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Abstract
Identifying and estimating a causal effect is a fun-
damental task when researchers want to infer a
causal effect using an observational study with-
out experiments. A conventional assumption is
the strict positivity of the given distribution, or
so called positivity (or overlap) under the uncon-
founded assumption that the probabilities of treat-
ments are positive. However, there exist many
environments where neither observational data ex-
hibits strict positivity nor unconfounded assump-
tion holds. Against this background, we exam-
ine the graphical counterpart of the conventional
positivity condition so as to license the use of
identification formula without strict positivity. In
particular, we explore various approaches, includ-
ing analysis in a post-hoc manner, do-calculus,
Q-decomposition, and algorithmic, to yielding a
positivity condition for an identification formula,
where we relate them, providing a comprehensive
view. We further discuss the design of a positivity-
aware identification algorithm based on the theo-
retical characterization of identification formulas.

1. Introduction
Knowing only associations among variables is insufficient
to establish the direction of causation, thereby limiting its
utility in making informed decisions. On the other hand,
understanding cause-effect relationships can help elucidate
the effect of intervention so that precise control of the under-
lying environment can lead to the desired outcome. Causal
effect identification is the task of answering whether elicit-
ing a causal quantity under given information (typically a set
of causal assumptions encoded as a causal diagram) is prob-
able and, if so, providing a mapping from an observational
distribution to the causal quantity.
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Figure 1: Causal diagrams where Px(y) is identified via a
(a) backdoor and (b) front-door criterion, respectively.

Formally, the causal effect of a set of treatment variables X
on a disjoint set of outcome variables Y is said to be identi-
fiable from a causal graph G if the quantity Px(y) = P (y |
do(x)) can be uniquely computed from any positive distri-
bution over the observed variables (Tian & Pearl, 2002; Sh-
pitser & Pearl, 2006a). If an effect is non-identifiable, there
exist two models eliciting the same causal structure and
agreeing on the provided observational distribution while
disagreeing on the effect of the intervention of interest.

In the absence of unmeasured confounders, all causal effects
are trivially identifiable (Robins, 1986; Pearl, 1993; Spirtes
et al., 1993; Galles & Pearl, 1998). However, if there are
unmeasured confounders (i.e., a semi-Markovian model),
the problem of causal effect identifiability is getting so-
phisticated. Tian & Pearl (2003); Huang & Valtorta (2006);
Shpitser & Pearl (2006a) developed complete identifica-
tion algorithms taking an arbitrary causal graph. When not
identifiable, one might rely on partial identification, which
provides bounds for the causal effect, or alike (Tian & Pearl,
2000; Balke, 1995; Zhang et al., 2022; Li & Pearl, 2022).

Regardless of the existence of complete graphical identifica-
tion algorithms, one simple, widely adopted identification
condition is the adjustment criterion (i.e., backdoor criterion
(Pearl, 1993); g-computation (Robins, 1986)). It yields the
following form of the formula for Px(y):

Px(y) =
∑

z P (y | x, z)P (z), (1)

where Z is an admissible set. Here, positivity P (x | z) > 0
is assumed to license the use of the above formula for the
causal effect. In the context of estimating average treatment
effect E[Y | do(X = 1)] − E[Y | do(X = 0)], Hernán &
Robins (2006) stated that, for each value of the covariate
in the population, there are some subjects that received the
treatment—i.e., P (X | z) > 0 for all z with P (z) ̸= 0.
With all individuals receiving the same treatment, it would
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be impossible to estimate the causal effect from observed
data (Hernán & Robins, 2006; 2020).

The same positivity condition might be derived directly
from the given formula, although its validity is less clear at
this moment. Given the summation in (1), if there exists z
such that P (y | x, z)P (z) is undefined, then the estimate
will be undefined. Although P (y | x, z) is undefined if
P (x, z) = 0, let us ignore the case when P (z) = 0, for
the sake of explanation. Therefore, we are concerned about
P (x, z) > 0 only when P (z) > 0. That is, we want to
ensure P (x | z) > 0 whenever P (z) ̸= 0. This leads to the
original positivity condition for the adjustment:

∀z(P (z) = 0 ∨ P (x | z) > 0), (2)

which we will denote by adj(x;Z).

There is limited literature on the topic of positivity con-
ditions in causal identification. Shpitser & Pearl (2006a)
mentioned that most literature only considers P (V) as a
positive distribution, where V is a set of endogenous vari-
ables. However, they postulated that P (A) must be positive
for every distribution P (B | A) involved during the deriva-
tion of a formula. Other than this, positivity assumptions
are mentioned only for specific identification tasks. Petersen
et al. (2012) examined a positivity condition for assessing
model and parametric-specific identifiability of causal ef-
fects within a marginal structural working model, where
the result was identical to the condition for the adjustment
criterion. Dahabreh et al. (2019) investigated the positiv-
ity conditions to generalize causal inferences under single
world intervention graphs of a randomized trial in the target
population of trial-eligible individuals.

Nonetheless, previous studies have not yet explicated pos-
itivity conditions when an identifiable causal formula ex-
hibits an intricate form, such as fractions, given a general,
arbitrary causal structure. Against this background, this pa-
per seeks a principled way of eliciting a positivity condition
for identifying a causal effect given a causal graph.

1.1. Motivating examples

We motivate our work by illustrating an example in which
the backdoor adjustment is inapplicable. We then describe
how different identification formulas involve different posi-
tivity conditions, illustrating practical implications.

Positivity on a front-door criterion Another well-known
identification criterion is front-door adjustment (Pearl,
1995), exemplified by the causal diagram in Fig. 1(b). Its
identification formula for Px(y) is as follows:

Px(y) =
∑

z P (z | x)∑x′ P (y | x′, z)P (x′),

which can be derived by applying rules of do-calculus and
probability operations. Without assuming general positivity

X

Z1 Z2

Y

(a)

X Z Y

W

(b)

Figure 2: Causal diagrams where Px(y) is identified via (a)
backdoor adjustment either using {Z1}, {Z2}, or both (b)
both backdoor and front-door criteria.

P (V) > 0, one must ensure which positivity conditions are
sufficient for each application and combine those conditions
to derive a condition licensing the use of given P (V) for
Px(y). It turns out that a sufficient condition is(

P (x) > 0 ∨ ∀z(Pz(y) = 0)
)

∧
(
∀z(P (z |x) = 0 ∨ adj(z;X))

)
, (3)

where the condition over an interventional distribution
Pz(y) = 0 is further expanded to ∀x′(P (y|x′, z) = 0 ∨
P (x′) = 0) (see Appendix C.2 for the derivation). Fur-
thermore, the condition derived directly from the resulting
formula that avoids its undefinedness is indeed equivalent
to the above condition (3). In this paper, we discuss the rela-
tionships between the two conditions derived differently.

We note that the term ‘positivity’ might be a misnomer
since the detailed condition (3) for front-door criterion is
described not only by inequality > 0 but also by equality,
logical connectives, and quantifiers (see, for comparison,
P (x | z) > 0 for adjustment or P (V) > 0 for a graphi-
cal criterion). Yet, we will stick to the conventional term
‘positivity’ for the condition of an observational distribution
under which an identification formula is validly evaluated.

Multiplicity of identification formulas and conditions
An identification algorithm (e.g., ID (Shpitser & Pearl,
2006a) or IDENTIFY (Tian & Pearl, 2003)) typically re-
turns a single identification formula for a causal query if
it is identifiable from a causal graph. However, there may
exist multiple formulas (Tikka & Karvanen, 2017; 2018),
which may be obtained by applying the identification algo-
rithm over different latent projections onto V′ ⊂ V (Pearl
& Verma, 1991) (i.e., a causal graph over a subset of vari-
ables while maintaining causal relationships) of a full causal
graph over V. Here, we show by examples that different
formulas imply different positivity conditions.

Consider Fig. 2(a) where there exist three different backdoor
admissible sets {Z1}, {Z2}, and {Z1, Z2}. In this case,
it is possible for adj(x;Z2) holds true but not adj(x;Z1)
(see Appendix D.1). This implies that one can estimate the
causal effect with a formula but not with the other, which
was not the case under strict positivity. Now consider an
example in Fig. 2(b) where both backdoor and front-door
criteria can be applied to identify Px(y). Similarly, it might
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be the case that the backdoor is not applicable, but the
front-door criterion is, and vice versa (see Appendix D.2
for details). These examples manifest the importance of
knowing the characteristics of the given data and tailoring
the formula accordingly, rather than simply calculating the
formula assuming P (V) > 0.

Practical implications Under the violation of strict posi-
tivity, the conventional identification formula for a causal
quantity may not be properly computed, e.g., due to unde-
fined terms. Furthermore, the main tools for eliciting the
formula (i.e., do-calculus and Q-decomposition) are estab-
lished under the strict positivity assumption. Thus, their
validity and mathematical correctness are unclear under re-
laxed positivity. For practitioners, it is crucial to understand
which identification formula is valid for the causal quantity,
as the observational distribution is rarely strictly positive in
many real-world scenarios.

1.2. Contributions

Our contributions are as follows. (i) We provide a com-
prehensive view of eliciting a positivity condition over an
observational distribution for an identifiable causal query
given an arbitrary causal graph. (ii) In particular, we of-
fer positivity conditions for do-calculus and generalized
Q-decomposition, which are the main drivers of sound and
complete identification algorithms, establishing rigorous
foundations for obtaining sufficient positivity for causal ef-
fect identification. (iii) We devise an algorithmic approach
to eliciting positivity by incorporating a relaxed version of
generalized Q-decomposition into an existing identification
algorithm. We establish a connection to post-hoc analysis of
positivity. Further, this principled approach can be modified
to design a positivity-aware identification algorithm.

1.3. Organization

We illustrate the structure of our paper in Fig. 3. In Sec. 3, we
first explore, without theoretical guarantee, the possibility
of eliciting a positivity condition by directly examining a
given identification formula, which is typically the output of
an identification algorithm such as IDENTIFY (Tian & Pearl,
2003) or ID (Shpitser & Pearl, 2006a).

In Sec. 4, we formally re-establish the rules of do-calculus
(Lem. 4.1) under relaxed positivity, which is the building
block of identification algorithms. Consequently, we show
that the conjunction of the positivity conditions, invoked
during the derivation of an identification formula through
sequential applications of do-calculus, corresponds to the
positivity condition for the formula (Prop. 4.2 and Corol-
lary E.1 in Appendix).

Next, we provide a more systematic, algorithmic approach
to acquiring positivity in Secs. 5 and 6. Specifically, we

Identify algorithm

FormulaQ-decomposition

positivity 
Formula

Positivity

Sec. 3

post-hoc 
analysisinformation

<latexit sha1_base64="xYCjKxEbAXJ9saCSqTTWoL9QfaU=">AAACHXicbVDLSgMxFM3UR2t9jbp0EyxCC6XMiFaXBRe6nIJ9QFtKJs20oZnMkGTEMsyPuPFX3LhQxIUb8QfEzzB9KNp6IHByzr3ce48bMiqVZb0bqaXlldV0Zi27vrG5tW3u7NZlEAlMajhggWi6SBJGOakpqhhphoIg32Wk4Q7Px37jmghJA36lRiHp+KjPqUcxUlrqmsdOt+0jNXC9+CbJf9NRUijCyQcjFl8kRej8ePWk0DVzVsmaAC4Se0ZyFVj9/MikT5yu+druBTjyCVeYISlbthWqToyEopiRJNuOJAkRHqI+aWnKkU9kJ55cl8BDrfSgFwj9uIIT9XdHjHwpR76rK8crynlvLP7ntSLlnXViysNIEY6ng7yIQRXAcVSwRwXBio00QVhQvSvEAyQQVjrQrA7Bnj95kdSPSna5VK7qNCpgigzYBwcgD2xwCirgEjigBjC4BffgETwZd8aD8Wy8TEtTxqxnD/yB8fYF+q+kwg==</latexit>

Px(y), G, P (V)

Positivity

Sec. 5

relaxed Q-decomposition

Positivity
Formula

Lemma 4.1 Prop. 4.2

Thm. 5.1
Thm. 6.1

Prop. 7.1

Sec. 4 

Do-calculus                           

Sec. 6 Identify+ algorithm

Figure 3: A schematic diagram representing the overall
structure of this paper.

first relax generalized Q-decomposition where an additional
sufficient condition for identification is provided (Lem. 5.1
and Thm. 5.1). We then develop IDENTIFY+ (Algs. 1 and 2),
which incorporates the relaxed decomposition into IDEN-
TIFY (Tian & Pearl, 2003) and an additional component
that simultaneously constructs a positivity condition while
eliciting an identification formula (Thm. 6.1).

We note that one may skip the post-hoc analysis (Sec. 3),
read through to the algorithmic approach, and then come
back to the post-hoc analysis. This sequence would be bene-
ficial to some readers who want to avoid some unresolved
uncertainties regarding the validity of post-hoc analysis. All
the omitted proofs are deferred to Appendix E.

2. Preliminaries
Each variable is represented with a capital letter, e.g., X , and
its realization with the corresponding lowercase x. We use
bold letters, e.g., X, to denote sets of variables (or values).
We follow the conventional definition of probability based
on a set of axioms by Kolmogorov (1933). Throughout
this paper, we focus only on the discrete case. We discuss
possible challenges to the continuous case in Appendix F.

Causal framework We adopt a structural causal model
(SCM (Pearl, 2009)) as our causal framework.

Definition 2.1 (SCM (Pearl, 2009)). A structural causal
model (SCM)M is a 4-tuple ⟨V,U,F,P (U)⟩, where V =
{V1, . . . , Vn} is a set of endogenous variables; U is a set of
exogenous variables; F = {f1, . . . , fn} is a set of functions
determining V: vi ← fi(pai,ui) where Pai ⊆ V\{Vi}
and Ui ⊆ U; P (U) is a distribution over U. ■

Each SCM M induces a distribution P (V) and a causal
graph G, where directed edges encode functional relation-
ships between observed variables, and bidirected edges en-
code unobserved confounders. Conducting an intervention
is represented through the do-operator, do(X = x), which
corresponds to replacing the original equations of X with
constant x. Such an intervention induces a submodelMx
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and an interventional distribution Px(V). We adopt graphi-
cal kinship terminology Pa(·), Ch(·), An(·), and De(·) to
represent its parents, children, ancestors, and descendants in
G where ancestors and descendants include its argument. For
a set of arguments, Pa(X) =

⋃
X∈X Pa(X), and others

are defined similarly. We denote by GXZ the manipulated
graph of G by deleting the edges onto X and edges outgoing
from Z. We denote by ⊥⊥p for conditional independence and
⊥⊥d for d-separation. We may use ⊥⊥ for ⊥⊥d if no ambiguity
arises. Given W a subset of vertices in G, we use G[W] to
denote a subgraph induced by W ⊆ V. See Appendix A
for formal definitions of d-separation and latent projection.

Causal identification problem The causal effect of an
action do(x) on a set of variables Y such that Y ∩X = ∅
is said to be identifiable from P in G if Px(y) is uniquely
computable from P (V) in any causal model which induces
G. That is, if PM1

x (y) = PM2
x (y) for every pair of causal

modelsM1 andM2 with PM1(V) = PM2(V) > 0 and
G(M1) = G(M2) = G, then Px(y) is identifiable in G. On
the other hand, if one can construct two models such that
PM1
x (y) ̸= PM2

x (y), then Px(y) is not identifiable in G.

However, simply sticking to strict positivity for the defini-
tion of identifiability will lose the opportunity to utilize an
available observational distribution for identifying causal
effects since one can still obtain the effect once the distribu-
tion satisfies a sufficient positivity condition, e.g., Eq. (2).
Given that our objective is not devising a complete graphical
criterion for identification, we will be negligent to the strict
positivity from the definition and focus on the positivity
condition under which graphical causal effect identification
is sound. Note that the causal effect Px(y) itself is always
well-defined regardless of the strict positivity assumption
(see Appendix A).

3. Informal Examination of Post-hoc
Approach to Positivity

In this section, we informally1 examine a positivity condi-
tion under which the identification formula itself is well-
defined2. The complete algorithms (Tian & Pearl, 2003; Sh-
pitser & Pearl, 2006a) return formulas which are composed
of fractions, summation (i.e., marginalization), or multipli-

1We wanted this section to be inspirational to later, more prin-
cipled sections. Further, a formal treatment to post-hoc analysis
requires making sense of 0/0 in formulas, investigated in Thm. 5.1

2Here, we say a formula is well-defined if it is computable. It
should not be conflated with the well-definedness of mathematical
terms. A formula can still be computable even if it contains unde-
fined terms. For example, strictly speaking,

∑
{z|P (x|z)>0} P (y |

x, z)P (z) if ∀z(P (z) = 0 ∨ P (x | z) > 0). We will henceforth
denote it as

∑
z P (y | x, z)P (z) ≥ 0 ⇐ adj(x;Z), and say the

formula
∑

z P (y | x, z)P (z) is well-defined under the positivity
condition adj(x;Z).

X Y

W

R

Figure 4: A causal diagram called Napkin.

cation of the given joint probability or expressions thereof.
The basic idea to derive whether the formula is well-defined
consists of the following: (a) the addition of any undefined
term yields an undefined value; (b) the multiplication of
an undefined term yields an undefined value unless zero is
multiplied to; and (c) the zero denominator of a fraction
makes the fraction undefined (conditional probability is its
special case). We will later illustrate the sufficiency of these
rules to determine positivity conditions by connecting an
identification algorithm and the pattern of the formula.

We introduce the concept of well-definedness of a for-
mula through a causal diagram called Napkin (Fig. 4)
(Pearl & Mackenzie, 2018) where its formula is as follows,
Px(y) =

∑
w P (y,x|r,w)P (w)∑
w P (x|r,w)P (w) . Based on the formula, since

the causal quantity is a fraction, we consider the (1) nu-
merator and (2) denominator separately. If the denominator
is zero, the formula is undefined. We derive the positivity
condition as follows:

∃r
(∑

w P (y,x|r,w)P (w)∑
w P (x|r,w)P (w) ≥ 0

)
⇐ ∃r(① ≥ 0 ∧② > 0),

where ① and ② is a numerator and denominator, respectively.
Each condition can be expressed as

① ≥ 0⇐ adj(r;W ),

② > 0⇐ adj(r;W ) ∧ ∃w(P (x | r, w)P (w) > 0)

⇐ adj(r;W ) ∧ ∃w(P (x | r, w) > 0 ∧ P (w) > 0)

⇐ adj(r;W ) ∧ ∃w(P (x, r, w) > 0)

⇐ adj(r;W ) ∧ P (x, r) > 0.

Hence, the sufficient condition for the well-definedness of
the formula is ∃r

(
adj(r;W ) ∧ P (x, r) > 0

)
.

While it is true that the positivity condition derived directly
from a formula ensures that the formula is well-defined, yet
its validity is unclear for now since the formula is derived un-
der strict positivity, and there might be some conditions that
cannot be read off from the formula. We provide a formal
treatment to the validity of post-hoc analysis in Sec. 7.1.

4. Positivity for Do-calculus
We now consider developing a general and principled ap-
proach for deriving a positivity condition by examining the
conditions for the application of do-calculus (Pearl, 1995),
which is a building block for identification algorithms and
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shown to be complete for the task of causal effect identifi-
cation (Shpitser & Pearl, 2006a). Do-calculus, capable of
reducing an expression for Px(y) to a subscript-free expres-
sion, consists of the following three rules:

Rule 1 (addition/deletion of observation):
Px(y | z,w) = Px(y | w) if (Y ⊥⊥ Z | X,W)GX

Rule 2 (exchange of action and observation):
Px,z(y | w) = Px(y | z,w) if (Y ⊥⊥ Z | X,W)GXZ

Rule 3 (addition/deletion of action):
Px,z(y | w) = Px(y | w) if (Y ⊥⊥ Z | X,W)G

X,Z(W)
,

where Z(W) = Z \An(W)GX
.

Pearl (1995) implicitly stated that a causal effect is identifi-
able from any positive distribution of the observed variables
(i.e., P (v) > 0) in a model characterized by a graph G if
there exists a finite sequence of transformations, each con-
forming to one of the three rules. We can relax the positivity
conditions for do-calculus taking advantage of the results
from Lauritzen et al. (1990); Verma & Pearl (1990).

Proposition 4.1 (Prop. 2 in (Lauritzen et al., 1990)). If X
and Y are d-separated by S, then X ⊥⊥pY | S. ■

While the result looks familiar, it is without strict positiv-
ity: whenever d-separation (X ⊥⊥dY | S) holds true, then
P (x,y | s) = P (x | s)P (y | s) for P (s) > 0 and, simi-
larly, P (x | y, s) = P (x | s) for P (s,y) > 0 without strict
positivity over all the variables (nodes) in the DAG.

We generalize the proposition to the space of observational
and interventional distributions and figure out a sufficient
positivity condition for each rule. Before we proceed, we
slightly rewrite do-calculus replacing GX with G \X and
dropping the condition on X (Lee & Bareinboim, 2020).

Lemma 4.1 (Do-calculus with relaxed positivity). Let G be
the directed acyclic graph (DAG) associated with a causal
model, and let P (·) be the probability distribution induced
by the model. Then,

Rule 1: Px(y | z,w) = Px(y | w) if
(Y ⊥⊥ Z |W)(G\X) and Px(z,w) > 0

Rule 2: Px,z(y | w) = Px(y | z,w) if
(Y ⊥⊥ Z |W)(G\X)Z and Px(z,w) > 0

Rule 3: Px,z(y | w) = Px(y | w) if
(Y ⊥⊥ Z |W)(G\X)

Z(W)
and Px(w) > 0. ■

Note that, for example, if we are to claim Px(y, z | w) =
Px(y | w)Px(z | w) as an alternative for Rule 1, the con-
dition can be further relaxed to Px(w) > 0. This lemma
asserts sufficient positivity conditions not exclusively for an
observational distribution. However, this does not hinder us
from inducing a positivity condition over an observational
distribution since all the constrained interventional probabili-
ties appeared in intermediate expressions are later expressed

using only observational probabilities. In the following, we
illustrate examples (i.e., front-door and Napkin) where posi-
tivity for do-calculus is applied while taking multiplied-by-
zero into consideration.3 Due to the space constraint, the
backdoor example is provided in Appendix C.1.

Example 4.1 (Front-door). We demonstrate the lemma by
deriving the formula based on probability axioms and do-
calculus (Pearl, 1995) on the front-door graph.

Px(y) =
∑

z Px(z)Px(y | z)
=

∑
z Px(z)Pxz(y) (4)

=
∑

z Px(z)Pz(y)

=
∑

z P (z | x)Pz(y) (5)
=

∑
z P (z | x)∑x′ Pz(y | x′)Pz(x

′)

=
∑

z P (z | x)∑x′ Pz(y | x′)P (x′)

=
∑

z P (z | x)∑x′ P (y | x′, z)P (x′), (6)

where (5) and (6), respectively, is granted if

P (x)>0 ∨ ∀z(Pz(y)=0) and ∀z(P (z|x)=0 ∨ adj(z;X)).

The conjunction of both conditions grants the identifica-
tion of Px(y) without strict positivity. During the deriva-
tion, other lines do not require any condition. For example,
Eq. (4) does not invoke Px(z) > 0 since Px(z) = 0 makes
Px(y | z) ignorable. We present the full condition in terms
of the observational distribution in Appendix C.2 together
with a post-hoc analysis, which yields the same positivity
condition. ■

Example 4.2 (Napkin). We derive the condition for Napkin:

Px(y) = Pw,r,x(y)

= Pw,r(y | x) if Pw,r(x) > 0

= Pw,r(y, x)/Pw,r(x) if Pw,r(x) > 0

= Pr(y, x)/Pr(x)

=
∑

w′ P (y,x|r,w′)P (w′)∑
w′ P (x|r,w′)P (w′) . if adj(r;W )

This derivation requires two positivity conditions. In reverse,
there exists r such that (1) adj(r;W ) and; (2) Pw,r(x) > 0,
which is equivalent to Pr(x) > 0 by Rule 3. Condition
(2) is implied by

∑
w′ P (x | r, w′)P (w′) > 0 under (1).

This leads to adj(r;W ) ∧ ∃w(P (x | r, w)P (w) > 0).
Since P (x | r, w′)P (w′) > 0 ⇐ P (x, r, w) > 0 and
∃w(P (x, r, w) > 0)⇔ P (x, r) > 0, we finally obtain

∃r(adj(r;W ) ∧ P (x, r) > 0). (7)

This turns out to be equivalent to the condition derived by
post-hoc analysis (see Appendix C.3). ■

3To make sense of an undefined term multiplied by zero,
consider the following derivation P (y) =

∑
z P (y, z) =∑

{z|P (z)>0} P (y, z) =
∑

{z|P (z)>0} P (y|z)P (z). Thus,
P (y) =

∑
z P (y|z)P (z) is valid ignoring z such that P (z) = 0.
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Proposition 4.2. The conjunction of positivity conditions
required in deriving an identification formula for a causal
effect applying do-calculus and probability operations se-
quentially is a sufficient positivity condition for the identifi-
cation of the causal effect. ■

5. Generalized Q-decomposition and Positivity
Given the theoretical underpinnings of the sufficient posi-
tivity conditions over do-calculus, we now investigate the
feasibility of creating an identification algorithm capable of
simultaneously taking a non-strictly positive observational
distribution into account. IDENTIFY is a causal effect identi-
fication algorithm (Tian & Pearl, 2003), which is sound and
complete, that identifies a causal effect in a semi-Markovian
model. In this section, we characterize the key components
of the algorithm, called Q-decomposition (Tian & Pearl,
2003), which decomposes a probability into c-factors, a spe-
cial type of interventional probability. The c-factors derived
from the given observational distribution are used to answer
the c-factors derived from the query (Tian & Pearl, 2003;
Shpitser & Pearl, 2006a). We review Q-decomposition and
establish the correctness of the decomposition without rely-
ing on the strict positivity.

We can rewrite a causal effect

Px(y) =
∑

y+\y Px+(y+), (8)

where Y+ = An(Y)GX
and X+ = An(X ∩ An(Y))GY

.
It is proved that the identifiability of Px+(y+) is equivalent
that of Px(y) (Shpitser & Pearl, 2006a). Since marginaliza-
tion and Rule 3 do not invoke positivity, we do not impose
any positivity condition over the observation at this stage.

The modified query Px+(y+) is then decomposed into c-
factors typically (and implicitly) under P (V) > 0 based
on the c-components (connected components via bidirected
edges) over G[Y+]. Next, each c-factor is identified individ-
ually and combined to ultimately solve Px(y):

Px+(y+) =
∏

C∈cc(G[Y+]) Q[C], (9)

where cc(·) is c-components and

Q[W](w,paw) =
∑

u(W) P (u(W))
∏

Vi∈W 1vi=fi(pai,ui),
(10)

with U(W) =
⋃

Vi∈W Ui. This c-factor is simply writ-
ten Q[W] for readability. C-factor Q[W] is equivalent to
PV\W(W), an interventional distribution over W where
all the other variables are intervened (i.e., W’s parents). We
show the validity of the decomposition without positivity
condition:

Proposition 5.1. Under structural causal model and with-
out P (V) being positive, the following holds:

Px(y) =
∑

y+\y
∏

C∈cc(G[Y+]) Q[C]. ■

V1 V2 V3 V4 V5 V6 V7

Figure 5: An exemplar causal diagram.

Now we will relate the following characterization of c-factor
with the positivity condition. We revisit ‘generalized Q-
factorization’ (Tian & Pearl, 2003, Lemma 4) which consists
of two parts, (i) and (ii). We present it as two separate
lemmas with assumptions on the positivity explicit where
the first part (i) can be claimed without positivity.

Lemma 5.1. Given H ⊆ V, let H1, . . . ,Hk be the c-
components of G[H] where H ⊆ V. Then, without Q[H]
being positive, Q[H] =

∏
j Q[Hj ]. ■

The second part (ii) involves positivity, which we will later
generalize that can take the condition of P (V) into account.

Lemma 5.2 (reproduced from Tian & Pearl 2003 with
explicit positivity). Given H ⊆ V, let H1, . . . ,Hk be
the c-components of G[H]. Let ≺ be a topological or-
der over the variables in H according to G[H] such that
V (1) ≺ V (2) · · · ≺ V (|H|). Let H⪯i be the variables in
H that come before V (i) including V (i). Let H≻i be the
variables in H that come after V (i). Given Q[H] > 0,

Q[Hj ] =
∏

V (i)∈Hj

Q[H⪯i]

Q[H⪯i−1]
, (11)

where Q[H⪯i] =
∑

h≻i Q[H]. ■

One may think that the equality, which plays a key role
in IDENTIFY, is well-defined if the numerators are well-
defined (i.e., ≥ 0) and the denominators are positive. How-
ever, this approach does not fully take into account an inter-
play between positivity and decomposition since Lem. 5.2
is derived under strict positivity, Q[H] > 0.

5.1. Relaxed Generalized Q-decomposition

This motivates us to generalize Lem. 5.2 for algorithmic
identification under relaxed positivity. The intuition be-
hind the generalization is that the product of fractions
often can be shortened by canceling out depending on
the topological order. We illustrate an example in Fig. 5.
Here, Q[H] is factorized as Q[H] = Q[H1] ·Q[H2] where
H1 = {V1, V2, V4, V6, V7} and H2 = {V3, V5}. Denot-
ing Q[H⪯i] as Qi for brevity, if Q[H] = Q7 > 0, then
Q[H1] =

Q7

Q6
· Q6

Q5
· Q4

Q3
· Q2

Q1
· Q1

Q0
and Q[H2] =

Q5

Q4
· Q3

Q2

by Lem. 5.2. Since Q6 and Q1 can be canceled out, we can
write Q[H1] =

Q7

Q5
· Q4

Q3
· Q2

Q0
.

We will show that this expression is valid if Q5 > 0, and
further show that it is still possible to identify Q[H1] when
some of the denominators are 0, i.e., Q5 = 0 or Q3 =

6
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0, relaxing the strict positivity condition of Q[H] > 0 in
Lem. 5.2. To begin with, we define some indices, called
anchors, useful to characterize such cancellation.
Definition 5.1 (Anchors). Given H ⊆ V, let ≺ be a topo-
logical order over the variables in H according to G[H]. Let
C ∈ cc(G[H]) where C can be partitioned into variables
(maximally) consecutive in a topological order ≺ such that
1 ≤ l1 ≤ r1 < l2 ≤ r2 < · · · < lT ≤ rT ≤ |H| and
C = {V (i) | i ∈ ∪Td=1[ld, rd]}. We say {(ld, rd)}Td=1 as
anchors for C and denoted as IG[H],≺(C). ■

In Fig. 5, {(1, 2), (4, 4), (6, 7)} and {(3, 3), (5, 5)} is an-
chors for H1 and H2, respectively, with maximally consecu-
tive segments. Note that {(1, 1), (2, 2), (4, 4), (6, 6), (7, 7)}
is also valid anchors for H1 employed in Lem. 5.2.
Theorem 5.1. Given H ⊆ V, let H′ ∈ cc(G[H]) where
IG[H],≺(H

′) = {(ld, rd)}Td=1. Then, the following holds:

(i) If Q[H⪯lT−1] > 0,

Q[H′] =

T∏
d=1

Q[H⪯rd ]

Q[H⪯ld−1]
. (12)

(ii) If Q[H⪯rm ] = 0 and Q[H⪯lm−1] > 0 for some m,

Q[H′] = 0. ■

This generalizes Lem. 5.2 where irrelevant c-factors can be
canceled out taking the positivity of Q[H⪯lT−1]. Further,
even when such positivity assumption is violated, still it
provides a condition where the c-factor is identified as zero.
In Fig. 5, Thm. 5.1 states that Q[H1] =

Q7

Q5
· Q4

Q3
· Q2

Q0
if

Q5 > 0, and Q[H2] =
Q5

Q4
· Q3

Q2
if Q4 > 0. If Q4 = 0 and

Q3 > 0, Q[H1] = 0. Similarly, if Q2 = 0 then Q[H1] = 0.
On the other hand, if Q4 > 0 and Q5 = 0, we cannot make a
conclusion on Q[H1]. We demonstrate an example where a
c-factor is non-identifiable when Thm. 5.1 is not applicable.
Example 5.1 (Front-door). Consider two SCMsM1,M2

that share the same F, i.e., X ← U1, Z ← X ∧ ¬U2, Y ←
¬Z ∨ (¬U1 ∧ U3), but differ in the distribution over U.
ForM1, U1, U2 ∼ Ber(0.5), U3 ∼ Ber(0.2) and, forM2,
U3 ∼ Ber(0.8). Here, PM1(V) = PM2(V). Thm. 5.1-(i)
states that if P (x, z, y) > 0, then

Q[X,Y ](x, z, y) = Q[X,Z,Y ]
Q[X,Z]

Q[X]
Q[∅] = P (y | x, z)P (x) > 0.

Thm. 5.1-(ii) states that if (P (x, z, y) = 0 and P (x, z) >
0), or P (x) = 0, then Q[X,Y ](x, z, y) = 0. Thm. 5.1 is
inapplicable to identify Q[X,Y ] from Q[X,Z, Y ] = P (V)
if P (x, z) = 0 and P (x) > 0. Consider Q[X,Y ](x =
0, z = 1, y = 1) where P (x = 0, z = 1) = 0 and P (x =
0) = 0.5. Here, the two models disagree: Q[X,Y ]M1(x =
0, z = 1, y = 1) = 0.1 ̸= Q[X,Y ]M2(x = 0, z = 1, y =
1) = 0.4, thus, Q[X,Y ](x = 0, z = 1, y = 1) is non-
identifiable. ■

Unlike Lem. 5.2 where any topological order can be applied
safely, Thm. 5.1 depends on the choice of topological order
and arguments of the c-factors since they determine which
c-factor that can be zero to appear as a denominator.
Example 5.2 (Order dependency without strict positiv-
ity). Consider the following functions: W←U1, Z ←
¬U1 ∧ U2, X ← ¬W ∧ U3, Y ← ¬Z ∧ U3, where
U1, U2, U3 ∼ Ber(0.5). Here, we consider identifying
Q[X,Y ](w = 1, z = 1, x = 1, y = 1). Under a topological
order W ≺ Z ≺ X ≺ Y , the expression of Q[X,Y ] fol-
lowing Eq. (12), if valid, is Q[X,Y ] = Q[W,Z,X,Y ]

Q[W,Z] . Here,
we cannot reach a conclusion under the topological order
≺ since Q[W,Z](w = 1, z = 1) = 0. However, with a
different topological order W ≺ X ≺ Z ≺ Y , the ex-
pression of Q[X,Y ] from Eq. (12) becomes Q[X,Y ] =
Q[W,X,Z,Y ]
Q[W,X,Z] ·

Q[W,X]
Q[W ] . Since Q[W,X](w = 1, x = 1) = 0

and Q[W ](w = 1) = 0.5 > 0, we have Q[X,Y ](w =
1, z = 1, x = 1, y = 1) = 0 by Thm. 5.1-(ii). ■

As demonstrated in Examples 5.1 and 5.2, we were not able
to make a conclusion when Thm. 5.1 is inapplicable. Thus,
a few research questions remain such as an efficient way
of finding a topological order that admits the theorem, or
the necessity of the theorem, i.e., the non-identifiability of a
causal quantity when the theorem is not applicable in any
topological order. Answering those questions is beyond the
scope of this paper, and we leave them for future work.

6. Algorithmic Positivity
Based on the characterization of c-factors with respect to
positivity (Prop. 5.1, Lem. 5.1, and Thm. 5.1), we devise
an identification algorithm named IDENTIFY+, which si-
multaneously returns a positivity condition implied by the
resulting identification formula. We limit the algorithm to
be data-agnostic, where the formula is driven without the
knowledge of the positivity of an underlying observational
distribution (we discuss the design of positivity-aware identi-
fication algorithm in Sec. 7.2.) This condition is constructed
on-the-fly by repeatedly updating the conditions for a c-
factor of interest to other c-factors that induce the c-factor.

Propagating a positivity condition We present rules that
translate a constraint over a c-factor Q to the constraints
over the c-factors in the formula for Q. This makes use of
the fact that every identifiable c-factor can be expressed
using operators such as summation, product, and fraction of
expressions or, simply, an observational distribution P (V).
Proposition 6.1. Consider a c-factor and its expression
induced by marginalization, Lem. 5.1, or Thm. 5.1 for the c-
factor. Then, a constraint over the expression of the c-factor
is implied by a statement of first-order logic as follows:∑

z g(z) ≥ 0 ⇐= ∀z(g(z) ≥ 0),

7



On Positivity Condition for Causal Inference

Algorithm 1 IDENTIFY+ (outer)
1: input: x,y ⊆ X{X,Y }, X,Y ⊆ V, G.
2: output: an expression and positivity condition for Px(y).
3: Initialize constraint E with ∃x+\x (Px+(y) ≥ 0).
4: EXPAND(E,Px+(y),

∑
y+\Y

∏
Cj∈cc(G[Y+]) Q[Cj ])

5: for Cj ∈ cc(G[Y+]) do
6: Let Sk ∈ cc(G[An(Y)G ]) such that Cj ⊆ Sk.
7: fQ[Cj ]|Q[Sk] = IDENTIFY+(Cj ,G[Sk], Q[Sk], E) if Cj ̸=Sk

8: EXPAND(E,Q[Sk], fQ[Sk]|P )
9: record fQ[Cj ]|P = fQ[Cj ]|Q[Sk] ◦ fQ[Sk]|P

10: end for
11: return

∑
y+\Y

∏
Cj∈cc(G[Y+]) fQ[Cj ]|P , E

Algorithm 2 IDENTIFY+ (inner)
1: input: C, G = G[T], Q = Q[T], constraint E.
2: output: an expression for Q[C] made with Q[T].
3: if (A := An(C)G[T]) = C then
4: EXPAND(E,Q[C], fQ[C]|Q[T] :=

∑
t\c Q[T])

5: return fQ[C]|Q[T]

6: else if A = T then
7: raise FAIL.
8: else
9: Let T′ be a c-component in G[A] s.t. C ⊆ T′.

10: fQ[C]|Q[T′] = IDENTIFY+(C,G[T′], Q[T′], E) if C ̸=T′

11: EXPAND(E,Q[T′], fQ[T′]|Q[A] ◦ fQ[A]|Q[T])
12: return fQ[C]|Q[T′] ◦ fQ[T′]|Q[A] ◦ fQ[A]|Q[T]

13: end if

∑
z g(z) > 0 ⇐= (∀z(g(z) ≥ 0)) ∧ (∃z(g(z) > 0)),∑
z g(z) = 0 ⇐= ∀z(g(z) = 0),∏

i gi ≥ 0 ⇐= (∃i(gi = 0)) ∨ (∀i(gi ≥ 0)),∏
i gi > 0 ⇐= ∀i(gi > 0),∏
i gi = 0 ⇐= ∃i(gi = 0),

g1/g2 ≥ 0 ⇐= g1 ≥ 0 ∧ g2 > 0,

g1/g2 > 0 ⇐= g1 > 0 ∧ g2 > 0,

g1/g2 = 0 ⇐= g1 = 0 ∧ g2 > 0.

■

We denote by EXPAND an algorithm that rewrites a con-
straint following Prop. 6.1. It takes a constraint expres-
sion E, a c-factor Q, and its expression using other c-
factors. For example, if Q1 =

∑
a Q2, then EXPAND(Q1 =

0, Q1,
∑

a Q2) would return ∀a(Q2 = 0). Further, if we
have Q2 = Q6

Q5

Q4

Q3
using Thm. 5.1-(i), EXPAND(∀a(Q2 =

0), Q2,
Q6

Q5
· Q4

Q3
) returns ∀a

(
(Q6=0 ∧Q5>0) ∨ (Q4=0 ∧

Q3>0)
)
. We would like to emphasize that (ii) of Thm. 5.1

plays a pivotal role in inducing such positivity conditions
in conjunction with Prop. 6.1, while deriving the formula
itself follows (i) of Thm. 5.1 and other machineries.

IDENTIFY+ algorithm We incorporate EXPAND into al-
gorithmic identification4. Algorithm IDENTIFY+ transforms
and factorizes a given query based on Q-decomposition
(Alg. 1) and delegates the identification of each c-factor to
its inner part (Alg. 2). To begin with, we introduce a new no-
tation fg|h which is a formula for g with respect to h derived
based on marginalization, Lem. 5.1, and Thm. 5.1. We de-
note symbolic substitution by ◦ so that fg|h◦fh|i is fg|h with
h replaced with fh|i yielding fg|i. Further, abusing notation,
we denote by Px(y) ≥ 0 to mean a constraint on an ex-
pression made of P (V) such that Px(y) = f(P (V)) ≥ 0,
where the expression f is the output of the algorithm.

Alg. 1 begins with the initialization of X+, Y+, and con-
straint E = ∃x+\x (Px+(y) ≥ 0) (Line 3), which is then
expanded with respect to the formula (Eqs. (8) and (9),
Line 4). Each c-factor is then identified, and its condition is
examined (Lines 5–10). Line 7 induces fQ[Cj ]|Q[Sk] an ex-
pression for Q[Cj ] with Q[Sk] following Alg. 2 (or identity
if Cj = Sk), and Line 8 translates constraint E written in
Q[Sk] to P regarding fQ[Sk]|P , which is made by Thm. 5.1.
Finally, the identification formula and condition are returned
(Line 11) with formulas for c-factors recorded in Line 9.

The inner algorithm (Alg. 2) attempts to identify Q[C]
with Q[T] (i.e., Q[Cj ] and Q[Sk], respectively, in the outer,
Line 7) and returns fQ[C]|Q[T] updating constraint E with
Q[C] replaced to Q[T]. In a simple case, marginalization is
sufficient. Otherwise, a recursion occurs to identify Q[C]
with Q[T′], based on Thm. 5.1 (i), which is acquired as a
c-factor from Q[A], a marginalization of Q[T]. Once the
recursion is terminated, we propagate the constraint over
Q[C] to that over Q[T′] (Line 11). Once terminated, the
outer algorithm will take care of further expressing the con-
straint using Q[T] (Line 8 in Alg. 1). We provide running
examples in Appendix C.

Theorem 6.1. Whenever IDENTIFY+ returns a positivity
condition and identification formula, they are correct. ■

We focused on deriving a positivity condition on-the-fly
while deriving a formula relaxed in part by Thm. 5.1. How-
ever, this does not take the given observational distribution’s
positivity into account. We present in Sec. 7.2 modifications
that need to be augmented for IDENTIFY+ to identify a
query adapting to the condition of given data.

7. Discussion
We discuss on (i) the validity of post-hoc analysis, (ii) the de-
sign of a positivity-aware identification algorithm, and (iii)
generalization to conditional causal effects. An extended
discussion on other topics is provided in Appendix F.

4We focus on returning an identification formula rather than
evaluating the value (i.e., estimation).
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7.1. Validity of Post-hoc Analysis

Now we formally examine the validity of post-hoc analysis.
In post-hoc analysis, the sufficient conditions we considered
in deriving fractions, summation, and multiplication (Sec. 6)
are identical to those derived from the form of the identifi-
cation formula (Prop. 6.1). With the formula intact (without
further reduction from the resulting algorithm), the recur-
sive application of marginalization and Q-decomposition
will leave imprints on the formula that can be back-traced.
Hence, the positivity condition can be reconstructed equally.

Proposition 7.1. Consider an identification formula derived
through IDENTIFY or IDENTIFY+. Post-hoc analysis driven
by Prop. 6.1 yields a sufficient positivity condition. ■

We conjecture that the post-hoc analysis is sound for any
identification expression made with product, marginaliza-
tion, and fraction, irrespect to the choice of methods, e.g.,
do-calculus, IDENTIFY, ID, identification criteria, etc. How-
ever, it is beyond the scope of this paper due to its generality.

7.2. Considerations for Positivity-Aware Identification

For the design of a positivity-aware identification algorithm,
we present three key components that need to be considered,
namely, topological order, fixing values, and latent projec-
tion. With positivity checked for the given distribution, the
new algorithm can further take advantage of (ii) of Thm. 5.1.

To utilize Thm. 5.1, IDENTIFY+ algorithm needs to take
topological orders into account. In particular, within a loop
over topological orders, the inner part of IDENTIFY+ needs
to be called taking the order as an additional argument.

The choice of value for rule 3 (e.g., r in Napkin) can be
crucial under non-strict positivity. Thus, the outer algorithm,
where the value x+ \x is fixed, needs to enumerate different
instantiations for a subset of X+ \X, e.g., {R} ⊂ {R,W}
for Napkin. However, we do not take into account of the
value y+ \ y since it is already associated with marginaliza-
tion, which iterates over all possible values.

Under strict positivity, the absence of a hedge for Px(y)
is necessary and sufficient for its identification. If a latent
projection does not induce a hedge, IDENTIFY or ID yields
a simpler expression with fewer variables, but it does not
turn a non-identifiable effect into an identifiable one. How-
ever, under non-strict positivity, Q-decomposition under a
projection (without inducing a hedge) may avoid the case
of 0

0 in Thm. 5.1 as demonstrated in Appendix D. In partic-
ular, the violation of positivity in a specific c-factor can be
avoided by projecting out the variables involved, resulting
in the consolidation of multiple c-components. This leads to
different c-factors for Px(y). Subsequently, the algorithm
can be rerun with the projection to identify a causal effect.
Hence, positivity-aware projection is a crucial component.

7.3. Generalization to Conditional Causal Effects

A sound and complete identification criterion for a con-
ditional causal effect under the strict positivity is shown
in Tian (2004); Shpitser & Pearl (2006b). Given a query
Px(y | w), one can apply Rule 2 of do-calculus to max-
imally change conditions into interventions. For example,
Px,w′(y | w′′) with W = W′∪̇W′′. Then, identifying
the unconditional causal effect Px,w′(y,w′′) leads to the
identification of Px,w′(y | w′′) (if Px,w′(w′′) > 0), which
is equivalent to the original query Px(y | w). Since we
have established sufficient conditions for both do-calculus
and identification of marginal effects, our results indeed
generalize to conditional causal effects as well.

8. Conclusion
Strict positivity is a long-standing critical assumption for
causal inference, which is often unrealistic in many practical
scenarios. We provided a comprehensive treatment to con-
structing a positivity condition required in graphical causal
effect identification. In particular, we first informally ex-
plored ways of eliciting positivity innate in an identification
formula in a post-hoc manner. We then provided positivity
conditions for the rules of do-calculus so that one can in-
duce a positivity condition together with an identification
formula. Given the lack of a principled way to derive a
formula using do-calculus, we delved into an algorithmic
approach based on Q-decomposition, where we provided a
relaxed positivity condition for Q-decomposition. Equipped
with such characterization, we devised an identification al-
gorithm that can simultaneously elicit a positivity condition.
We discussed the design of a positivity-aware identification
algorithm, which should account for topological orders and
latent projections altogether, and generalization of our re-
sults to conditional causal effects. We hope this research
sparks further investigation into the development of an iden-
tification algorithm that adapts to the positivity of given
data.

Impact Statement
This paper presents work whose goal is to advance the field
of causal inference and machine learning. In particular, re-
laxing some of the assumptions underlying the task of causal
effect identification will help understand the characteristics
between the available observational distribution and identi-
fication, further allowing the applicability of causal effect
identification for previously considered impossible. There
are some potential societal consequences of our work, none
of which we feel must be specifically highlighted here.
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A. Preliminaries
Here we present definitions of d-separation, latent projection, and causal effect Px(y).

d-separation Excerpt from (Geiger & Pearl, 1988). For any three disjoint subsets X, Y, and Z of nodes in a DAG G, Z is
said to d-separate X from Y if there is no path from a node in X to a node in Y along which (i) every node that delivers an
arrow is outside Z, and (ii) every node with converging arrows either is in Z or has a descendant in Z.

Latent projection Excerpt from (Tian & Pearl, 2003). The latent projection of a graph G over V on C ⊆ V, denoted
G⟨C⟩, is a graph over C such that, in addition to edges in G⟨C⟩, for every pair of vertices (Vi, Vj) ∈ C, (i) add a directed
edge Vi → Vj in G⟨C⟩ if there exists a directed path from Vi to Vj in G such that every vertex on the path is not in C, and
(ii) add a bidirected edge Vi ↔ Vj in G⟨C⟩ if there exists a divergent path between Vi and Vj in G such that every vertex on
the path is not in C.

Causal effect Px(y) Under Pearl’s causal hierarchy (Bareinboim et al., 2022, Def. 5), P (yx) :=
∑

{u|Yx(u)=y} P (u)

where the potential response Yx(u) is defined as the solution for Y of the set of equations Fx with respect to SCMM.
Importantly, this definition is irrelevant to strict positivity. Similarly, the subsequent definition of conditional causal effect,
i.e., Px(y | w) = Px(y,w)/Px(w) if Px(w) > 0, is also well-established regardless of the strict positivity assumption.

B. Properties of C-factors
Proposition B.1. Let C ⊆ D, if Q[D](d,paD) > 0, then Q[C](c,paC) > 0 with c ∪ paC consistent with d ∪ paD. ■

Proof. First, C∪Pa(C) ⊆ D∪Pa(D). By definition of c-factor, there exists value u(D) with P (u(D)) > 0 that yields d
given Pa(D) = paD. Since u(C) ⊆ u(D), P (u(C)) > 0, and C yields c consistent to d with Pa(C) fixed to the values
consistent with d ∪ paD.

Corollary B.1. Let C ⊆ D, if Q[C](c,paC) = 0, then Q[D](d,paD) = 0 with c ∪ paC consistent with d ∪ paD. ■

Corollary B.2. Given H ⊆ V, let ≺ be a topological order over the variables in H according to G[H]. If i ⪯ j and
Q[H⪯i] = 0, then Q[H⪯j ] = 0. ■

Corollary B.3. Given H ⊆ V, let ≺ be a topological order over the variables in H according to G[H]. If i ⪯ j and
Q[H⪯j ] > 0, then Q[H⪯i] > 0. ■

Proposition B.2. Given H ⊆ V, let ≺ be a topological order over the variables in H according to G[H]. Let i ⪯ j. Then,
the following statements are equivalent.

(a) Q[H⪯i−1] > 0 and Q[H⪯j ] = 0.

(b) There exists t ∈ [i, j] such that Q[H⪯t−1] > 0 and Q[H⪯t] = 0.

■

Proof. ((a) ⇒ (b)) We give a proof by contradiction. Suppose there does not exist t ∈ [i, j] such that Q[H⪯t−1] > 0
and Q[H⪯t] = 0. Therefore, for all t ∈ [i, j], Q[H⪯t−1] = 0 if Q[H⪯t] = 0. Since Q[H⪯j ] = 0, we have Q[H⪯j ] =
Q[H⪯j−1] = · · ·Q[H⪯i−1] = 0, which contradicts the hypothesis Q[H⪯t−1] > 0.

((b)⇒ (a)) By Corollary B.2, Q[H⪯j ] = 0 since t ≤ j and Q[H⪯t] = 0. Also, by Corollary B.3, Q[H⪯i−1] > 0 since
i− 1 ≤ t− 1 and Q[H⪯t−1] > 0.

C. Derivation of Positivity for Backdoor, Front-door, and Napkin graphs
We highlight a few sentences in order for the readers not to be confused when deriving some of the positivity conditions
in this section. We present positivity conditions for backdoor, front-door, and Napkin graphs derived based on post-hoc
analysis, do-calculus, generalized Q-decomposition (manually), and algorithmic approach (IDENTIFY+).
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C.1. Back-door graph

To begin with note that the term P (x, z) > 0 is equivalent to P (x | z) > 0.

Post-hoc Analysis

Px(y) ≥ 0⇐
∑
z

P (y | x, z)P (z) ≥ 0

⇐ ∀z
( ①︷ ︸︸ ︷
P (y | x, z)

②︷︸︸︷
P (z) ≥ 0

)
⇐ ∀z

(
(① = 0) ∨ (② = 0) ∨ (① ≥ 0 ∧② ≥ 0)

)
⇐ ∀z(((P (y, x, z) = 0 ∧ P (x, z) > 0) ∨ P (z) = 0) ∨ (P (x, z) > 0 ∧ P (z) ≥ 0)

⇔ ∀z(((P (y, x, z) = 0 ∧ P (x, z) > 0) ∨ P (z) = 0) ∨ (P (x, z) > 0)

⇔ ∀z(P (x, z) > 0 ∨ P (z) = 0).

This is equivalent to ∀z(P (x | z) > 0 ∨ P (z) = 0).

Do-Calculus We show do-calculus-based derivation and check the positivity condition for the backdoor graph:

Px(y) =
∑
z

Px(y | z)Px(z)

=
∑
z

P (y | x, z)Px(z) if ∀z(P (x, z) > 0 ∨ Px(z) = 0)

=
∑
z

P (y | x, z)P (z).

Plugging in Px(z) = P (z), this derivation yields adj(x;Z), which is the same for the post-hoc analysis.

Q-decomposition (manually)

Px(y) =
∑
z

Q[{Y,Z}] =
∑
z

Q[{Y }](y, x, z)Q[{Z}](z),

where

Px(y) ≥ 0⇐ ∀zQ[{Y,Z}] ≥ 0

⇐ ∀z(Q[{Y }] = 0 ∨Q[{Z}] = 0 ∨ (Q[{Y }] ≥ 0 ∧Q[{Z}] ≥ 0)).

By Thm. 5.1, for all z, each of Q[{Y }](y, x, z) and Q[{Z}](z) is further identified as

Q[{Y }](y, x, z) = Q[{X,Y, Z}]
Q[{X,Z}] =

P (x, y, z)

P (x, z)
if P (x, z) > 0,

Q[{Y }](y, x, z) = 0 if P (y | x, z) = 0,

and

Q[{Z}](z) =
∑
x,y

Q[{X,Y, Z}] = P (z).

Combining those, we arrive at

Px(y) ≥ 0⇐ ∀z(Q[{Y }] = 0 ∨Q[{Z}] = 0 ∨ (Q[{Y }] ≥ 0 ∧Q[{Z}] ≥ 0))

⇐ ∀z(P (y | x, z) = 0 ∨ P (z) = 0 ∨ (P (x, z) > 0 ∧ P (z) ≥ 0))

⇔ ∀z(P (y | x, z) = 0 ∨ P (z) = 0 ∨ P (x, z) > 0)

⇔ ∀z(P (z) = 0 ∨ P (x, z) > 0)

⇔ ∀z(P (z) = 0 ∨ P (x | z) > 0).

We end up with exactly the same positivity conditions as post-hoc analysis and do-calculus aforementioned.

13



On Positivity Condition for Causal Inference

Algorithmic Approach

• (outer, line 3) E = (Px(y) ≥ 0)

• (outer, line 4) with expression
∑

z Q[{Y }]Q[{Z}], E is expanded as

∀z(Q[{Y }] = 0 ∨Q[{Z}] = 0 ∨ (Q[{Y }] ≥ 0 ∧Q[{Z}] ≥ 0)).

• (outer, line 5) case Q[{Y }]
– (outer, line 6) Sk = {Y },
– (outer, line 7) fQ[{Y }]|Q[{Y }] is an identity function, and calling the inner part is skipped.

– (outer, line 8) computes Q[{Y }] = P (y,x,z)
P (x,z) and expands E as

∀z((P (y, x, z) = 0 ∧ P (x, z) > 0) ∨Q[{Z}] = 0 ∨ (P (x, z) > 0 ∧Q[{Z}] ≥ 0)).

– (outer, line 9) records Q[{Y }] = P (y,x,z)
P (x,z) .

• (outer, line 5) case Q[{Z}]
– (outer, line 6) Sk = {Z},
– (outer, line 7) is skipped.
– (outer, line 8) computes Q[{Z}] = P (z) and expands E as

∀z((P (y, x, z) = 0 ∧ P (x, z) > 0) ∨ P (z) = 0 ∨ (P (x, z) > 0 ∧ P (z) ≥ 0)).

– (outer, line 9) records Q[{Z}] = P (z).

• (outer, line 11) returns
∑

z
P (y,x,z)
P (x,z) P (z) and up-to-date E.

Further reduction leads to the same conclusion as other approaches:

∀z((P (y, x, z) = 0 ∧ P (x, z) > 0) ∨ P (z) = 0 ∨ (P (x, z) > 0 ∧ P (z) ≥ 0))

⇔ ∀z((P (y, x, z) = 0 ∧ P (x, z) > 0) ∨ P (z) = 0 ∨ P (x, z) > 0)

⇔ ∀z(P (z) = 0 ∨ P (x, z) > 0)

⇔ ∀z(P (z) = 0 ∨ P (x | z) > 0).

C.2. Front-door graph

We would like to note that P (z | x) ≥ 0 is equivalent to P (x) > 0.

P (y | x′, z)P (x′) ≥ 0 is implied by P (x′) = 0 ∨ P (z | x′) > 0 (i.e., adj(z;X) except the universal quantifier).

Post-hoc Analysis

Px(y) ≥ 0⇐
∑
z

P (z | x)
∑
x′

P (y | x′, z)P (x′) ≥ 0

⇐ ∀z
( ①︷ ︸︸ ︷
P (z | x)

②︷ ︸︸ ︷∑
x′

P (y | x′, z)P (x′) ≥ 0
)

⇐ ∀z
(
(① = 0) ∨ (② = 0) ∨ (① ≥ 0 ∧② ≥ 0)

)
.

The conditions involving ② are

② = 0⇐ ∀x′(P (y | x′, z) = 0 ∨ P (x′) = 0)

② ≥ 0⇐ adj(z;X).

Finally,

Px(y) ≥ 0⇐ ∀z
(
P (z | x) = 0 ∨ (∀x′(P (y | x′, z) = 0 ∨ P (x′) = 0)) ∨ (P (x) > 0 ∧ adj(z;X)

)
. (13)
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①\② NA = 0 > 0

NA

= 0

> 0

(a) Post-hoc analysis (13)

①\② NA = 0 > 0

NA

= 0

> 0

∧

①\② NA = 0 > 0

NA

= 0

> 0

=

①\② NA = 0 > 0

NA

= 0

> 0

(b) Do-calculus (14)

Figure 6: Equivalence between post-hoc analysis and do-calculus driven positivity for the front-door graph. Rows represent
① being undefined (NA), equal to zero, and greater than zero and columns are similarly defined for ②. Shaded cells are the
condition satisfied by the equations.

Do-Calculus We show do-calculus-based derivation and check the positivity condition for the front-door graph:

Px(y) =
∑
z

Px(y | z)Px(z)

=
∑
z

Pxz(y)Px(z)

=
∑
z

Pz(y)Px(z)

=
∑
z

Pz(y)P (z | x) if ∀z(P (x) > 0 ∨ Pz(y) = 0)

=
∑
z

P (z | x)
∑
x′

Pz(y | x′)Pz(x
′)

=
∑
z

P (z | x)
∑
x′

Pz(y | x′)P (x′)

=
∑
z

P (z | x)
∑
x′

P (y | x′, z)P (x′) if ∀z(P (z | x) = 0 ∨ adj(z;X))

This derivation requires only two positivity conditions (with numbers from post-hoc analysis):

• ∀z(P (x) > 0 ∨ Pz(y) = 0) (i.e., ∀z(① ≥ 0 ∨② = 0))

• ∀z(P (z | x) = 0 ∨ adj(z;X)) (i.e., ∀z(① = 0 ∨② ≥ 0)

Combining those with replacing Pz(y) with
∑

x′ P (y | x′, z)P (x′) (which is granted since we are taking the conjunction
over the conditions including those allowing Pz(y) =

∑
x′ P (y | x′, z)P (x′) other than the assumptions encoded in the

causal graph G),

∀z(① ≥ 0 ∨② = 0) ∧ (① = 0 ∨② ≥ 0). (14)

Its equivalence to the post-hoc analysis is illustrated in Fig. 6.

Q-decomposition (manually)

Px(y) =
∑
z

Q[{Y,Z}] =
∑
z

Q[{Y }]Q[{Z}] =
∑
z

Q[{Z}](x, z)
∑
x′

Q[{X,Y }](x′, y, z).

Therefore,

Px(y) ≥ 0⇐ ∀zQ[{Y,Z}] ≥ 0
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⇐ ∀z(Q[{Z}] = 0 ∨Q[{Y }] = 0 ∨ (Q[{Z}] ≥ 0 ∧Q[{Y }] ≥ 0))

⇐ ∀z
[
Q[{Z}] = 0︸ ︷︷ ︸

①=0

∨ (∀x′Q[{X,Y }] = 0)︸ ︷︷ ︸
②=0

∨
(
Q[{Z}] ≥ 0︸ ︷︷ ︸

①≥0

∧ (∀x′Q[{X,Y }] ≥ 0)︸ ︷︷ ︸
②≥0

)]
. (14)

One can see the equivalence of Eq. (14) to the condition (13) since

Q[{X,Y }](x′, y, z) =
Q[{X,Z, Y }]
Q[{X,Z}]

Q[{X}]
Q[∅] = P (y | x′, z)P (x′) ≥ 0, if P (x′, z) > 0 ∨ P (x′) = 0,

Q[{X,Y }](x′, y, z) = 0 if P (x′) = 0 ∨ P (y | x′, z) = 0,

and

Q[{Z}](x, z) = Q[{X,Z}]
Q[{X}] = P (z | x) if P (x) > 0,

Q[{Z}](x, z) = 0 if P (z | x) = 0,

by Thm. 5.1, for all z and x′.

Algorithmic Approach Some of the expressions are simplified (e.g., a conditional probability for a fraction) for readability.

• (outer, line 3) initializes E with Px(y) ≥ 0.

• (outer, line 4) expands E with
∑

z Q[{Z}]Q[{Y }] and yields

∀z(Q[{Z}] = 0 ∨Q[{Y }] = 0 ∨ (Q[{Z}] ≥ 0 ∧Q[{Y }] ≥ 0)).

• (outer, line 5) case Q[{Y }]
– (outer, line 6) Sk = {X,Y }
– (outer, line 7) calls the inner with Cj = {Y }, G[Sk] X Y

* (inner, line 3) the condition is satisfied, A = C = {Y }
* (inner, line 4) expands with Q[{Y }] = ∑

x′ Q[X,Y ], yielding

∀z
(
Q[{Z}] = 0 ∨ (∀x′Q[X,Y ] = 0) ∨

(
Q[{Z}] ≥ 0 ∧ (∀x′Q[X,Y ] ≥ 0)

))
.

* (inner, line 5) returns Q[{Y }] = ∑
x′ Q[X,Y ].

– (outer, line 8) expands with Q[X,Y ] = P (y,z,x′)
P (z,x′) P (x′) (shortened for readability)

∀z
(
Q[{Z}] = 0 ∨ (∀x′(P (y | z, x′) = 0) ∨ P (x′) = 0) ∨

(
Q[{Z}] ≥ 0 ∧ (∀x′(P (x′) = 0 ∨ P (z | x′) > 0))

))
.

– (outer, line 9) records Q[{Y }] = ∑
x′ P (y | z, x′)P (x′).

• (outer, line 5) case Q[{Z}]
– (outer, line 6) Sk = {Z}
– (outer, line 7) skips due to Cj = Sk = {Z}
– (outer, line 8) expands E with Q[{Z}] = P (x,z)

P (x) ,

∀z
(
P (z | x) = 0 ∨ (∀x′(P (y | z, x′) = 0) ∨ P (x′) = 0) ∨

(
P (z | x) > 0 ∧ (∀x′(P (x′) = 0 ∨ P (z | x′) > 0))

))
– (outer, line 9) records Q[{Z}] = P (x,z)

P (z)

• (outer, line 11) returns
∑

z P (x | z)∑x′ P (y | z, x′)P (x′) and up-to-date E.
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C.3. Napkin graph

Post-hoc Analysis The causal formula for Px(y) is as follows,

Px(y) =

∑
w P (y, x | r, w)P (w)∑
w P (x | r, w)P (w)

.

Based on the formula, since the causal quantity is a fraction, we should consider the (1) numerator and (2) denominator
separately. Especially when the denominator is zero, the causal quantity is undefined. We derive the positive condition as
follows:

Px(y) ≥ 0⇐ ∃r

①︷ ︸︸ ︷∑
w

P (y, x | r, w)P (w)∑
w

P (x | r, w)P (w)︸ ︷︷ ︸
②

≥ 0

⇐ ∃r(① ≥ 0 ∧② > 0),

where each condition can be expressed as

① ≥ 0⇐ adj(r;W ),

② > 0⇐ adj(r;W ) ∧ ∃w(P (x | r, w)P (w) > 0)

⇔ adj(r;W ) ∧ ∃w(P (x | r, w) > 0 ∧ P (w) > 0)

⇔ adj(r;W ) ∧ ∃w(P (x, r, w) > 0)

⇔ adj(r;W ) ∧ P (x, r) > 0.

Hence,

Px(y) ≥ 0⇐ ∃r
(
adj(r;W ) ∧ P (x, r) > 0

)
. (15)

Do-Calculus We start by Px(y) = Pw,r,x(y).

Px(y) = Pw,r,x(y)

= Pw,r(y | x) if Pw,r(x) > 0

=
Pw,r(y, x)

Pw,r(x)

=
Pr(y, x)

Pr(x)

=

∑
w′ P (y, x | r, w′)P (w′)∑
w′ P (x | r, w′)P (w′)

if adj(r;W ).

By combining both conditions with Pw,r(x) substituted to the denominator and applying the derivation shown in post-hoc
analysis for ② > 0, we obtain

∃r
(
adj(r;W ) ∧ P (x, r) > 0

)
. (16)

This corresponds to the condition (15) illustrated by only examining the resulting identification formula.

Q-decomposition (manually) We start by Px(y) = Q[{Y }]. By Thm. 5.1, for any r,

Q[{Y }](y, x) = Q[{X,Y }](x, y, r)
Q[{X}](x, r) if Q[{X}](x, r) > 0.
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Therefore,

Px(y) =
Q[{X,Y }](x, y, r)

Q[{X}](x, r) ≥ 0

⇐ ∃r(Q[{X,Y }](x, y, r) ≥ 0 ∧Q[{X}](x, r) > 0).

Since Q[{X}](x, r) = ∑
y′ Q[{X,Y }](x, y′, r), we have

Px(y) =
Q[{X,Y }](x, y, r)∑
y′ Q[{X,Y }](x, y′, r) ≥ 0

⇐ ∃r(Q[{X,Y }](x, y, r) ≥ 0 ∧ ∀y′Q[{X,Y }](x, y′, r) ≥ 0 ∧ ∃y′Q[{X,Y }](x, y′, r) > 0)

⇔ ∃r(∀y′Q[{X,Y }] ≥ 0 ∧ ∃y′Q[{X,Y }] > 0).

Since Q[{X,Y }] = ∑
w Q[{W,X, Y }], we have

Px(y) =

∑
w Q[{W,X, Y }](x, y, w, r)∑

y′,w Q[{W,X, Y }](x, y′, w, r) ≥ 0

⇐ ∃r(∀(y′, w)(Q[{W,X, Y }] ≥ 0) ∧ ∃y′(∀wQ[{W,X, Y }] ≥ 0 ∧ ∃wQ[{W,X, Y }] > 0))

⇐ ∃r(∀(y′, w)Q[{W,X, Y }] ≥ 0 ∧ ∃(y′, w)Q[{W,X, Y }] > 0).

By Thm. 5.1 and the definition of conditional probability,

Q[{W,X, Y }] = Q[{W,R,X, Y }]
Q[{W,R}] · Q[{W}]

Q[∅] = P (y, x | w, r)P (w) > 0 if P (y, x, w, r) > 0,

Q[{W,X, Y }] = P (y, x | w, r)P (w) ≥ 0 if P (r | w) > 0 ∨ P (w) = 0.

Therefore,

Px(y) =

∑
w P (y, x | w, r)P (w)∑

y′,w P (y′, x | w, r)P (w)
≥ 0

⇐ ∃r(∀(y′, w)(P (r | w) > 0 ∨ P (w) = 0)︸ ︷︷ ︸
①

∧∃(y′, w)(P (y′, x, w, r) > 0)︸ ︷︷ ︸
②

).

Here, y′ can be removed from ①. Also, ② is equivalent to P (x, r) > 0. Therefore,

Px(y) =

∑
w P (y, x | w, r)P (w)∑
w P (x | w, r)P (w)

≥ 0

⇐ ∃r(∀w(P (r | w) > 0 ∨ P (w) = 0) ∧ P (x, r) > 0)

⇔ ∃r(adj(r;W ) ∧ P (x, r) > 0). (16)

Consequently, the resulting condition is the same as both post-hoc analysis and do-calculus.

Algorithmic Approach

• (outer, line 3) initializes E with ∃w, r(Pw,r,x(y) ≥ 0).

• (outer, line 4) expands E simply with Q[{Y }], resulting in Q[{Y }] ≥ 0.

• (outer, line 5) case Q[{Y }]
– (outer, line 6) Sk = {W,X, Y }

– (outer, line 7) calls with G[Sk]
X Y

W
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Figure 7: (a) a causal diagram where Px(y) is identified via backdoor adjustment either using Z1 or Z2, (b) with Z1 projected
out, (c) with Z2 projected out, and (d) a causal diagram with an observed mediator and confounder where both back- and
front-door criteria are applicable.

* (inner, line 3) the condition is not satisfied, A = {X,Y } ≠ C.
* (inner, line 6) the condition is not satisfied, A ̸= T.

* (inner, line 9) T′ = {Y } with G[A] X Y

* (inner, line 10) is skipped.

* (inner, line 11) fQ[T′]|Q[A] =
Q[{Y,X}]∑
y′ Q[{Y,X}] and fQ[A]|Q[T] =

∑
w′ Q[{W,X, Y }]. Therefore, fQ[T′]|Q[A] ◦

fQ[A]|Q[T] =
∑

w Q[{W,X,Y }]∑
y′,w′ Q[{W,X,Y }] . Expanded E becomes

∃r, w
∑

w′ Q[{W,X, Y }]∑
y′,w′ Q[{W,X, Y }] ≥ 0.

We can ignore ∃w since w is not involved any term. Then,

∃r
(∑

w′

Q[{W,X, Y }] ≥ 0 ∧
∑
y′,w′

Q[{W,X, Y }] > 0

)
.

* (inner, line 12) returns
∑

w′ Q[{W,X,Y }]∑
y′,w′ Q[{W,X,Y }] .

– (outer, line 8) expands Q[{W,X, Y }] with P (y,x,r,w′)
P (r,w′) P (w′) = P (y, x | r, w′)P (w′)

∃r
((
∀w′(P (y, x|r, w′) = 0 ∨ P (w′) = 0 ∨ P (y, x, r, w′) > 0)

)
∧
(
∃y′, w′(P (y′, x, r, w′) > 0)

))
,

which can be further reduced to

∃r
((
∀w′(P (r, w′) > 0 ∨ P (w′) = 0)

)
∧
(
P (x, r) > 0

))
.

– (outer, line 9) records Q[{Y }] =
∑

w′ P (y,x|r,w′)P (w′)∑
y′,w′ P (y′,x|r,w′)P (w′) .

• (outer, line 11) returns
∑

w′ P (y,x|r,w′)P (w′)∑
w′ P (x|r,w′)P (w′) with up-to-date E, that is, ∃r adj(r;W ) ∧ P (x, r) > 0.

D. On Different Positivity Conditions for Different Identification Formulae
Causal graphs can be simplified by latent projection (Pearl & Verma, 1991; Verma, 1993), which may lead to the simplification
of identification formula (Tikka & Karvanen, 2017; 2018). Latent projection induces a causal graph over a subset of variables
while maintaining causal relationships among the subset of variables.

D.1. Backdoor Graph with {Z1, Z2}
Through the example illustrated in Fig. 2(a), we would like to argue that there can be multiple sufficient positivity conditions.
Consider two identification formulae for Px(y) in G illustrated in Fig. 2(a):∑

z1

P (y | x, z1)P (z1) and
∑
z2

P (y | x, z2)P (z2),

where two different positivity conditions are implied, i.e., adj(x;Z1) and adj(x;Z2).
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{Z2} works as adjustment set but not {Z1}. We claim that there exists a distribution where adj(x;Z2) holds true but
not adj(x;Z1) with the following setting. Without loss of generality, we present the parametrization with marginal and
conditional distributions. (We denote by XZ represent the state space of Z.)

• Let P (Z1, Z2) = P (Z2 | Z1)P (Z1) > 0 with XZ2
= {0, 1} and XZ1

= {0, 1, 2}.

• P (x | Z1 = 2) = 0 and P (X | Z1 = z1) > 0 for z1 ∈ {0, 1}.

First, this satisfies adj(x;Z2) since P (x | z2) =
∑

z1
P (x|z1)P (z1|z2) > 0 because, for every z2 value, z1 value exists (i.e.,

{0, 1} but not 2) such that P (x | z1) > 0 and P (z1 | z2) > 0. However, adj(x;Z1) does not hold since P (x | Z1 = 2) = 0
while P (Z1 = 2) > 0.

{Z1} as an adjustment set implies {Z2} as an adjustment set. However, the other way around is not possible. Assume
for contradiction that adj(x;Z2) is false, that is, P (x | z′2) = 0 ∧ P (z′2) > 0 for some z′2, or simply, P (x | z′2) = 0. Since
P (Z2) =

∑
z1
P (Z2 | z1)P (z1), for every P (z2) > 0 including z′2, there exists a value of z1 such that P (z2 | z1) > 0 and

P (z1) > 0. Thus, there exists z′1 such that P (z′1 | z′2) > 0 and P (z′1) > 0. Now, P (x | z′2) =
∑

z1
P (x | z1)P (z1 | z′2)

being 0 implies that P (x | z1) = 0 for every P (z1 | z′2) > 0. Therefore, P (x | z′1) = 0 and P (z′1) > 0, which violates
adj(x;Z1).

D.2. Backdoor/Front-door Graph

We now consider a causal graph illustrated in Fig. 2(b) where both backdoor and front-door criteria are applicable. Further,
IDENTIFY algorithm returns a formula different than those criteria:

Px(y) =
∑
w

P (y | x,w)p(w) backdoor (17)

Px(y) =
∑
z

P (z | x)
∑
x′

P (y | x′, z)p(x′) front-door (18)

Px(y) =
∑
z

P (z | x)P (y | z, w) IDENTIFY (19)

Even though the formulae are different from each other, they produce the same causal quantity under positivity. Then, one
might consider the backdoor formula more applicable when specific information about Z is unknown, or vice versa for W .

Front-door but not backdoor We claim that there exists a distribution where the front-door criterion holds true, but the
backdoor criterion does not. Consider the following setting:

• Let X and Z be binary and W be ternary.

• Let W be uniformly distributed with XW = {0, 1, 2}.

• Let P (x |W = 0) = 0 and P (x |W = w) > 0 for w ∈ {1, 2}.

• We set P (Z | X) to be positive.

This satisfies the positivity condition for the front-door criterion since P (X,Z) > 0 leads ∀z(P (z | x) > 0 ∧ adj(z;X)) to
be true (the last term in Eq. (13)). On the other hand, the backdoor criterion does not hold because P (x |W = 0) = 0 and
P (W = 0) > 0 violate adj(x;W ).

In terms of Q-decomposition,

Px(y) =
∑
w,z

Q[{Y,W,Z}] =
∑
w,z

Q[{Y }]Q[{W}]Q[{Z}], (20)

where, if valid,

Q[{Y }] = Q[{Y,Z,X,W}]
Q[{Z,X,W}] , (21)
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but both the denominator and numerator are zero when X = x and W = 0. With W projected out, X and Y are now
confounded. As we have seen before,

Q[{X,Y }] = Q[{Y, Z,X}]
Q[{Z,X}]

Q[{X}]
Q[∅] ,

that is, W is removed from both numerator and denominator with a fraction for X added.

Backdoor but not Front-door We similarly design the model,

• Let P (X,W ) > 0.

• For P (Z | x) > 0 but there exists x′ ̸= x such that P (z′ | x′) = 0.

Since P (x |W ) > 0 satisfies adj(x;W ), the backdoor criterion works. However, for the front-door criterion, P (z′ | x) > 0
(that is, ① > 0) and P (y | x′, z′) is undefined due to P (x′, z′) = 0 where P (x′) > 0 (i.e., ② ̸≥ 0). Thus, the front-door
criterion does not hold.

Again, let’s consider Q-decomposition where we focus again on Q[{Y }] Eq. (21) in Eq. (20). Now, due to X and Z, both
parts of the fraction are zero. With Z projected out,

Q[{Y }] = Q[{Y,X,W}]
Q[{X,W}] ,

the denominator becomes positive.

E. Omitted Proofs
Lemma 4.1 (Do-calculus with relaxed positivity). Let G be the directed acyclic graph (DAG) associated with a causal
model, and let P (·) be the probability distribution induced by the model. Then,

Rule 1: Px(y | z,w) = Px(y | w) if
(Y ⊥⊥ Z |W)(G\X) and Px(z,w) > 0

Rule 2: Px,z(y | w) = Px(y | z,w) if
(Y ⊥⊥ Z |W)(G\X)Z and Px(z,w) > 0

Rule 3: Px,z(y | w) = Px(y | w) if
(Y ⊥⊥ Z |W)(G\X)

Z(W)
and Px(w) > 0. ■

Proof. (Rule 1) By definition, Px is Markov to G \X.

(Rule 2) We employ a lifted model and then relate the results in the lifted model to the underlying model. To cover Px,z and
Px simultaneously, we augment the underlying model with indicators I = {IZ | Z ∈ Z} with IZ → Z for each Z ∈ Z.
Each indicator can be understood as an independent switch to change the mechanism of Z to implement both original fZ
when IZ = 0 and interventional mechanism z when IZ = 1. We denote by Q the distribution from the model. Then,

Px(y | w, z) = Q(y | w, z, I = 0),

Px,z(y | w) = Px,z(y | w, z) = Q(y | w, z, I = 1).

Let us denote by H, the graph G augmented by I, and we simply set P (I) = 0.5|Z|. Rule 2 (Y ⊥⊥ Z | W)(G\X)Z
is

equivalent to (I ⊥⊥ Y | Z,W)H (Pearl, 1995), which licenses Q(Y | z,w) = Q(Y | z,w, I) under Q(z,w, I) > 0, that is
Q(z,w) > 0 since I is marginally independent to {Z,W}. Thus, (Y ⊥⊥ Z |W)(G\X)Z

and Px(z,w) > 0 are sufficient.

(Rule 3) We similarly define indicator variables over Z and an augmented graph H where (Y ⊥⊥ Z | W)(G\X)
Z(W)

is
equivalent to (I ⊥⊥ Y |W)H. Thus, Q(Y | I,W) = Q(Y |W) under Q(w, I) > 0. Hence, a sufficient condition to imply
Px,z(y | w) = Px(y | w) is the conjunction of (Y ⊥⊥ Z |W)(G\X)

Z(W)
and Px(w) > 0.
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Proposition 4.2. The conjunction of positivity conditions required in deriving an identification formula for a causal effect
applying do-calculus and probability operations sequentially is a sufficient positivity condition for the identification of the
causal effect. ■

Proof. Each sufficient condition is satisfied if the conjunction of sufficient conditions holds true. Hence, we can arrive at the
last expression.

Additionally, if the derivation does not involve any reductions (e.g., merging multiple terms into one by multiplication),
then any positivity condition implied in the interventional probability will also be expressed as the given observational
distribution (i.e., recursively identified) at the end. Hence, we can obtain a sufficient positivity condition expressed only over
the given observational distribution P (V) without a need to separate the identification of the intermediate interventional
probabilities.

Corollary E.1. The conjunction of positivity conditions required in deriving an identification formula for a causal effect
applying do-calculus, marginalization, and the definition of conditional probability to factorize sequentially is a sufficient
positivity condition over an observational distribution for the identification of the causal effect. ■

Proposition 5.1. Under structural causal model and without P (V) being positive, the following holds:

Px(y) =
∑

y+\y
∏

C∈cc(G[Y+]) Q[C]. ■

Proof. With Rule 3 and the definition of c-factor,

Px+(y+) = Px+,v\(X+∪Y+)(y
+) = Q[Y]

=
∑
u

P (u)
∏

Vi∈V\X+

1vi=fi(pai,ui).

Based on algebra, we can rearrange the terms as

Q[Y] =
∏

C∈cc(G[Y+])

∑
u(C)

P (u(C))
∏

Vi∈C

1vi=fi(pai,ui)

=
∏

C∈cc(G[Y+])

Q[C]

so that terms related to each c-component are grouped.

Lemma 5.1. Given H ⊆ V, let H1, . . . ,Hk be the c-components of G[H] where H ⊆ V. Then, without Q[H] being
positive, Q[H] =

∏
j Q[Hj ]. ■

Proof. We start by definition:

Q[H](h,pah) =
∑
u(H)

P (u(H))
∏

Vi∈H

1vi=fi(pai,ui)

=
∑
u(H)

P (u(H))
∏
j

∏
Vi∈Hj

1vi=fi(pai,ui).

Since, U(Hm) ∩U(Hn) = ∅ for any m ̸= n,

Q[H](h,pah) =
∑
u(H)

P (u(H))
∏
j

∏
Vi∈Hj

1vi=fi(pai,ui)

=
∑
u(H)

∏
j

P (u(Hj))
∏

Vi∈Hj

1vi=fi(pai,ui)

=
∏
j

∑
u(Hj)

P (u(Hj))
∏

Vi∈Hj

1vi=fi(pai,ui)
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=
∏
j

Q[Hj ](hj ,pahj
).

Theorem 5.1. Given H ⊆ V, let H′ ∈ cc(G[H]) where IG[H],≺(H
′) = {(ld, rd)}Td=1. Then, the following holds:

(i) If Q[H⪯lT−1] > 0,

Q[H′] =

T∏
d=1

Q[H⪯rd ]

Q[H⪯ld−1]
. (12)

(ii) If Q[H⪯rm ] = 0 and Q[H⪯lm−1] > 0 for some m,

Q[H′] = 0. ■

Proof. We first note that Eq. (12) is well-defined under the assumption Q[H⪯lT−1] > 0 since it implies Q[H⪯i−1] > 0 for
all i ≤ lT − 1 and thus the denominators are positive.

(i) Suppose Q[H⪯lT−1] > 0. Since (ii) covers the case of Q[H⪯rT ] = 0, we now suppose Q[H⪯rT ] > 0. We show
H′ ∈ cc(G[H⪯rT ]) since H′ ⊆ H⪯rT ⊆ H and H′ ∈ cc(G[H]). Invoking Lem. 5.2,

Q[H′] =
∏

V (i)∈H′

Q[H⪯i]

Q[H⪯i−1]
,

where, for each 1 ≤ d ≤ T and i ∈ [ld + 1, rd], we cancel out the terms ·
Q[H⪯i−1]

Q[H⪯i−1]
· in the telescoping product

=

T∏
d=1

Q[H⪯rd ]

Q[H⪯ld−1]
> 0,

since V (i) ∈ H′ for i ∈ [ld, rd].

(ii) Suppose Q[H⪯rm ] = 0 and Q[H⪯lm−1] > 0 for some m. Then, there exists t ∈ [lm, rm] such that Q[H⪯t] = 0 and
Q[H⪯t−1] > 0 (Prop. B.2). Note that V (t) ∈ H′. Now, we have Q[Hj ] > 0 for all Hj ∈ cc(G[H⪯t−1]) since Hj ⊆ H⪯t−1

(Prop. B.1). Now, let H∗ ∈ cc(G[H⪯t]) where V (t) ∈ H∗. Applying Lem. 5.1 for Q[H⪯t],

0 = Q[H⪯t] = Q[H∗]×
∏

H′′∈cc(G[H⪯t])\{H∗}

Q[H′′]. (22)

For all H′′ ∈ cc(G[H⪯t]) \{H∗}, H′′ is a c-component of G[H⪯t−1] and thus Q[H′′] > 0. Therefore, by Eq. (22), we have
Q[H∗] = 0.

Given Q[H∗] = 0, we finally show Q[H′] = 0 by invoking Corollary B.1 with H∗ ⊆ H′, which is due to V (t) ∈ H∗ ∈
cc(G[H⪯t]) and V (t) ∈ H′ ∈ cc(G[H]).

Proposition 6.1. Consider a c-factor and its expression induced by marginalization, Lem. 5.1, or Thm. 5.1 for the c-factor.
Then, a constraint over the expression of the c-factor is implied by a statement of first-order logic as follows:∑

z g(z) ≥ 0 ⇐= ∀z(g(z) ≥ 0),∑
z g(z) > 0 ⇐= (∀z(g(z) ≥ 0)) ∧ (∃z(g(z) > 0)),∑
z g(z) = 0 ⇐= ∀z(g(z) = 0),∏

i gi ≥ 0 ⇐= (∃i(gi = 0)) ∨ (∀i(gi ≥ 0)),∏
i gi > 0 ⇐= ∀i(gi > 0),∏
i gi = 0 ⇐= ∃i(gi = 0),

g1/g2 ≥ 0 ⇐= g1 ≥ 0 ∧ g2 > 0,
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g1/g2 > 0 ⇐= g1 > 0 ∧ g2 > 0,

g1/g2 = 0 ⇐= g1 = 0 ∧ g2 > 0.

■

Proof. The result follows from basic algebra if there exist no undefined terms. In case of possible undefined terms, we
only consider the two cases where we treat multiplication by zero as zero, namely,

∏
i gi ≥ 0 and

∏
i gi = 0. By relaxed

generalized Q-decomposition, whenever we have an undefined term (divide by zero), it is covered by Thm. 5.1-(ii). Since
Thm. 5.1 generalizes Lem. 5.2 (with anchors minimally consecutive, i.e., all separated), this also covers the equation, output
by IDENTIFY.

Note that g1/g2 > 0 can be simply implied by g1 > 0 under generalized Q-decomposition since the denominator is the
marginalization of the numerator. Further, for each i, gi > 0 and gi ≥ 0 are interchangeable in (∃i (gi = 0))∨ (∀i (gi ≥ 0)).

Theorem 6.1. Whenever IDENTIFY+ returns a positivity condition and identification formula, they are correct. ■

Proof. The soundness of the identification formula comes from the correctness of Thm. 5.1, which generalizes Lem. 5.2,
and IDENTIFY algorithm, which provides the basis for IDENTIFY+. The soundness of the positivity condition is due to
Props. 5.1 and 6.1.

F. Further Discussion
We discuss the generalization to continuous variables. The use of summation

∑
in identification formulas is for the

convention, and such formulas are valid for the continuous case with integral
∫

(Shpitser & Pearl, 2006a; Tian & Pearl,
2003). However, challenges remain for the positivity condition since it involves probability density functions and measure-
zero sets, which complicates its analysis, especially when fractions are involved. For the case of Napkin (Fig. 4), ensuring
the denominator positive with ∃w(P (x|r, w)P (w) > 0) may be translated to ∃W ′ ∫

W′ f(x|r, w)dF (w) > 0 whereW ′ is a
subset of the domain of W . While we believe such translation is sufficient for imposing constraints over point estimates for
the continuous case, we defer its formal treatments and deeper discussion to future work.

Here, we compare our result to the relaxed positivity mentioned by Shpitser & Pearl (2006a). The authors relaxed P (V) > 0
and, without a concrete proof, relied on P (Z) > 0 whenever P (W | Z) is considered in the identification. However, this
yields a stricter positivity condition, e.g., P (x, Z) > 0 versus adj(x;Z) for adjustment criterion. In this work, we explicitly
considered canceling out terms, avoiding checking positivity for unnecessary c-factors. Further, we have incorporated
the case where such positivity is violated yet the identification is feasible (Thm. 5.1, ii). Hence, we further advance the
understanding of the formal connection between positivity conditions and causal effect identification.
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