin|+(N−1−|T |)·0 if j ∈ Imin

0 else
(56)

=

{ 1
|Imin| if j ∈ Imin

0 else
, (57)

as ∆j −∆t > 0 for any j ̸∈ Imin and t ∈ Imin.
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To connect this result with f , we define h : [0, 1]→ (−∞, 0] by h(a) = a log(a) for all a ∈ [0, 1]. By composing it with
any of the normalized exponentials from above we get that

lim
β→0+

exp(−∆jβ)∑N−1
t=1 exp(−∆tβ)

log
exp(−∆jβ)∑N−1

s=1 exp(−∆sβ)
=

1

N
log

1

N
j ∈ {1, . . . , N − 1} (58)

lim
β→∞

exp(−∆jβ)∑N−1
t=1 exp(−∆tβ)

log
exp(−∆jβ)∑N−1

s=1 exp(−∆sβ)
=

1

Imin
log

1

Imin
j ∈ Imin, (59)

where we apply the property that the limit of a product of two functions is the product of each function’s limit, given that
both exists. Furthermore, when β tends to infinity, the limiting value of the term for any j ̸∈ Imin we converge to

lim
β→∞

exp(−∆jβ)∑N−1
t=1 exp(−∆tβ)

log
exp(−∆jβ)∑N−1

s=1 exp(−∆sβ)
(60)

= lim
β→∞

−
log
∑N−1

s=1 exp((∆j −∆s)β)∑N−1
t=1 exp((∆j −∆t)β)

(61)

= lim
β→∞

−
∑N−1

l=1 exp((∆j −∆l)β) · (∆j −∆l)∑N−1
s=1 exp((∆j −∆s)β)

· 1∑N−1
t=1 exp((∆j −∆t)β) · (∆j −∆t)

(62)

= lim
β→∞

− 1∑N−1
s=1 exp((∆j −∆s)β)

(63)

= lim
β→∞

− exp(−∆jβ)∑N−1
s=1 exp(−∆sβ)

(64)

= 0 (65)

where we use the L’Hopital’s rule and the result from (53).

Now, we can rewrite f as a sum of the components defined above by

f(β) =

N−1∑
j=1

h

(
exp(−β∆j)∑N−1

t=1 exp(−β∆t)

)
, (66)

and derive it value at the boundary.

lim
β→0+

f(β) = lim
β→0+

N−1∑
j=1

h

(
exp(−β∆j)∑N−1

t=1 exp(−β∆t)

)
(67)

=

N−1∑
j=1

lim
β→0+

h

(
exp(−β∆j)∑N−1

t=1 exp(−β∆t)

)
(68)

= log

(
1

N − 1

)
(69)

lim
β→∞

f(β) = lim
β→∞

N−1∑
j=1

h

(
exp(−β∆j)∑N−1

t=1 exp(−β∆t)

)
(70)

=

N−1∑
j=1

lim
β→∞

h

(
exp(−β∆j)∑N−1

t=1 exp(−β∆t)

)
(71)

= log

(
1

|Imin|

)
, (72)

where we apply the property that the limit of a sum of functions is the sum of each function’s limit, given that they exists.

Proposition 3.1 The matrix W ∈ [0, 1]N×N defined in (1) is a solution to

argmin
˜W∈[0,1]N×N

J(W̃ , {y1, . . . ,yN}), (5)
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subject to the constraints W̃i.i = 0,
∑N

j=1 W̃i,j = 1 and
∑N

j=1 W̃i,j log W̃i,j ≤ − log(α) for all i ∈ {1, . . . , N}, where
ϵ1, . . . , ϵN ∈ R+ from (1) are the minimum values that satisfy the entropy constraint.

Proof of Proposition 3.1. The proof will demonstrate that the optimal solution can be derived from solving N subproblems,
each corresponding to a row of the graph solution. We will then use convexity conditions to derive the optimal solution
under certain assumptions on the data. Finally, we will show that if these assumptions do not hold, the solution takes a
similar form, but with bandwidth parameters approaching zero.

We begin by showing that the problem can be solved using N subproblems separately. For each i ∈ {1, . . . , N} we define a
subproblem related to the i− th row of the graph matrix

argmin
W̃i,1,...,W̃i,N∈[0,1]

Ji({W̃i,j}Nj=1, {yj}Nj=1) (73)

subject to the constraints W̃i,i = 0,
∑N

j=1 W̃i,j = 1 and
∑N

j=1 W̃i,j log W̃i,j ≤ − log(α), where

Ji({W̃i,j}Nj=1, {yj}Nj=1) =

N∑
j=1

W̃i,j∥yi − yj∥2. (74)

Based on the next derivation, we can see that the optimal solution should be optimal for each of these sub-problems

min
˜W∈[0,1]N×N

J(W̃ , {yj}Nj=1) (75)

= min
˜W∈[0,1]N×N

N∑
i,j=1

W̃i,j∥yi − yj∥2 (76)

=

N∑
i=1

min
W̃ i,:∈[0,1]N

N∑
j=1

W̃i,j∥yi − yj∥2 (77)

=

N∑
i=1

min
W̃ i,:∈[0,1]N

Ji({W̃i,j}Nj=1, {yj}Nj=1), (78)

where W̃
(k)

i,: denotes the i-th row of W̃
(k)

, and the domain of each minimization problem above contains the constraints
that W̃i,i = 0,

∑N
j=1 W̃i,j = 1 and

∑N
j=1 W̃i,j log W̃i,j ≤ − log(α) for all i ∈ {1, . . . , N}.

Without loss of generality, we are going to find the optimal Wi,1, . . . ,Wi,N that minimize the Ji for some i ∈ {1, . . . , N}.
Specifically, we assume Wi,i = 0 based on the equality to zero constraint, and omit this constraint. To find the optimal
solution, we begin by building on the Karush-Kuhn-Tucker (KKT) Theorem (Corollary 28.3.1 in (Rockafellar, 1970)). We
note that this solution will depend on certain conditions; therefore, after this derivation, we will provide an alternative
solution that attains a similar form when these conditions are not met.

The theorem assumes that the objective and the inequality constraint is convex and that the equality constraint is an affine
function. Furthermore, it assumes that there exists a solution within the domain that satisfies the inequality constraint in a
strict manner (Slater’s conditions). We begin with the latter assumption, we define a valid solution by W̃i,j = 1/(N − 1)

for any j ̸= i and W̃i,i = 0, as it sums up to ones. The entropy constraint is strictly satisfied
∑N

j=1 W̃i,j log W̃i,j =
− log(N − 1) < − log(α), and therefore Slater’s conditions are satisfied.

The objective Ji is an affine function and therefore is convex, and the equality constraint
∑N

j=1 W̃i,j = 1 is indeed affine.
Finally, we will show that the constraint of the entropy inequality is convex by showing that its Hessian is a positive
semi-definite matrix (Theorem 4.5 in (Rockafellar, 1970)). Specifically, the Hessian elements are

d2

d2W̃i,j

N∑
t=1

W̃i,t log(W̃i,t) =
d

dW̃i,j

(
1 + log(W̃i,j)

)
(79)

=
1

W̃i,j

(80)

35



Partition First, Embed Later: Feature Partitioning for Refined Embedding and Visualization of High-Dimensional Data

≥ 1. (81)

d

dW̃i,r

d

dW̃i,j

N∑
t=1

W̃i,t log(W̃i,t) =
d

dW̃i,r

(
1 + log(W̃i,j)

)
(82)

= 0 (83)

for all j, r ∈ {1, . . . , N}/{i} where j ̸= r. As the Hessian is a diagonal matrix with positive values we can conclude that it
is a positive definite matrix.

The KKT theorem states that a solution satisfying the KKT conditions—including stationarity, primal feasibility, dual
feasibility, and complementary slackness—is an optimal solution to the problem, provided Slater’s condition holds. To
derive such a solution we need to first define the Lagrangian of the minimization problem by

J̃i({W̃i,j}Nj=1, {yj}Nj=1) ≡
N∑
j=1

W̃i,j∥yi − yj∥2 (84)

+ ϵi

log(α) +

N∑
j=1

W̃i,j log(W̃i,j)

 (85)

+ µi

 N∑
j=1

W̃i,j − 1

 (86)

where ϵi ≥ 0 and µi ∈ R.

A solution that satisfies the stationary condition should attain for all j ̸= i

0 =
dJ̃i({Wi,j}Nj=1, {yj}Nj=1)

dWi,j
(87)

= ∥yi − yj∥2 + ϵi (1 + log(Wi,j)) + µi (88)

Wi,j = exp

(
−
∥yi − yj∥2 + ϵi + µi

ϵi

)
. (89)

The primal feasibility condition on the on the equality constraint induces-

1 =

N∑
j=1

Wi,j (90)

=
∑
j ̸=i

exp

(
−
∥yi − yj∥2 + ϵi + µi

ϵi

)
(91)

exp

(
µi

ϵi

)
=

∑
j ̸=i

exp

(
−
∥yi − yj∥2 + ϵi

ϵi

)
. (92)

By pushing it back into (89) we get that for all j ̸= i

Wi,j =

exp

(
−∥yi−yj∥

2+ϵi

ϵi

)
∑

t ̸=i exp
(
−∥yi−yt∥2+ϵi

ϵi

) (93)

=

exp

(
−∥yi−yj∥

2

ϵi

)
∑

t ̸=i exp
(
−∥yi−yt∥2

ϵi

) . (94)
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Furthermore, to satisfy the primal feasibility and complementary slackness of the entropy constraint we define any ϵi by

ϵi s.t.
∑
j

Wi,j logWi,j = − log(α). (95)

By incorporating the results from Lemma I.1 with ∆j ≡ ∥yi − yj∥2 for any j ∈ {1, . . . , N − 1}, we get that the function∑
j Wi,j logWi,j is a non-increasing function in ϵi. Additionally, according to the lemma, this function is bounded by

[− log(N −1),− log(α̃i)], where α̃i ≡ |{j ∈ {1, . . . , N}/{i} : ∥yj−yi∥ = mint ̸=i ∥yt−yi∥}|. These boundary values
correspond to the limit of the function as ϵi →∞ and ϵi → 0, respectively. Therefore a solution ϵi exists only if α̃i ≤ α.

Therefore, based on the Karush-Kuhn-Tucker Theorem if α̃i ≤ α then an optimal assignment of Wi,1 . . . ,Wi,N is as shown
in (94), with a ϵi that satisfies (95). To address the optimal assignment when α̃i > α we use a direct approach that does not
build on the KKT conditions. In this regime, any assignment of ϵi should satisfy the inequality entropy constraint, as the
entropy function is bounded from above by − log α̃i (Lemma I.1). Building on the suggested solution of Wi,1, . . . ,Wi,N ,
the assignment of ϵi that tends to 0 will result in the following solution

Wi,j =


0 if j = i
1
α̃i

if j ̸= i and ∥yj − yi∥ = mint̸=i ∥yt − yi∥
0 else

. (96)

based on Lemma I.1. This solution is valid as it satisfies the entropy constraint as
∑

j Wi,j logWi,j = − log(α̃i) ≤ − log(α),
it sums up to one, and Wi,i = 0. Now, we show that it achieves the minimal values among all solutions

N∑
j=1

Wi,j∥yi − yj∥2 (97)

= min
t̸=i
∥yt − yi∥2 (98)

≤ min
W̃i,1,...,W̃i,N∈[0,1]:

∑
j W̃i,j=1, W̃i,i=0

N∑
j=1

W̃i,j∥yi − yj∥2 (99)

≤ min
W̃i,1,...,W̃i,N∈[0,1]:

∑
j W̃i,j=1, W̃i,i=0,

∑
j W̃i,j log W̃i,j≤− log(α)

N∑
j=1

W̃i,j∥yi − yj∥2. (100)

Hence, we can conclude the proof.

Lemma I.2. LetM ⊂ RD be a smooth compact Riemannian manifold and let g :M → R+ be some smooth positive
function over it. Let ∆M :M→ R be the Laplace-Beltrami operator overM. Then, there exists ϵ̃(M, g) so that for any
ϵ < ϵ̃(M, g) and x ∈M

1

C

∫
x∈M

exp

(
−∥x− y∥2

2ϵ

)
g(x)dx = g(y) + ϵ/2(E(y)g(y) + ∆Mg(y)) +O(ϵ2) (101)

= g(y)(1 +O(ϵ)) (102)
1

C

∫
x∈M

exp

(
−∥x− y∥2

2ϵ

)
g(x)(xd − yd)

2dx = ϵg(y)∥∇Myd∥2 +O(ϵ2) (103)

= ϵg(y)∥∇Myd∥2(1 +O(ϵ)) (104)

for all d ∈ {1, . . . , D}, where E(x) is a smooth scalar function of the curvature ofM at x ∈M and C = (2πϵ)dim(M)/2.

Proof. The proof of (101) is given in (Singer, 2006) (see Eq. 2.11). Now we begin proving (103). As x tends to y

∆Mg(x)(xd − yd)
2
∣∣
x=y (105)

= g(x)(xd − yd)∆M(xd − yd) + (xd − yd)∆Mg(x)(xd − yd) (106)
+2⟨∇Mg(x)(xd − yd),∇M(xd − yd)⟩

∣∣
x=y
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= g(x)(xd − yd)∆Mxd + (xd − yd)∆Mg(x)(xd − yd) (107)
+2(xd − yd)⟨∇Mg(x),∇Mxd⟩+ 2g(x)∥∇Mxd∥2

∣∣
x=y

= 2g(x)∥∇Mxd∥2, (108)

where we use the identity ∆Mρ ·h = h∆M(ρ)+ ρ∆M(h)+2⟨∇Mρ,∇Mh⟩ for smooth functions ρ, h :M→ R, as both
f and the restriction of the manifold onto a specific dimension are smooth with respect to them manifoldM. Furthermore,
we use the fact that by combining it with the fact that the manifold is compact, we get that the Laplace-Beltrami operator
and the gradients over xd, g(x), g(x) · xd are bounded.

Now, by combining it with (101) we get that for sufficiently small ϵ

1

C

∫
x∈M

exp

(
−∥x− y∥2

2ϵ

)
g(x)(xd − yd)

2dx = ϵ/2(E(y) · 0 + 2g(y)∥∇Myd∥2) +O(ϵ2) (109)

= ϵg(y)∥∇Myd∥2 +O(ϵ2), (110)

based on the characteristics of E.

Proposition 3.2 Let M ⊂ RD be a smooth, compact, Riemannian manifold with intrinsic dimension dim(M) < D.
Suppose y1, . . . ,yN ∈ M are sampled independently from a smooth non-vanishing density f overM, and let W be
defined as in (1). Then, for all i ∈ {1, . . . , N} and sufficiently small ϵ1, . . . , ϵN ∈ R+, we have

N∑
j=1

Wi,j∥yi − yj∥2
a.s.−→

N→∞

ϵi
2
· dim(M) +O(ϵ2i ). (6)

Proof of Proposition 3.2. For simplicity denote x = yi. Let’s examine the inquired term in (6)

N∑
j=1

Wi,j∥x− yj∥2 (111)

=
∑

j∈{1,...,N}/{i}

exp(−∥x− yj∥2/ϵi)∑
t∈{1,...,N}/{i} exp(−∥x− yt∥2/ϵi)

· ∥x− yj∥2 (112)

a.s.−→
N→∞

∫
y∈M

exp(−∥x− y∥2/ϵi)∥x− y∥2f(y)dy∫
z∈M exp(−∥x− z∥2/ϵi)f(z)dz

, (113)

where the derivation made in the last line is based on Lemma 2 in (Hein et al., 2005). Specifically by considering A0,ϵi,n−1

and the samples {yj}j∈Ii where Ii = {1, . . . , N}/{i}. To be explicit, in the context of the derivation, this Lemma states
that: Let x ∈M and g be a continuous function onM. Then, there exists a constant C ≥ 1 so that for any ϵ, δ ∈ (0, 1/C)
such that

Pr

(∣∣∣∣∣
∑

j∈I exp(−∥x− yj∥2/ϵ)g(yj)∑
j∈I exp(−∥x− yj∥2/ϵ)

−
Ey∈M[exp(−∥x− y∥2/ϵ)g(y)]
Ez∈M[exp(−∥x− z∥2/ϵ)]

∣∣∣∣∣ ≥ δ

)
(114)

≤ CN · exp(−Nϵdim(M)δ2/C). (115)

Then, we obtain the almost-sure convergence via the Borel-Cantelli lemma as the sum below is finite for any δ ∈ (0, 1), and
therefore applies for δ ≥ 1 as well .

∞∑
N=10

Pr

(
∃i ∈ {1, . . . , N} :

∣∣∣∣∣
∑

j∈Ii
exp(−∥yi − yj∥2/ϵ)g(yj)∑

j∈Ii
exp(−∥yi − yj∥2/ϵ)

−
Ey∈M[exp(−∥yi − y∥2/ϵ)g(y)]
Ez∈M[exp(−∥yi − z∥2/ϵ)]

∣∣∣∣∣ ≥ δ

)
(116)

≤
∞∑

N=10

N∑
i=1

Pr

(∣∣∣∣∣
∑

j∈I exp(−∥x− yj∥2/ϵ)g(yj)∑
j∈I exp(−∥x− yj∥2/ϵ)

−
Ey∈M[exp(−∥x− y∥2/ϵ)g(y)]
Ez∈M[exp(−∥x− z∥2/ϵ)]

∣∣∣∣∣ ≥ δ

)
(117)

≤
∞∑

N=10

CN2 · exp(−Nϵdim(M)δ2/C) (118)
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<∞, (119)

where we used Boole’s inequality, and the sum’s finiteness follows from its terms’ exponential decay.

Next, we decompose the Euclidean distance and apply Lemma I.2 to approximate the integral presented in (113):∫
y∈M

exp(−∥x− y∥2/ϵi)∥x− y∥2f(y)dy∫
z∈M exp(−∥x− z∥2/ϵi)f(z)dz

=

D∑
d=1

∫
y∈M

exp(−∥x− y∥2/ϵi)(xd − yd)
2f(y)dy∫

z∈M exp(−∥x− z∥2/ϵi)f(z)dz
(120)

=

D∑
d=1

(ϵi/2)f(x)∥∇Mxd∥2(1 +O(ϵi))

f(x)(1 +O(ϵi))
(121)

=

D∑
d=1

(ϵi/2)∥∇Mxd∥2(1 +O(ϵi)) ·
1

1 +O(ϵi)
(122)

=

D∑
d=1

(ϵi/2)∥∇Mxd∥2(1 +O(ϵi)) · (1 +O(ϵi)) (123)

=

(
ϵi
2

D∑
d=1

∥∇Mxd∥2
)

+O(ϵ2i ), (124)

where we use the first-order approximation of 1/(1+ a) = 1− a+O(a2) = 1+O(a) for sufficiently small a > 0. Finally,
by using proposition 3.1 from (Osher et al., 2017) we get

=
ϵi
2
· dim(M) +O

(
ϵ2
)
, (125)

and thus, the proof is complete.

Lemma I.3. Let α ∈ (1, N − 1) and let {ω(k)}Kk=1,⊂ [0, 1]D be a partition solution as defined in Problem 3.3. Define a
set of K affinity matrices {W (k)} ⊂ [0, 1]N×N by

W
(k)
i,j =


exp

(
−

∥yi−yj∥
2

ω(k)

ϵk,i

)
∑N

t=1 exp

(
−

∥yi−yt∥
2

ω(k)

ϵk,i

) for j ̸= i

0 else

(126)

for all i, j = 1, . . . , N, and K = 1, . . . ,K where ϵk,i attains the minimum value that satisfies

N∑
j=1

W
(k)
i,j logW

(k)
i,j ≤ − log(α). (127)

Then, a minimizer of the function G (defined in (7)) over matrices that satisfy the constraints in Problem 3.3 is

{W (k)} = argmin

{ ˜W
(k)

}

G({W̃ (k)}Kk=1, {ω(k)}Kk=1, {y1, . . . ,yN}). (128)

Proof. The proof will demonstrate that the optimal solution can be derived from solving NK subproblems, each corre-
sponding to a row of each graph solution. We will then use convexity conditions to derive the optimal solution under certain
assumptions on the data. Finally, we will show that if these assumptions do not hold, the solution takes a similar form, but
with bandwidth parameters approaching zero.

We begin by showing that the problem can be solved using NK subproblems separately. For each i ∈ {1, . . . , N} and
k ∈ {1, . . . ,K} we define a subproblem related to the i− th row of the k-th graph matrix by

argmin
W̃

(k)
i,1 ,...,W̃

(k)
i,N∈[0,1]

Gk,i({W̃i,j}Nj=1,ω
(k), {yj}Nj=1) (129)
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subject to the constraints W̃ (k)
i,i = 0,

∑N
j=1 W̃

(k)
i,j = 1 and

∑N
j=1 W̃

(k)
i,j log W̃

(k)
i,j ≤ − log(α), where

Gk,i({W̃ (k)
i,j }

N
j=1,ω

(k), {yj}Nj=1) =

N∑
j=1

W̃
(k)
i,j ∥yi − yj∥2. (130)

Based on the next derivation, we can see that the optimal solution should be optimal for each of these sub-problems

min
{ ˜W

(k)
}⊂[0,1]N×N

G({W̃ (k)}Kk=1, {ω(k)}Kk=1, {yj}Nj=1) (131)

= min
{ ˜W

(k)
}⊂[0,1]N×N

K∑
k=1

N∑
i,j=1

W̃
(k)
i,j ∥yi − yj∥2 (132)

=

K∑
k=1

N∑
i=1

min
˜W

(k)

i,: ∈[0,1]N

N∑
j=1

W̃
(k)
i,j ∥yi − yj∥2 (133)

=

K∑
k=1

N∑
i=1

min
˜W

(k)

i,: ∈[0,1]N

Gk,i({W̃ (k)
i,j }

N
j=1,ω

(k), {yj}Nj=1). (134)

where W
(k)
i,: denotes the i-th row of W (k), and the domain of each minimization problem above contains the constraints

shown in Problem 3.3.

Without loss of generality, we are going to find the optimal W (k)
i,1 , . . . ,W

(k)
i,N that minimize the Gk,i for some i ∈ {1, . . . , N}

and k ∈ {1, . . . ,K}. Specifically, we assume W
(k)
i,i = 0 based on the equality to zero constraint, and omit this constraint.

To find the optimal solution, we begin by building on the Karush-Kuhn-Tucker (KKT) Theorem (Corollary 28.3.1 in
(Rockafellar, 1970)). We note that this solution will depend on certain conditions; therefore, after this derivation, we will
provide an alternative solution that attains a similar form when these conditions are not met.

The theorem assumes that the objective and the inequality constraint is convex and that the equality constraint is an affine
function. Furthermore, it assumes that there exists a solution within the domain that satisfies the inequality constraint in a
strict manner (Slater’s conditions). We begin with the latter assumption, by defining a valid solution W̃

(k)
i,j = 1/(N − 1) for

any j ̸= i and W̃
(k)
i,i = 0, as its rows sums up to ones. The entropy constraint is strictly satisfied

∑N
j=1 W̃

(k)
i,j log W̃

(k)
i,j =

− log(N − 1) < − log(α), and therefore Slater’s conditions are satisfied.

The objective Gk,i is an affine function and therefore is convex, and the equality constraint
∑N

j=1 W̃
(k)
i,j = 1 is indeed

affine. Finally, we will show that the constraint of the entropy inequality is convex by showing that its Hessian is a positive
semi-definite matrix (Theorem 4.5 in (Rockafellar, 1970)). Specifically, the Hessian elements are

d2

d2W̃
(k)
i,j

N∑
t=1

W̃
(k)
i,t log(W̃

(k)
i,t ) =

d

dW̃
(k)
i,j

(
1 + log(W̃

(k)
i,j )

)
(135)

=
1

W̃
(k)
i,j

(136)

≥ 1. (137)

d

dW̃
(k)
i,r

d

dW̃
(k)
i,j

N∑
t=1

W̃
(k)
i,t log(W̃

(k)
i,t ) =

d

dW̃
(k)
i,r

(
1 + log(W̃

(k)
i,j )

)
(138)

= 0 (139)

for all j, r ∈ {1, . . . , N}/{i} where j ̸= r. As the Hessian is a diagonal matrix with positive values we can conclude that it
is a positive definite matrix.

The theorem suggests that a solution that satisfies the KKT conditions, including stationary, primal feasibility, dual feasibility,
and complementary slackness, is an optimal solution for the problem. To satisfy its conditions we need to first define the
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Lagrangian of the minimization problem by

Lk,i({W̃ (k)
i,j }

N
j=1,ω

(k), {yj}Nj=1) ≡
N∑
j=1

W̃
(k)
i,j ∥yi − yj∥2ω(k) (140)

+ϵk,i

log(α) +

N∑
j=1

W̃
(k)
i,j log(W̃

(k)
i,j )


+µk,i

 N∑
j=1

W̃
(k)
i,j − 1


where ϵk,i ≥ 0 and µk,i ∈ R.

A solution that satisfies the stationary condition should attain for all j ̸= i

0 =
dLk,i({W̃ (k)

i,j }Nj=1,ω
(k), {yj}Nj=1)

dW
(k)
i,j

(141)

= ∥yi − yj∥2ω(k) + ϵk,i

(
1 + log(W

(k)
i,j )

)
+ µk,i (142)

W
(k)
i,j = exp

(
−
∥yi − yj∥2ω(k) + ϵk,i + µk,i

ϵk,i

)
. (143)

The primal feasibility condition on the on the equality constraint induces-

1 =

N∑
j=1

W
(k)
i,j (144)

=
∑
j ̸=i

exp

(
−
∥yi − yj∥2ω(k) + ϵk,i + µk,i

ϵk,i

)
(145)

exp

(
µk,i

ϵk,i

)
=

∑
j ̸=i

exp

(
−
∥yi − yj∥2ω(k) + ϵk,i

ϵk,i

)
. (146)

By pushing it back into (143) we get that for all j ̸= i

W
(k)
i,j =

exp

(
−

∥yi−yj∥
2

ω(k)+ϵk,i

ϵk,i

)
∑

t ̸=i exp

(
−

∥yi−yt∥
2

ω(k)
+ϵk,i

ϵk,i

) (147)

=

exp

(
−

∥yi−yj∥
2

ω(k)

ϵk,i

)
∑

t ̸=i exp

(
−

∥yi−yt∥
2

ω(k)

ϵk,i

) . (148)

Furthermore, to satisfy the primal feasibility and complementary slackness of the entropy constraint we define any ϵk,i by

ϵk,i s.t.
N∑
j=1

W
(k)
i,j logW

(k)
i,j = − log(α). (149)

By incorporating the results from Lemma I.1 with ∆j ≡ ∥yi−yj∥2ω(k) for any j ∈ {1, . . . , N−1}, we get that the function∑
j W

(k)
i,j logW

(k)
i,j is a non-increasing function in ϵk,i. Additionally, according to the lemma, this function is bounded by
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[− log(N − 1),− log(α̃k,i)], where α̃k,i ≡ |{j ∈ {1, . . . , N}/{i} : ∥yj − yi∥ω(k) = mint̸=i ∥yt − yi∥ω(k)}|. These
boundary values correspond to the limit of the function as ϵi →∞ and ϵi → 0, respectively. Therefore a solution ϵi exists
only if α̃i ≤ α.

Therefore, based on the Karush-Kuhn-Tucker Theorem if α̃i ≤ α then the optimal assignment of Wi,1 . . . ,Wi,N is as shown
in (94), with a ϵi that satisfies (95). To address the optimal assignment when α̃i > α we use a direct approach that does not
build on the KKT conditions. In this regime, any assignment of ϵi should satisfy the inequality entropy constraint, as the
entropy function is bounded from above by − log α̃i (Lemma I.1). Building on the suggested solution of Wi,1, . . . ,Wi,N ,
the assignment of ϵi that tends to 0 will result in the following solution

W
(k)
i,j =


0 if j = i
1
α̃i

if j ̸= i and ∥yj − yi∥ω(k) = mint ̸=i ∥yt − yi∥ω(k)

0 else
. (150)

based on Lemma I.1. This solution is valid as it satisfies the entropy constraint as
∑

j W
(k)
i,j logW

(k)
i,j = − log(α̃k,i) ≤

− log(α), it sums up to one, and W
(k)
i,i = 0. Now, we show that it achieves the minimal values among all solutions

N∑
j=1

W
(k)
i,j ∥yi − yj∥2ω(k) (151)

= min
t̸=i
∥yt − yi∥2ω(k) (152)

≤ min
W̃

(k)
i,1 ,...,W̃

(k)
i,N∈[0,1]:

∑
j W̃

(k)
i,j =1, W̃

(k)
i,i =0

N∑
j=1

W̃
(k)
i,j ∥yi − yj∥2ω(k) (153)

≤ min
W̃

(k)
i,1 ,...,W̃

(k)
i,N∈[0,1]:

∑
j W̃

(k)
i,j =1, W̃

(k)
i,i =0,

∑
j W̃

(k)
i,j log W̃

(k)
i,j ≤− log(α)

N∑
j=1

W̃
(k)
i,j ∥yi − yj∥2ω(k) . (154)

Hence, we can conclude the proof.

Lemma I.4. Let {W (k)} ∈ [0, 1]N×N be affinity matrices under the constraints in Problem 3.3. Define a partitioning
solution {ω(k)} ⊂ {0, 1}D by

ω
(k)
d =

{
1 if k = k̃ for some k̃ ∈ Ω(d)
0 else

, (155)

for d = 1, . . . , D, where Ω(d) = argmink∈{1,...,K} S(W
(k), d) and S is defined in (3).

Then, a minimizer of the objective function in Problem 3.3 while fixing the graph parameters satisfy its constraints is

{ω(k)} = argmin
{ω̃(k)}

G({W (k)}Kk=1, {ω̃(k)}Kk=1, {y1, . . . ,yN}). (156)

Proof. The minimization problem is

argmin
{ω̃(k)}

D∑
d=1

K∑
k=1

ω̃
(k)
d

 N∑
i=1

N∑
j=1

W
(k)
i,j ((yi)d − (yj)d)

2

 . (157)

As the constraints are
∑

k ω
(k)
d = 1 for any d = 1, . . . , D, the problem can be decomposed into D independent problems.

Meaning that for any d ∈ {1, . . . , D} we need to solve

argmin
{ω̃(k)

d }

K∑
k=1

ω̃
(k)
d

 N∑
i=1

N∑
j=1

W
(k)
i,j ((yi)d − (yj)d)

2

 . (158)
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Hence, the solution to this problem is

ω
(k)
d =

{
1 if k = k̃ for some k̃ ∈ I(d)
0 else

(159)

for all k ∈ {1, . . . ,K} and d ∈ {1, . . . , D}, where

Ω(d) = argmin
k∈{1,...,K}

S(W (k), d). (160)

Proposition 3.4 There exists an optimal partitioning solution {ω(k)}Kk=1 and corresponding affinity matrices {W (k)}Kk=1

that solve Problem 3.3 and are of the form

W
(k)
i,j =

{
exp

(
−∥yi − yj∥2ω(k)/ϵk,i

)
/D

(k)
i,i if i ̸= j

0 else
, (9)

ω
(k)
d =

{
1 if k = k̃ for some k̃ ∈ Ω(d)
0 else

, (10)

Ω(d) = argmin
k∈{1,...,K}

N∑
i,j=1

S(W (k), d), (11)

for d = 1, . . . , D and i, j = 1, . . . , N , where the bandwidth parameters {ϵk,i} ⊂ R+ are the minimum values that satisfy
the entropy constraints in Problem 3.3, and S is the Laplacian-type score defined in (3).

Proof of Proposition 3.4. The proposition aims to characterize optimal parameters of Problem 3.3. We begin by defining
two sub-problems that are related to it, each focusing on minimizing one set of parameters while keeping the other set fixed:

{W (k)} = argmin{ ˜W
(k)
}

k

,
G({W̃ (k)}Kk=1, {ω̃

(k)}Kk=1, {y1, . . . ,yN}) (161)

{ω(k)} = argmin{ω̃(k)
}

k

G({W̃ (k)}Kk=1, {ω̃
(k)}Kk=1, {y1, . . . ,yN}). (162)

where the parameters are limited to the constraints stated in Problem 3.3.

These two sub-problems are considered in Lemmas I.3 and I.4. Specifically, in Lemma I.3 the optimal graph matrices are
derived in the form of

W
(k)
i,j =


exp

−
∥yi−yj∥

2

ω̃(k)

ϵk,i


∑N

t=1 exp

−
∥yi−yt∥

2

ω̃(k)

ϵk,i

 for j ̸= i

0 else

, (163)

(164)

for i, j = 1, . . . , N and k = 1, . . . ,K, with ϵk,i that attains the minimal value that satisfies

N∑
j=1

W
(k)
i,j logW

(k)
i,j ≤ − log(α). (165)

On the other hand, in Lemma I.4 an optimal partitioning parameters are derived in the form of

ω
(k)
d =

{
1 if k = k̃ for some k̃ ∈ Ω(d)
0 else

(166)

for d = 1, . . . , D and k = 1, . . . ,K, where Ω(d) = argmink∈{1,...,K} S(W̃
(k)

, d) and S is defined in (3).

Therefore there exists parameters of this form that minimizes Problem 3.3.
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I.2. Proofs of Section 4

Corollary 4.2 Let {ω̃(k)} be a partitioning that satisfies the constraints in Problem 4.1. Then, graph affinity matrices that
minimize (13) while fixing the partitioning parameters {ω̃(k)} are

W
(k)
i,j =

 exp

(
−

∥yi−yj∥
2

ω̃(k)

ϵ·(1/D)
∑D

d=1 ω̃
(k)
d

)
/
∑N

t=1 exp

(
−

∥yi−yt∥
2

ω̃(k)

ϵ·(1/D)
∑D

d=1 ω̃
(k)
d

)
if i ̸= j

0 else
. (14)

for i, j = 1, . . . , N and k = 1, . . . ,K.

The Proof of Corollary 4.2. The proof will demonstrate that the optimal solution can be derived from solving NK
subproblems, each corresponding to a row of each graph solution. We will then use convexity conditions to derive the
optimal solution.

For simplicity we denote the following term distance term

γ(yi,yj ;ω
(k)) ≡

∥yi − yj∥2ω(k)

(1/D)
∑D

d=1 ω
(k)
d

. (167)

This will be used throughout the proof.

We begin by showing that the problem can be solved using NK subproblems separately. For each i ∈ {1, . . . , N} and
k ∈ {1, . . . ,K} we define a subproblem related to the i− th row of the k-th graph matrix by

argmin
W̃

(k)
i,1 ,...,W̃

(k)
i,N∈[0,1]

G̃k,i(W̃i,1, . . . , W̃i,N , {y1, . . . ,yN}) (168)

subject to the constraints W̃ (k)
i,i = 0 and

∑N
j=1 W̃

(k)
i,j = 1, where

G̃k,i(W̃
(k)
i,1 , . . . , W̃

(k)
i,N ), {y1, . . . ,yN}) =

N∑
j=1

W̃
(k)
i,j γ(yi,yj ;ω

(k)) + ϵ

N∑
j=1

W̃
(k)
i,j log

(
W̃

(k)
i,j

)
. (169)

Based on the next derivation, we can see that the optimal solution should be optimal for each of these sub-problems

min
{ ˜W

(k)
}K
k=1⊂[0,1]N×N

G̃(W̃i,1, . . . , W̃i,N , {y1, . . . ,yN}) + ϵ

K∑
k=1

N∑
i,j=1

W̃
(k)
i,j log

(
W̃

(k)
i,j

)
(170)

(171)

= min
{ ˜W

(k)
}K
k=1⊂[0,1]N×N

K∑
k=1

N∑
i,j=1

W̃
(k)
i,j γ(yi,yj ;ω

(k)) + ϵ

K∑
k=1

N∑
i,j=1

W̃
(k)
i,j log

(
W̃

(k)
i,j

)
(172)

=

K∑
k=1

N∑
i=1

min
˜W i,:∈[0,1]N

N∑
j=1

W̃
(k)
i,j γ(yi,yj ;ω

(k)) + ϵ

N∑
j=1

W̃
(k)
i,j log

(
W̃

(k)
i,j

)
(173)

=

K∑
k=1

N∑
i=1

min
˜W i,:∈[0,1]N

G̃k,i(W̃i,1, . . . , W̃i,N , {y1, . . . ,yN}), (174)

where W̃
(k)

i,: denotes the i-th row of W̃
(k)

, and the domain of each minimization problem above includes W (k)
i,i = 0 and∑N

j=1 W
(k)
i,j = 1 for all k ∈ {1, . . . ,K} and i ∈ {1, . . . , N}.

Without loss of generality, we are going to find the optimal W (k)
i,1 , . . . ,W

(k)
i,N that minimize the G̃k,i for some i ∈ {1, . . . , N}

and k ∈ {1, . . . ,K}. Specifically, we assume W
(k)
i,i = 0 based on the equality to zero constraint, and omit this constraint.

To find the optimal solution, we begin by building on the Karush-Kuhn-Tucker (KKT) Theorem (Corollary 28.3.1 in
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(Rockafellar, 1970)). We note that this solution will depend on certain conditions; therefore, after this derivation, we will
provide an alternative solution that attains a similar form when these conditions are not met.

The theorem assumes that the objective is convex and that the equality constraint is an affine function. Furthermore, it
assumes that there exists a solution within the domain that satisfies the inequality constraints in a strict manner (Slater’s
conditions). We begin with the latter assumption, as there are no inequality constraints the Slater’s conditions are satisfied.

The objective G̃k,i is a sum of a linear function and an entropy function. Based on Theorem 4.5 in (Rockafellar, 1970), by
showing that the Hessian of the entropy function is positive semi-definite we can deduce that it is convex. Specifically, the
Hessian elements are

d2

d2W̃
(k)
i,j

N∑
t=1

W̃
(k)
i,t log(W̃

(k)
i,t ) =

d

dW̃
(k)
i,j

(
1 + log(W̃

(k)
i,j )

)
(175)

=
1

W̃
(k)
i,j

(176)

≥ 1. (177)

d

dW̃
(k)
i,r

d

dW̃
(k)
i,j

N∑
t=1

W̃
(k)
i,t log(W̃

(k)
i,t ) =

d

dW̃
(k)
i,r

(
1 + log(W̃

(k)
i,j )

)
(178)

= 0 (179)

for all j, r ∈ {1, . . . , N}/{i} where j ̸= r. As the Hessian is a diagonal matrix with positive values we can conclude that it
is a positive definite matrix. Now, as the objective is the sum of two linear functions it is convex as well based on Theorem
5.2 in (Rockafellar, 1970) and the convexity of linear functions.

The KKT theorem states that a solution satisfying the KKT conditions—including stationarity, primal feasibility, dual
feasibility, and complementary slackness—is an optimal solution to the problem, provided Slater’s condition holds. To
derive such a solution we need to first define the Lagrangian of the minimization problem by

L̃k,i({W̃
(k)}Kk=1, {ω(k)}Kk=1) ≡

N∑
j=1

W̃
(k)
i,j γ(yi,yj ;ω

(k)) (180)

+ ϵ

N∑
j=1

W̃
(k)
i,j log(W̃

(k)
i,j )

+ µk,i

 N∑
j=1

W̃
(k)
i,j − 1


where ϵk,i ≥ 0 and µk,i ∈ R.

A solution that satisfies the stationary condition should attain for all j ̸= i:

0 =
dL̃k,i({W (k)}, {ω(k)})

dW
(k)
i,j

(181)

= γ(yi,yj ;ω
(k)) + ϵ

(
1 + log(W

(k)
i,j )

)
+ µk,i (182)

W
(k)
i,j = exp

(
−
γ(yi,yj ;ω

(k)) + ϵ+ µk,i

ϵ

)
. (183)

The primal feasibility condition on the on the equality constraint induces-

1 =

N∑
j=1

W
(k)
i,j (184)
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=
∑
j ̸=i

exp

(
−
γ(yi,yj ;ω

(k)) + ϵ+ µk,i

ϵ

)
(185)

exp
(µk,i

ϵ

)
=

∑
j ̸=i

exp

(
−
γ(yi,yj ;ω

(k)) + ϵ

ϵ

)
. (186)

By pushing it back into (183) we get that for all j ̸= i and k ∈ {1, . . . , N}

W
(k)
i,j =

exp

(
−γ(yi,yj ;ω

(k))+ϵ

ϵ

)
∑

t ̸=i exp
(
−γ(yi,yy ;ω(k))+ϵ

ϵ

) (187)

=

exp

(
−γ(yi,yj ;ω

(k))

ϵ

)
∑

t ̸=i exp
(
−γ(yi,yt;ω(k))

ϵ

) . (188)

Therefore we can conclude the proof with the derived optimal solution form.

Lemma I.5. Let X1, . . . , XN be random variables. Then for any γ > 0

Pr(|
N∑
i=1

Xi| ≥ γ) ≤
N∑
i=1

Pr(|Xi| ≥ γ/N) (189)

Proof. This lemma is not new and is shown to simplify other lemmas. We begin with the upper inequality

Pr(|
N∑
i=1

Xi| ≥ γ) ≤ Pr(

N∑
i=1

|Xi| ≥ γ) ≤ Pr(∃i : |Xi| ≥ γ/N) ≤
N∑
i=1

Pr(|Xi| ≥ γ/N), (190)

where the left inequality follows from the triangle inequality, the middle from set inclusion, and the right from Boole’s
inequality.

Lemma I.6. Assume the configuration described in Section 4, and let {ω(k)} ⊂ {0, 1}D be a partitioning solution that
satisfies its conditions, and ϵ ∈ (0, 1). Then,

(1/N)

K∑
s=1

N∑
i=1

log

(1/(N − 1))

N∑
j=1;j ̸=i

exp

(
−

∥yi − yj∥2ω(k)

ϵ(1/D)
∑Ds

t=1

∑Ds

d=1 ω
(k,t)
d

) (191)

−(1/N)

K∑
s=1

N∑
i=1

log

(1/(N − 1))

N∑
j=1;j ̸=i

exp

− K∑
s=1

p
(s)
k

(
∥x(s)

i − x
(s)
j ∥2 + ∥x

(K+1)
i − x

(K+1)
j ∥2

)
ϵ
∑K

t=1 βtp
(k)
t


a.s.−→

D,N→∞
0 (192)

Proof. The proof will begin by first showing the uniform almost surely convergence of the terms inside the exponentials,
then it will derive the above convergence. We denote the following terms that will be used throughout the proof

x̃
(s)
i =

(
x
(s)
i

x
(K+1)
i

)
for i = 1, . . . , N and s = 1, . . . ,K (193)

βmin = min
s∈{1,...,K}

βs (194)

C = max(1, max
z,v∈M

∥z − v∥2). (195)

whereM =M1 × . . .×MK+1 denotes the domain of the latent space.
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We want to show the uniform almost sure convergence of the terms inside the exponentials in (191) by showing that the
following quantity almost surely is bounded from above by zero.

max
i,j∈{1,...,N},k∈{1,...,K}

j ̸=i

∣∣∣∣∣∣
∥yi − yj∥2ω(k)

ϵ(1/D)
∑Ds

t=1

∑Ds

d=1 ω
(k,t)
d

−
K∑
s=1

p
(s)
k

(
∥x(s)

i − x
(s)
j ∥2 + ∥x

(K+1)
i − x

(K+1)
j ∥2

)
ϵ
∑K

t=1 βtp
(k)
t

∣∣∣∣∣∣ (196)

= max
i,j∈{1,...,N},k∈{1,...,K}

j ̸=i

∣∣∣∣∣
K∑
s=1

(∑Ds

d=1 ω
(k,s)
d (P (s)(x̃

(s)
i − x̃

(s)
j ))2d

ϵ(1/D)
∑Ds

t=1

∑Ds

d=1 ω
(k,t)
d

−
p
(s)
k ∥x̃

(s)
i − x̃

(s)
j ∥2

ϵ
∑K

t=1 βtp
(k)
t

)∣∣∣∣∣ (197)

≤ max
i,j∈{1,...,N},k∈{1,...,K}

j ̸=i

∣∣∣∣∣
K∑
s=1

(∑Ds

d=1 ω
(k,s)
d (P (s)(x̃

(s)
i − x̃

(s)
j ))2d

ϵ(1/D)
∑Ds

t=1

∑Ds

d=1 ω
(k,t)
d

−
(1/Ds)

∑Ds

d=1 ω
(k,s)
d ∥x̃(s)

i − x̃
(s)
j ∥2

ϵ(1/D)
∑Ds

t=1

∑Ds

d=1 ω
(k,t)
d

)∣∣∣∣∣ (198)

+ max
i,j∈{1,...,N},k∈{1,...,K}

j ̸=i

∣∣∣∣∣
K∑
s=1

(
(1/Ds)

∑Ds

d=1 ω
(k,s)
d ∥x̃(s)

i − x̃
(s)
j ∥2

ϵ(1/D)
∑Ds

t=1

∑Ds

d=1 ω
(k,t)
d

−
p
(s)
k ∥x̃

(s)
i − x̃

(s)
j ∥2

ϵ
∑K

t=1 βtp
(k)
t

)∣∣∣∣∣ ,
where the first derivation introduces the problem configuration shown in (15) and the notation in (193). The second derivation
uses the triangle inequality and the sub-additivity property of the maximum function. Below, we will examine these terms
and then combine their results to derive the convergence.

Next, we introduce key properties of the configuration, as outlined in Section 4. In particular, the configuration governs
the limiting behavior of the weighting and dimensionality parameters: (1/Ds)

∑Ds

d=1 ω
(k,s)
d → p

(k)
s and Ds/D → βs for

any s, k ∈ {1, . . . ,K}. Consequently, for any δ0 ≤ min(βmin,
√
ϵ/2) there exists N0, D0 such that for any N ≥ N0, and

correspondingly D ≥ D0, we have

|Ds/D − βs| ≤ δ0 and |(1/Ds)

Ds∑
d=1

ω
(k,s)
d − p(k)s | ≤ δ0. (199)

Hence, we can derive the following lower bounds for all s, k ∈ {1, . . . ,K} by

Ds/D ≥ βs − δ0 ≥ βs − βs/2 = βs/2 > 0 (200)

(1/Ds)

Ds∑
d=1

ω
(k,s)
d ≥ p(k)s − δ0 ≥

√
ϵ−
√
ϵ/2 =

√
ϵ/2 > 0 (201)

(1/D)

Ds∑
d=1

ω
(k,s)
d = (Ds/D)

(
(1/Ds)

Ds∑
d=1

ω
(k,s)
d

)
≥ (βs/2)(

√
ϵ/2) > 0. (202)

We begin by analyzing the first term in (198), focusing on the individual differences that appear within the summation over
s. After examining these components, we combine the results to establish bounds on the full sum over s. The denominators
in these expressions can be uniformly lower bounded using (202) by

(1/D)

K∑
s=1

Ds∑
d=1

ω
(k,s)
d ≥

K∑
s=1

βs

√
ϵ/4 =

√
ϵ/4 > 0. (203)

since
∑K

s=1 βs = 1. Hence, all of the summed elements within the first term are well-defined.

Next, we consider the numerators of the terms appearing in the summation over s, focusing on bounding the difference
between the corresponding numerators. Specifically, for any t ∈ (0, 1), we bound the probability that this difference deviates
from zero by

Pr

[
∃i ̸= j ∈ [N ], k, s ∈ [K] :

∣∣∣∣∣
Ds∑
d=1

ω
(k,s)
d (P (s)(x̃i − x̃j))

2
d − ∥x̃i − x̃j∥2 ·

∑Ds

d=1 ω
(k,s)
d

Ds

∣∣∣∣∣ ≥ t

]
(204)
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=Pr

[
∃i ̸= j ∈ [N ], k, s ∈ [K] :

∣∣∣∣∣
(∑Ds

d=1 ω
(k,s)
d (

√
DsP

(s)(x̃i − x̃j))
2
d∑Ds

d=1 ω
(k,s)
d

)
− ∥x̃i − x̃j∥2

∣∣∣∣∣ ≥ t · Ds∑Ds

d=1 ω
(k,s)
d

]
(205)

≤Pr

[
∃i ̸= j ∈ [N ], k, s ∈ [K] :

∣∣∣∣∣
(

1∑Ds

d=1 ω
(k,s)
d

Ds∑
d=1

ω
(k,s)
d (

√
DsP

(s)(x̃i − x̃j))
2
d

)
− ∥x̃i − x̃j∥2

∣∣∣∣∣ ≥ t

]
(206)

≤Pr

[
∃i ̸= j ∈ [N ], k, s ∈ [K] : (207)∣∣∣∣∣

(
1∑Ds

d=1 ω
(k,s)
d

Ds∑
d=1

ω
(k,s)
d (

√
DsP

(s)(x̃i − x̃j))
2
d

)
− ∥x̃i − x̃j∥2

∣∣∣∣∣ ≥ t∥x̃i − x̃j∥2

C

]
(208)

≤Pr

[
∃i ̸= j ∈ [N ], k, s ∈ [K] :

∣∣∣∣∣
(

1∑Ds

d=1 ω
(k,s)
d

Ds∑
d=1

ω
(k,s)
d (

√
DsP

(s)(x̃i − x̃j)/∥x̃i − x̃j∥)2d

)
− 1

∣∣∣∣∣ ≥ t

C

]
(209)

≤
N∑

i,j=1
j ̸=i

K∑
s,k=1

Pr

[∣∣∣∣∣
(

1∑Ds

d=1 ω
(k,s)
d

Ds∑
d=1

ω
(k,s)
d (

√
DsP

(s)(x̃i − x̃j)/∥x̃i − x̃j∥)2d

)
− 1

∣∣∣∣∣ ≥ t

C

]
, (210)

where [N ] = {1, . . . , N} and [K] = {1, . . . ,K}. In the first derivation we divide by (1/Ds)
∑Ds

d=1 ω
(k,s)
d , which is within

(0, 1] based on its definition in Section 4 and (203). The second and third derivations upper bound the probabilities by
replacing the threshold with a smaller value, following the same reasoning as before, and the definition of C in (195). Next,
we invoke the independence of the samples and the assumption of a continuous sampling distribution, which implies that the
probability of any two data points being identical is zero. We then apply Boole’s inequality, which decomposes the events
into multiple simpler events.

We can bound each of these probabilities by applying Example 2.11 from (Wainwright, 2019), which has two conditions
that must hold independently for each quadruple (i, j, s, k). First, the entries of

√
DsP

(s)(x̃i − x̃j)/∥x̃i − x̃j∥ should be
independently and identically distributed according to N (0, 1), which is attained as each entry in P is independently and
identically distributed according to N (0, 1/Ds) (see Section 4). Second, t/C should be in (0, 1), which is attained by the
definition of C in (195). Hence, the term above can be upper bounded by

≤
K∑

s,k=1

2N2 exp

(
−t2(

Ds∑
d=1

ω
(k,s)
d )/(8C2)

)
(211)

≤ 2N2K2 exp
(
−t2D

√
ϵβs/(32C

2)
)

(212)

≤ 2N2K2 exp
(
−t2D

√
ϵβmin/(32C

2)
)
. (213)

where we plug in (202).

By combining (203), and (213) we establish the almost sure convergence of the first term in (198) to zero via the
Borel–Cantelli lemma. This is done by showing the sum below is finite for any t ∈ (0, 1), where the case for t ≥ 1
follows since it is bounded from above by the case t < 1.

∞∑
N=N0

Pr
[
∃i ̸= j ∈ [N ], k ∈ [K] : (214)

∣∣∣∣∣
K∑
s=1

(∑Ds

d=1 ω
(k,s)
d (P (s)(x̃

(s)
i − x̃

(s)
j ))2d − 1

Ds

∑Ds

d=1 ω
(k,s)
d ∥x̃(s)

i − x̃
(s)
j ∥2

ϵ(1/D)
∑Ds

t=1

∑Ds

d=1 ω
(k,t)
d

)∣∣∣∣∣ ≥ t

]

≤
∞∑

N=N0

N∑
i,j=1;j ̸=i

K∑
k=1

Pr

[∣∣∣∣∣
K∑
s=1

(∑Ds

d=1 ω
(k,s)
d (P (s)(x̃

(s)
i − x̃

(s)
j ))2d − 1

Ds

∑Ds

d=1 ω
(k,s)
d ∥x̃(s)

i − x̃
(s)
j ∥2

ϵ(1/D)
∑Ds

t=1

∑Ds

d=1 ω
(k,t)
d

)∣∣∣∣∣ ≥ t

]
(215)

≤
∞∑

N=N0

N∑
i,j=1;j ̸=i

K∑
k=1

Pr

[∣∣∣∣∣
K∑
s=1

(∑Ds

d=1 ω
(k,s)
d (P (s)(x̃

(s)
i − x̃

(s)
j ))2d − 1

Ds

∑Ds

d=1 ω
(k,s)
d ∥x̃(s)

i − x̃
(s)
j ∥2

ϵ
√
ϵ/4

)∣∣∣∣∣ ≥ t

]
(216)
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=

∞∑
N=N0

N∑
i,j=1;j ̸=i

K∑
k=1

Pr

[∣∣∣∣∣
K∑
s=1

(
Ds∑
d=1

ω
(k,s)
d (P (s)(x̃

(s)
i − x̃

(s)
j ))2d −

1

Ds

Ds∑
d=1

ω
(k,s)
d ∥x̃(s)

i − x̃
(s)
j ∥

2

)∣∣∣∣∣ ≥ tϵ3/2

4

]
(217)

=

∞∑
N=N0

N∑
i,j=1;j ̸=i

K∑
k,s=1

Pr

[∣∣∣∣∣
Ds∑
d=1

ω
(k,s)
d (P (s)(x̃

(s)
i − x̃

(s)
j ))2d −

1

Ds

Ds∑
d=1

ω
(k,s)
d ∥x̃(s)

i − x̃
(s)
j ∥

2

∣∣∣∣∣ ≥ tϵ3/2

4K

]
(218)

≤
∞∑

N=N0

2N2K2 exp
(
−t2Dϵ3βmin/(2

9K2C2)
)

(219)

(220)

≤
∞∑

N=N0

2N2K2N−t2(D/ log(N))ϵ3βmin/(2
9K2C2) (221)

<∞, (222)

where the first derivation follows from Boole’s inequality. The second and third steps increase the left-hand side based on
lower bounding its denominator using (203), and the definition of ϵ being strictly positive. The fourth derivation invokes
Lemma I.5. Next, we apply the upper bound from (213) as 1/K, t, ϵ < 1. The final derivation follows from the asymptotic
assumption D/ log(N)→∞, as stated in Section 4, which guarantees that the sum is finite.

We now turn our attention to the second term in (198), which we analyze separately from the first. We begin by examining
the behavior of the numerators and denominators of the individual terms within the summation. Once these components are
understood, we will combine the results to analyze the term as a whole. Specifically, for all k, s ∈ {1, . . . ,K},

(1/Ds)

Ds∑
d=1

ω
(k,s)
d

D,N→∞−→ p
(s)
k (223)

(1/D)

K∑
t=1

Dt∑
d=1

ω
(k,t)
d =

K∑
t=1

(Dt/D)

(
(1/Dt)

Dt∑
d=1

ω
(k,t)
d

)
D,N→∞−→

K∑
t=1

βtp
(k)
t (224)

(1/Ds)
∑Ds

d=1 ω
(k,s)
d

(1/D)
∑K

t=1

∑Dt

d=1 ω
(k,t)
d

D,N→∞−→
p
(s)
k∑K

t=1 βtp
(k)
t

, (225)

where we use the algebraic limit theorem. The bottom limit follows from the two limits above it and from the strict positivity
of the denominator, as established in (203).

Hence, we can establish the following limit, which bounds the asymptotic value of the second term in (198):

max
i,j∈{1,...,N},k∈{1,...,K}

j ̸=i

∣∣∣∣∣
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d

−
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(s)
k ∥x̃
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ϵ
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t=1 βtp
(k)
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∣∣∣∣∣ (226)

≤ max
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j ̸=i

K∑
s=1

∥x̃(s)
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(s)
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ϵ
·
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d
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∑K
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∑Dt
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(k,t)
d

−
p
(s)
k∑K

t=1 βtp
(k)
t

∣∣∣∣∣ (227)

≤ max
k∈{1,...,K}

C

ϵ
·

K∑
s=1

∣∣∣∣∣
∑Ds

d=1 ω
(k,s)
d

(1/D)
∑K
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∑Dt

d=1 ω
(k,t)
d

−
p
(s)
k∑K

t=1 βtp
(k)
t

∣∣∣∣∣ (228)

≤ KC

ϵ
· max
s,k∈{1,...,K}

∣∣∣∣∣
∑Ds

d=1 ω
(k,s)
d

(1/D)
∑K

t=1

∑Dt

d=1 ω
(k,t)
d

−
p
(s)
k∑K

t=1 βtp
(k)
t

∣∣∣∣∣ (229)

D,N→∞−→ 0, (230)

where in the first derivation we apply the triangle inequality, and in the second we invoke the definition of C as given in
(195). We then use the fact that the maximum is greater than or equal to the mean. Finally, we apply (225) which establishes
that for each of the K2 sequences— indexed by s, k = 1, . . . ,K— converges deterministically to their limit.
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We can conclude the first part of the proof, by showing that (196) can be bounded almost surely from above by zero using
(222) and (230).

max
i,j∈{1,...,N},k∈{1,...,K}

j ̸=i

∣∣∣∣∣ ∥yi − yj∥2ω(k)

ϵ(1/D)
∑Ds

t=1

∑Ds

d=1 ω
(k,t)
d

−
K∑
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p
(s)
k ∥x̃

(s)
i − x̃

(s)
j ∥2

ϵ
∑K

t=1 βtp
(k)
s

∣∣∣∣∣ D,N→∞−→
a.s.

0. (231)

Now, we can conclude the proof by∣∣∣∣∣ 1N
K∑

k=1

N∑
i=1

log

 1

N

N∑
j=1;j ̸=i

exp

(
−

∥yi − yj∥2ω(k)

ϵ(1/D)
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d

) (232)

− 1

N

K∑
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N∑
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 1
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N∑
j=1;j ̸=i
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(s)
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(k)
s
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N
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N
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d

) (233)

− log
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− log
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∣∣∣∣∣ (235)

a.s.−→
D,N→∞

0, (236)

where in the first two steps, we apply the triangle inequality together with the logarithm’s product rule. Next, we exploit the
fact that the log-sum-exp function is 1-Lipschitz (see Appendix A of (El Ghaoui & Gueye, 2008)). Finally, we invoke (231)
and note that K is finite.

Lemma I.7. Assume the configuration in Section 4. Let ϵ ∈ (0, 1), and p
(k)
s ∈ [

√
ϵ, 1− (K − 1)

√
ϵ]] and let β1, . . . , βK ∈

(0, 1) that satisfy
∑K

t=1 βt = 1. Then, the following convergene is attained
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 (237)

a.s.−→
D,N→∞
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Ex∈M

logEz∈M
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 (238)

Proof. For simplicity, we begin the proof by defining some terms and constants that will be used the derivations below

Oi,j,N,k =exp

−
∑K

s=1

∥∥∥x(s)
i − x

(s)
j
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t βt

−
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 (239)
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Oi,N,k =
1

N − 1
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Õi,k =Ez∈M
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˜̃Ok =Ex∈M

logEz∈M

exp
−∑K

s=1 ∥x(s) − z(s)∥2p(k)s
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−
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 (242)

C = max
x,z∈M

∥x− z∥2 (243)

C̃ =exp(2CK/ϵ3/2) (244)

First, We can see that E[Oi,j,N,k] = E[Oi,N,k] = Õi,k, where the expectations are over {x1, . . . ,xN}/{xi} that are drawn

independently from the same distribution. Second, we can see that ˜̃Ok = Exi∈M[log Õi,k]. Finally, we can see that C̃ > 1.

Next, we prove that the terms Oi,j,N,k, Oi,N,k and Õi,k are bounded within [C̃−1, 1] for each i ∈ {1, . . . , N} and

k ∈ {1, . . . ,K}. A direct result of this will be that both log Õi,k and ˜̃Ok will be bounded by [−2CK/ϵ3/2, 0]. The terms
Oi,N,k and Õi,k are actually an average or expectation operator over Oi,j,N,k, hence their bounds should be the same as the
latter term.

To begin with, the upper bound of Oi,j,N,k is 1 as the exponential argument is non-positive. As for the lower bound of
Oi,j,N,k,

Oi,j,N,k = exp

−∑K
s=1 ∥x

(s)
i − x

(s)
j ∥2p

(k)
s

ϵ
∑K

t=1 p
(k)
t βt

−

∥∥∥x(K+1)
i − x

(K+1)
j

∥∥∥2∑K
s=1 p

(k)
s

ϵ
∑K

t=1 p
(k)
t βt

 (245)

≥ exp

(
−
∑K

s=1 Cp
(k)
s

ϵ
∑K

t=1 p
(k)
t βt

−
C
∑K

s=1 p
(k)
s

ϵ
∑K

t=1 p
(k)
t βt

)
(246)

≥ exp

(
−
∑K

s=1 C · 1
ϵ
∑K

t=1

√
ϵβt

−
C
∑K

s=1 1

ϵ
∑K

t=1

√
ϵβt

)
(247)

≥ exp

(
−CK

ϵ
√
ϵ
− CK

ϵ
√
ϵ

)
(248)

= C̃−1, (249)

where the first derivation uses the definition of C in (243), and the second uses the bounds of p(k)s . Then, the third and fourth
derivations are based on the property that

∑K
t=1 βt = 1 and the definition of C̃ in (244), respecitvel.

Now we are ready to use these terms to define the probability of the two terms mentioned in the statement being close by for
finite N for some δ > 0

Pr

[∣∣∣∣∣ 1N
K∑

k=1

N∑
i=1

log(Oi,N,k)−
K∑

k=1

˜̃Ok

∣∣∣∣∣ ≥ δ

]
(250)

= Pr

[∣∣∣∣ 1N
K∑

k=1

N∑
i=1

log(Oi,N,k)−
1

N

K∑
k=1

N∑
i=1

log(Õi,N,k) +
1

N

K∑
k=1

N∑
i=1

log(Õi,N,k)−
K∑

k=1

˜̃Ok

∣∣∣∣ ≥ δ

]
(251)

≤ Pr

[∣∣∣∣ 1N
K∑

k=1

N∑
i=1

log(Oi,N,k/Õi,N,k)

∣∣∣∣ ≥ δ/2

]
+ Pr

[∣∣∣∣ 1N
K∑

k=1

N∑
i=1

log(Õi,N,k)−
K∑

k=1

˜̃Ok

∣∣∣∣ ≥ δ/2

]
, (252)

where the derivations use Lemma I.5.
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First, we bound the second term, and then we will get to the first term. By definition, ˜̃O = E[log(Õi,k)] where the
expectation is with respect to xi ∈M, for any i ∈ {1, . . . , N} and k ∈ {1, . . . ,K}.

Pr

[∣∣∣∣ 1N
K∑

k=1

N∑
i=1

log(Õi,N,k)−
K∑

k=1

˜̃Ok

∣∣∣∣ ≥ δ/2

]
≤

K∑
k=1

Pr

[∣∣∣∣ 1N
N∑
i=1

log(Õi,N,k)− ˜̃Ok

∣∣∣∣ ≥ δ/2K

]
(253)

≤ 2K exp

(
− 2δ2N2/(4K2)

N(log(1)− log(C̃−1))2

)
(254)

= 2K exp

(
−δ2N/(2K2)

log(C̃−1)2

)
(255)

= K exp

(
− 2δ2N

log(C̃)2

)
(256)

where we use Lemma I.5 for the first derivation. In next two derivations, we use the Hoeffding’s inequality along with the
bound shown above that Õi,N,k ∈ [C̃−1, 1].

Now, we bound the second term. This term is well defined as both Oi,N,k and Õi,k are strictly positive as derived above.

Pr

[∣∣∣∣ 1N
K∑

k=1

N∑
i=1

log(Oi,N,k/Õi,N,k)

∣∣∣∣ ≥ δ/2

]
(257)

≤
K∑

k=1

N∑
i=1

Pr

(∣∣∣∣∣ log Oi,N,k

Õi,k

∣∣∣∣∣ ≥ δ/2K

)
(258)

=

K∑
k=1

N∑
i=1

Pr

({
Oi,N,k

Õi,k

≥ exp(δ/2K)

} ⋃ {
Oi,N,k

Õi,k

≤ exp(−δ/2K)

})
(259)

=

K∑
k=1

N∑
i=1

Pr

({
Oi,N,k

Õi,k

− 1 ≥ exp(δ/2K)− 1

} ⋃ {
Oi,N,k

Õi,k

− 1 ≤ exp(−δ/2K)− 1

})
(260)

≤
K∑

k=1

N∑
i=1

Pr

({
Oi,N,k

Õi,k

− 1 ≥ 1− exp(−δ/2K)

} ⋃ {
Oi,N,k

Õi,k

− 1 ≤ −(1− exp(−δ/2K))

})
(261)

=

K∑
k=1

N∑
i=1

Pr

(∣∣∣∣∣Oi,N,k

Õi,k

− 1

∣∣∣∣∣ ≥ 1− exp(−δ/2K)

)
(262)

=

K∑
k=1

N∑
i=1

Pr

(∣∣∣∣∣Oi,N,k

Õi,k

− 1

∣∣∣∣∣ ≥ δ̃

)
(263)

where the first derivation is based on Lemma I.5. In (261) we use the fact that exp(δ)−1 = exp(δ/2K)(1−exp(−δ/2K)) ≥
1− exp(−δ/2K) ≥ 0, and in (263) we denote δ̃ = 1− exp(−δ/2K). Now, we can use the fact that Oi,N,k can be written
as an average over Oi,j,N,k and that E[Oi,j,N,k] = Õi,k.

=

K∑
k=1

N∑
i=1

Pr

(∣∣∣∣∣Oi,N,k

Õi,k

− 1

∣∣∣∣∣ ≥ δ̃

)
(264)

=

K∑
k=1

N∑
i=1

Pr

(∣∣∣∣∣ 1

N − 1

N∑
j=1,j ̸=i

Oi,j,N,k

Õi,k

− 1

∣∣∣∣∣ ≥ δ̃

)
(265)

≤
K∑

k=1

N∑
i=1

exp

− 2δ̃2

(N − 1)
(
C̃/(N − 1)− C̃−1/(N − 1)

)2
 (266)

≤
K∑

k=1

N∑
i=1

exp
(
−2δ̃2(N − 1)/C̃2

)
(267)
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= KN exp
(
−2δ̃2(N − 1)/C̃2

)
, (268)

where we use the Hoeffding inequality as Oi,N,k ∈ [C̃−1, 1] for all i ∈ {1, . . . , N} and k ∈ {1, . . . ,K} as noted above.
Additionally, we use the bound from above to bound Oi,N,k/Õi,k ∈ [C̃−1, C̃] and that C̃ ≥ 1.

By combining the above results, we can conclude the almost-sure convergence in (237) via the Borel-Cantelli Lemma. It
applies as the sum below is finite for any δ > 0.

∞∑
N=N0

Pr

[∣∣∣∣∣ 1N
K∑

k=1

N∑
i=1

log(Oi,N,k)−
K∑

k=1

˜̃
θk

∣∣∣∣∣ ≥ δ

]
(269)

≤
∞∑

N=N0

K exp

(
− 2δ2N

log(C̃)2

)
+KN exp

(
−2δ̃2(N − 1)

C̃2

)
(270)

< ∞, (271)

where the exponential decay ensures the finiteness of the sum.

Lemma I.8. Let f be a non-vanishing smooth distribution over a smooth compact Riemannian manifold M and let
y ∈ M. Let β1, . . . , βK ∈ (0, 1) that satisfy

∑K
k=1 βk = 1. There exists ϵ̃(M, f) such that for any ϵ < ϵ̃2 any

q1, . . . , qK ∈ [
√
ϵ, 1− (K − 1)

√
ϵ] and any s ∈ {1, . . . ,K} :

log

(∫
x∈M

exp

(
−∥x− y∥2qs
ϵ
∑K

t=1 qtβt

)
f(x)dx

)
(272)

=
dim(M)

2
log

(
πϵ
∑K

t=1 qtβt

qs

)
+ log (f(y)) +O

(√
ϵ
)
,

and

log

(∫
x∈M

exp

(
−
∥x− y∥2

∑K
s=1 qs

ϵ
∑K

t=1 qtβt

)
f(x)dx

)
(273)

=
dim(M)

2
log

(
πϵ
∑K

t=1 qtβt∑K
s=1 qs

)
+ log (f(y)) +O

(√
ϵ
)
.

Proof. We begin by showing (272). Based on Lemma I.2, there exists ϵ̃(M, f) ≤ 1 so that for any ϵ < ϵ̃(M, f)∫
x∈M

exp

(
−∥x− y∥2

ϵ

)
f(x)dx = (πϵ)dim(M)/2f(y)(1 +O(ϵ)). (274)

Second, if ϵ ≤ ϵ̃2 then for any s ∈ {1, . . . ,K}

ϵ
∑K

t=1 qtβt

qs
≤

ϵ ·
∑K

t=1 βt maxr∈{1,...,K} qr

qs
<

ϵ · 1 · 1√
ϵ

=
√
ϵ ≤ ϵ̃, (275)

by using the upper bound of q1, . . . , qK along with their positivity and non negativity of β1, . . . , βK for the first derivation,
and the bounds of q1, . . . , qK for the second. Therefore,

log

(∫
x∈M

exp

(
−∥x− y∥2qs
ϵ
∑K

t=1 qtβt

)
f(y)dy

)
(276)

= log

(πϵ
∑K

t=1 qtβt

qs

)dim(M)/2

f(x)
(
1 +O

(√
ϵ
)) (277)
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=
dim(M)

2
log

(
πϵ
∑K

t=1 qtβt

qs

)
+ log (f(x)) + log

(
1 +O

(√
ϵ
))

(278)

=
dim(M)

2
log

(
πϵ
∑K

t=1 qtβt

qs

)
+ log (f(x)) +O

(√
ϵ
)
. (279)

where we used Lemma I.2 and (276) in the first derivation, and the identity log(1 + a) ≤ a for all a ≥ 0 in the second
derivation, which follows from the identity exp(a) ≥ 1 + a.

Now, as for (273). If ϵ < ϵ̃2 then

ϵ
∑K

t=1 qtβt∑K
s=1 qs

≤
ϵ
∑K

t=1 qtβt

minr∈{1,...,K} qr
<
√
ϵ < ϵ̃, (280)

where the left inequality is due to the non-negativity of q1, . . . , qK , and the right uses the same derivation as in (275). Then,
(273) follows using a similar derivation as done in (276).

Lemma I.9. Let f1, . . . , fK+1 be non-vanishing smooth distributions over smooth compact Riemannian manifolds
M1, . . . ,MK+1, respectively. Define f to be a non vanishing smooth distribution over the product manifold M =

M1 × . . . ,×MK+1 by f(x(1), . . . ,x(K+1)) =
∏K+1

k=1 fk(x
(k)) for any (x(1), . . . ,x(K+1)) ∈M.

Let β1, . . . , βK ∈ (0, 1) that satisfy
∑

k βk = 1. There exists ϵ̃(M, f) such that for any ϵ < ϵ̃2 and any q1, . . . , qK ∈
[
√
ϵ, 1− (K − 1)

√
ϵ]:

∫
z∈M

f(z) log

(∫
x∈M

(
K∏
s=1

exp

(
−∥x

(s) − z(s)∥2qs
ϵ
∑K

t=1 qtβt

− ∥x
(K+1) − z(K+1)∥2qs

ϵ
∑K

t=1 qtβt

))
f(x)dx

)
dz (281)

=

K∑
s=1

dim(Mk)

2
log

(
πϵ
∑K

t=1 qtβt

qs

)
+

dim(MK+1)

2
log

(
πϵ
∑K

t=1 qtβt∑K
s=1 qs

)
− h(f) +O(

√
ϵ), (282)

where h(f) is the differential entropy of f defined by h(f) = −
∫
z∈M f(z) log(f(z))dz.

Proof. We begin by rewriting the terms inside the logarithmic term in (281) using the separability properties ofM and f

log

∫
x∈M

(
K∏
s=1

exp

(
−∥x

(s) − z(s)∥2qs
ϵ
∑K

t=1 qtβt

− ∥x
(K+1) − z(K+1)∥2qs

ϵ
∑K

t=1 qtβt

))
f(x)dx (283)

= log

((
K∏
s=1

∫
x(s)∈Ms

exp

(
−∥x

(s) − z(s)∥2qs
ϵ
∑K

t=1 qtβt

)
fs(x

(s))dx(s)

)
(284)

·

(∫
x(K+1)∈MK+1

exp

(
−
∥x(K+1) − z(K+1)∥2

∑K
s=1 qs

ϵ
∑K

t=1 qtβt

)
fK+1(x

(K+1))dx(K+1)

))

=

K∑
s=1

log

(∫
x(s)∈Ms

exp

(
−∥x

(s) − z(s)∥2qs
ϵ
∑K

t=1 qtβt

)
fk(x

(s))dx(s)

)
(285)

+ log

(∫
x(K+1)∈MK+1

exp

(
−
∥x(K+1) − z(K+1)∥2

∑K
s=1 qs

ϵ
∑K

t=1 qtβt

)
fK+1(x

(K+1))dx(K+1)

)
.

Based on Lemma I.8 there exists ϵ̃(M, f) < 1 such that for any ϵ < ϵ̃2 and q1, . . . , qK ∈ [
√
ϵ, 1− (K − 1)

√
ϵ] then the

equation above is equal to

=

K∑
s=1

(
dim(Ms)

2
log

(
πϵ
∑K

t=1 qtβt

qs

)
+ log

(
fs(z

(s))
))

(286)
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+
dim(MK+1)

2
log

(
πϵ
∑K

t=1 qtβt∑K
s=1 qs

)
+ log

(
fK+1(z

(K+1))
)
+O(

√
ϵ)

=

K∑
s=1

(
dim(Ms)

2
log

(
πϵ
∑K

t=1 qtβt

qs

))
+

dim(MK+1)

2
log

(
πϵ
∑K

t=1 qtβt∑K
s=1 qs

)
+ log(f(z)) +O(

√
ϵ).(287)

Now, we can push this term inside (281) and derive that it can be rewritten by∫
z∈M

f(z)

(
K∑
s=1

(
dim(Ms)

2
log

(
πϵ
∑K

t=1 qtβt

qs

))
(288)

+
dim(MK+1)

2
log

(
πϵ
∑K

t=1 qtβt∑K
s=1 qs

)
+ log(f(z)) +O(

√
ϵ)

)
dz

=

K∑
s=1

(
dim(Ms)

2
log

(
πϵ
∑K

t=1 qtβt

qs

))
+

dim(MK+1)

2
log

(
πϵ
∑K

t=1 qtβt∑K
s=1 qs

)
− h(f) +O(

√
ϵ). (289)

Theorem 4.3 There exists ϵ̄(M, f) ≤ 1 such that for any ϵ < ϵ̄ and p
(k)
s ∈ [

√
ϵ, 1− (K − 1)

√
ϵ], any partitioning solution

{ω(k)} (obeying Problem 4.1’s constraints) satisfies

min{
˜W

(k)
} 1

ϵN

G̃
({

W̃
(k)
}
,
{
ω(k)

}
, {yi}

)
+ ϵ

(
K∑

k=1

N∑
i,j=1

W̃
(k)
i,j log

(
W̃

(k)
i,j

))+K log(N − 1) (16)

a.s.−→
N,D→∞

K∑
k=1

dim(MK+1)

2
log

( ∑K
s=1 p

(k)
s∑K

t=1 p
(k)
t βt

)
+

K∑
k,s=1

dim(Ms)

2
log

(
p
(k)
s∑K

t=1 p
(k)
t βt

)
(17)

+K

K+1∑
s=1

(
hs(fs)−

dim(Ms) log(πϵ)

2

)
+O(

√
ϵ),

where hs(fs) = −
∫
z∈Ms

fs(z) log fs(z)dz is the differential entropy of the density fs overMs.

Proof of Theorem 4.3.
We denote the entire latent data manifold by M = M1 × . . . × MK+1, and its distribution by f defined by
f(x(1), . . . ,x(K+1)) ≡

∏K+1
k=1 fk(x

(k)). As can be understood, this definition complies with the data definition of
Section 4.
Based on Corollary 4.2, a set of affinity matrices {W (k)}Kk=1 that minimize (16) is of the form:

W
(k)
i,j =

A
(k)
i,j∑

t A
(k)
i,t

(290)

for all k ∈ {1, . . . ,K} and i, j ∈ {1, . . . , N} and

A
(k)
i,j =

 exp

(
−

∥yi−yj∥
2

ω̃(k)

ϵ·(1/D)
∑

d ω̃
(k)
d

)
if i ̸= j

0 else
. (291)

By plugging these affinity matrices in to (16) we get

1

ϵN

K∑
k=1

N∑
i,j=1

A
(k)
i,j∑N

t=1 A
(k)
i,t

·
∥yi − yj∥2ω(k)

(1/D)
∑D

d=1 ω
(k)
d

+
1

N

K∑
k=1

N∑
i,j=1

A
(k)
i,j∑N

t=1 A
(k)
i,t

log

(
A

(k)
i,j∑N

t=1 A
(k)
i,t

)
+K log(N − 1) (292)
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=− 1

N

K∑
k=1

N∑
i,j=1

A
(k)
i,j∑N

t=1 A
(k)
i,t

· log(A(k)
i,j ) +

1

N

K∑
k=1

N∑
i=1

log(N − 1) +

N∑
j=1

A
(k)
i,j∑N

t=1 A
(k)
i,t

log

(
A

(k)
i,j∑N

t=1 A
(k)
i,t

) (293)

=
1

N

K∑
k=1

N∑
i=1

log(N − 1)−
N∑
j=1

A
(k)
i,j∑N

t=1 A
(k)
i,t

log

(
N∑
t=1

A
(k)
i,t

) (294)

=
1

N

K∑
k=1

N∑
i=1

(
log(N − 1)− log

(
N∑
t=1

A
(k)
i,t

))
(295)

=− 1

N

K∑
k=1

N∑
i=1

(
log

(
1

N − 1

N∑
t=1

A
(k)
i,t

))
. (296)

Now, we can now introduce back the expressions of all A(k)
i,j , for i, j = 1, . . . , N and k = 1, . . . ,K and derive (17).

−1
N

K∑
k=1

N∑
i=1

log
1

N − 1

N∑
j=1;j ̸=i

exp

(
−
−∥yi − yj∥2ω(k)

ϵ · (1/D)
∑

d ω
(k)
d

)
(297)

a.s.−→
D,N→∞

−
K∑

k=1

∫
x∈M

log

(∫
z∈M

exp

−∑K
s=1 ∥x(s) − z(s)∥2p(k)s

ϵ
∑K

t=1 p
(k)
t βt

−

∥∥∥x(K+1)
i − z(K+1)

∥∥∥2∑K
s=1 p

(k)
s

ϵ
∑K

t=1 p
(k)
t βt

 (298)

f(z)dz

)
f(x)dx

=

K∑
k=1

dim(MK+1)

2
log

( ∑K
s=1 p

(k)
s∑K

t=1 p
(k)
t βt

)
−K

dim(MK+1)

2
log(πϵ) (299)

+

K∑
k,s=1

dim(Ms)

2
log

(
p
(k)
s∑K

t=1 p
(k)
t βt

)
−K

K∑
s=1

dim(Ms)

2
log (πϵ) +Kh(f) log+O(

√
ϵ)

where we employ Lemmas I.6 and I.7 to derive the asymptotic convergence in the next lines. The next derivation results
from Lemma I.9. The latter lemma indicate that there exists ϵ̃(M, f) < 1 such that for any ϵ < ϵ̃2(M, f) and any
p
(k)
s ∈ [

√
ϵ, 1− (K − 1)

√
ϵ] in which the approximation holds, where s, k = 1, . . . ,K. Hence, we get

Lemma I.10. Let C1, C2, C3 > 0, and β1, β2 ∈ (0, 1) where β1 + β2 = 1. Define the function f : (0, 1)2 → R by

f(p1, p2) = C1 log

(
p1(1− p1)

(p1β1 + p2β2)(1− p1β1 − p2β2)

)
(300)

+C2 log

(
p2(1− p2)

(p1β1 + p2β2)(1− p1β1 − p2β2)

)
+C3 log

(
(p1 + p2)(2− p1 − p2)

(p1β1 + p2β2)(1− p1β1 − p2β2)

)
.

Let α ≥ maxt∈{0,1} 2 · (β2(1− β2))
−(C1+C2+C3)/(Ct) be a neighborhood constant (and therefore α ≥ 2). Then, for any

δ ∈ (0,min(β1, β2)
(C1+C2+C3)/(C1+C2)/α) the minimizers p∗1, p

∗
2 defined by

p∗1, p
∗
2 = argmin

(p1,p2)∈[δ,1−δ]2
f(p1, p2) (301)

should sastisfy (p∗1, p
∗
2) ∈ L× U or (p∗1, p

∗
2) ∈ U × L. where L = [δ, αδ] and U = [1− αδ, 1− δ].
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Proof. The proof will begin by determining the characteristics of a function that will be used throughout the proof. Then,
we are going to divide the domain into different parts and prove that the value at either (δ, 1− δ) or (1− δ, δ) will attain a
lower value.

We begin with going through the properties of ρ : [0, 1]→ R defined by ρ(p) = p(1− p) for any p ∈ [0, 1]. The function is
concave, as indicated by the negativity of its second order derivative ( see Theorem 4.5 in (Rockafellar, 1970)). It attains
its maximum at p = 1/2, where its first derivative vanishes — a direct application of Theorem 25.1 (Rockafellar, 1970).
Moreover, ρ is symmetric around p = 1/2. These properties are illustrated below:

d2

dp2
ρ(p) =

d

dp
1− 2p = −2 (302)

0 =
d

dp
ρ(p) = 1− 2p (303)

f(p) = p(1− p) = (1− p)p = f(1− p). (304)

For the completeness of the proof we begin by showing that α ≥ 2, by showing that for any t ∈ {1, 2}

α ≥ 2

(β2(1− β2))(C1+C2+C3)/(Ct)
(305)

≥ 2

((1/2)(1− 1/2))(C1+C2+C3)/(Ct)
(306)

= 2 · 4(C1+C2+C3)/(Ct) (307)
≥ 2, (308)

where we use the fact that C1, C2, C3 > 0 and that ρ is maximized at 1/2.

Now, we can begin characterizing the minimal values of f by examining its values for all (p1, p2) ∈ [αδ, 1−αδ]× [δ, 1− δ].
Specifically, we will show that the first two terms of f are higher than their value at (p1, p2) = (δ, 1− δ) by

2∑
i=1

Ci log

(
pi(1− pi)

(p1β1 + p2β2)(1− p1β1 − p2β2)

)
−

2∑
i=1

Ci log

(
δ(1− δ)

(δβ1 + (1− δ)β2)(1− δβ1 − (1− δ)β2)

)
(309)

=

2∑
i=1

Ci log

(
pi(1− pi)

δ(1− δ)

)
+

2∑
i=1

Ci log

(
(δβ1 + (1− δ)β2)(1− δβ1 − (1− δ)β2)

(p1 + β2(p2 − p1))(1− p1 − β2(p2 − p1)

)
(310)

≥C1 log

(
αδ(1− αδ)

δ(1− δ)

)
+ C2 log

(
δ(1− δ)

δ(1− δ)

)
+

2∑
i=1

Ci log

(
(δβ1 + (1− δ)β2)(1− δβ1 − (1− δ)β2)

1/4

)
(311)

≥C1 log

(
αδ(1− αδ)

δ(1− δ)

)
+ C2 log

(
δ(1− δ)

δ(1− δ)

)
+

2∑
i=1

Ci log

(
β2(1− β2)

1/4

)
(312)

where in the first inequality we used the concavity assumption of ρ and that is maximized at 1/2, making ρ(1/2) = 1/4. In
the second inequality we used the fact that δβ1+(1−δ)β2 ∈ [min(β1, β2),max(β1, β2)] as the term is a convex combination
of β1 and β2. As β1 = 1−β2, we can see that [min(β1, β2),max(β1, β2)] = [min(1−β2, β2),max(1−β2, β2)]. Therefore,
by using the concavity assumption of ρ we can lower bound the numerator within the last logarithm term. Below, we
continue the derivation

≥ C1 log

(
α(1− αδ)

1

)
+

2∑
i=1

Ci log (4β2(1− β2)) (313)

≥ C1 log (α/2) +

2∑
i=1

Ci log (4β2(1− β2)) (314)

≥ C1 log (α · (1/2)) +
2∑

i=1

Ci log (β2(1− β2)) (315)
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where in the first inequality we used log(1/(1 − δ)) ≥ log(1/1) = 0, which follows from δ ≤
min(β1, β2)

(C1+C2+C3)/(C1+C2)/α ≤ min(β1, β2)/1 ≤ 1/2. The second derivation is based on 1 − αδ ≥ 1 −
min(β1, β2)

(C1+C2+C3)/(C1+C2) ≥ 1−min(β1, β2) ≥ 1/2 from the domain of δ and that β1 + β2 = 1.

As for the third terms, we will show that last term of f is higher than its value at (p1, p2) = (δ, 1− δ) by

C3 log

(
(p1 + p2)(2− p1 − p2)

(p1β1 + p2β2)(1− p1β1 − p2β2)

)
− C3 log

(
(δ + 1− δ)(2− δ − (1− δ))

(δβ1 + (1− δ)β2)(1− δβ1 − (1− δ)β2)

)
(316)

=C3 log

(
p1 + p2

p1β1 + p2β2

)
+ C3 log

(
2− p1 − p2

1− p1β1 − p2β2

)
− C3 log

(
1

(δβ1 + (1− δ)β2)(1− δβ1 − (1− δ)β2)

)
(317)

=C3 log

(
p1 + p2

p1β1 + p2β2

)
+ C3 log

(
2− p1 − p2

1− p1β1 − p2β2

)
+ C3 log ((δβ1 + (1− δ)β2)(1− δβ1 − (1− δ)β2)) (318)

≥C3 log

(
p1 + p2

p1β1 + p2β2

)
+ C3 log

(
2− p1 − p2

1− p1β1 − p2β2

)
+ C3 log (β2(1− β2)) (319)

≥C3 log

(
p1β1 + p2β2

p1β1 + p2β2

)
+ C3 log

(
1− p1 + 1− p2
1−min(p1, p2)

)
+ C3 log (β2(1− β2)) (320)

≥C3 log (β2(1− β2)) . (321)

where in the first inequality we use the same derivation made in (312), and in the second we use the fact that β1 = 1− β2 ∈
(0, 1) and that p1β1 + p2β2 ≥ min(p1, p2) which follows from it. Finally, in the last inequality, we use the fact that
p1, p2 ∈ (0, 1).

By combining these two statements we get that f(p1, p2) ≥ f(δ, 1− δ) by

f(p1, p2)− f(δ, 1− δ) ≥ C1 log (α/2) +

3∑
i=1

Ci log (β2(1− β2)) (322)

= C1 log

(
α · (β2(1− β2))

∑3
i=1 Ci/Ct

2

)
(323)

≥ C1 log

(
max

t∈{1,2}

2

(β2(1− β2))
∑3

i=1 Ci/Ct
· (β2(1− β2))

∑3
i=1 Ci/C1

2

)
(324)

≥ C1 log

(
2

(β2(1− β2))
∑3

i=1 Ci/C1
· (β2(1− β2))

∑3
i=1 Ci/C1

2

)
(325)

≥ 0. (326)

By following the same steps above and switching between p1 and p2, we can get that f attains a lower value at (p1, p2) =
(1− δ, δ) compared to it value in all the points within the domain (p1, p2) ∈ [δ, 1− δ]× [αδ, 1− αδ].

Finally, we are left with showing that f attains a lower value at (p1, p2) = (δ, 1 − δ) compared to any value (p1, p2) ∈
[δ, αδ]2 ∪ [1− αδ, 1− δ]2. As before, we begin by bounding the difference between the first two terms by

2∑
i=1

Ci log

(
pi(1− pi)

(p1β1 + p2β2)(1− p1β1 − p2β2)

)
−

2∑
i=1

Ci log

(
δ(1− δ)

(δβ1 + (1− δ)β2)(1− δβ1 − (1− δ)β2)

)
(327)

=

2∑
i=1

Ci log

(
pi(1− pi)

δ(1− δ)

)
+

2∑
i=1

Ci log

(
(δβ1 + (1− δ)β2)(1− δβ1 − (1− δ)β2)

(p1β1 + p2β2)(1− p1β1 − p2β2)

)
(328)

≥
2∑

i=1

Ci log

(
δ(1− δ)

δ(1− δ)

)
+

2∑
i=1

Ci log

(
(δβ1 + (1− δ)β2)(1− δβ1 − (1− δ)β2)

(p1β1 + p2β2)(1− p1β1 − p2β2)

)
(329)

≥
2∑

i=1

Ci log

(
δ(1− δ)

δ(1− δ)

)
+

2∑
i=1

Ci log

(
(δβ1 + (1− δ)β2)(1− δβ1 − (1− δ)β2)

αδ(1− αδ)

)
(330)
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≥
2∑

i=1

Ci log

(
β2(1− β2)

αδ(1− αδ)

)
(331)

where in the first inequality we use the concavity property of ρ, and in the second we use its properties along with the
fact that p1β + p2β ∈ [δ, αδ]2 ∪ [1 − αδ, 1 − δ]2. In the third inequality, we use the fact that δβ1 + (1 − δ)β2 ∈
[min(β1, β2),max(β1, β2)] as the term is a convex combination of β1 and β2. As β1 = 1 − β2, we can see that
[min(β1, β2),max(β1, β2)] = [min(1− β2, β2),max(1− β2, β2)].

As for the third term, we will derive their differences below.

C3 log

(
(p1 + p2)(2− p1 − p2)

(p1β1 + p2β2)(1− p1β1 − p2β2)

)
− C3 log

(
(δ + 1− δ)(2− δ − (1− δ))

(δβ1 + (1− δ)β2)(1− δβ1 − (1− δ)β2)

)
(332)

≥C3 log(β2(1− β2)), (333)

by going through the same steps taken in (316)-(321). Now, we can combine the last two results to show that over this
domain f(p1, p2) ≥ f(δ, 1− δ)

f(p1, p2)− f(δ, 1− δ) ≥
2∑

i=1

Ci log

(
β2(1− β2)

αδ(1− αδ)

)
+ C3 log(β2(1− β2)) (334)

= log

(
β2(1− β2)

(C1+C2+C3)

(αδ(1− αδ))C1+C2)

)
(335)

≥ log

 β2(1− β2)
(C1+C2+C3)(

(β2(1− β2))
(C1+C2+C3)

C1+C2

)C1+C2)

 (336)

= log

(
β2(1− β2)

(C1+C2+C3)

β2(1− β2)(C1+C2+C3)

)
(337)

= 0 (338)

by using the concavity property of ρ and that it maximizes at 1/2, along with the definition of δ in which δα ≤
min(β1, β2)

(C1+C2+C3)/(C1+C2) ≤ 1/2, as min(β1, β2) ≤ 1/2.

Theorem 4.4 Let K = 2, and define f : (0, 1)2 → R by

f(p1, p2) =
K∑

k=1

dim(MK+1)

2
log

( ∑K
s=1 p

(k)
s∑K

t=1 p
(k)
t βt

)
+

K∑
k,s=1

dim(Ms)

2
log

(
p
(k)
s∑K

t=1 p
(k)
t βt

)
, (18)

where p
(1)
1 = p1 and p

(1)
2 = p2 and therefore p

(2)
1 = 1 − p

(1)
1 , p(2)2 = 1 − p

(2)
2 . Then, the limiting minimizer (p∗1, p

∗
2) =

limϵ→0 argminp1,p2∈[
√
ϵ,1−

√
ϵ]2 f(p1, p2) is either (0, 1) or (1, 0).

Proof of Theorem 4.4. We begin by rewriting (18) by

f(p1, p2) (339)

=

2∑
k,s=1

dim(Ms)

2
log

(
p
(k)
s∑2

t=1 p
(k)
t βk

)
+

2∑
k=1

dim(M3)

2
log

( ∑2
s=1 p

(k)
s∑2

t=1 p
(k)
t βt

)
(340)

=

2∑
s=1

dim(Ms)

2
log

(
p
(1)
s∑2

t=1 p
(1)
t βt

· p
(2)
s∑2

t=1 p
(2)
t βt

)
+

dim(M3)

2
log

( ∑2
s=1 p

(1)
s∑2

t=1 p
(1)
t βt

·
∑2

s=1 p
(2)
s∑2

t=1 p
(2)
t βt

)
(341)

=

2∑
s=1

dim(Ms)

2
log

(
p
(1)
s∑2

t=1 p
(1)
t βt

· 1− p
(1)
s∑2

t=1(1− p
(1)
t )βt

)
(342)
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+
dim(M3)

2
log

( ∑2
s=1 p

(1)
s∑2

t=1 p
(1)
t βt

·
∑2

s=1(1− p
(1)
s )∑2

t=1(1− p
(1)
t )βt

)
(343)

=

2∑
s=1

dim(Ms)

2
log

(
p
(1)
s∑2

t=1 p
(1)
t βt

1− p
(1)
s

1−
∑2

t=1 p
(1)
t βt

)
+

dim(M3)

2
log

( ∑2
s=1 p

(1)
s∑2

t=1 p
(1)
t βt

·
2−

∑2
s=1 p

(1)
s

1−
∑2

t=1 p
(1)
t βt

)
(344)

=

2∑
s=1

dim(Ms)

2
log

(
ps(1− ps)

(
∑2

t=1 ptβt)(1−
∑2

t=1 ptβt)

)
+

dim(M3)

2
log

(
(
∑2

s=1 ps)(2−
∑2

s=1 ps)

(
∑2

t=1 ptβt)(1−
∑2

t=1 ptβt)

)
, (345)

where in the second derivation we use p
(2)
s = 1− p

(1)
s for s = 1, 2, as defined in the theorem’s statement. Then, we use∑2

t=1 βt = 1 as defined in Section 4, and substitue p
(1)
s = ps as defined in the theorem’s statment.

We observe that the function f(p1, p2) matches the form analyzed in Lemma I.10. Therefore, there exists a constant
α ≥ 2, dependent on β1, β2,M1,M2,M3, such that for any sufficiently small δ > 0, the minimizers of f over the domain
[δ, 1− δ]2 lie within either L×U or U ×L, where L = [δ, αδ] and U = [1−αδ, 1− δ]. This implies that, for any sequence
of minimization problems with δs that tends to 0, the corresponding minimizers converge to either (0, 1) or (1, 0). By
setting δ =

√
ϵ and similarly considering a sequence of problems with ϵs that tends to 0 yields the desired result stated in

the theorem.
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I.3. Proofs of Appendix C

Lemma I.11. Let {W (k)} ⊂ [0, 1]N×N be affinity matrices under the constraints in Problem C.1. Define a partitioning
solution {ω(k)} ⊂ [0, 1]D by

ω
(k)
d =

exp
(
−
∑N

i,j=1 W
(k)
(
(yi)d − (yj)d

)2
/δ
)

∑K
k̃=1 exp

(
−
∑N

i,j=1 W
(k̃)
(
(yi)d − (yj)d

)2
/δ
) k = 1, . . . ,K. (346)

Then, a minimizer of the optimization problem suggested in Problem C.1 among partitioning solutions that satisfy its
constraints is

ω(k)∗ = argmin
{ω̃(k)}

Greg(δ, {W (k)}Kk=1, {ω̃(k)}Kk=1, {yi}Ni=1) (347)

Proof. The proof will demonstrate that the optimal solution can be derived from solving D subproblems, each corresponding
to a coordinate of partitioning solution. We will then use convexity conditions to derive the optimal solution under certain
assumptions on the data. Finally, we will show that if these assumptions do not hold, the solution takes a similar form, but
with bandwidth parameters approaching zero.

We begin by showing that the problem can be solved using D subproblems separately. For each d ∈ {1, . . . , D} we define a
subproblem related to the d− th coordinate by

argmin
ω̃

(1)
d ,...,ω̃

(K)
d

˜̃Gd({W (k)}Kk=1, {ω̃
(k)
d }

K
k=1, {yj}Nj=1) (348)

subject to the constraints
∑D

d=1 ω̃
(k)
d = 1, where

˜̃Gd({W (k)}Kk=1, {ω̃
(k)
d }

K
k=1, {yj}Nj=1) =

K∑
k=1

ω̃
(k)
d

 N∑
i=1

N∑
j=1

W
(k)
i,j ((yi)d − (yj)d)

2

 (349)

+δ

K∑
k=1

ω̃
(k)
d log

(
ω̃
(k)
d

)
. (350)

Based on the next derivation, we can see that the optimal solution should be optimal for each of these sub-problems

min
{ω̃(k)}K

k=1

Greg(δ, {W̃
(k)}Kk=1, {ω̃(k)}Kk=1, {yi}Ni=1) (351)

= min
{ω̃(k)}K

k=1

G({W̃ (k)}, {ω̃(k)}, {yi}Ni=1) + δ

(
D log(K) +

D∑
d=1

K∑
k=1

ω̃
(k)
d log(ω̃

(k)
d )

)
(352)

= min
{ω̃(k)}K

k=1

K∑
k=1

N∑
i,j=1

W̃
(k)
i,j ∥yi − yj∥2ω(k) + δ

(
D log(K) +

D∑
d=1

K∑
k=1

ω̃
(k)
d log(ω̃

(k)
d )

)
(353)

= min
{ω̃(k)}K

k=1

D∑
d=1

K∑
k=1

ω̃
(k)
d

 N∑
i=1

N∑
j=1

W
(k)
i,j ((yi)d − (yj)d)

2

+ δ

D∑
d=1

K∑
k=1

ω̃
(k)
d log

(
ω̃
(k)
d

)
(354)

=

D∑
d=1

min
{ω̃(k)

d }K
k=1

K∑
k=1

ω̃
(k)
d

 N∑
i=1

N∑
j=1

W
(k)
i,j ((yi)d − (yj)d)

2

+ δ

D∑
d=1

K∑
k=1

ω̃
(k)
d log

(
ω̃
(k)
d

)
(355)

=

D∑
d=1

min
{ω̃(k)

d }K
k=1

K∑
k=1

˜̃Gd({W (k)}Kk=1, {ω̃
(k)
d }

K
k=1, {yj}Nj=1) (356)

where the domain of each minimization problem above contains the constraints shown in Problem C.1.
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Without loss of generality, we are going to find the optimal ω(1)
d , . . . , ω

(K)
d that minimize the ˜̃Gd for some d ∈ {1, . . . , D}.

To find the optimal solution, we begin by building on the Karush-Kuhn-Tucker (KKT) Theorem (Corollary 28.3.1 in
(Rockafellar, 1970)). We note that this solution will depend on certain conditions; therefore, after this derivation, we will
provide an alternative solution that attains a similar form when these conditions are not met.

The theorem assumes that the objective is convex and that the equality constraint is an affine function. Furthermore, it
assumes that there exists a solution within the domain that satisfies the inequality constraints in a strict manner (Slater’s
conditions). We begin with the latter assumption, as there are no inequality constraints the Slater’s conditions are satisfied.

The objective ˜̃Gd is a sum of a linear function and an entropy function. Based on Theorem 4.5 in (Rockafellar, 1970), by
showing that the Hessian of the entropy function is positive semi-definite we can deduce that it is convex. Specifically, the
Hessian elements are

d2

d2ω̃
(k)
d

δ

K∑
k=1

ω̃
(k)
d log

(
ω̃
(k)
d

)
=

d

dω̃
(k)
d

δ(1 + log(ω̃
(k)
d )) (357)

=
δ

ω̃
(k)
d

(358)

≥ 0. (359)

d

dω̃
(s)
d

d

dω̃
(k)
d

δ

K∑
k=1

ω̃
(k)
d log

(
ω̃
(k)
d

)
=

d

dω̃
(s)
d

δ(1 + log(ω̃
(k)
d )) (360)

= 0 (361)

for all s, k ∈ {1, . . . ,K} where s ̸= k. As the Hessian is a diagonal matrix with positive values we can conclude that it is a
positive definite matrix.

Now, as the objective is the sum of two convex functions it is convex as well based on Theorem 5.2 in (Rockafellar, 1970)
and the convexity of linear functions.

The KKT theorem states that a solution satisfying the KKT conditions—including stationarity, primal feasibility, dual
feasibility, and complementary slackness—is an optimal solution to the problem, provided Slater’s condition holds. To
derive such a solution we need to first define the Lagrangian of the minimization problem by

L̃d(W
(k), ω̃d

(k)) ≡
K∑

k=1

ω̃
(k)
d

 N∑
i=1

N∑
j=1

W
(k)
i,j ((yi)d − (yj)d)

2

 (362)

+δ

K∑
k=1

ω̃
(k)
d log

(
ω̃
(k)
d

)
+µd(

K∑
k̃=1

ω̃
(k̃)
d − 1)

where µd ∈ R.

A solution that satisfies the stationary condition should attain

0 =
dL̃d

dω
(k)
d

(363)

=

N∑
i=1

N∑
j=1

W
(k)
i,j ((yi)d − (yj)d)

2 + δ(1 + log(ω
(k)
d )) + µd (364)

ω
(k)
d = exp

(
−
∑N

i,j=1 W
(k)
i,j ((yi)d − (yj)d)

2 + δ + µd

δ

)
. (365)
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The primal feasibility condition on the on the equality constraint induces-

1 =

K∑
k=1

ω
(k)
d (366)

=

K∑
k=1

exp

(
−
∑N

i=1

∑N
j=1 W

(k)
i,j ((yi)d − (yj)d)

2 + δ + µd

δ

)
(367)

exp
(µd

δ

)
=

K∑
k=1

exp

(
−
∑N

i=1

∑N
j=1 W

(k)
i,j ((yi)d − (yj)d)

2 + δ

δ

)
(368)

µd = δ · log

(
K∑

k=1

exp

(
−
∑N

i=1

∑N
j=1 W

(k)
i,j ((yi)d − (yj)d)

2 + δ

δ

))
. (369)

By pushing it back into (365) we get that for any k ∈ {1, . . . , N}

ω
(k)
d =

exp

(
−
∑N

i=1

∑N
j=1 W

(k)
i,j ((yi)d−(yj)d)

2+δ

δ

)
∑K

k=1 exp

(
−
∑N

i=1

∑N
j=1 W

(k)
i,j ((yi)d−(yj)d)

2+δ

δ

) (370)

=

exp

(
−
∑N

i=1

∑N
j=1 W

(k)
i,j ((yi)d−(yj)d)

2

δ

)
∑K

k=1 exp

(
−
∑N

i=1

∑N
j=1 W

(k)
i,j ((yi)d−(yj)d)

2

δ

) . (371)

Therefore we can conclude the proof with the derived optimal solution form.

Proposition C.2 Let δ ≥ 0, {ω(k)}Kk=1 ⊂ [0, 1]D be a partitioning weights and {W (k)}Kk=1,⊂ [0, 1]N×N be affinity
matrices that satisfy the constraints of Problem C.1.

Define {W (k)∗} ⊂ [0, 1]N×N as in (9) based on {ω(k)}Kk=1, and {ω(k)∗}Kk=1 by

ω
(k)∗
d = exp

(
−
∑

i,j W
(k)
i,j

(
(yi)d − (yj)d

)2
δ

)
/

K∑
s=1

exp

(
−
∑

i,j W
(s)
i,j

(
(yi)d − (yj)d

)2
δ

)
. (21)

Then, we have that

{W (k)∗} =argmin

{ ˜W
(k)

}

Greg(δ, {W̃
(k)}Kk=1, {ω(k)}Kk=1, {yi}Ni=1), (22)

{ω(k)∗} =argmin
{ω̃(k)}

Greg(δ, {W (k)}Kk=1, {ω̃(k)}Kk=1, {yi}Ni=1). (23)

Proof of Proposition C.2. The proposition aims to characterize optimal parameters of Problem C.1. We begin by defining
two sub-problems that are related to it, each focusing on minimizing one set of parameters while keeping the other set fixed:

{W (k)∗} = argmin

{ ˜W
(k)

}

Greg(δ, {W̃
(k)}Kk=1, {ω(k)}Kk=1, {yi}Ni=1), (372)

{ω(k)∗} = argmin
{ω̃(k)}

Greg(δ, {W (k)}Kk=1, {ω̃(k)}Kk=1, {yi}Ni=1). (373)

where the parameters are limited to the constraints stated in Problem C.1. Interestingly, the suggested optimization problem
in (373) can be rewritten by

{W (k)∗} = argmin

{ ˜W
(k)

}

Greg(δ, {W̃
(k)}Kk=1, {ω(k)}Kk=1, {yi}Ni=1 (374)
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= argmin

{ ˜W
(k)

}

G({W̃ (k)}, {ω̃(k)}, {yi}Ni=1) + δ

(
D log(K) +

D∑
d=1

K∑
k=1

ω̃
(k)
d log(ω̃

(k)
d )

)
(375)

= argmin

{ ˜W
(k)

}

G({W̃ (k)}, {ω̃(k)}, {yi}Ni=1). (376)

These two sub-problems are considered in Lemmas I.3 and I.11. Specifically, in Lemma I.3 the optimal graph matrices are
derived in the form of

W
(k)∗
i,j =


exp

−
∥yi−yj∥

2

ω̃(k)

ϵk,i


∑N

t=1 exp

−
∥yi−yt∥

2

ω̃(k)

ϵk,i

 for j ̸= i

0 else

, (377)

(378)

for i, j = 1, . . . , N and k = 1, . . . ,K, where ϵk,i attains the minimum value that satisfies

N∑
j=1

W
(k)∗
i,j logW

(k)∗
i,j ≤ − log(α). (379)

On the other hand, in Lemma I.11 an optimal partitioning parameters are derived in the form of

ω
(k)
d =

exp
(
−
∑N

i,j=1 W
(k)
(
(yi)d − (yj)d

)2
/δ
)

∑K
k̃=1 exp

(
−
∑N

i,j=1 W
(k̃)
(
(yi)d − (yj)d

)2
/δ
) (380)

for d = 1, . . . , D and k = 1, . . . ,K.

Therefore there exists parameters of this form that minimizes Problem C.1.

Proposition C.3 Let {ω(k)}Kk=1 ⊂ [0, 1]D be a soft uniform partitioning, i.e. ω
(k)
d = 1/K, and let {W (k)}Kk=1 be the

corresponding affinity matrices from Proposition C.2. Let {ω(k)}Kk=1 ⊂ {0, 1}D and {W (k)}Kk=1 be the optimal partitioning
solution as discussed in Proposition 3.4.

Define

δinit ≡
G({W (k)}Kk=1, {ω(k)}Kk=1, {yi}Ni=1)

D · log(K)
. (24)

Then, for any hard partitioning solution {ω̃(k)}Kk=1 ⊂ {0, 1}D and any corresponding affinity matrices {W̃ (k)}Kk=1, we
have:

Greg(δinit, {W
(k)}Kk=1, {ω(k)}Kk=1, {yi}Ni=1) ≤ Greg(δinit, {W̃

(k)}Kk=1, {ω̃(k)}Kk=1, {yi}Ni=1) (25)

Proof of Proposition C.3. We can see that the inequality stands based on the following derivation-

Greg(δinit, {W
(k)}Kk=1, {ω(k)}Kk=1, {yi}Ni=1) (381)

= G({W (k)}Kk=1, {ω(k)}Kk=1, {yi}Ni=1) + δinit

(
D log(K) +

D∑
d=1

K∑
k=1

ω
(k)
d log(ω

(k)
d )

)
(382)

= G({W (k)}Kk=1, {ω(k)}Kk=1, {yi}Ni=1) (383)
= δinit(D · log(K)) (384)
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≤ G({W̃ (k)}Kk=1, {ω̃(k)}Kk=1, {yi}Ni=1) + δinit(D · log(K)) (385)

= G({W̃ (k)}Kk=1, {ω̃(k)}Kk=1, {yi}Ni=1) + δinit

(
D log(K) +

D∑
d=1

K∑
k=1

ω̃
(k)
d log(ω̃

(k)
d )

)
(386)

= Greg(δinit, {W̃
(k)}Kk=1, {ω̃(k)}Kk=1, {yi}Ni=1), (387)

where in the second derivation we introduce the identity
∑K

k=1 ω
(k)
d logω

(k)
d = − log(K) for all d ∈ {1, . . . , D}, which

holds by definition of the uniform partitioning. In the third derivation, we introduce the definition of δinit. Then, in the fourth
derivation we use the non-negativity of G, along with the identity

∑K
k=1 ω̃

(k)
d log ω̃

(k)
d = 0 for all d ∈ {1, . . . , D}, which

follows directly from the definition of a hard partition.

Proposition C.4 Let the data consist of N data points in RD. Then, the computational complexity of obtaining the
partitioning weights {ω(k)∗}Kk=1 and the affinity matrices {W (k)∗}Kk=1, as defined in Proposition C.2, is O(KN2D).

Proof of Proposition C.4. The feature partitioning weights, {ω(k)∗}, described in (21), are constructed based on:

N∑
i,j=1

W
(k)∗
i,j ((yi)d − (yj)d)

2 (388)

for every d ∈ {1, . . . , D} and k ∈ {1, . . . ,K}. The computational complexity of evaluating this quantity is O(N2) for a
specific d ∈ {1, . . . , D} and k ∈ {1, . . . ,K}, and overall O(N2DK) for all. The remaining operations used to define the
feature partitions —taking the exponential of this value and normalizing across partitions —- result in a computational
complexity of O(DK). Therefore, the overall computational complexity of this step is O(N2DK).

We now derive the computational complexity associated with computing the affinity matrices. These matrices are constructed
based on the following weighted squared distances:

∥yi − yj∥2ω(k)∗ =

D∑
d=1

ω
(k)∗
d ((yi)d − (yj)d)

2 (389)

for all i, j ∈ {1, . . . , N} and k ∈ {1, . . . ,K}. The computational complexity of evaluating its value is O(D) for a specific
i, j ∈ {1, . . . , N} and k ∈ {1, . . . ,K}, and overall O(N2DK) for all. The remaining operations used to construct the
affinity matrices involve taking the exponential value of each distance and normalizing across j ∈ {1, . . . , N}, for every
i ∈ {1, . . . , N} and k ∈ {1, . . . ,K}. These operations attain a computational complexity of O(N2K). Therefore, the
computational complexity of this step is O(N2DK).

Now, by combining the computational complexities for both parameter updates results in O(KN2D).

Proposition C.5 Let the data consist of N data points in RD. Suppose the data is given in the form of a singular value
decomposition (SVD) approximation of rank S ≪ N,D. Then, the computational complexity of obtaining the partitioning
weights {ω(k)∗}Kk=1 and the affinity matrices {W (k)∗}Kk=1, as defined in Proposition C.2, is O(K(S2N2 + S2D)).

Proof of Proposition C.5. Let Y ∈ RN×D represent the data matrix, with the points embedded as rows. The SVD
approximation is given by Y = UEV T , where U ∈ RN×S and V ∈ RD×S are the left and right singular vector matrices,
respectively, and E ∈ RS×S is the diagonal matrix of the leading singular values.

The feature partitioning weights, {ω(k)∗}, described in (21), are constructed based on:

N∑
i,j=1

W
(k)∗
i,j ((yi)d − (yj)d)

2 (390)

for every d ∈ {1, . . . , D} and k ∈ {1, . . . ,K}. The remaining operations used to define the feature partitions —taking the
exponential of this value and normalizing across partitions —- result in a computational complexity of O(DK). In the next
lines we will rewrite the equation above and compute the computational complexity associated with it.
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We begin with rewriting the (390) by

N∑
i,j=1

W
(k)∗
i,j ((yi)d − (yj)d)

2 (391)

=

N∑
j=1

(

N∑
i=1

W
(k)∗
i,j )(yj)

2
d +

N∑
i=1

(

N∑
j=1

W
(k)∗
i,j )(yi)

2
d − 2

N∑
i,j=1

W
(k)∗
i,j (yi)d(yj)d (392)

=

N∑
j=1

(

N∑
i=1

W
(k)∗
i,j +W

(k)∗
j,i )(yj)

2
d −

N∑
i,j=1

(W
(k)∗
i,j +W

(k)∗
j,i )(yi)d(yj)d (393)

= (Y T (diag(W (k)∗1+ (W (k)∗)T1))Y )d,d − (Y T (W (k)∗ + (W (k)∗)T )Y )d,d (394)

= (Y TL(k)Y )d,d (395)

where L(k) ∈ RN×N is defined by L(k) = diag((W (k)∗ + (W (k)∗)T )1)−W (k)∗ − (W (k)∗)T for any k ∈ {1, . . . ,K},
the vector 1 ∈ RN is an all ones vector, and diag : RN → RN×N generates a diagonal matrix from a given vector. The
construction of L(k) using W (k) is O(N2).

We now incorporate the singular value decomposition (SVD) of Y into this expression and derive its computation complexity
by analyzing the matrix multiplications involved:

(V EUTL(k)UEV T )d,d. (396)

Define A(k) ≡ UTL(k)U ∈ RS×S . The computational complexity of computing it is O(SN2 + S2N) as U ∈ RN×S and
L(k) ∈ RN×N . Next, define B(k) ≡ EA(k)E ∈ RS×S . Since E is a diagonal matrix, the computational complexsity of
this multiplication is O(S2). Therefore we are left with computing:

(V B(k)V T )d,d. (397)

The computational complexity of evaluating each such element is O(S2) for each d ∈ {1, . . . , D}, and overall O(S2D).

Therefore, the computational complexity of evaluating (390) for a given k ∈ {1, . . . ,K} is O(SN2 + S2D). Thus, we can
conclude that the total cost deriving the feature partitioning weights is O(K(SN2 + S2D) +DK) = O(K(SN2 + S2D)).

We now turn to deriving the computational complexity of the affinity matrices. As described in (14), these matrices are
constructed based on:

∥yi − yj∥2ω(k)∗ (398)

for all i, j ∈ {1, . . . , N} and k ∈ {1, . . . ,K}. The remaining operations used to construct the affinity matrices involve
taking the exponential value of each distance and normalizing across j ∈ {1, . . . , N}, for every i ∈ {1, . . . , N} and
k ∈ {1, . . . ,K}. These operations attain a computational complexity of O(N2K). In the next lines we will rewrite (398)
and derive its computational complexity.

We now incorporate the singular value decomposition (SVD) of Y into this expression and derive its computation complexity
by analyzing the matrix multiplications involved:

∥yi − yj∥2ω(k)∗ (399)

=(Y diag(ω(k)∗)Y T )i,i + (Y diag(ω(k)∗)Y T )j,j − 2(Y diag(ω(k)∗)Y T )i,j (400)

=(UEV T diag(ω(k)∗)V EUT )i,i + (UEV T diag(ω(k)∗)V EUT )j,j − 2(UEV T diag(ω(k)∗)V EUT )i,j (401)

for all i, j ∈ {1, . . . , N} and k ∈ {1, . . . ,K}, where diag : RD → RD×D generates a diagonal matrix from a given
vector. DefineC(k) = V T diag(ω(k)∗)V ∈ RS×S . Its computational complexity is O(S2D) as V ∈ RD×S . Next, define
F (k) = EC(k)E ∈ RS×S . Since E is a diagonal matrix, the computational complexity of this multiplication is O(S2).
Finally, the computational complexity of (V TF (k)V )i,j is O(S2), and the computational complexity of deriving it for all
entrees is O(S2N2) .
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Therefore, the total computational complexity for evaluating (398) for all i, j ∈ {1, . . . , N} for a given k ∈ {1, . . . ,K}
is O(S2N2 + S2D). Thus, we can conclude that the total cost deriving the affinity matrices is O(K(S2N2 + S2D) +
N2K) = O(K(S2N2 + S2D)). Now, by combining the computational complexities for both sets of parameters we get:
O(K(SN2 + S2D) +K(S2N2 + S2D)) = O(KS2N2 +KS2D).
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