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Figure 1: Given a pre-trained generator and multiple domains, UniHDA adapts the generator to
a hybrid target domain that blends all characteristics at once and maintains robust cross-domain
consistency. It supports both image and text modalities and is versatile to multiple generators.

ABSTRACT

Recently, generative domain adaptation has achieved remarkable progress, enabling
us to adapt a pre-trained generator to a new target domain. However, existing
methods are limited to a single target domain and single modality, either text-driven
or image-driven. In this paper, we explore a novel task – Generalized Hybrid
Domain Adaptation. Compared with conventional generative domain adaptation, it
provides greater flexibility to adapt the generator to the hybrid of multiple target
domains, with multi-modal references including one-shot image and zero-shot text
prompt. Meanwhile, it is more challenging to represent the composition of multi-
modal target domains and preserve the characteristics from the source domain. To
address these issues, we propose UniHDA, a unified and versatile framework for
generalized hybrid domain adaptation. Drawing inspiration from the interpolable
latent space of StyleGAN, we find that a linear interpolation between domain shifts
in CLIP’s embedding space can also uncover favorable compositional capabilities
for the adaptation. In light of this finding, we linearly interpolate the domain shifts
from multiple target domains to achieve hybrid domain adaptation. To enhance
consistency with the source domain, we further propose a novel cross-domain
spatial structure (CSS) loss that maintains the detailed spatial structure between
the source and target generator. Experiments show the adapted generator can
synthesize realistic images with various attribute compositions and maintain robust
consistency with the source domain. Additionally, UniHDA is generator-agnostic
and versatile to multiple generators, e.g., StyleGAN, EG3D, and video generators.

1 INTRODUCTION

Benefiting from the tremendous success of modern image generators (Karras et al., 2019; Brock
et al., 2018; Vahdat et al., 2021; Rombach et al., 2022), generative domain adaptation has achieved
remarkable progress. Typically, it aims to adapt a pre-trained generator to a new target domain while
preserving the variation in the source domain. Depending on the modality of references, generative
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Figure 2: UniHDA succeeds in generalized hybrid domain adaptation and maintains robust consis-
tency with the source domain. NADA (Gal et al., 2021), by cross-model interpolation, can somehow
yield alike images of hybrid domains but with poor consistency. It overfits the limited references,
which impedes the inheritance of the diversity in the source domain.

domain adaptation can be categorized into two schools: text-driven (Gal et al., 2021; Nitzan et al.,
2023a; Liu et al., 2023; Song et al., 2022; Lei et al., 2023) and image-driven (Li et al., 2020; Ojha
et al., 2021; Zhao et al., 2022b; Xiao et al., 2022; Mondal et al.; Wu et al., 2023; Zhao et al., 2022a).

Despite their promising results for single modality and single target domain, they fail to adapt the
generator to more practical scenarios like smiling Joker given the non-smiling Joker image
and the smile text. For more general purposes, we explore a new task – Generalized Hybrid Domain
Adaptation. It aims to adapt the generator to the hybrid of multiple target domains that integrates all
attributes with multi-modal references including one-shot image and zero-shot text prompt (Fig. 1).

Compared with conventional generative domain adaptation, our task is more challenging in two
aspects: (1) It is harder to represent the composition of multi-modal target domains. While cross-
model interpolation technique (Gal et al., 2021) could somehow yield alike images of the hybrid
domain, it doubles the model size and training time to train a separate model per domain. (2) With
multiple target domains and very limited references from each domain, the generator is more prone
to overfitting domain-specific attributes. This leads to a loss of consistency with the source domain,
which impedes the inheritance of the diversity (Fig. 2).

To address these issues, we propose UniHDA, a Unified and versatile framework for Generalized
Hybrid Domain Adaptation. UniHDA facilitates the references of one-shot image and text prompt
simultaneously and blends the attributes from target domains to create a hybrid domain. To enable
multiple modalities, we leverage pre-trained CLIP (Radford et al., 2021) to project multi-modal
references into a unified embedding space and represent the domain shift by the direction vector from
the source embedding to the target embeddings.

To achieve hybrid domain adaptation, we draw inspiration from the compositional capabilities in the
latent space of StyleGAN (Härkönen et al., 2020; Shen & Zhou, 2021; Xu et al., 2022). Specifically,
we demonstrate a semantically meaningful linear interpolation between direction vectors in CLIP’s
embedding space can uncover favorable compositional capabilities (Fig. 3). In light of this intriguing
finding, we linearly interpolate direction vectors of multiple target domains to obtain the direction
vector corresponding to the hybrid domain that semantically integrates attributes from all target
domains.

Furthermore, we introduce a novel Cross-domain Spatial Structure loss (CSS) to preserve the consis-
tency between the source and target generator by maintaining detailed spatial structure information.
Concretely, we leverage pre-trained Dino-ViT (Dosovitskiy et al., 2020; Oquab et al., 2023) to
encode generated images into patch tokens with fine-grained spatial information. For cross-domain
consistency, we maintain the correspondence between source and target tokens with contrastive
learning (Oord et al., 2018). Equipped with CSS loss, UniHDA maintains robust consistency with the
source domain as shown in Fig. 2.
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Figure 3: In CLIP’s embedding space, we find direction vectors from source domain to target
domains are linearly interpolable to represent the domain shift to the hybrid target domain. As shown
above, the traversal portrays smooth transition between two target domains and shows favorable
compositional capabilities to semantically integrates the attributes. Note that the coefficients for the
right domain are respectively 0, 0.2, 0.4, 0.6, 0.8, and 1, while they are inverse for the left domain.

We conduct experiments for a wide range of source and target domains to validate the effectiveness
of our method. Results demonstrate that the adapted generator can synthesize realistic images with
various attribute compositions. We also show that UniHDA is agnostic to the type of generators, e.g.,
StyleGAN (Karras et al., 2019; 2020; 2021), EG3D (Chan et al., 2022), video model (Wang et al.,
2023), and Diffusion models (Ho et al., 2020; Kim et al., 2022a). Our contributions are as follows:

• We explore a novel task Generalized Hybrid Domain Adaptation that offers greater flexibility for
hybrid target domain and multi-modal references. To enable it, we propose a unified and versatile
framework which effectively accomplishes the adaptation and is versatile for various generators.

• We demonstrate strong compositional capabilities of direction vectors in CLIP’s embedding space.
Taking advantage of it, we propose to linearly interpolate the direction vectors for generalized
hybrid domain adaptation.

• We propose a cross-domain spatial structure loss to maintain consistency with the source domain.
It is conducted in generator-agnostic embedding space which is versatile for various generators. To
our knowledge, it is the very first trial in generative domain adaptation.

2 RELATED WORK

Text-driven Generative Domain Adaptation. Text-driven domain adaptation (Gal et al., 2021;
Nitzan et al., 2023a; Liu et al., 2023; Alanov et al., 2022; Zhu et al., 2022; Lyu et al., 2023; Lei et al.,
2023; Kim & Chun, 2023; Kim et al., 2023; Song et al., 2022) involves using a textual prompt to shift
the domain of a pre-trained model toward a new domain. For example, Style-NADA (Gal et al., 2021)
presents a local direction CLIP (Radford et al., 2021) loss to align the embeddings of the generated
images and text. Based on Style-NADA, Domain Expansion (DE) (Nitzan et al., 2023b) proposes to
expand the generator to jointly model multiple domains with texts.

Image-driven Generative Domain Adaptation. Image-driven generative domain adaptation (Mo
et al., 2020; Li et al., 2020; Ojha et al., 2021; Zhao et al., 2022b; Xiao et al., 2022; Mondal et al.; Wu
et al., 2023; Zhao et al., 2022a; 2023; Zhang et al., 2022; Zhu et al., 2021; Alanov et al., 2023; Kim
et al., 2022b) refers to the adaptation of a pre-trained image generator to a new target domain using a
limited number of training images. Prior methods often integrate additional regularization terms to
prevent overfitting. For instance, DiFa (Zhang et al., 2022) utilizes GAN inversion (Tov et al., 2021)
to align the latent codes which helps inherit diversity. Although these works have made significant
strides in generative domain adaptation, they heavily rely on the discriminator or generator, making it
challenging to handle hybrid domain adaptation and extend to other generators.
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Generative Hybrid Domain Adaptation. To achieve hybrid domain adaptation, Style-NADA (Gal
et al., 2021) proposes to train a separate generative model per domain and combine their effects in
test-time. However, it doubles the model size and training time. Domain Expansion (DE) (Nitzan
et al., 2023b) expands the generator to jointly model multiple domains via decomposing latent space.
However, it requires the source dataset for regularization, which significantly increases training time.
Recently, FHDA (Li et al., 2023) proposes few-shot hybrid domain adaptation and introduces a
directional subspace loss. Differently, we focus on multi-modal references including one-shot image,
which offers greater flexibility.

Disentanglement in Generative Models. As observed in StyleGAN (Karras et al., 2019), the latent
space is essentially a linear subspace. Recent works (Härkönen et al., 2020; Shen & Zhou, 2021; Xu
et al., 2022; Shen et al., 2020; Wu et al., 2020; Patashnik et al., 2021; Voynov & Babenko, 2020;
Spingarn-Eliezer et al., 2020) propose to find individual latent factors for image variations. Among
them, SeFa (Shen & Zhou, 2021) computes the eigenvalues of the transformation matrix to find the
latent directions. For diffusion models, DiffAE (Preechakul et al., 2022) explores the possibility of
using DPMs for representation learning and extracts a decodable representation of an input image.

3 METHOD

3.1 GENERALIZED HYBRID DOMAIN ADAPTATION

We start with a pre-trained generator GS (e.g., StyleGAN (Karras et al., 2019; 2020; 2021) and
Diffusion model (Ho et al., 2020; Song et al., 2020)), that maps from noise z to images in a source
domain S. Given a new target domain T referenced by texts (Gal et al., 2021; Zhang et al., 2022;
Kwon et al., 2022; Kim et al., 2022a) or images (Mo et al., 2020; Li et al., 2020; Ojha et al., 2021;
Zhao et al., 2022b; Xiao et al., 2022; Mondal et al.), generative domain adaptation aims to adapt GS
to yield a target generator GT , which can generate images similar to domain T .

Despite the promising results of existing methods, a major limitation of them is that they only support
adaptation from the source domain to individual target domains and fail to directly adapt the generator
to the hybrid domain which blends the characteristics of multiple domains. Furthermore, they fail
with multi-modal adaptation driven by texts and images simultaneously.

For more general purposes, we explore generalized hybrid domain adaptation. Given N domains
{Ti}Ni=1 with one-shot image {Yi} and M domains {Tj}Mj=1 with the text prompt {Pj}, it aims to
adapt the source generator GS to GT that models the hybrid domain T = {Ti} ∪ {Tj} and generates
images with integrated characteristics. To the end, we introduce UniHDA, a unified and versatile
framework for generalized hybrid domain adaptation (Fig. 4).

3.2 MULTI-MODAL DIRECTION LOSS

To enable multiple modalities, we leverage pre-trained CLIP (Radford et al., 2021) to encode text-
image references into a unified semantic embedding space. Drawing inspiration from CLIP-based
methods (Gal et al., 2021; Zhang et al., 2022; Kwon et al., 2022; Kim et al., 2022a), we represent the
domain shift as the direction vector ∆fdom from the source embedding to the target embedding. For
image reference Yi and its CLIP embedding fi, the domain shift is calculated by

∆fdom = fi − fs, (1)

where fs is the mean embedding of several samples generated by GS . For text prompt Pj and its
CLIP embedding fj ,

∆fdom = fj − f̃s, (2)

where f̃s is the embedding of the source text prompt.

To adapt GS , we initialize a new generator GT from GS and finetune it by aligning the sample-shift
direction ∆fsamp with the domain-shift direction ∆fdom. Formally,

∆fsamp = ft − fs,

Ldirect = 1− ∆fsamp ·∆fdom
∥∆fsamp∥ ∥∆fdom∥

,
(3)

where fs and ft are the embeddings of samples generated by GS and GT with the same noise.
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Figure 4: Overview of UniHDA with multi-modal direction loss Ldirect and cross-domain spatial
structure loss LCSS. Utilizing CLIP image and text encoder, Ldirect encourages GT to faithfully
acquire domain-specific characteristics with multi-modal references. To facilitate diversity inherited
from GS , LCSS improves cross-domain consistency by maintaining detailed spatial structure informa-
tion. The red solid line represents positive pairs, while the red dashed lines represent negative pairs.

3.3 LINEAR COMPOSITION OF DIRECTION VECTORS

To achieve the hybrid domain adaptation, we draw inspiration from the compositional capabilities
in the latent space of StyleGAN (Härkönen et al., 2020; Shen & Zhou, 2021; Xu et al., 2022). We
illustrate that a linear interpolation between two direction vectors in the embedding space of CLIP,
which is semantically meaningful, reveals promising compositional capabilities. As shown in Fig. 3,
we can smoothly interpolate between two direction vectors calculated by distinct target prompts and
source prompt “photo”, resulting in a gradual adaptation toward the target domain.

In light of this intriguing finding, we employ linear interpolation on the direction vectors of multi-
modal target domains, to derive the direction vector representing the hybrid domain that semantically
integrates all attributes. For given domain coefficients {αi} and {αj}, we obtain the direction vector

∆fdom =

N∑
i=1

αi(fi − fs) +

M∑
j=1

αj(fj − f̃s), (4)

which represents the domain shift between the hybrid domain and source domain. We then substitute
Eq. (4) into Eq. (3) to adapt GS to the hybrid domain.

3.4 CROSS-DOMAIN SPATIAL STRUCTURE LOSS

Albeit the direction loss achieves generalized hybrid domain adaptation, the adapted generator is
prone to overfit domain-specific attributes. This exacerbates when it comes to image-image and
image-text scenarios owing to the scarcity of the images. To address this issue, we introduce a
novel cross-domain spatial structure loss (CSS) to enhance cross-domain consistency, ensuring the
preservation of intricate spatial structural information between the source and target generator.

Specifically, we leverage pre-trained Dino-ViT (Dosovitskiy et al., 2020; Oquab et al., 2023) to
encode the generated images into patch tokens, containing detailed spatial structural information.
Dino-ViT is self-supervised to focus on the distinction between subjects of the same class (Ruiz
et al., 2023), which facilitates us in maintaining cross-domain consistency. Motivated by contrastive
learning (Oord et al., 2018), we reduce distances between the positive token pairs at the same position
and push away the negative token pairs at other positions by

LCSS = −
∑
i

log
exp(vti · vsi )∑
j exp(v

t
i · vsj )

, (5)

where vti and vsj are the i-th and j-th tokens in the last layer of Dino-ViT from GT and GS respectively.
The dot mark · represents dot product.

Overall, our training loss consists of two terms, i.e., the multi-modal direction loss Ldirect to achieve
generalized hybrid domain adaptation and the cross-domain spatial structure loss LCSS to maintain
cross-domain consistency:

Loverall = Ldirect + λLCSS. (6)
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NADAFHDARef. OursSource

Figure 5: Image-image hybrid domain adaptation. We compare the results of FHDA (Li et al., 2023),
NADA (Gal et al., 2021) and UniHDA (Ours) with the same noise. FHDA and NADA generate
images with poor cross-domain consistency, leading to a limited diversity. In contrast, UniHDA
alleviates overfitting and maintains strong cross-domain consistency.

Method Taylor-Elena Hulk-Wooden Johnson-Comic Average

CS-I (↑) SCS (↑) CS-I (↑) SCS (↑) CS-I (↑) SCS (↑) CS-I (↑) SCS (↑)

FHDA 0.685 0.576 0.635 0.659 0.640 0.679 0.630 0.661
NADA 0.684 0.579 0.624 0.575 0.647 0.642 0.628 0.639
Ours 0.699 0.738 0.649 0.707 0.656 0.764 0.642 0.769

Table 1: Quantitative results for image-image domain adaptation. We present the results for cases in
Fig. 5. To further demonstrate the robustness, we average the results for more cases in Appendix.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Methodology. We demonstrate the versatility of UniHDA on generalized hybrid domain adaptation,
i.e., image-image, image-text, and text-text (in Appendix). To show the generator-agnostic nature
of UniHDA, we apply it to three well-known generators, i.e., StyleGAN2 (Karras et al., 2020),
Diffusion model (Kim et al., 2022a), and EG3D (Chan et al., 2022). Following previous generative
domain adaptation literatures (Gal et al., 2021; Zhang et al., 2022; Mo et al., 2020; Li et al., 2020;
Nitzan et al., 2023b; Ojha et al., 2021; Zhao et al., 2022b; Xiao et al., 2022; Mondal et al.), we use
StyleGAN2 for comparisons in most experiments.

Datasets. We conduct experiments for a wide range of source and target domains to validate the
effectiveness of UniHDA. Following previous work, we consider FFHQ (Karras et al., 2019), AFHQ-
Dog (Choi et al., 2020), and LSUN-Church (Yu et al., 2015) as the source domains. The resolutions
of images in these datasets are respectively 1024, 512, and 256. We adapt the generator to diverse
hybrid domains driven by the text prompt and one-shot image. To demonstrate the effect of the hybrid
domain, we set the domain coefficients in Eq. (4) as 0.5. Unless stated otherwise, we use λ = 5 in
Eq. (6) for all experiments.

Evaluation Metrics. One important aspect of evaluating generative domain adaptation is the
preservation of domain-specific characteristics. Following (Ruiz et al., 2023), we use CLIP Score
(CS-T and CS-I) for text-text and image-image adaptation respectively. Concretely, CS-T is measured
by the average cosine similarity between the target prompt and generated images’ embedding. CS-I is
the average pairwise cosine similarity between CLIP embeddings of real and generated images. Here
we use the average CS-T or CS-I of multiple domains. For image-text adaptation, we use the average
of CS-T and CS-I as the metric (CS). Another important evaluation is the cross-domain consistency
of the source domain. To measure it, we adopt the Structural Consistency Score (SCS) (Xiao et al.,
2022) to evaluate the spatial structural consistency between the source and target generator.
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“Snow“
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Figure 6: Image-text hybrid domain adaptation. We compared our method with previous meth-
ods (Gal et al., 2021; Zhu et al., 2021; Zhang et al., 2022), UniHDA well captures the attributes of
hybrid target domain and maintains strong cross-domain consistency with source domain. ∗ indicates
that MTG and DiFa support multi-modalities by interpolating model parameters with NADA.

+

“Angry” + “2D Anime“ “Person in love” +

Source

Figure 7: Hybrid domain adaptation in 3D generator. To show the versatility of UniHDA, we apply it
on the popular 3D-aware generator, EG3D (Chan et al., 2022).

4.2 IMAGE-IMAGE HYBRID DOMAIN ADAPTATION

Method FFHQ Dog Church

CS (↑)SCS (↑)CS (↑)SCS (↑)CS (↑)SCS (↑)

NADA 0.563 0.586 0.424 0.533 0.414 0.629
MTG 0.536 0.529 0.403 0.526 0.403 0.684
DiFa 0.548 0.681 0.413 0.683 0.407 0.711
Ours 0.565 0.742 0.430 0.796 0.414 0.781

Table 2: Quantitative results for image-text
domain adaptation. We average the results for
cases in Appendix.

Fig. 5 shows the qualitative results for image-image
adaptation, starting from the same source domain
FFHQ (Karras et al., 2019) to the combinations of in-
dividual domains. As shown in the figure, FHDA (Li
et al., 2023) suffers from severe model collapse and
generates images with limited diversity due to the
scarcity of image references. While NADA (Gal
et al., 2021) mitigates overfitting to a certain extent,
its cross-domain consistency remains poor, resulting
in the generation of similar images. In contrast, Uni-
HDA maintains strong consistency and effectively
generates images with integrated characteristics.

We also quantitatively compare UniHDA with baselines. As shown in Tab. 1, ours clearly outperforms
them. For CS-I, UniHDA significantly outperforms other methods, indicating that generated images
effectively integrate multiple characteristics from distinct domains. Furthermore, UniHDA achieves
better SCS, which effectively maintains cross-domain consistency compared with baselines.

4.3 IMAGE-TEXT HYBRID DOMAIN ADAPTATION

Fig. 6 shows the results of image-text adaptation, including FFHQ (Karras et al., 2019), AFHQ-
Dog (Choi et al., 2020), and LSUN -Church (Yu et al., 2015). As depicted in Sec. 4.2, NADA is
susceptible to overfitting, which retains poor cross-domain consistency. Besides, we interpolate
NADA’s parameters with MTG(Zhu et al., 2021) and DiFa (Zhang et al., 2022), which alleviates
overfitting to some extent. However, they can’t accurately capture the attributes of the hybrid target
domain and still fail to maintain good consistency. In contrast, UniHDA well captures the attributes

7
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Source
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Reference + + “Young” + “Red hair” “Angry” 

Figure 8: Hybrid domain adaptation in the video generator. Specifically, we apply it to StyleInv (Wang
et al., 2023), an unconditional video generator to synthesize high-quality videos.

“Blond hair” + “Smile“ + + “Smile“Source

Figure 9: Results of UniHDA with DiffusionCLIP (Kim et al., 2022a), which demonstrate UniHDA
is agnostic to the type of generator, allowing for broader application on diffusion models.

and achieves robust consistency in all scenarios. As shown in Tab. 2, we also compare UniHDA with
the baselines quantitatively. Consistent with qualitative results in Fig. 6, ours clearly outperforms the
baselines. Additionally, we also conduct the user study in the Appendix.

4.4 GENERALIZATION ON OTHER GENERATIVE MODELS

In this section, we demonstrate UniHDA is agnostic to the type of generative models and can easily
generalize to other generators, e.g., EG3D (Chan et al., 2022), StyleInv (Wang et al., 2023), and
DiffusionCLIP (Kim et al., 2022a). For EG3D, a popular 3D-aware image generation method, we
replace the discrimination loss with our framework for hybrid domain adaptation. As shown in
Fig. 7, the results effectively integrate the attributes and preserve the characters and poses of the
source domain. For video adaptation, we conduct experiments on StyleInv (Wang et al., 2023), an
unconditional video generator. Fig. 8 verifies the generalization to synthesize high-quality videos.
For DiffusionCLIP, we replace the training objective of DiffusionCLIP with our proposed Ldirect

and LCSS. As shown in Fig. 9, the results integrate the characteristics from multiple target domains
and maintain robust consistency with the source domain. More results are included in the Appendix.

4.5 COMPARISON WITH TEXT-TO-IMAGE GENERATORS

Recent text-to-image generators like IP-Adapter (Ye et al., 2023) could synthesize promising results
with provided image and text prompt. However, the objective of UniHDA is to generate images with
attributes of the generalized hybrid target domains while maintaining considerable diversity from
the source domain, which can be applicable in scenarios like data collection. As shown in Fig. 10,
while IP-Adapter can produce images with multiple attributes, their diversity often diminishes when
generating large quantities of images. This is due to their inability to retain the distribution of the
original domain, which makes it impractical for data collection.

4.6 COMPARISON WITH IMAGE EDITING

Image editing could somehow yield alike images with the attribute of the target domain. However,
UniHDA holds several key differences: (1) Existing editing methods (Patashnik et al., 2021; Duan
et al., 2023; Lyu et al., 2023) are based on inversion techniques, which inherently involve the
loss of information. Multi-attribute editing exacerbates this problem. As shown in Fig. 11, after
multiple edits, the resulting images show poor consistency with the source domain. However, our
results maintain strong consistency. (2) UniHDA can adapt generators to more composite and
expansive domains, which offers greater flexibility. However, during the editing, subsequent edits
often overwrite the previously modified attributes, making it difficult to generate images with a
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Ours IP-Adapter

“Red hair” 
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Figure 10: Comparison between UniHDA and IP-Adapter (Ye et al., 2023). Given a single image
reference, We adopt the IP-Adapter to generate the results with a fixed text prompt and different
random seeds. IP-Adapter tends to overfit the single reference and lose the diversity. Differently,
UniHDA maintains robust consistency with the source domain and presents compelling diversity.

“ “ +
“Red hair“

“Green eyes“

“Angry“

Ours

Source

“Red hair“ “Green eyes“

“Angry“

Sequential Image Edit

“ “

Source

“Big eyes“ “Blue eyes“

Ours Multiple Image Edits

+
“Big eyes“

“Blue eyes“

“.            “

“              “

“              “

“.            “

Figure 11: Comparison between UniHDA and image editing. We use StyleCLIP (Patashnik et al.,
2021) to perform multiple edits on images for hybrid attributes, which presents two issues: (1)
Multiple inversions exacerbate information loss, leading to decreased consistency. (2) Subsequent
edits may overwrite the effects of previous edits, as observed that the big eyes attribute disappears
after the blue eyes edit.

combination of hybrid attributes as shown in Fig. 11. (3) UniHDA is generator-agnostic and versatile
to multiple generators, including 3D generators and video generators. However, 2D image editing is
challenging to apply to 3D images or videos because it is difficult to maintain robust multi-view or
temporal consistency. (4) The objective of generative domain adaptation is to generate images with
attributes of the target domain while maintaining considerable diversity, which can be applicable in
scenarios like data collection. Image editing, on the other hand, requires the original image as input,
rendering it impractical for such applications.

4.7 RESULTS OF INCOMPATIBLE DOMAIN ADAPTATION

Typically, the attributes of the target domain and the source domain are complementary. Even in cases
where conflicts arise, our UniHDA can maintain robust consistency with the source domain while
acquiring the attributes of the target domain. To verify this, we additionally conduct experiments
for hybrid domain adaptation on incompatible domains, i.e., from cat to rabbit. As shown in Fig. 12,
we start from AFHQ (Choi et al., 2020) cat to incompatible domains. Although there is a conflict
between the reference image and the source domain, we can observe that the results still effectively
integrate the attributes of the corresponding domain and maintain robust consistency with the source
domain.
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“Cute” “Happy” “Angry” Reference

Figure 12: Hybrid domain adaptation from AFHQ-Cat to incompatible domains.

Source

“Snow” 
+

“Smile” 
+

“Happy” 
+

Figure 13: Ablation of our proposed LCSS on hybrid domain adaptation, which significantly alleviates
overfitting and improves cross-domain consistency. λ is the coefficient of LCSS.

4.8 ABLATION OF CSS LOSS

We conduct the ablation study to evaluate the effects of our proposed CSS loss. As shown in Fig. 13,
the results without LCSS suffer from overfitting and have very limited cross-domain consistency,
e.g., distorted backgrounds in Row 1 and 3. Benefiting from LCSS, the generated images maintain
consistency with the source images in terms of spatial structure, thereby inheriting the diversity from
the source domain. Besides, we conduct the quantitative ablation in the Appendix. There exists a
trade-off between adaptation to the target domain and preserving the characteristics from the source
domain. We can adjust the coefficient λ based on the desired effect.

5 CONCLUSION & LIMITATION

In this paper, we explore a new task, generalized hybrid domain adaptation, and propose UniHDA, a
unified and versatile framework to enable it. For the hybrid domain, we demonstrate the compositional
capabilities of direction vectors in CLIP’s embedding space and linearly interpolate direction vectors
of multiple target domains. We also propose a new cross-domain spatial structure loss to improve
consistency, which is conducted in generator-agnostic space and versatile for various generators.
We believe our work is an important step towards generative domain adaptation, since we have
demonstrated the source generator can be effectively adapted to a hybrid domain with multi-modal
references and maintain robust cross-domain consistency. Our code will be made public.

While UniHDA effectively realizes generalized hybrid domain adaptation, it also has limitations.
To encode both image and text into a shared embedding space, we utilize pre-trained CLIP during
training time, which might bring potential bias for some domains. Nevertheless, we believe that the
exploration of the novel task is significant for future work and solutions could be integrated into
UniHDA to eliminate the bias.

10
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6 ETHICS STATEMENT

Our main objective in this work is to empower novice users to generate visual content creatively
and flexibly. However, the broad adoption of such technology brings up ethical issues related to
privacy, misinformation, and potential misuse. We strongly support the responsible development
and deployment of tools to detect biases and malicious use cases, highlighting the need for ethical
standards to guarantee their safe and ethical use in the field of computer vision.

7 REPRODUCIBILITY STATEMENT

We make the following efforts to ensure the reproducibility of UniHDA: (1) Our training and inference
codes together with the trained model weights will be publicly available. (2) We provide the details
of the human evaluation setups in the appendix (Appendix A.5). (3) We provide training details in
the appendix (Appendix A.8), which is easy to follow.
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NADADE Ours

“Baby” 

+

“Red hair“

“Big eyes” 

+

“Blue eyes“

Ref. Source

“Baby” 

+

“Happy“

Figure 14: Text-text hybrid domain adaptation. We compare the results of DE (Nitzan et al., 2023b),
NADA (Gal et al., 2021) and UniHDA (Ours) with the same noise. UniHDA exhibits desirable
performance to acquire characteristics from hybrid target domain and maintain robust cross-domain
consistency.

Method Baby-Red hair Baby-Happy Big-Blue eyes Average

CS-T (↑) SCS (↑) CS-T (↑) SCS (↑) CS-T (↑) SCS (↑) CS-T (↑) SCS (↑)

DE 0.163 0.638 0.160 0.580 0.195 0.662 0.167 0.634
NADA 0.179 0.661 0.170 0.642 0.186 0.731 0.159 0.552
Ours 0.186 0.744 0.175 0.757 0.197 0.765 0.176 0.707

Table 3: Quantitative results for text-text domain adaptation. We present the quantitative results
corresponding to each case in Fig. 14. Similar to Tab. 1, we average the results for cases in Appendix.

A APPENDIX

In this appendix, we begin to conduct the experiments on text-text hybrid domain adaptation in
Appendix A.1. And we compare with existing methods in terms of efficiency in Appendix A.2. Then
we show more ablation of CSS loss in Appendix A.3 and Appendix A.4, including quantitative results
and the effect of the encoder in CSS loss. Additionally, we report the user study in Appendix A.5.
Then we show more qualitative results e.g., more domains in Appendix A.6, and additional results in
Appendix A.7. Finally, we provide more implement details in Appendix A.8 and the potential bias in
Appendix A.9.

A.1 TEXT-TEXT HYBRID DOMAIN ADAPTATION

Fig. 14 shows the qualitative results for text-text adaptation. Since the adaptation is conducted solely
along one projection direction of the latent code, Domain Expansion (DE) (Nitzan et al., 2023b), does
not fully capture the characteristics of the target domain, e.g., baby (Row 1 and Row 2). Furthermore,
DE does not maintain robust consistency, e.g., the chin of the person in the upper-right corner and
background artifacts in Row 3. The problem of NADA (Gal et al., 2021) is overfitting. Hard-to-learn
characteristics, e.g., baby (Row 1 and Row 2) and big eyes (Row 3) may be overshadowed by
other overfitted ones. In contrast, UniHDA (Ours) exhibits desirable performance to generate images
with integrated characteristics while maintaining robust consistency with the source domain.

Similar to Sec. 4.2, we also compare UniHDA with the baselines quantitatively. As shown in Tab. 3,
ours clearly outperforms the baselines, which are consistent with qualitative results in Fig. 14. We
achieve better CS-I and SCS, indicating that generated images effectively integrate domain-specific
attributes and preserve primary characteristics of the source domain.
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Method Modality Model
Amount

2-domain 10-domain

size (↓) time (↓) size (↓) time (↓)

NADA Multi N 48M 4min 240M 20min
MTG∗ Multi N 48M 4min 240M 20min
DiFa∗ Multi N 48M 4min 240M 20min

DE† Text 1 24M 20h 24M 20h
FHDA Image 1 24M 3min 24M 3min

Ours Multi 1 24M 2min 24M 2min

Table 4: Comparison with previous methods. ∗ indicates MTG and DiFa support multi-modalities
by interpolating model parameters with NADA. † means DE needs source dataset (e.g., FFHQ) that
significantly increases training time.

w/o CSS

w/ CSS

Source R
ef

er
en

ce

Figure 15: More qualitative results to verify the effectiveness of our proposed LCSS.

A.2 COMPARISON WITH EXISTING METHODS

In addition to generation quality, UniHDA also surpasses existing methods in terms of efficiency, e.g.,
model size and training time as shown in Tab. 4. NADA, MTG, and DiFa trains a separate generative
model per domain and interpolates their parameters in test-time, which necessitates multiple times
the model size and training time. Although DE avoids cross-model interpolation, it heavily relies on
the large source dataset for regularization during training process, resulting in a significant increase
in training time. In contrast, UniHDA circumvents these issues, which enables the adaptation within
single generator in only two minutes.

Furthermore, DE relies on the semantic latent space of the generator (e.g., StyleGAN (Karras et al.,
2019) and DiffAE (Preechakul et al., 2022)) for hybrid domain adaptation, limiting its applicability to
a broader range of generators. MTG and DiFa utilize GAN inversion, which restricts the applicability
to generators similar to StyleGAN. Conversely, UniHDA is not constrained by the type of generators,
allowing for its broader application across various generators.

A.3 MORE ABLATION OF CSS LOSS

As depicted in Sec. 4.8 of the main paper, our proposed LCSS significantly alleviates overfitting and
improves cross-domain consistency. Results with LCSS achieve better SCS score, indicating that they
maintain stronger consistency with the source domain. Additionally, we show more qualitative results
in Fig. 15 to verify the effectiveness of UniHDA. We also conduct the quantitative ablation in Tab. 5,
which is consistent with the qualitative results.
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“Smile” 

+

“Person in love” 

+

“Angry” 

+

w/o CSS w/ CSS (ViT) w/ CSS (MViTv2) w/ CSS (Dinov2)

Figure 16: Ablation of different pre-trained encoders for CSS on hybrid domain adaptation.

+

+

+

w/o CSS w/ CSS (ViT) w/ CSS (MViTv2) w/ CSS (Dinov2)

Figure 17: Effect of different pre-trained image encoders for CSS on image-image hybrid domain
adaptation.

A.4 ABLATION OF ENCODER FOR CSS

We conduct experiments on pre-trained ViT (Dosovitskiy et al., 2020), MViTv2 (Li et al., 2022), and
Dinov2 to explore the impact of different image encoders for CSS. As shown in Fig. 16, Fig. 17 and
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w/o CSS w/ CSS (ViT) w/ CSS (MViTv2) w/ CSS (Dinov2)

“Angry” 

+

“3D Render“

“Young” 

+

“Blue eyes“

“Smile” 

+

“Red hair“

Figure 18: Effect of different pre-trained image encoders for CSS on text-text hybrid domain
adaptation.

λ
FFHQ (I-I) FFHQ (T-T) FFHQ (T-I) Dog (T-I) Church (T-I)

SCS (↑) CS-I (↑) SCS (↑) CS-T (↑) SCS (↑) CS (↑) SCS (↑) CS (↑) SCS (↑) CS (↑)

0 0.502 0.639 0.520 0.170 0.562 0.557 0.491 0.430 0.604 0.411
3 0.681 0.638 0.683 0.171 0.694 0.556 0.787 0.428 0.706 0.413
5 0.769 0.642 0.707 0.176 0.742 0.565 0.796 0.430 0.781 0.414
10 0.762 0.655 0.756 0.170 0.773 0.514 0.798 0.425 0.778 0.410

Table 5: Quantitative ablation for our proposed LCSS. λ is the coefficient of LCSS. There exists a
trade-off between adaptation to the target domain and preserving the characteristics from the source
domain. We can adjust λ based on the desired effect.

Fig. 18, we can observe that all of them improve the consistency with source domain compared with
the baseline approach. Furthermore, they exhibit a similar qualitative style, which demonstrates that
our CSS is agnostic to different pre-trained image encoders.

Method Fidel. Diver. Corr.

vs. NADA (I-I) 85.2 90.6 76.0
vs. NADA (T-T) 81.4 84.2 80.8
vs. NADA (T-I) 84.6 85.8 78.6

Table 6: User study for fidelity, diversity, and reference correspondence (image or text) in hybrid
domain adaptation. The value (%) represents the percentage of users who favor the images generated
by our method over NADA.
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“Cute” “Happy” “Angry” Reference

Figure 19: Hybrid domain adaptation from AFHQ-Dog to incompatible domains, i.e., lion,
rabbit, and tiger.

“ “ + “2D Anime“
“Big eyes“ “Green eyes“
“Angry“Source domain “ “ +

“Big eyes“

“Blue eyes“

Figure 20: The results of hybrid domain adaptation from FFHQ to the hybrid of more domains.

A.5 USER STUDY

We conduct user study in Tab. 6 to compare UniHDA with NADA. Specifically, we provide users
with the target text or image, the source image, and adapted images. Then we ask them to choose
the better image for fidelity, diversity and correspondence. For each case, we generate 1000 samples
and randomly assign 200 samples to 30 users. The results indicate that UniHDA surpasses NADA in
terms of fidelity, diversity and reference correspondence.

A.6 MORE QUALITATIVE RESULTS

We apply UniHDA to adapt the generator on FFHQ (Karras et al., 2019) to more hybrid domains, i.e.,
text-text, image-image, and image-text, as well as AFHQ (Choi et al., 2020) dog to incompatible
domains. As shown in Fig. 20, Fig. 21, Fig. 22, Fig. 23, and Fig. 19. UniHDA successfully generates
images with integrated characteristics from multiple target domains and maintains robust consistency
with the source domain. Besides, we showcase more results of hybrid domain adaptation from
AFHQ-Dog and LSUN-Church (Yu et al., 2015) in Fig. 24 and Fig. 25.

A.7 MORE RESULTS FOR DIFFUSIONCLIP AND EG3D

To demonstrate the versatility of UniHDA, we apply it on DiffusionCLIP and EG3D in Sec. 4.4 in the
main paper. As shown in Fig. 26 and Fig. 27, we showcase more results including image-image, text-
text, and image-text. All results achieve hybrid domain adaptation and preserve strong cross-domain
consistency.
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Figure 21: More results of image-image hybrid domain adaptation. The source image is in the top-left
corner, and the first row and column consist of training images.

A.8 IMPLEMENT DETAILS

Following the setting of previous generative domain adaptation methods (Gal et al., 2021; Nitzan
et al., 2023b), we utilize the batch size of 4 and ADAM Optimizer with a learning rate of 0.002 for
all experiments during training. A training session typically requires 300 iterations in 2 minutes,
which significantly reduces training time compared with adversarial methods for generative domain
adaptation. Note that we conduct all experiments on a single NVIDIA RTX 4090 GPU. The code
will be open source.

For experiments on FFHQ, we generate images with 1024 × 1024 resolution. As for AFHQ-Dog and
LSUN-Church, we operate on 512 × 512 and 256 × 256 resolution images respectively.

A.9 POTENTIAL BIASES OF CLIP

As depicted in NADA, CLIP may introduce textual bias and ambiguity in some specific domains. For
example, the text ’Nurse’ tends to convert the individuals to females, as shown in Fig. 28.
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“2D Anime” 

“3D Render” 

“Red hair” 

“Blue eyes” 

“Super Mario” 

“Smile” “Angry” “Young” “Old” “Person In love” 

Figure 22: More results of text-text hybrid domain adaptation. The source image is in the top-left
corner, and the first row and column consist of text prompts.
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Render” 

“Smile” “Angry” “Blue eyes” 
“Super 
Mario” 

“Young” “Old” 
“Person In 

love” 

Figure 23: More results of image-text hybrid domain adaptation. The source image is in the top-left
corner. The first row and column consist of training images and text prompts respectively.
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Figure 24: More results of image-text hybrid domain adaptation on AFHQ-Dog.
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Figure 25: More results of image-text hybrid domain adaptation on LSUN-Church.
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“Red hair” + “Young“
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Figure 26: More results of UniHDA with DiffusionCLIP.
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+

“Angry” + “2D Anime“ “Person in love” +

Source

Figure 27: More results of UniHDA with EG3D.

Source “Nurse“ “Nurse” + “Smile”

Figure 28: Textual bias and ambiguity introduced by CLIP. We use ’Nurse‘ as the target domain and
CLIP’s learned biases manifest in the new domain, which converts the individuals to females.
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